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ABSTRACT
Sharding a large machine learning model across multiple devices to balance the costs is important in distributed
training. This is challenging because partitioning is NP-hard, and estimating the costs accurately and efficiently
is difficult. In this work, we explore a “pre-train, and search” paradigm for efficient sharding. The idea is to
pre-train a universal and once-for-all neural network to predict the costs of all the possible shards, which serves as
an efficient sharding simulator. Built upon this pre-trained cost model, we then perform an online search to identify
the best sharding plans given any specific sharding task. We instantiate this idea in deep learning recommendation
models (DLRMs) and propose NeuroShard for embedding table sharding. NeuroShard pre-trains neural cost
models on augmented tables to cover various sharding scenarios. Then it identifies the best column-wise and table-
wise sharding plans with beam search and greedy grid search, respectively. Experiments show that NeuroShard
significantly and consistently outperforms the state-of-the-art on the benchmark sharding dataset, achieving up to
23.8% improvement. When deployed in an ultra-large production DLRM with multi-terabyte embedding tables,
NeuroShard achieves 11.6% improvement in embedding costs over the state-of-the-art, which translates to 6.6%
end-to-end training throughput improvement. To facilitate future research of the “pre-train, and search” paradigm
in ML for Systems, we open-source our code at https://github.com/daochenzha/neuroshard

1 INTRODUCTION

Deep learning recommendation models (DLRMs) are one
of the most important machine learning applications (Zhang
et al., 2019; Cheng et al., 2016; Naumov et al., 2019; Tan
et al., 2023b; Zhou et al., 2023). For example, DLRMs
account for more than 50% of training and 80% inference
demands in Meta (Naumov et al., 2020; Gupta et al., 2020).
A challenge in DLRMs is how to deal with sparse categori-
cal features. For instance, a single categorical feature in the
YouTube recommendation model contains tens of millions
of video IDs (Covington et al., 2016). To handle the categor-
ical features, modern DLRMs use embedding tables, which
are hash tables that map a categorical index to a vector.

Unfortunately, embedding tables are often the storage and
efficiency bottlenecks in production-scale DLRMs. On the
one hand, the embedding tables can be extremely large. For
example, the embedding tables in the Meta DLRMs demand
multi-terabyte memory (Acun et al., 2021; Mudigere et al.,
2022). Thus, modern distributed training systems for DL-
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RMs often have to adopt model parallelism to partition the
tables and place them on different devices, such as GPUs
and CPUs (Acun et al., 2021; Covington et al., 2016; Liu
et al., 2017; Gomez-Uribe & Hunt, 2015; Lian et al., 2022).
On the other hand, embedding tables often incur significant
computation and communication costs. For instance, it is
reported that embedding tables account for 48% of the total
computation and 65% of the total communication costs in
one of the Meta DLRMs (Zha et al., 2022b).

The left side of Figure 1 shows the computation and commu-
nication costs for embedding tables in a typical distributed
training workflow of DLRMs1 (Naumov et al., 2019). It ex-
ploits a combination of model parallelism, i.e., partitioning
embedding tables and placing them to multiple GPUs, and
data parallelism, i.e., duplicating the fully connected layers
and partitioning the training data. In the forward pass, each
GPU queries the other GPUs with its sparse features to look
up the embeddings from their tables (forward computation)
and obtain the embeddings through an all-to-all communi-
cation (forward communication). In the backward pass, the
gradients are sent back to the GPUs with another all-to-all
communication (backward communication) and applied to
the embeddings (backward computation).

1This work focuses on sharding among GPU devices. We will
study CPU or mixed CPU-GPU sharding scenarios in the future.

https://github.com/daochenzha/neuroshard
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Figure 1. Left: an illustrative distributed training workflow of DLRMs (Naumov et al., 2019) on three GPUs. Right: typical GPU traces in
the fully synchronous mode (Mudigere et al., 2022). For each GPU, the top and bottom threads are for computation and communication,
respectively, and they can overlap. FW and BW stand for forward and backward computations. FW Comm and BW Comm mean forward
and backward communications. We only visualize the major costs; the other costs are often neglectable or hidden due to overlapping. The
embedding forward operations (pink FW) often do not start at the same time across GPUs because of the different ending times of the
embedding backward operations (pink BW) in the previous training iteration.

An important design factor that can significantly impact
the embedding costs is embedding table sharding, i.e., the
strategy of partitioning and placing embedding tables. If
not carefully partitioned, the embedding tables can easily
lead to imbalances, where some devices have significantly
more computation and communication costs than others,
leading to a straggler effect in the synchronous training
setting (Mudigere et al., 2022). While some heuristic-based
sharding strategies have been proposed (Acun et al., 2021;
Lui et al., 2021), they rely on oversimplified cost functions
so they often have unsatisfactory sharding performance.

Recently, reinforcement learning (RL) has shown promise
in embedding table sharding (Zha et al., 2022a;b). The idea
is to make sharding an optimization problem, which aims to
identify a sharding plan that can minimize the overall cost.
These methods formulate sharding as a Markov decision
process (MDP), whose states and rewards are computation
and communication costs estimated by neural networks.
Then they train another policy network to solve the MDP
to minimize the overall embedding costs. These learning-
based methods have achieved a significant improvement
over the heuristic sharding strategies (Zha et al., 2022a;b).

Despite the successes of RL-based approaches, it is difficult
to deploy them. 1) They only consider table-wise sharding,
i.e., they treat tables as the smallest units in sharding and
focus on how to assign each table to a device. However, it is
very likely that one table is extremely large or costly, which
makes it a memory and computation bottleneck. Adopting
these approaches may lead to an out-of-memory error or
an undesirable balance. 2) The policy network is often
trained on very few sharding tasks, so frequent re-training
will be needed to handle unseen tasks. 3) The policy in
RL is notoriously unstable with a high variance (Henderson

et al., 2018; Zha et al., 2019; 2021d; Lai et al., 2020a); that
is, even if we train the same policy on the same MDP with
multiple independent runs, some of the runs may work well
but the others could fail. However, we often demand a stable
sharding solution in production.

Motivated by the recent successes of “pre-train, prompt, and
predict” in large language models (Liu et al., 2023; Brown
et al., 2020; Touvron et al., 2023; Chuang et al., 2023; Tang
et al., 2023), we explore a “pre-train, and search” paradigm
for efficient sharding and present NeuroShard, illustrated
in Figure 2. To handle the extremely large or costly tables,
we incorporate column-wise sharding into the optimization
process, where a table can be partitioned into two smaller
tables, each with half the columns of the original one. Un-
like RL-based methods that stochastically train a policy
network, we pre-train general neural cost models on aug-
mented data to cover comprehensive sharding scenarios.
Once trained, the cost models serve as a simulator to effi-
ciently estimate the embedding costs for any sharding plans.
Built upon the pre-trained cost models, NeuroShard iden-
tifies the best column-wise and table-wise sharding plans
with beam search and greedy grid search, respectively. Neu-
roShard not only outperforms the state-of-the-art but also
can be easily deployed in production. In summary, we make
the following contributions.

• We provide a comprehensive analysis of the compu-
tation and communication costs of embedding tables.
We observe: 1) partitioning a table column-wisely will
increase the overall cost so that column-sharding has
a tradeoff between overall cost and balance, 2) multi-
table computation cost has a non-linear correlation
with the sum of single-table costs, and 3) the communi-
cation cost is mainly determined by table dimensions.
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Figure 2. NeuroShard identifies the optimal sharding plan with
“pre-train, and search”.

• Motivated by the observations, we devise NeuroShard,
a “pre-train, and search” framework which searches
for column-wise and table-wise sharding plans on pre-
trained cost models. Unlike the RL-based methods
whose cost models only have limited coverage, our
cost models are trained for a once-for-all purpose, i.e.,
training one universal cost model for all the sharding
tasks. Moreover, our cost models can readily support
column-wise sharding since it is trained on an aug-
mented table pool with various table dimensions.

• NeuroShard achieves up to 23.8% improvement over
the state-of-the-art without out-of-memory error on the
benchmark sharding dataset (Naumov et al., 2019)2.

• NeuroShard has been deployed to an ultra-large pro-
duction DLRM to shard multi-terabyte embedding ta-
bles to hundreds of GPUs. NeuroShard achieves an
11.6% improvement in embedding costs, which trans-
lates to 6.6% end-to-end training throughput improve-
ment, which is a significant speedup since the produc-
tion DLRM has been heavily optimized.

2 UNDERSTANDING EMBEDDING COST

This section analyzes the embedding costs to motivate the
sharding algorithm design. The right-hand side of Figure 1
shows a typical trace in one training iteration, which mainly
consists of the computation/communication of the embed-
dings and the computation of the fully connected layers.
Note that there are some other costs that are not visual-
ized in the figure, such as the communication of the sparse
features before embedding lookup, and the weight synchro-
nization of the fully connected layers, etc. These costs are
often neglectable or hidden because of the overlapping of
computation and communication.

2https://github.com/facebookresearch/
dlrm_datasets
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Figure 3. Left: computation costs w.r.t. dimensions. We observe
similar patterns for other tables (see Appendix A.1). Right: the
sum of single-table costs versus the actual multi-table cost.

We first explain why imbalances can cause more embedding
costs using the example trace. In the trace of GPU 1, the
embedding backward communication and computation take
more time than the other GPUs, which makes its embedding
forward computation in the next iteration start later than
its peer GPUs. The embedding forward computation of
GPU 1 again takes a longer time than those of the other
GPUs. As such, the above delays are finally accumulated,
forcing GPU 1 to start embedding forward communication
significantly later than other GPUs. This imbalance issue
results in significant idle times for GPU 0 and GPU 2.

To reduce the accumulated delay, we need to balance the
computation and communication costs associated with em-
beddings across all GPUs. In the following, we analyze the
costs separately. All the results are collected on 2080Ti
GPUs with a modern embedding implementation from
FBGEMM (Khudia et al., 2021), which fuses multiple table
lookups as a single operation. Appendix A provides more
details on all the analytical experiments.

2.1 Computation Cost Analysis

Computation costs are mainly decided by the table configu-
rations and the lookup indices. Some important factors were
used to quantify the computation costs (Zha et al., 2022a).
1) Dimension: the number of columns of the table. A larger
dimension often means a higher computation cost since it
technically leads to more memory bandwidth use. 2) Hash
size: the number of rows of the table. It indirectly impacts
the computation costs by affecting the caching/prefetching
behaviors. 3) Pooling factor: the number of embedding
indices in a lookup. We often calculate the mean pooling
factor of a batch of indices. A higher mean pooling factor
leads to a higher computation cost since it determines the
workloads of the lookup. 4) Indices distribution: the ac-
cess pattern and distribution of the lookup, i.e., some indices
can be accessed more frequently than others. It indirectly
impacts the costs by affecting cache effectiveness. Also, the
number of unique embeddings accessed in a batch can also
influence the caching. Fewer indices being accessed will
often lead to smaller costs.

https://github.com/facebookresearch/dlrm_datasets
https://github.com/facebookresearch/dlrm_datasets
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Figure 4. Max forward/backward communication cost versus max
device dimensions among 4 GPUs (left) and 8 GPUs (right).

The previous analysis suggests that the actual computation
costs have complex and non-linear correlations with the
above factors (Zha et al., 2022a), which makes cost estima-
tion hard. Here, we perform two analytical experiments to
provide a deeper understanding and motivate the algorithm
designs of column-wise sharding and table-wise sharding.

First, we study the impact of dimension. We randomly
choose a table from the benchmark sharding dataset named
DLRM (Naumov et al., 2019)2. The left-hand side of Fig-
ure 3 visualizes its computation costs (forward + backward)
with varying dimensions of {128, 64, 32, 16, 8, 4}. As ex-
pected, a larger dimension corresponds to a higher computa-
tion cost. However, we also have the following observation.

Observation 1 When partitioning a table into two halves
column-wisely, the computation cost of each shard is larger
than half the cost of the original table.

For example, the cost of dimension 64 is much larger than
the half of cost of dimension 128. This could be explained
by parallelism and operation fusion; the fused embedding
table operation can achieve better optimization in the CUDA
kernel than in each operation alone. This also indicates
a trade-off in column-wise sharding: while partitioning
tables into smaller tables could improve load balance, it may
increase the overall computation cost. Thus, the column-
wise sharding algorithm needs to strike a balance between
the load balance and the overall computation cost.

Then, we investigate whether we can estimate the compu-
tation cost of a multi-table operation with the sum of the
single-table costs. This is important because if this assump-
tion holds, we could well balance the computation costs
with tools such as mixed integer linear program (Sethi et al.,
2022). We randomly sample 50 subsets of tables from the
DLRM dataset, where each subset contains 10 tables. Then
we plot their relationships on the right-hand side of Figure 3.

Observation 2 Multi-table computation cost has a non-
linear relationship with the sum of single-table costs.

Evidently, table-wise sharding algorithms must consider the
nonlinearity of the multi-table costs.
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Figure 5. The neural architectures of the computation cost model
(left) and the communication cost model (right).

2.2 Communication Cost Analysis

In distributed training, every pair of GPUs need to commu-
nicate in both the forward and backward passes. Thus, each
GPU could have a different communication latency. Our
goal is to minimize the max communication cost among all
the GPUs since the slowest one will become the bottleneck.
Intuitively, the communication costs depend on the sizes of
the data to be sent in the GPUs, where the data size of a
GPU can be estimated by the product of the batch size and
the device dimension, which is defined as the sum of the
dimensions of the tables in the device. Since all the GPUs
have the same batch size, the device dimension becomes the
determining factor of communication balance.

We conduct an experiment to understand the relation-
ship between the max device dimension and the max for-
ward/backward communication cost. We randomly sample
a subset of tables (40 tables for 4 GPUs, and 80 tables for 8
GPUs) from the DLRM dataset and select a random dimen-
sion for each table from {128, 64, 32, 16, 8, 4}. Then we
shard these tables to 4 or 8 GPUs with varying max device
dimensions. We benchmark 50 assignments in Figure 4.

Observation 3 The max forward/backward communication
cost among all the GPUs positively correlates with the max
device dimension among all the GPUs.

The above observation motivates us to adopt an alternative
way to balance communication costs, i.e., minimizing the
max device dimension among all the GPUs. Balancing the
device dimensions is much easier since the device dimension
is simply the sum of the dimensions of the tables.

3 NEUROSHARD FRAMEWORK

Motivated by the three observations above, we propose Neu-
roShard, an embedding table sharding framework based on
pre-trained neural cost models and online search. Figure 6
shows the workflow. The main idea is to pre-train neural
networks to predict the computation and communication
costs, which can serve as a sharding simulator to quickly
estimate the embedding costs for any sharding tasks and
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Figure 6. Overall workflow of NeuroShard. We first generate random inputs based on the augmented tables (top row). Then we run a
micro-benchmark to collect the costs and pre-train three neural networks to predict the costs (middle row). Finally, we perform an online
search based on the pre-trained cost models for embedding table sharding (bottom row).

any sharding plans. Then we perform an online search on
the pre-trained cost models to identify the best sharding
plan without real GPU execution. In what follows, we de-
scribe how to generate synthetic inputs for training data
collection (Section 3.1) and how to train neural networks
for cost prediction (Section 3.2). Once the cost models
are pre-trained, we then present how to perform an online
search to optimize column-wise sharding and table-wise
sharding (Section 3.3).

3.1 Generating Synthetic Inputs

Pre-training is mainly a data-centric procedure (Zha et al.,
2023b;a), where high-quality cost data plays an essential
role. This subsection describes how to generate table in-
puts that can cover different table combinations and place-
ments for benchmarking the computation and communica-
tion costs, which includes table augmentation, random table
combination generation, and random table placement gener-
ation. Note that to achieve the best coverage, the generation
strategy should consider the infrastructure for model train-
ing and the embedding tables in the model. For example, if a
model has a lot of embedding tables but only a very limited
number of GPUs is used, the generated inputs should cover
the table combinations that have lots of tables. In the fol-
lowing, we mainly discuss the high-level strategy on how to
achieve good coverage. We will introduce the instantiation
of the strategy on the DLRM dataset in Section 4.

Table augmentation. In DLRMs, each embedding table
corresponds to a sparse feature, which is often collected

from users or items. In real-world applications, we often
have a pool of embedding tables, where the machine learn-
ing engineers will perform feature selection, i.e., choosing a
subset of embedding tables from the pool for model training.
In this procedure, the dimensions of the tables could be
adjusted. Further, column-wise sharding will also generate
new tables with different dimensions. Thus, the generated
table inputs should be able to cover tables with different
dimensions. To achieve this, we perform table augmenta-
tion. Specifically, for each table, we generate augmented
tables with different dimensions. For example, suppose the
original table has a dimension of 64, we could generate 5
augmented tables with dimensions of 128, 32, 16, 8, and
4 to accommodate the potential dimension adjustment in
the model design and column-wise sharding. The table aug-
mentation results in an augmented table pool, which will
be used for data generation. Appendix B.1 summarizes the
detailed augmentation process.

Random table combination generation. The table combi-
nations will be used to benchmark computation costs. The
generated combinations should cover different numbers of
tables on a GPU. To achieve this, we first uniformly sample
the number of tables T in a certain range and then randomly
select a subset of T tables from the augmented table pool.
Appendix B.2 summarizes the detailed generation process.

Random table placement generation. The table place-
ments will be used to benchmark communication costs. The
generated placements should cover different degrees of bal-
ance for the device dimensions and different communication
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starting timestamps. 1) To simulate different degrees of
balance, we adopt a greedy strategy equipped with ran-
domness. Specifically, we first randomly sample a subset of
tables from the table pool and sort the tables in descending
order based on the dimension. Starting from the table with
the largest dimension, with a probability of p, where p is
uniformly sampled in [0, 1] for each table placement, we
assign the current table to the GPU with the lowest sum of
the table dimensions so far, and with a probability of (1−p),
we randomly assign the current table. Here, p can indirectly
control the degree of balance. When p = 1, this strategy
will greedily balance dimensions in each step so the shard-
ing plan can well balance the dimensions. When p = 0,
the sharding plan will be random so that the dimensions
will be very likely to be imbalanced. Since p is randomly
selected, we can cover sharding plans with different degrees
of balance. 2) We randomly generate the communica-
tion starting timestamp of each GPU. Recall that in the
trace analysis (the right-hand side of Figure 1), the delays
caused by previous operations can be accumulated to make
the forward communication start significantly later than the
other GPUs. Naturally, we also need to take the delays into
account when benchmarking the communication costs since
the communication could have different behaviors when
they do not start simultaneously across the GPUs. To sim-
ulate the delays, we randomly select a starting timestamp
in a certain range for each GPU. Appendix B.3 summarizes
the detailed generation procedure.

3.2 Pre-training Neural Cost Models

Given the generated inputs, we run micro-benchmark, e.g.,
PARAM Benchmarks3, to collect the actual computation
and communication costs for cost model training. Ap-
pendix C provides more details of cost model training.

Figure 5 illustrates the neural architectures of the compu-
tation and communication cost models. 1) Computation
cost model: the architecture follows (Zha et al., 2022a).
Specifically, each table is represented with some features,
including dimension, hash size, pooling factor, and indices
distribution. Given a table combination, we use a shared
MLP to process all the table features to obtain table repre-
sentations. We obtain a fixed-dimension representation of a
table combination by performing an element-wise sum of
all the table representations. Finally, we use another MLP
to produce the computation costs (forward + backward). 2)
Communication cost model: we use an MLP to predict
the communication costs of all the GPUs based on the start-
ing timestamps and the transferred data sizes. We train two
separate models for forward and backward communications.

Deployment of the neural cost models. In real-world DL-

3https://github.com/facebookresearch/
param

RMs, the indices distributions could shift over time. Thus,
we may need to re-train/fine-tune and redeploy the cost
models to tackle the potential shifts. To enable a smooth
re-deployment, we often need to have strict version control
to ensure that one training job is always associated with the
same version of cost models. This is particularly important
for checkpointing since we need a consistent sharding plan
when resuming the training. We find a re-training interval
of three months is sufficient in our production environment.
One could also periodically calculate the prediction errors
of the cost model by sampling a batch of table indices and
trigger re-training or fine-tuning when the error exceeds
a certain threshold. Note that we often only need to re-
train when the indices distributions shift. Re-training is not
needed when table dimension changes, as the table augmen-
tation has already encompassed various table dimensions.

3.3 Online Search

The pre-trained cost models serve as a universal simulator
for embedding table sharding. They can estimate the em-
bedding cost of any sharding plan for any sharding task effi-
ciently by summing up the predicted computation, forward
communication, and backward communication costs. In this
subsection, we introduce how to leverage this simulator to
minimize the embedding cost with search. Figure 7 shows
an overview. In the outer loop, we search the column-wise
sharding plan with beam search. In the inner loop, we find
the best max dimension constraint with a greedy grid search
for table-wise sharding. The presented search algorithm is
mainly motivated by the observations in Section 2.

Optimization problem formulation. We denote the
column-wise sharding plan as c = [c1, c2, ..., cm], where
ci means, in step i, we shard the table of index ci into two
halves column-wisely and append the resultant new table to
the end of the table list. Let t = [t1, t2, ..., tT ] denote the
table-wise sharding plan that assigns T tables to D GPU
devices, where ti ∈ {1, 2, ..., D}. t depends on c since t
operates on the column-wise sharded tables. Both c and t
must satisfy some constraints. For example, the embedding
operations in FBGEMM (Khudia et al., 2021) require that
the dimension must be dividable by 4. For c, the sharding
plan has to satisfy the GPU memory constraints. We denote
their legal plan spaces as C and T , respectively, where T
depends on the selected c. The objective is

argmin
c∈C,t∈T

f(c, t). (1)

f(c, t) is the simulated embedding cost. The dependency
of t on c naturally makes the search of c as the outer loop
and the search of t as the inner loop.

Column-wise sharding with beam search. Column-wise
sharding can remove oversized tables and costly tables to en-
able a better balance. However, from Observation 1, column-

https://github.com/facebookresearch/param
https://github.com/facebookresearch/param
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Figure 7. The search process. The outer loop finds the best column-
wise sharding plan with beam search. The inner loop focuses on
the max dimension constraint of greedy allocation with grid search.

wise sharding increases the overall computation cost. Thus,
the desirable sharding plan should enable a balance with
minimum steps. We propose a beam search strategy to re-
duce the search space. The main idea is that we often only
need to column-wisely shard tables with large sizes and
high computation costs. Specifically, in each iteration i, we
identify the top N costly tables and the top N tables with
the largest sizes as the candidates (with duplicates removed).
Similarly, we only consider the top K best column-wise
sharding plans found in the previous step. For each of the
top K plans, we add each of the candidate tables to it to
obtain a new sharding plan and run the inner loop to get the
cost. We again identify the top K best new sharding plans
for the next sharding step. We perform L sharding steps and
output the sharding plan with the minimum cost. L, K, and
N are hyperparameters to balance optimality and efficiency.

Table-wise sharding with greedy grid search. Given a
list of column-wisely sharded tables, we describe how to
perform table-wise sharding in the inner loop. We propose a
grid search strategy to find the best balance of computation
and communication costs based on two ideas. 1) Motivated
by Observation 2, we propose a greedy algorithm to balance
the multi-table computation costs. 2) Inspired by Observa-
tion 3, we make the max device dimension a constraint for
the greedy algorithm to achieve the communication balance,
where the best max device dimension is identified with grid
search. Specifically, in each step we execute the following:
1) Choose a max device dimension max dim. 2) Sort the
tables in descending order based on the computation cost
predicted by the cost model. 3) Starting from the table with
the highest cost, we assign tables one by one to the device
with the lowest device cost so far subject to the memory and
max dim constraints, where the device cost is predicted by
the cost model. 4) Evaluate the embedding cost with the
cost models. We grid search max dim as follows. Given a
starting value Ms, an ending value Me, and the total number
steps M , we try all the values in [Ms,Me] with a step size
of (Me −Ms)/(M − 1). We empirically fix Ms to be the
average dimension across device and Me to be 1.5∗Ms. M
is a hyperparameter to control the granularity of the search.

Implementation with caching. The most expensive part in
the search is predicting the computation cost. It needs to be

Algorithm 1 BeamSearch

1: Input: T embedding tables, beam search hyerperpa-
rameters (N , K, and L)

2: Best global column-wise sharding plan c∗← []
3: Best global table-wise sharding plan t∗ ← NULL
4: Best column-wise sharding plans Cp← {[]}
5: Initialize a global cache global cache
6: for outer loop = 1, 2, ..., L do
7: Column-wise sharding plans in the next step C′p ← []
8: for each plan cp in Cp do
9: Obtain the candidate tables based on cp by merg-

ing the top N costly tables and the top N tables
with the largest sizes with duplicates removed

10: for each candidate table t do
11: col plan← cp with t appended in the end
12: cost, t ← GreedyGridSearch(global cache,

col plan)
13: Append (col plan, cost) to C′p
14: if a lower cost is observed then
15: c∗ ← col plan
16: t∗ ← t
17: end if
18: end for
19: end for
20: Cp ← plans with the top K lowest cost in C′p
21: end for
22: Return c∗, t∗

called for O(LKNMTD) times (T is the number of tables,
and D is the number of GPUs), where each call requires a
forward pass of the cost model. Fortunately, we find there
are lots of duplicated calls in the search. This is because if
we only make small changes to the column-wise sharding
plan or max dim, the cost model will be very likely to be
asked to predict the cost for the same set of tables in most of
the steps. Thus, we can naturally use a life-long hash map as
a cache for acceleration. In practice, the cache hit rate can
reach 95% (see Table 3). We summarize the beam search in
Algorithm 1 and greedy grid search in Algorithm 2.

4 EXPERIMENTS

The experiments aim to answer the following research ques-
tions. RQ1: How does NeuroShard compare with the state-
of-the-art sharding algorithms (Section 4.1)? RQ2: How ac-
curate are the neural cost models (Section 4.2)? RQ3: How
does each search design contribute to the performance (Sec-
tion 4.3)? RQ4: How do the hyperparameters impact the
performance (Section 4.4)? RQ5: Can NeuroShard boost
end-to-end training throughput (Section 4.5)?

Datasets. The public large datasets (e.g., Criteo, Avazu, and
KDD) often do not match the industrial-scale data and are
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Table 1. Embedding table cost in milliseconds (averaged over 100 randomly constructed sharding tasks) of NeuroShard against baselines
with 4 or 8 GPUs and maximum table dimensions from 4 to 128. The top-1 and top-2 results are highlighted in boldface and underlined,
respectively. “-” indicates that the method cannot scale, i.e., at least one of the 100 tasks suffers from memory explosion. The bottom row
summarizes the improvement of NeuroShard over the strongest baseline.

Category Method 4 GPUs 8 GPUs
4 8 16 32 64 128 4 8 16 32 64 128

Random - 25.47 30.10 - - - - 33.40 36.43 - - - -

Greedy

Size-based 24.45 29.60 30.86 37.80 41.59 - 31.75 34.30 37.70 46.07 54.57 -
Dim-based 23.51 28.46 29.76 35.98 38.71 - 27.54 32.20 34.78 42.35 47.54 -
Lookup-based 18.69 24.34 26.83 34.62 38.69 - 21.83 26.66 30.59 39.07 47.47 -
Size-lookup-based 18.38 24.18 26.81 33.94 - - 21.27 26.55 30.34 39.28 48.17 -

Reinforcement AutoShard 17.99 22.08 - - - - 20.79 - - - - -
Learning DreamShard 18.78 22.59 25.08 30.74 - - 21.40 25.30 26.90 - - -

Planning TorchRec 19.20 26.00 28.24 34.88 38.13 47.22 22.34 28.99 32.71 39.90 47.43 60.58

Cost Modeling NeuroShard 17.74 21.75 23.11 28.86 31.55 39.99 20.68 23.23 25.64 32.30 38.30 49.10

Improvement of NeuroShard +1.4% +1.5% +8.5% +6.5% +20.9% +18.1% +0.5% +8.9% +4.9% +21.0% +23.8% +23.4%

unsuitable for evaluating sharding algorithms. Please find
more discussions in Appendix D. Following the previous
work (Zha et al., 2022a;b), we use the DLRM dataset (Nau-
mov et al., 2019)2, which contains 856 synthetic tables
whose indices distributions are similar to the production
workloads in Meta. These 856 tables serve as the table pool.
We construct synthetic sharding tasks as diversely as
possible to test sharding algorithms in different scenar-
ios. We consider two sets of sharding tasks, which aim to
shard tables to 4 and 8 GPUs, and each GPU has a memory
constraint of 4 GBs for embedding tables. We randomly
sample a dimension for each table in {4, 8, ..., 2j}, where
2 ≤ j ≤ 7, and 2j specifies the maximum possible dimen-
sion for a table. A larger 2j makes the sharding task more
challenging since the tables will have more diverse dimen-
sions and larger sizes. Given the number of GPUs d and
max dimension 2j , we sample a sharding task by randomly
choosing T tables from the table pool, where 10 ≤ T ≤ 60
for 4 GPUs and 20 ≤ T ≤ 120 for 8 GPUs. For each pair
of d and 2j , we randomly construct 100 sharding tasks. We
provide a detailed description of the sharding tasks genera-
tion in Appendix D. In Section 4.1, we consider all the above
d-2j pairs. For the other experiments, we mainly focus on a
maximum dimension of 128 and 4 GPUs. Also, we consider
a real-world sharding task in a production model, which
aims to shard hundreds of tables to 128 GPUs (Section 4.5).

Baselines. We consider baselines in several categories (de-
tailed in Appendix E): 1) Random sharding, 2) Greedy
algorithms that balance various heuristic costs (Acun et al.,
2021; Lui et al., 2021), 3) Reinforcmeent Learning algo-
rithms proposed in (Zha et al., 2022a;b), and 4) Planning
algorithm provided in TorchRec4.

4https://github.com/pytorch/torchrec

Evaluation protocol. For each pair of d and 2j , we apply
each sharding algorithm to generate sharding plans for the
100 sharding tasks and collect real embedding costs from
GPUs. To collect the costs, we run the embedding opera-
tions on GPUs to simulate computation and communication
and use a timer to measure the time spent on each device.
We report the maximum cost across devices for each shard-
ing task since the maximum embedding cost will become
the bottleneck. If any of the sharding plans generated by
an algorithm causes memory error, it means the algorithm
cannot scale to the setting defined by d and 2j , so we de-
note the performance as “-”. If all the sharding plans are
valid, we report the mean embedding cost across the 100
tasks. For the real-world production sharding task, we report
both embedding costs and end-to-end training throughput
improvements. The embedding costs are directly obtained
from the traces collected during model training.

Implementation details. For the generation of the syn-
thetic input, we augment the table pool with dimensions
{4, 8, 16, 32, 64, 128}. We randomly select 1 to 15 tables
for the table combination generation and Nplace tables for
the table placement generation, where 10 ≤ Nplace ≤ 60 for
4 GPUs and 20 ≤ Nplace ≤ 120 for 8 GPUs. We generate
100K samples for each cost model. We randomly select a
starting timestamp from 0 to 20 milliseconds. For the online
search, we set N = 10, K = 3, L = 10, and M = 11. All
the experiments are conducted on a server with eight 2080Ti
GPUs. We provide more details in Appendix E.

4.1 Comparison with the State-of-the-art Methods

To answer RQ1, we compare NeuroShard with the base-
lines on different numbers of GPUs and max table dimen-
sions in Table 1. We make the following observations.

https://github.com/pytorch/torchrec
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Figure 8. Left: the scatter plot of the simulation costs estimated by the neural cost models and the real costs measured on GPUs. Middle:
the performances of the neural cost models w.r.t. the number of samples used in training. Right: the embedding table cost for the sharding
tasks with a maximum dimension of 128 and 4 GPUs using the neural cost models that are trained with different numbers of samples.

1) NeuroShard significantly outperforms the baselines in
all the sharding tasks with an improvement ranging from
+0.5% to +23.8%, which demonstrates the superiority of
NeuroShard. An advantage of NeuroShard over AutoShard
and DreamShard stems from its column-wise sharding. The
large or costly tables will be partitioned to avoid memory
explosion or become the bottleneck in sharding. This can
not be achieved by DreamShard and AutoShard. 2) Neu-
roShard successfully scales to sharding tasks with high table
dimensions. When the table dimension goes large, all the
baselines except TorchRec tend to fail. This is because it
becomes harder to find a sharding plan that can satisfy the
memory constraint with larger tables. Unlike the greedy
and RL-based methods, NeuroShard searches for the best
column-wise sharding plan so that it can partition the large
tables. Surprisingly, the RL-based methods fail even when
the dimension is small. A possible reason is that the stochas-
tic policies in RL are very hard to train with high variance. 3)
Learning-based methods tend to perform better than heuris-
tic costs. This is because the neural cost models are trained
in a data-driven manner so they can provide a better cost
estimation to boost the sharding performance. 4) While
TorchRec also scales well, NeuroShard achieves much bet-
ter performances. This is because TorchRec still relies on
a heuristic cost function, which is inaccurate. Whereas the
cost models in NeuroShard are pre-trained in a data-driven
manner so that they can estimate table costs more accurately.

4.2 Analysis of Neural Cost Models

To study RQ2, we design experiments to understand how
accurate the cost models are and how accurate they need to
be to enable good sharding plans. First, we report the test-
ing mean-squared-error (MSE) losses of all the pre-trained
neural costs models in Table 2. We observe that the largest
MSE is 0.26, which suggests that the prediction error is
within 0.6 milliseconds (0.6 × 0.6 = 0.36 > 0.26). Note
that the real costs may have some variance when collecting
them. Thus, an error of 0.6 milliseconds is highly accurate.
The left-hand side of Figure 8 plots the real costs and sim-
ulation costs for 100 random sharding plans. The results

again verify the high accuracy of the cost models.

Then, we visualize how many samples are needed to train the
cost models in the middle and right-hand side of Figure 8.
As expected, all the cost models become more accurate
when we have more samples. Interestingly, even with only
102 samples, NeuroShard can achieve very strong perfor-
mance. This suggests that we only need sufficiently but not
perfectly accurate cost models. This is desirable in practical
use since it means we do not need many samples. Note that
the result does not imply that we can use a simpler model.
The current neural architecture of NeuroShard is already
very shallow. An even simpler network (i.e., a linear one)
may not work due to the non-linearity of the costs.

4.3 Ablation Study

To investigate RQ3, we report the results with one of the
proposed beam search, greedy grid search, and caching
removed in Table 3. We make two observations. 1) The per-
formance drops significantly when removing beam search
or greedy grid search, which demonstrates the necessity
of performing a joint search with both of them. 2) The
sharding takes significantly more time when removing the
caching mechanism. This is because the cache has a more
than 95% hit rate, which can significantly accelerate the
sharding speed.

4.4 Hyperparamter Analysis

To understand RQ4, we analyze the impact of the hyper-
parameters in NeuroShard. Recall that we have 4 hyperpa-
rameters in the online search to balance between optimality
and efficiency, i.e., N , K, L, and M . We visualize their
impacts in Figure 9. We make two observations. 1) A larger
value for all the above four hyperparameters leads to better
performance. This is because a larger value will result in
more search iterations. 2) Larger values also lead to more
sharding time. Thus, we should specify an appropriate value
(not too large nor too small) for each of the hyperparameters
to strike a balance between optimality and efficiency.
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Figure 9. Impact of NeuroShard’s hyperparameters.

Table 2. Testing MSE of the neural cost models.
DLRM DLRM Production

(4 GPUs) (8 GPUs) (128 GPUs)

Computation 0.21 0.21 0.26
Forward Communication 0.02 0.05 0.05
Backward Communication 0.02 0.04 0.15

Table 3. Ablation study with a maximum dimension of 128 and 4
GPUs. w/o beam search means removing the beam search in col-
wise sharding. w/o greedy grid search suggests not grid-searching
the table dimension threshold. w/o caching disables the caching
mechanism of computation costs. Results on 8 GPUs are in Ap-
pendix G.

Cost Success Rate Sharding Time Cache Hit Rate(Milliseconds) (Seconds)

w/o beam search - 87.0% 0.05 79.1%
w/o greedy grid search 42.90 100.0% 2.12 82.2%
w/o caching 39.99 100.0% 95.87 0.0%

Full NeuroShard 39.99 100.0% 10.75 95.4%

4.5 Application of NeuroShard to Production Models

To answer RQ5, we deploy NeuroShard to an ultra-large
production DLRM. We used a state-of-the-art hardware
platform with RDMA network fabrics, which is detailed
in (Mudigere et al., 2022). The model has nearly a thousand
embedding tables that demand multi-terabyte memory. The
task is to shard these tables to 128 GPUs. We compare Neu-
roShard with the baselines on embedding cost and training
throughput in Table 4. Because we observed out-of-memory
errors without a column-wise sharding, for the baselines
except for TorchRec, we first apply the column-wise shard-
ing plan proposed by NeuroShard and then run the base-
lines. Compared with the state-of-the-art (DreamShard),
NeuroShard achieves 11.6% improvement in embedding
costs, which translates to 6.6% end-to-end training through-
put improvement. Note that >5% is considered very sig-
nificant in our production model since it has been heavily
optimized. Also, NeuroShard can shard tables significantly
faster in deployment; DreamShard requires RL training
when applied to this model, while NeuroShard does not
need further training since it directly leverages pre-trained
cost models. Note that NeuroShard is trained using the data
collected one month before the deployment, so there could

Table 4. Embedding cost and overall training throughput improve-
ment of NeuroShard and baselines on a production model. The
results are collected from a training cluster with 128 GPUs.

Sharding Algorithm Embedding Cost Training Throughput
(Milliseconds) Improvement

Random 118.3 -
Size-based 107.6 +4.0%
Dim-based 90.8 +13.9%
Lookup-based 102.4 +11.9%
Size-lookup-based 109.2 +12.8%
AutoShard 86.6 +32.4%
DreamShard 61.6 +45.3%
TorchRec 86.4 +34.6%
NeuroShard 55.2 +54.9%

be a distribution shift in table indices. The results suggest
that we do not need to re-train NeuroShard for at least 1
month in production use.

In this experiment, the whole process (collecting data + train-
ing NeuroShard) takes roughly one hour with 128 GPUs,
which is minor compared to the 6.6% throughput improve-
ment because 1) training a recommendation model can take
up to a week so that NeuroShard can save several hours
for each run, and 2) we do not need to frequently re-train
NeuroShard, as discussed above.

5 RELATED WORK

DLRMs. DLRMs have been widely adopted in many recom-
mendation scenarios (Zhang et al., 2019; Cheng et al., 2016;
Naumov et al., 2019; He et al., 2017; Wang et al., 2020; Lin
et al., 2019; Chuang et al., 2020; Chang et al., 2020; Zhou
et al., 2021; 2022; Tan et al., 2021a;b; 2020; Liu et al., 2019;
Tan et al., 2019; 2023a). To train DLRMs on ultra-large data
and model sizes, distributed training solutions have been
developed (Acun et al., 2021; Covington et al., 2016; Zhou
et al., 2019; Liu et al., 2017; Gomez-Uribe & Hunt, 2015).
Embedding table sharding is an important design factor in
the distributed training of DLRMs, which has been rarely
studied in the literature. NeuroShard provides a deployable
embedding table sharding solution to boost the distributed
training efficiency of DLRMs.

Embedding Table Sharding. Several recent papers have
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Algorithm 2 GreedyGridSearch

1: Input: T embedding tables, D GPU devices, pre-
trained neural cost models, grid search hyperparameter
M , global cache, col plan

2: Generate T ′ column-wise sharded tables using col plan
where T ′ = T + |col plan|

3: Sort the T ′ tables in descending order based on the costs
predicted by the computation cost model

4: Best table-wise sharding plan t∗ ← NULL
5: Best computation cost cost∗ ← Inf
6: for inner loop = 1, 2, ..., M do
7: Get max dim based on M
8: Initialize table-wise sharding plan t← []
9: for each of the T ′ tables do

10: Get candidate GPUs that will not cause memory er-
ror with device dimension smaller than max dim

11: for each of the candidate GPUs do
12: if the tables in GPU are in global cache then
13: Get cost from global cache
14: else
15: Get cost with the computation cost model

and store the cost into global cache
16: end if
17: Append the GPU with the lowest cost to t
18: if a lower t is observed then
19: t∗ ← t, cost∗ ← cost
20: end if
21: end for
22: end for
23: end for
24: Return cost∗, t∗

studied embedding table sharding. The pioneering work
relies on heuristic cost functions and greedy strategies
for sharding (Acun et al., 2021; Lui et al., 2021). Rec-
Shard formulates sharding as an optimization problem with
mixed integer linear program (Sethi et al., 2022). How-
ever, it does not consider the non-linearity of the table costs.
FlexShard (Sethi et al., 2023) presents a tailored sharding
strategy for sequential DLRM. SurCo (Ferber et al., 2022)
solves embedding table sharding by learning linear Surro-
gate costs. Our previous work uses reinforcement learning
(RL) to optimize sharding with learned cost models (Zha
et al., 2022a;b). While RL-based methods have achieved
significant improvement, they cannot handle very large or
costly tables, are expensive to train, and are unstable with
high variance due to the stochastic policies in RL. In con-
trast, NeuroShard pre-trains cost models for a once-for-all
purpose and jointly searches for column-wise and table-
wise sharding plans. NeuroShard outperforms the RL-based
methods in the benchmark sharding dataset and boosts the
end-to-end training throughput of a production-scale model.

Embedding Table Compression. In parallel, researchers
have studied how to compress embedding tables (Zhang
et al., 2020; Shi et al., 2020; Zhao et al., 2020; Joglekar
et al., 2020; Liu et al., 2021; Kang et al., 2020; 2021; Pansare
et al., 2022; Desai et al., 2022; Lan et al., 2019; Chen et al.,
2015). Embedding table sharding is an orthogonal direction
to these methods. This is because we often still need to
perform table sharding after compression since the com-
pressed tables can be still too large to fit on a single GPU’s
memory. Thus, sharding and compression can complement
each other with their efficiency improvements. Moreover,
embedding compression may lead to an accuracy drop since
the embeddings may lose information. Whereas sharding is
a lossless optimization on how to partition and place tables
so it can improve efficiency without any accuracy loss.

Device placement. Another task that is related to embed-
ding table sharding is the device placement of operations
in the neural network. The existing work in this research
line either uses reinforcement learning (Mirhoseini et al.,
2017; 2018; Gao et al., 2018b; Addanki et al., 2019; Paliwal
et al., 2019; Gao et al., 2018a; Goldie & Mirhoseini, 2020)
or cost modeling (Lawler et al., 1993; Jia et al., 2019; 2018;
Narayanan et al., 2019; Tarnawski et al., 2020). Our work
is also based on cost modeling. Unlike regular operations, it
is hard to estimate the cost of an embedding operation since
the cost depends not only on the operation but also on the
indices distributions. Our work presents a learning-based
solution for embedding table sharding with pre-trained cost
models and online search.

6 CONCLUSION AND FUTURE WORK

In this work, we present NeuroShard, an embedding table
sharding framework based on pre-trained neural cost models
and online search. We have developed various strategies to
train universal and accurate cost models for estimating em-
bedding costs. With the pre-trained cost models, the online
search requires minimum computational resources without
real GPU execution. We show that NeuroShard not only out-
performs the existing sharding algorithms on the benchmark
dataset but also significantly boosts the training throughput
of an ultra-large production DLRM. In the future, we will
extend NeuroShard to row-wise sharding for partitioning
large tables. Also, we plan to investigate CPU sharding or
mixed CPU-GPU sharding scenarios. Last, we will explore

“pre-train, and search” for other system problems.
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A DETAILS OF ANALYTICAL
EXPERIMENTS

In this section, we provide more details on the three analyti-
cal experiments performed in Section 2.

A.1 Impact of Dimension

In this experiment, we aim to study how the dimension im-
pacts the computation costs of the tables. In the DLRM
dataset (Naumov et al., 2019), we have the table indices
and hash sizes of the tables. The dimensions are not
specified. Thus, we vary the dimension from the set of
{128, 64, 32, 8, 4} to study the influence of dimension. Note
that for all the above five cases, we use the same hash size
and the same table indices, and the only difference is the
dimension. We have tried multiple tables and observed sim-
ilar patterns. The results for some other randomly selected
tables are visualized in Figure 10.

A.2 Multi-table Costs vs the Sum of Single-table Costs

This analytical experiment aims to reproduce the results
in (Zha et al., 2022a) to understand the relationship between
the multi-table costs and the sums of the single-table costs.
We randomly sample 50 data points to plot the scatters,
where each data point consists of 10 tables from the 856
tables in the DLRM dataset (Naumov et al., 2019). For each
of the data points, we measure two costs on a single GPU:

• Multi-table cost: we directly run the fused operation
on GPU (forward and backward passes). We first run
the operation 10 times to warm up the hardware. Then
we run another 100 times and use the median cost as
the multi-table cost.

• Sum of single-table costs: we collect the cost for every
single table following the same process. Then we sum
the single-table costs.

We observe that the sum of single-table costs is often larger
than the multi-table costs because the fused operation is
faster.

A.3 Communication Cost Analysis

This analytical experiment aims to provide an understanding
of the relationship between the max device dimension and
the max forward/backward communication cost. To simu-
late the scenarios with different max device dimensions, we
use the same random table placement generation strategy
described in Section 3.1, with a greedy strategy to balance
the dimensions equipped with randomness to cover different
scenarios. A complete generation process is summarized
in Algorithm 5. For each data point (i.e., a placement), we
run the forward all-to-all communication and the backward

communication to collect the costs from the GPUs in a sin-
gle server. Similar to computation costs, we first run the
communication 10 times to warm up the hardware. Then
we run the communication another 100 times and use the
median costs as the communication costs. Note that each
GPU will have a different locally measured cost. we only
focus on the max cost since it is the bottleneck.

B DETAILS OF SYNTHETIC INPUTS
GENERATION

In this section, we give more details about how we generate
synthetic data to have good coverage for benchmarking.

B.1 Table Augmentation

The key idea is to generate various dimensions for a single
table. Given a list of dimensions, for each table in the pool,
we associate the table with each of the dimensions as an
augmented table. Algorithm 3 summarizes the augmentation
procedure.

Algorithm 3 Table Augmentation

1: Input: T embedding tables, a set of dimensions D
2: Augmented table pool P ← {}
3: for each of the T tables do
4: for each of the dimensions in D do
5: The augmented table aug table ← the selected

table with the selected dimension
6: Add aug table to P
7: end for
8: end for
9: Return P

B.2 Random Table Combination Generation

We summarize the process of generating random data table
combinations in Algorithm 4.

Algorithm 4 Random Table Combination Generation

1: Input: Augmented table pool P , min number of ta-
ble Tmin, max number of table Tmax, number of table
combinations we aim to generate Ncom

2: Table combinations Tcom ← {}
3: for i = 0, 1, ..., Ncom do
4: Uniformly sample the number of tables T in

[Tmin, Tmax]
5: Randomly sample T tables from P and append this

combination to Tcom
6: end for
7: Return Tcom
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Figure 10. Computation costs w.r.t. dimensions for some other randomly selected tables.

B.3 Random Table Placement Generation

We summarize the table placement generation in Algo-
rithm 5.

Algorithm 5 Random Table Placement Generation

1: Input: Augmented table pool P , min number of ta-
ble Tmin, max number of table Tmax, number of table
placements we aim to generate Nplace, number of GPU
devices D.

2: Table placements Tplace ← {}
3: for i = 0, 1, ..., Nplace do
4: Uniformly sample the number of tables T in

[Tmin, Tmax]
5: Randomly sample T tables from P
6: Sort the T tables in descending order based on the

table dimension
7: Uniformly sample a probability of applying greedy

strategy p ∈ [0, 1]
8: for each of the T tables do
9: Randomly sample p′ ∈ [0, 1]

10: Obtain the candidate GPU devices that will not
cause a memory error.

11: if p′ ≤ p then
12: Assign the current table to the candidate GPU

with the lowest device dimension
13: else
14: Randomly assign the current table to one of the

candidate GPUs
15: end if
16: end for
17: Append the placement to Tplace
18: end for
19: Return Tplace

C DETAILS OF COST MODEL TRAINING

In this section, we provide more details of the neural ar-
chitecture and loss functions for training the neural cost
models.

Neural architectures. For the computation cost model,
we use an MLP with a size of 128-32 to process the table
features and another MLP with a size of 32-64. For the
communication cost model, we use an MLP with a size of

128-64-32-16.

Loss functions. We use mean squared error (MSE) to up-
date both the computation cost model and communication
cost model. Specifically, let x be the features (can be either
table features or communication features), y be the ground
truth, and g be the cost model (can be either computation
cost model or communication model). Let Nsample be the
number of samples. Then the loss is

L =

Nsample∑
i=1

MSE(xi, yi), (2)

where MSE(·, ·) represents the MSE loss. In practice, we
can use mini-batch training.

D DATASETS

We use the benchmark dataset for evaluating embedding
table sharding (Naumov et al., 2019). It is publicly available
as https://github.com/facebookresearch/
dlrm_datasets. It contains 856 synthetic tables whose
indices distributions are similar to the production workloads
in Meta. The statistics of the datasets are well summarized
in previous work. Please see the appendices in (Zha et al.,
2022a;b) for details.

We summarize the 12 sharding tasks we used in our experi-
ments in Table 5. All the sharding tasks have a constraint of
4 GB memory in each GPU.

Discussion of public datasets. Table 6 compares the scale
of DLRM datasets with several large-scale public datasets.
DLRM has significantly more tables, a larger average hash
size, and a larger average pooling factor than these public
datasets. The embedding costs on these datasets will always
be very small, no matter how we do sharding. For example,
DLRM has at least 30x more tables than Criteo, at least 200x
larger average hash size, and a 15x larger average pooling
factor. So, as the embedding cost of the DLRM dataset is
from the range of 17 ms to 40 ms (Table 1 in our paper), the
embedding cost of Criteo could be only around 1 ms or even
smaller. Thus, there is no need to do sharding on the Criteo
dataset. So these datasets are not suitable for evaluating
embedding table sharding algorithms.

https://github.com/facebookresearch/dlrm_datasets
https://github.com/facebookresearch/dlrm_datasets
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Table 5. Sharding tasks generated in the experiments.

Number of GPUs Range of the Number of Tables Range of Table Dimensions

4 10-60 4
4 10-60 4, 8
4 10-60 4, 8, 16
4 10-60 4, 8, 16, 32
4 10-60 4, 8, 16, 64
4 10-60 4, 8, 16, 64, 128
8 20-120 4
8 20-120 4, 8
8 20-120 4, 8, 16
8 20-120 4, 8, 16, 32
8 20-120 4, 8, 16, 64
8 20-120 4, 8, 16, 64, 128

Table 6. Comparison of embedding table feature statistics between some popular public recommendation datasets and the industrial-scale
DLRM dataset.

Dataset # of Tables Avg. hash size Avg. pooling factor Link

Public
Criteo 26 17,839 1 https://www.kaggle.com/c/criteo-display-ad-challenge
Avazu 23 67,152 1 https://www.kaggle.com/c/avazu-ctr-prediction/data
KDD 10 601,908 1 https://www.kaggle.com/c/kddcup2012-track2/data

Industrial-Scale DLRM 856 4,107,458 15 https://github.com/facebookresearch/dlrm_datasets

E BASELINES

In this section, we introduce the details of all the baselines
used in our experiments.

E.1 Greedy Algorithms

The greedy sharding algorithms have been used in previous
papers of distributed recommender systems (Acun et al.,
2021; Lui et al., 2021). The main idea is to use a greedy
algorithm to balance the costs by assigning the table to the
device with the lowest cost so far in each step, where the
costs are estimated in different ways. Specifically, greedy
algorithms consist of two steps as follows.

• Designing a cost function: we give each table a cost
to quantify the expected running time on the device.
The cost is the objective that we want to balance.

• Greedy allocation: the objective is to balance the sum
of the costs in each device. To achieve this, we first
sort the embedding tables in descending order based on
the costs defined by the cost function. The sorting can
make it more easily to achieve a balance if we allocate
the tables greedily. Then, we assign tables starting
from the table with the highest cost. In each step, we
make a greedy decision by assigning the current table
to the device that has the lowest sum of the cost so far.
This sorting-enhanced greedy strategy can enable each
device to have roughly a similar sum of the costs.

The four baselines differ in how the cost function is de-
signed. This can significantly impact the balance since the
cost function determines our optimization objective. We
summarize the used cost functions as follows:

• Size-based: we use the table size as the cost function.
The idea is that balancing table size can reduce the risk
of getting out-of-memory errors. Also, table size is
also positively correlated with dimension so it can also
reflect the workloads.

• Dim-based: we use the table dimension as the cost
function. Table dimension is an important feature to
represent the cost since it can decide both computation
and communication workloads. Thus, it is natural
to balance the sums of dimensions (i.e., the device
dimension).

• Lookup-based: we use the product of the table dimen-
sion and the mean pooling factor as the cost function.
The intuition is that the table dimension and the pool-
ing factor can determine the computation workload in
embedding lookup.

• Size-lookup-based: we use the product of the table
dimension, the mean pooling factor, and the table size
as the cost function. This is a more comprehensive
cost function that considers both lookup cost and table
sizes.

https://www.kaggle.com/c/criteo-display-ad-challenge
https://www.kaggle.com/c/avazu-ctr-prediction/data
https://www.kaggle.com/c/kddcup2012-track2/data
https://github.com/facebookresearch/dlrm_datasets
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E.2 Reinforcement Learning Algorithms

We have included two state-of-the-art reinforcement learn-
ing algorithms for embedding table sharding (Zha et al.,
2022a;b). They share similar ideas with differences in opti-
mization objectives and training methods. We summarize
them as follows.

• AutoShard (Zha et al., 2022a): it trains an LSTM
controller to perform sharding to balance computation
cost. The objective is the degree of balance, which
is defined as the min cost divided by the max cost.
The code is available as https://github.com/
daochenzha/autoshard

• DreamShard (Zha et al., 2022b): it extends AutoShard
by also balancing communication. It also extends the
cost model to communication. It additionally intro-
duces an estimated MDP to make training and infer-
ence much faster. The code is available at https:
//github.com/daochenzha/dreamshard

E.3 Planing Algorithms

In parallel to reinforcement learning, planning algorithms
identify the sharding plan with search. TorchRec provides
a planning-based sharding strategy. For a fair comparison,
we allow TorchRec to search for both column-wise and
table-wise sharding plans. However, TorchRec still relies
on heuristic costs so we do not see a clear improvement of
TorchRec over the greedy algorithms. The code is pub-
licly available at https://github.com/pytorch/
torchrec.

F HYPERPRAMETERS AND
CONFIGURATIONS

In this section, we list all the hyperparameters of Neu-
roShard. We also list the hardware/software configurations

• Generating synthetic inputs: we augment the table
pool with dimensions {4, 8, 16, 32, 64, 128}. We ran-
domly select 1 to 15 tables for the table combination
generation and Nplace tables for the table placement
generation, where 10 ≤ Nplace ≤ 60 for 4 GPUs and
20 ≤ Nplace ≤ 120 for 8 GPUs. The starting times-
tamp for the communication data is sampled from 0 to
20 milliseconds. We generate 100K samples for each
of the cost models.

• Training neural cost models: We use 80% of the data
for training, 10% of the data for validation, and 10%
of the data for testing. We set the batch size to 512.
We use Adam optimizer with a learning rate of 0.001
with the other configurations as the default. We train

1000 epochs and save the model that can deliver the
best results on the validation data.

• Online search: we set N = 10, K = 3, L = 10, and
M = 11.

• Software: we use PyTorch 1.9.1, and FBGEMM 0.0.1

• Hardware: we conduct the experiments on a server
with 48 Intel(R) Xeon(R) Silver 4116 CPU @ 2.10GHz
processors, 188 GB memory, and eight NVIDIA
GeForce RTX 2080 Ti GPUs.

G ADDITIONAL ABLATION RESULTS

The results are shown in Table 7.

H ADDITIONAL DISCUSSION OF SEARCH
WITH REINFORCEMENT LEARNING

In this work, we used beam search and greedy grid search to
identify in search. However, this search process could be fur-
ther accelerated by training a meta-policy (Zha et al., 2020;
Lai et al., 2020b) with reinforcement learning (Zha et al.,
2021a) and transferring it across tasks. Here, we highlight
several potential strategies that we are trying. 1) Hierarchi-
cal reinforcement learning: The idea is to decompose the
sharding task into several sub-tasks (Kulkarni et al., 2016;
Zha et al., 2022c). This can be naturally applied to the em-
bedding table sharding problem, as there are two hierarchies
of search: column-wise sharding and table-wise sharding.
2) Self-imitation learning: The idea is to select the highly-
rewarded samples and use supervise losses to encourage the
policy to reproduce the good behaviors (Oh et al., 2018; Zha
et al., 2021c;b; Li et al., 2021). This could be helpful since
we often have lots of system logs of sharding. The idea is
to select good sharding plans from the system log and use
supervised losses to train a policy. 2) Offline reinforcement
learning: The idea is to learn the optimal strategy based on
offline data (Kumar et al., 2020; Li et al., 2023). This can
also be applied to the offline sharding log.

Note that the reinforcement learning meta-policy could also
be combined with search to guide the search process.

I ARTIFACT

This section is for readers who are interested in reproduc-
ing our results. In what follows, we will describe how to
download the dataset, how to install NeuroShard and its
dependencies, how to run NeuroShard, and how to collect
latencies from the hardware. A publicly accessible DOI is
available at TODO: add DOI.

I.1 Artifact check-list (meta-information)
• Algorithm: Pre-trained models, beam search, grid search.

https://github.com/daochenzha/autoshard
https://github.com/daochenzha/autoshard
https://github.com/daochenzha/dreamshard
https://github.com/daochenzha/dreamshard
https://github.com/pytorch/torchrec
https://github.com/pytorch/torchrec
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Table 7. Ablation study with a maximum dimension of 128 and 8 GPUs. w/o beam search means removing the beam search in col-wise
sharding. w/o greedy grid search suggests not grid-searching the table dimension threshold. w/o caching disables the caching mechanism
of computation costs.

Cost Success Rate Sharding Time Cache Hit Rate(Milliseconds) (Seconds)

w/o beam search - 63.0% 0.09 75.4%
w/o greedy grid search 55.97 100.0% 4.09 79.8%
w/o caching 49.10 100.0% 164.21 0.0%

Full NeuroShard 49.10 100.0% 20.79 93.0%

• Program: Implemented using PyTorch with Python.

• Compilation: PyTorch 1.8.0 and Python 3.8.0.

• Data set: Synthetic embedding data open-sourced by Meta.

• Run-time environment: Ubuntu 18.04.6 LTS.

• Hardware: Eight NVIDIA GeForce RTX 2080 Ti GPUs.

• Metrics: Latency in milliseconds.

• Output: Command line outputs.

• Experiments: Generate sharding plans and collect latencies.

• How much disk space required (approximately)?: 20 GB.

• How much time is needed to prepare workflow (approxi-
mately)?: 2 hours.

• How much time is needed to complete experiments (ap-
proximately)?: 20+ hours.

• Publicly available?: Yes.

• Code licenses (if publicly available)?: MIT.

• Archived (provide DOI)?: TODO: add DOI

I.2 Description

I.2.1 How delivered

The artifact is zipped and available at TODO: add DOI. The
source code is also publicly released on GitHub at https:
//github.com/daochenzha/neuroshard, with a
README file that provides step-to-step instructions to run
the code.

I.2.2 Hardware dependencies

Our results are collected from a server with eight NVIDIA
GeForce RTX 2080 Ti GPUs. Other types of GPUs are
also acceptable but the results may vary since the collected
latencies are GPU-dependent.

I.2.3 Software dependencies

To run the code, Python 3.8.0 or higher (we used 3.8.0) is
required. Additionally, an appropriate version of CUDA
must be installed to utilize GPUs. Lastly, FBGEMM, an
open-sourced embedding table operation, must be installed.

I.2.4 Data sets

The synthetic dataset is publicly available at
https://github.com/facebookresearch/
dlrm_datasets.git. The dataset can be downloaded
with Git LFS by running the following commands:

git lfs install --skip-smudge
git clone \

https://github.com/facebookresearch/dlrm_datasets.git
cd dlrm_datasets
git lfs pull \

--include=embedding_bag/2021/fbgemm_t856_bs65536.pt.gz
gzip -d embedding_bag/2021/fbgemm_t856_bs65536.pt.gz

A file named fbgemm t856 bs65536.pt will be ob-
tained in embedding bag/2021/ after running the
above commands, and its size is 4.0 GB. This file con-
tains synthetic indices for embedding lookups, which share
similar indices distributions as the Meta production environ-
ment.

I.3 Installation

Firstly, we need to install Python 3.8.0+ and CUDA. Sec-
ondly, we install PyTorch 1.8.0 with the following:

pip3 install torch==1.8.0

Thirdly, we need to install the open-sourced FBGEMM,
which is available at https://github.com/
pytorch/FBGEMM/tree/main/fbgemm_gpu.
Note that, except for A100 or V100 GPUs, FBGEMM
needs to be built manually following the instructions,
which is expected to take 0.5 to 1 hour. Finally, clone the
NeuroShard code and install it:

git clone \
https://github.com/anonymoussubmition/neuroshard.git

cd neuroshard
pip3 install -e .

https://github.com/daochenzha/neuroshard
https://github.com/daochenzha/neuroshard
https://github.com/facebookresearch/dlrm_datasets.git
https://github.com/facebookresearch/dlrm_datasets.git
https://github.com/pytorch/FBGEMM/tree/main/fbgemm_gpu
https://github.com/pytorch/FBGEMM/tree/main/fbgemm_gpu
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I.4 Experiment workflow

The experiment consists of four main steps:

1. We process the raw synthetic data with a script and
randomly construct some sharding tasks for evaluation.

2. We do micro-benchmarking on hardware to collect
computation and communication costs. These cost
data will be saved in a file.

3. Based on the collected cost data, we pre-train cost
models. Specifically, we train three models, includ-
ing a computation cost model, a forward communica-
tion cost model, and a backward communication cost
model.

4. Using the pre-trained cost models, we can run the on-
line search in NeuroShard for embedding table shard-
ing. We can also run the baseline heuristic sharding
algorithms. The performance can be evaluated by us-
ing the cost models (simulation) or collecting costs
from the hardware.

Now we walk through the above steps one by
one. To begin with, we need to ensure that the
current directory is in neuroshard/ and put the
fbgemm t856 bs65536.pt file in the current directory.
In Step 1, we run the following:

python3 tools/gen_dlrm_data.py \
--data fbgemm_t856_bs65536.pt

Here, --data specifies the path of the raw data. The
expected output is:

Processing DLRM data...
Generating table configs...

The processed data will be saved in
data/dlrm datasets by default. After this, we
generate sharding tasks with

python3 tools/gen_tasks.py --max_dim 128

Here, --max dim specifies the maximum table dimension
(the second row in Table 1). We used 128 as an example to
show how to run the code. The expected output is:

100 sharding tasks generated!

The sharding tasks will be saved in
data/tasks/4 gpus by default. In Step 2, we
collect cost data with micro-benchmarking. We first collect
computation cost data:

python3 collect_compute_cost_data.py --data_size 10

--data size specifies how many data samples will be
generated. We use a small number here so that the program
runs faster. To reproduce the results, --data size should
be set as 100K. The expected final two lines should be
similar to the following (the exact values in the first line
may differ):

2997,436,2332,3728,535 3.4415176584173777
Device 0 finished!

Similarly, we can collect communication cost data by run-
ning the following script:

python3 collect_comm_cost_data.py --data_size 10

We also set --data size to be small here to make it run
faster. 100K should be set instead to reproduce the results.
The last line of the expected output should be:

Evaluator sub-process terminated!

After running the above two scripts, the cost data is expected
to be stored in data/cost data/. In Step 3, based on
the collected cost data, we pre-train neural cost models. We
train the computation cost model by running the following
command:

python train_compute_cost_model.py --epochs 3

--epochs means the number of epochs of training. We set
it to be 3 here to make the training faster. To reproduce the
result, --epochs needs to be set to 1000. The last line of
the expected output is (the exact values may differ):

Final result, train MSE: 8.861547689180117,
valid MSE 8.398209571838379, test MSE: 8.432512283325195

Then we do similar things again for training communication
cost models. We can run the following command:

python3 train_comm_cost_model.py --epochs 3

Again, we set --epochs to be 3 to make the training faster,
and 1000 is needed to reproduce the results. The last line of
the expected output is (the exact values may differ):

Final result, train MSE: 31.95864486694336,
valid MSE 42.04985046386719, test MSE: 23.29010772705078

After training, there should be three models stored in
models/. In Step 4, we evaluate different sharding al-
gorithms with simulation or with real hardware. To get
simulation results, we can use the following commands to
run NeuroShard and the heuristic baselines:

python3 eval_simulator.py --alg neuroshard
python3 eval_simulator.py --alg random
python3 eval_simulator.py --alg dim_greedy
python3 eval_simulator.py --alg lookup_greedy
python3 eval_simulator.py --alg size_greedy
python3 eval_simulator.py --alg size_lookup_greedy
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Similarly, we evaluate the cost on real hardware with

python3 eval.py --alg neuroshard
python3 eval.py --alg random
python3 eval.py --alg dim_greedy
python3 eval.py --alg lookup_greedy
python3 eval.py --alg size_greedy
python3 eval.py --alg size_lookup_greedy

I.5 Evaluation and expected result

For each of the scripts in Step 4, the final result will be
printed out in the terminal. The cost models need to be
trained with --data size of 100K and --epochs of 3
in order to get similar results shown below. For the simula-
tion result of NeuroShard, the expected output is:

Average: 39.0441405081749
Valid 100 / 100

The first line is the average latency. The second line means
NeuroShard succeeds on all the tasks, i.e., no memory error.
If running size lookup greedy, the result will be:

Average: 47.95177095494372
Valid 94 / 100

It only succeeds in 94 out of 100 tasks. For the results on
real hardware, the expected output of NeuroShard is:

Average: 39.98647058823529
Valid 100 / 100

The expected result of size lookup greedy is:

Average: 48.010588235294115
Valid 94 / 100

The simulation and real costs are consistent. The
above procedure only provides one column of the re-
sults in Table 1. To get full results, we need to cus-
tomize the --max dim, --T range, and --max mem
in gen tasks.py, and also the corresponding argu-
ments in collect comm cost data.py, eval.py,
and eval simulator.py.

I.6 Notes

The cost is highly dependent on the GPUs used, and differ-
ent PyTorch versions may produce varying results. Addi-
tionally, a result itself may have a variance, so the results
obtained on another machine may differ from those shown
above.


