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Abstract

In this work, we demonstrate that 3D poses in video
can be effectively estimated with a fully convolutional
model based on dilated temporal convolutions over 2D key-
points. We also introduce back-projection, a simple and
effective semi-supervised training method that leverages
unlabeled video data. We start with predicted 2D key-
points for unlabeled video, then estimate 3D poses and
finally back-project to the input 2D keypoints. In the
supervised setting, our fully-convolutional model outper-
forms the previous best result from the literature by 6 mm
mean per-joint position error on Human3.6M, correspond-
ing to an error reduction of 11%, and the model also
shows significant improvements on HumanEva-I. More-
over, experiments with back-projection show that it comfort-
ably outperforms previous state-of-the-art results in semi-
supervised settings where labeled data is scarce. Code
and models are available at https://github.com/
facebookresearch/VideoPose3D

1. Introduction

Our work focuses on 3D human pose estimation in video.
We build on the approach of state-of-the-art methods which
formulate the problem as 2D keypoint detection followed by
3D pose estimation [41, 52, 34, 50, 10, 40, 58, 33]. While
splitting up the problem arguably reduces the difficulty of
the task, it is inherently ambiguous as multiple 3D poses
can map to the same 2D keypoints. Previous work tack-
led this ambiguity by modeling temporal information with
recurrent neural networks [16, 27]. On the other hand, con-
volutional networks have been very successful in modeling
temporal information in tasks that were traditionally tack-
led with RNNs, such as neural machine translation [11],
language modeling [7], speech generation [57], and speech
recognition [6]. Convolutional models enable parallel pro-
cessing of multiple frames which is not possible with recur-
rent networks.

∗Work done while at Facebook AI Research.

Figure 1: Our temporal convolutional model takes 2D key-
point sequences (bottom) as input and generates 3D pose
estimates as output (top). We employ dilated temporal con-
volutions to capture long-term information.

In this paper, we present a fully convolutional architec-
ture that performs temporal convolutions over 2D keypoints
for accurate 3D pose prediction in video (see Figure 1). Our
approach is compatible with any 2D keypoint detector and
can effectively handle large contexts via dilated convolu-
tions. Compared to approaches relying on RNNs [16, 27],
it provides higher accuracy, simplicity, as well as efficiency,
both in terms of computational complexity as well as the
number of parameters (§3).

Equipped with a highly accurate and efficient architec-
ture, we turn to settings where labeled training data is scarce
and introduce a new scheme to leverage unlabeled video
data for semi-supervised training. Low resource settings are
particularly challenging for neural network models which
require large amounts of labeled training data and collect-
ing labels for 3D human pose estimation requires an ex-
pensive motion capture setup as well as lengthy recording
sessions. Our method is inspired by cycle consistency in
unsupervised machine translation, where round-trip transla-
tion into an intermediate language and back into the original
language should be close to the identity function [46, 26, 9].
Specifically, we predict 2D keypoints for an unlabeled video
with an off the shelf 2D keypoint detector, predict 3D poses,
and then map these back to 2D space (§4).

https://github.com/facebookresearch/VideoPose3D
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In summary, this paper provides two main contributions.
First, we present a simple and efficient approach for 3D
human pose estimation in video based on dilated temporal
convolutions on 2D keypoint trajectories. We show that our
model is more efficient than RNN-based models at the same
level of accuracy, both in terms of computational complex-
ity and the number of model parameters.

Second, we introduce a semi-supervised approach which
exploits unlabeled video, and is effective when labeled
data is scarce. Compared to previous semi-supervised
approaches, we only require camera intrinsic parameters
rather than ground-truth 2D annotations or multi-view im-
agery with extrinsic camera parameters.

In comparison to the state of the art our approach out-
performs the previously best performing methods in both
supervised and semi-supervised settings. Our supervised
model performs better than other models even if these ex-
ploit extra labeled data for training.

2. Related work
Before the success of deep learning, most approaches

to 3D pose estimation were based on feature engineer-
ing and assumptions about skeletons and joint mobility
[48, 42, 20, 18]. The first neural methods with convolutional
neural networks (CNN) focused on end-to-end reconstruc-
tion [28, 53, 51, 41] by directly estimating 3D poses from
RGB images without intermediate supervision.
Two-step pose estimation. A new family of 3D pose es-
timators builds on top of 2D pose estimators by first pre-
dicting 2D joint positions in image space (keypoints) which
are subsequently lifted to 3D [21, 34, 41, 52, 4, 16]. These
approaches outperform the end-to-end counterparts, since
they benefit from intermediate supervision. We follow this
approach. Recent work shows that predicting 3D poses
is relatively straightforward given ground-truth 2D key-
points, and that the difficulty lies in predicting accurate 2D
poses [34]. Early approaches [21, 4] simply perform a k-
nearest neighbour search for a predicted set of 2D keypoints
over a large set of 2D keypoints for which the 3D pose
is available and then simply output the corresponding 3D
pose. Some approaches leverage both image features and
2D ground-truth poses [39, 41, 52, 54]. Alternatively, the
3D pose can be predicted from a given set of 2D keypoints
by simply predicting their depth [60]. Some works enforce
priors about bone lengths and projection consistency with
the 2D ground truth [2].
Video pose estimation. Most previous work operates in
a single-frame setting but recently there have been efforts
in exploiting temporal information from video to produce
more robust predictions and to be less sensitive to noise.
[53] infer 3D poses from the HoG features (histograms of
oriented gradients) of spatio-temporal volumes. LSTMs
have been used to refine 3D poses predicted from single

images [30, 24]. The most successful approaches, however,
learn from 2D keypoint trajectories. Our work falls under
this category.

Recently, LSTM sequence-to-sequence learning models
have been proposed, which encode a sequence of 2D poses
from a video into a fixed-size vector that is then decoded
into a sequence of 3D poses [16]. However, both the in-
put and output sequences have the same length and a deter-
ministic transformation of 2D poses is a much more natu-
ral choice. Our experiments with seq2seq models showed
that output poses tend to drift over lengthy sequences. [16]
tackles this problem by re-initializing the encoder every 5
frames, at the expense of temporal consistency. There has
also been work on RNN approaches which consider priors
on body part connectivity [27].
Semi-supervised training. There has been work on mul-
titask networks [3] for joint 2D and 3D pose estimation
[36, 33, 54] as well as action recognition [33]. Some works
transfer the features learned for 2D pose estimation to the
3D task [35]. Unlabeled multi-view recordings have been
used for pre-training representations for 3D pose estima-
tion [45], but these recordings are not readily available
in unsupervised settings. [55] exploit labeled multi-view
recordings with a unified end-to-end architecture. Genera-
tive adversarial networks (GAN) can discriminate realistic
poses from unrealistic ones in a second dataset where only
2D annotations are available [58], thus providing a useful
form of regularization. [56] use GANs to learn from un-
paired 2D/3D datasets and include a 2D projection con-
sistency term. Similarly, [8] discriminate generated 3D
poses after randomly projecting them to 2D. [40] propose a
weakly-supervised approach based on ordinal depth anno-
tations which leverages a 2D pose dataset augmented with
depth comparisons, e.g. “the left leg is behind the right leg”.
3D shape recovery. While this paper and the discussed
related work focus on reconstructing accurate 3D poses, a
parallel line of research aims at recovering full 3D shapes
of people from images [1, 23]. These approaches are typi-
cally based on parameterized 3D meshes and give less im-
portance to pose accuracy.
Our work. Compared to [41, 40], we do not use heatmaps
and instead describe poses with detected keypoint coordi-
nates. This allows the use of efficient 1D convolutions over
coordinate time series, instead of 2D convolutions over in-
dividual heatmaps (or 3D convolutions over heatmap se-
quences). Our approach also makes computational com-
plexity independent of keypoint spatial resolution. Our
models can reach high accuracy with fewer parameters
and allow for faster training and inference. Compared to
the single-frame baseline proposed by [34] and the LSTM
model by [16], we exploit temporal information by perform-
ing 1D convolutions over the time dimension, and we pro-
pose several optimizations that result in lower reconstruc-
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Figure 2: An instantiation of our fully-convolutional 3D pose estimation architecture. The input consists of 2D keypoints for
a recpetive field of 243 frames (B = 4 blocks) with J = 17 joints. Convolutional layers are in green where 2J, 3d1,
1024 denotes 2 · J input channels, kernels of size 3 with dilation 1, and 1024 output channels. We also show tensor sizes
in parentheses for a sample 1-frame prediction, where (243, 34) denotes 243 frames and 34 channels. Due to valid
convolutions, we slice the residuals (left and right, symmetrically) to match the shape of subsequent tensors.

tion error. Unlike [16], we learn a deterministic mapping
instead of a seq2seq model. Finally, contrary to most of
the two-step models mentioned in this section (which use
the popular stacked hourglass network [38] for 2D keypoint
detection), we show that Mask R-CNN [12] and cascaded
pyramid network (CPN) [5] detections are more robust for
3D human pose estimation.

3. Temporal dilated convolutional model
Our model is a fully convolutional architecture with

residual connections that takes a sequence of 2D poses as
input and transforms them through temporal convolutions.
Convolutional models enable parallelization over both the
batch and the time dimension while RNNs cannot be paral-
lelized over time. In convolutional models, the path of the
gradient between output and input has a fixed length regard-
less of the sequence length, which mitigates vanishing and
exploding gradients which affect RNNs. A convolutional
architecture also offers precise control over the temporal re-
ceptive field, which we found beneficial to model temporal
dependencies for the task of 3D pose estimation. Moreover,
we employ dilated convolutions [15] to model long-term de-
pendencies while at the same time maintaining efficiency.
Architectures with dilated convolutions have been success-
ful for audio generation [57], semantic segmentation [59]
and machine translation [22].

The input layer takes the concatenated (x, y) coordi-
nates of the J joints for each frame and applies a tempo-
ral convolution with kernel size W and C output channels.
This is followed by B ResNet-style blocks which are sur-
rounded by a skip-connection [13]. Each block first per-
forms a 1D convolution with kernel sizeW and dilation fac-
tor D = WB , followed by a convolution with kernel size
1. Convolutions (except the very last layer) are followed
by batch normalization [17], rectified linear units [37], and
dropout [49]. Each block increases the receptive field expo-
nentially by a factor of W , while the number of parameters
increases only linearly. The filter hyperparameters, W and
D, are set so that the receptive field for any output frame
forms a tree that covers all input frames (see §1). Finally, the

last layer outputs a prediction of the 3D poses for all frames
in the input sequence using both past and future data to ex-
ploit temporal information. To evaluate real-time scenarios,
we also experiment with causal convolutions, i.e. convolu-
tions that only have access to past frames. Appendix A.1
illustrates dilated convolutions and causal convolutions.

Convolutional image models typically apply zero-
padding to obtain as many outputs as inputs. Early experi-
ments however showed better results when performing only
unpadded convolutions while padding the input sequence
with replica of the boundary frames to the left and the right
(see Appendix A.5, Figure 9a for an illustration).

Figure 2 shows an instantiation of our architecture for a
receptive field size of 243 frames with B = 4 blocks. For
convolutional layers, we set W = 3 with C = 1024 output
channels and we use a dropout rate p = 0.25.

4. Semi-supervised approach
We introduce a semi-supervised training method to im-

prove accuracy in settings where the availability of labeled
3D ground-truth pose data is limited. We leverage unla-
beled video in combination with an off the shelf 2D key-
point detector to extend the supervised loss function with
a back-projection loss term. We solve an auto-encoding
problem on unlabeled data: the encoder (pose estimator)
performs 3D pose estimation from 2D joint coordinates and
the decoder (projection layer) projects the 3D pose back to
2D joint coordinates. Training penalizes when the 2D joint
coordinates from the decoder are far from the original input.

Figure 3 represents our method which combines our
supervised component with our unsupervised component
which acts as a regularizer. The two objectives are opti-
mized jointly, with the labeled data occupying the first half
of a batch, and the unlabeled data occupying the second
half. For the labeled data we use the ground truth 3D poses
as target and train a supervised loss. The unlabeled data is
used to implement an autoencoder loss where the predicted
3D poses are projected back to 2D and then checked for
consistency with the input.
Trajectory model. Due to the perspective projection, the
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Figure 3: Semi-supervised training with a 3D pose model
that takes a sequence of possibly predicted 2D poses as in-
put. We regress the 3D trajectory of the person and add a
soft-constraint to match the mean bone lengths of the unla-
beled predictions to the labeled ones. Everything is trained
jointly. WMPJPE stands for “Weighted MPJPE”.

2D pose on the screen depends both on the trajectory (i.e.
the global position of the human root joint) and the 3D pose
(the position of all joints with respect to the root joint).
Without the global position, the subject would always be re-
projected at the center of the screen with a fixed scale. We
therefore also regress the 3D trajectory of the person, so that
the back-projection to 2D can be performed correctly. To
this end, we optimize a second network which regresses the
global trajectory in camera space. The latter is added to the
pose before projecting it back to 2D. The two networks have
the same architecture but do not share any weights as we ob-
served that they affect each other negatively when trained
in a multi-task fashion. As it becomes increasingly difficult
to regress a precise trajectory if the subject is further away
from the camera, we optimize a weighted mean per-joint
position error (WMPJPE) loss function for the trajectory:

E =
1

yz
‖f(x)− y‖ (1)

that is, we weight each sample using the inverse of the
ground-truth depth (yz) in camera space. Regressing a pre-
cise trajectory for far subjects is also unnecessary for our
purposes, since the corresponding 2D keypoints tend to con-
centrate around a small area.
Bone length L2 loss. We would like to incentivize the pre-
diction of plausible 3D poses instead of just copying the in-
put. To do so, we found it effective to add a soft constraint
to approximately match the mean bone lengths of the sub-
jects in the unlabeled batch to the subjects of the labeled
batch (“Bone length L2 loss” in Figure 3). This term plays

an important role in self-supervision, as we show in §6.2.
Discussion. Our method only requires the camera intrinsic
parameters, which are often available for commercial cam-
eras.1 The approach is not tied to any specific network ar-
chitecture and can be applied to any 3D pose detector which
takes 2D keypoints as inputs. In our experiments we use
the architecture described in §3 to map 2D poses to 3D. To
project 3D poses to 2D, we use a simple projection layer
which considers linear parameters (focal length, principal
point) as well as non-linear lens distortion coefficients (tan-
gential and radial). We found the lens distortions of the
cameras used in Human3.6M have negligible impact on the
pose estimation metric, but we include these terms nonethe-
less because they always provide a more accurate modeling
of the real camera projection.

5. Experimental setup
5.1. Datasets and Evaluation

We evaluate on two motion capture datasets, Hu-
man3.6M [20, 19] and HumanEva-I [47]. Human3.6M con-
tains 3.6 million video frames for 11 subjects, of which
seven are annotated with 3D poses. Each subject performs
15 actions that are recorded using four synchronized cam-
eras at 50 Hz. Following previous work [41, 52, 34, 50, 10,
40, 58, 33], we adopt a 17-joint skeleton, train on five sub-
jects (S1, S5, S6, S7, S8), and test on two subjects (S9 and
S11). We train a single model for all actions.

HumanEva-I is a much smaller dataset, with three sub-
jects recorded from three camera views at 60 Hz. Follow-
ing [34, 16], we evaluate on three actions (Walk, Jog, Box)
by training a different model for each action (single action
– SA). We also report results when training one model for
all actions (multi action – MA), as in [41, 27]. We adopt a
15-joint skeleton and use the provided train/test split.

In our experiments, we consider three evaluation pro-
tocols: Protocol 1 is the mean per-joint position error
(MPJPE) in millimeters which is the mean Euclidean dis-
tance between predicted joint positions and ground-truth
joint positions and follows [29, 53, 61, 34, 41]. Protocol
2 reports the error after alignment with the ground truth
in translation, rotation, and scale (P-MPJPE) [34, 50, 10,
40, 58, 16]. Protocol 3 aligns predicted poses with the
ground-truth only in scale (N-MPJPE) following [45] for
semi-supervised experiments.

5.2. Implementation details for 2D pose estimation

Most previous work [34, 60, 52] extracts the subject
from ground-truth bounding boxes and then applies the
stacked hourglass detector to predict the 2D keypoint lo-
cations within the ground-truth bounding box [38]. Our ap-

1Even low-end devices typically embed this information in the EXIF
metadata of images or videos.



proach (§3 and §4) does not depend on any particular 2D
keypoint detector. We therefore investigate several 2D de-
tectors that do not rely on ground-truth boxes which enables
the use of our setup in the wild. In addition to the stacked
hourglass detector, we investigate Mask R-CNN [12] with a
ResNet-101-FPN [31] backbone, using its reference imple-
mentation in Detectron, as well as cascaded pyramid net-
work (CPN) [5] which represents an extension of FPN. The
CPN implementation requires bounding boxes to be pro-
vided externally (we use Mask R-CNN boxes for this case).

For both Mask R-CNN and CPN, we start with pre-
trained models on COCO [32] and fine-tune the detectors
on 2D projections of Human3.6M, since the keypoints in
COCO differ from Human3.6M [20]. In our ablations, we
also experiment with directly applying our 3D pose estima-
tor to pretrained 2D COCO keypoints for estimating the 3D
joints of Human3.6M.

For Mask R-CNN, we adopt a ResNet-101 backbone
trained with the “stretched 1x” schedule [12].2 When fine-
tuning the model on Human3.6M, we reinitialize the last
layer of the keypoint network, as well as the deconv layers
that regress the heatmaps to learn a new set of keypoints.
We train on 4 GPUs with a step-wise decaying learning rate:
1e-3 for 60k iterations, then 1e-4 for 10k iterations, and 1e-5
for 10k iterations. At inference, we apply a softmax over the
the heatmaps and extract the expected value of the resulting
2D distribution (soft-argmax). This results in smoother and
more precise predictions than hard-argmax [33].

For CPN, we use a ResNet-50 backbone with a 384×288
resolution. To fine-tune, we re-initialize the final layers
of both GlobalNet and RefineNet (convolution weights and
batch normalization statistics). Next, we train on one GPU
with batches of 32 images and with a step-wise decaying
learning rate: 5e-5 (1/10th of the initial value) for 6k iter-
ations, then 5e-6 for 4k iterations, and finally 5e-7 for 2k
iterations. We keep batch normalization enabled while fine-
tuning. We train with ground-truth bounding boxes and test
using the bounding boxes predicted by the fine-tuned Mask
R-CNN model.

5.3. Implementation details for 3D pose estimation

For consistency with other work [34, 29, 53, 61, 34, 41],
we train and evaluate on 3D poses in camera space by rotat-
ing and translating the ground-truth poses according to the
camera transformation, and not using the global trajectory
(except for the semi-supervised setting, §4).

As optimizer we use Amsgrad [43] and train for 80
epochs. For Human3.6M, we adopt an exponentially de-
caying learning rate schedule, starting from η = 0.001 with
a shrink factor α = 0.95 applied each epoch.

2 https://github.com/facebookresearch/Detectron/
blob/master/configs/12_2017_baselines/e2e_
keypoint_rcnn_R-101-FPN_s1x.yaml

All temporal models, i.e. models with receptive fields
larger than one, are sensitive to the correlation of samples
in pose sequences (cf. §3). This results in biased statistics
for batch normalization which assumes independent sam-
ples [17]. In preliminary experiments, we found that pre-
dicting a large number of adjacent frames during training
yields results that are worse than a model exploiting no tem-
poral information (which has well-randomized samples in
the batch). We reduce correlation in the training samples by
choosing training clips from different video segments. The
clip set size is set to the width of the receptive field of our
architecture so that the model predicts a single 3D pose per
training clip. This is important for generalization and we
analyze it in detail in Appendix A.5.

We can greatly optimize this single frame setting by
replacing dilated convolutions with strided convolutions
where the stride is set to be the dilation factor (see Ap-
pendix A.6). This avoids computing states that are never
used and we apply this optimization only during training.
At inference, we can process entire sequences and reuse in-
termediate states of other 3D frames for faster inference.
This is possible because our model does not use any form
of pooling over the time dimension. To avoid losing frames
to valid convolutions, we pad by replication, but only at the
input boundaries of a sequence (Appendix A.5, Figure 9a
shows an illustration).

We observed that the default hyperparameters of batch
normalization lead to large fluctuations of the test error (±
1 mm) as well as to fluctuations in the running estimates
for inference. To achieve more stable running statistics, we
use a schedule for the batch-normalization momentum β:
we start from β = 0.1, and decay it exponentially so that it
reaches β = 0.001 in the last epoch.

Finally, we perform horizontal flip augmentation at train
and test time. We show the effect of this in Appendix A.4.

For HumanEva, we use N = 128, α = 0.996, and train
for 1000 epochs using a receptive field of 27 frames. Some
frames in HumanEva are corrupted by sensor dropout and
we split the corrupted videos into valid contiguous chunks
and treat them as independent videos.

6. Results

6.1. Temporal dilated convolutional model

Table 1 shows results for our convolutional model with
B = 4 blocks and a receptive field of 243 input frames for
both evaluation protocols (§5). The model has lower aver-
age error than all other approaches under both protocols,
and does not rely on additional data such as many other
approaches (+). Under protocol 1 (Table 1a), our model
outperforms the previous best result [27] by 6 mm on av-
erage, corresponding to an 11% error reduction. Notably,
[27] uses ground-truth boxes whereas our model does not.

https://github.com/facebookresearch/Detectron/blob/master/configs/12_2017_baselines/e2e_keypoint_rcnn_R-101-FPN_s1x.yaml
https://github.com/facebookresearch/Detectron/blob/master/configs/12_2017_baselines/e2e_keypoint_rcnn_R-101-FPN_s1x.yaml
https://github.com/facebookresearch/Detectron/blob/master/configs/12_2017_baselines/e2e_keypoint_rcnn_R-101-FPN_s1x.yaml


Dir. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg

Pavlakos et al. [41] CVPR’17 (∗) 67.4 71.9 66.7 69.1 72.0 77.0 65.0 68.3 83.7 96.5 71.7 65.8 74.9 59.1 63.2 71.9
Tekin et al. [52] ICCV’17 54.2 61.4 60.2 61.2 79.4 78.3 63.1 81.6 70.1 107.3 69.3 70.3 74.3 51.8 63.2 69.7
Martinez et al. [34] ICCV’17 (∗) 51.8 56.2 58.1 59.0 69.5 78.4 55.2 58.1 74.0 94.6 62.3 59.1 65.1 49.5 52.4 62.9
Sun et al. [50] ICCV’17 (+) 52.8 54.8 54.2 54.3 61.8 67.2 53.1 53.6 71.7 86.7 61.5 53.4 61.6 47.1 53.4 59.1
Fang et al. [10] AAAI’18 50.1 54.3 57.0 57.1 66.6 73.3 53.4 55.7 72.8 88.6 60.3 57.7 62.7 47.5 50.6 60.4
Pavlakos et al. [40] CVPR’18 (+) 48.5 54.4 54.4 52.0 59.4 65.3 49.9 52.9 65.8 71.1 56.6 52.9 60.9 44.7 47.8 56.2
Yang et al. [58] CVPR’18 (+) 51.5 58.9 50.4 57.0 62.1 65.4 49.8 52.7 69.2 85.2 57.4 58.4 43.6 60.1 47.7 58.6
Luvizon et al. [33] CVPR’18 (∗)(+) 49.2 51.6 47.6 50.5 51.8 60.3 48.5 51.7 61.5 70.9 53.7 48.9 57.9 44.4 48.9 53.2
Hossain & Little [16] ECCV’18 (†)(∗) 48.4 50.7 57.2 55.2 63.1 72.6 53.0 51.7 66.1 80.9 59.0 57.3 62.4 46.6 49.6 58.3
Lee et al. [27] ECCV’18 (†)(∗) 40.2 49.2 47.8 52.6 50.1 75.0 50.2 43.0 55.8 73.9 54.1 55.6 58.2 43.3 43.3 52.8

Ours, single-frame 47.1 50.6 49.0 51.8 53.6 61.4 49.4 47.4 59.3 67.4 52.4 49.5 55.3 39.5 42.7 51.8
Ours, 243 frames, causal conv. (†) 45.9 48.5 44.3 47.8 51.9 57.8 46.2 45.6 59.9 68.5 50.6 46.4 51.0 34.5 35.4 49.0
Ours, 243 frames, full conv. (†) 45.2 46.7 43.3 45.6 48.1 55.1 44.6 44.3 57.3 65.8 47.1 44.0 49.0 32.8 33.9 46.8
Ours, 243 frames, full conv. (†)(∗) 45.1 47.4 42.0 46.0 49.1 56.7 44.5 44.4 57.2 66.1 47.5 44.8 49.2 32.6 34.0 47.1

(a) Protocol 1: reconstruction error (MPJPE).

Dir. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg

Martinez et al. [34] ICCV’17 (∗) 39.5 43.2 46.4 47.0 51.0 56.0 41.4 40.6 56.5 69.4 49.2 45.0 49.5 38.0 43.1 47.7
Sun et al. [50] ICCV’17 (+) 42.1 44.3 45.0 45.4 51.5 53.0 43.2 41.3 59.3 73.3 51.0 44.0 48.0 38.3 44.8 48.3
Fang et al. [10] AAAI’18 38.2 41.7 43.7 44.9 48.5 55.3 40.2 38.2 54.5 64.4 47.2 44.3 47.3 36.7 41.7 45.7
Pavlakos et al. [40] CVPR’18 (+) 34.7 39.8 41.8 38.6 42.5 47.5 38.0 36.6 50.7 56.8 42.6 39.6 43.9 32.1 36.5 41.8
Yang et al. [58] CVPR’18 (+) 26.9 30.9 36.3 39.9 43.9 47.4 28.8 29.4 36.9 58.4 41.5 30.5 29.5 42.5 32.2 37.7
Hossain & Little [16] ECCV’18 (†)(∗) 35.7 39.3 44.6 43.0 47.2 54.0 38.3 37.5 51.6 61.3 46.5 41.4 47.3 34.2 39.4 44.1

Ours, single-frame 36.0 38.7 38.0 41.7 40.1 45.9 37.1 35.4 46.8 53.4 41.4 36.9 43.1 30.3 34.8 40.0
Ours, 243 frames, causal conv. (†) 35.1 37.7 36.1 38.8 38.5 44.7 35.4 34.7 46.7 53.9 39.6 35.4 39.4 27.3 28.6 38.1
Ours, 243 frames, full conv. (†) 34.1 36.1 34.4 37.2 36.4 42.2 34.4 33.6 45.0 52.5 37.4 33.8 37.8 25.6 27.3 36.5
Ours, 243 frames, full conv. (†)(∗) 34.2 36.8 33.9 37.5 37.1 43.2 34.4 33.5 45.3 52.7 37.7 34.1 38.0 25.8 27.7 36.8

(b) Protocol 2: reconstruction error after rigid alignment with the ground truth (P-MPJPE), where available.

Table 1: Reconstruction error on Human3.6M. Legend: (†) uses temporal information. (∗) ground-truth bounding boxes.
(+) extra data – [50, 40, 58, 33] use 2D annotations from the MPII dataset, [40] uses additional data from the Leeds Sports
Pose (LSP) dataset as well as ordinal annotations. [50, 33] evaluate every 64th frame. [16] provided us with corrected results
over the originally published results 3. Lower is better, best in bold, second best underlined.

The model clearly takes advantage of temporal infor-
mation as the error is about 5 mm higher on average for
protocol 1 compared to a single-frame baseline where we
set the width of all convolution kernels to W = 1. The
gap is larger for highly dynamic actions, such as “Walk”
(6.7 mm) and “Walk Together” (8.8 mm). The performance
for a model with causal convolutions is about half way be-
tween the single frame baseline and our model; causal con-
volutions enable online processing by predicting the 3D
pose for the rightmost input frame. Interestingly, ground-
truth bounding boxes result in similar performance to pre-
dicted bounding boxes with Mask R-CNN, which suggests
that predictions are almost-perfect in our single-subject sce-
nario. Figure 4 shows examples of predicted poses includ-
ing the predicted 2D keypoints and we included a video
illustration in the supplementary material (Appendix A.7)
as well as at https://dariopavllo.github.io/
VideoPose3D.

3All subsequent results for [16] in this paper were computed by us using
their public implementation.

Next, we evaluate the impact of the 2D keypoint de-
tector on the final result. Table 3 reports accuracy of our
model with ground-truth 2D poses, hourglass-network pre-
dictions from [34] (both pre-trained on MPII and fine-tuned
on Human3.6M), Detectron and CPN (both pre-trained on
COCO and fine-tuned on Human3.6M). Both Mask R-CNN
and CPN give better performance than the stacked hourglass
network. The improvement is likely to be due to the higher
heatmap resolution, stronger feature combination (feature
pyramid network [31, 44] for Mask R-CNN and RefineNet
for CPN), and the more diverse dataset on which they are
pretrained, i.e. COCO [32]. When trained on 2D ground-
truth poses, our model improves the lower bound of [34] by
8.3 mm, and the LSTM-based approach of Lee et al. [27]
by 1.2 mm for protocol 1. Therefore, our improvements are
not merely due to a better 2D detector.

Absolute position errors do not measure the smoothness
of predictions over time, which is important for video. To
evaluate this, we measure joint velocity errors (MPJVE),
corresponding to the MPJPE of the first derivative of the

https://dariopavllo.github.io/VideoPose3D
https://dariopavllo.github.io/VideoPose3D


Figure 4: Qualitative results for two videos. Top: video frames with 2D pose overlay. Bottom: 3D reconstruction.

Dir. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg

Single-frame 12.8 12.6 10.3 14.2 10.2 11.3 11.8 11.3 8.2 10.2 10.3 11.3 13.1 13.4 12.9 11.6
Temporal 3.0 3.1 2.2 3.4 2.3 2.7 2.7 3.1 2.1 2.9 2.3 2.4 3.7 3.1 2.8 2.8

Table 2: Velocity error over the 3D poses generated by a convolutional model that considers time and a single-frame baseline.

Method P1 P2 Method P1 P2

Martinez et al. [34] (GT) 45.5 37.1 Ours (GT) 37.2 27.2
Martinez et al. [34] (SH PT) 67.5 52.5 Ours (SH PT from [34]) 58.6 45.0
Martinez et al. [34] (SH FT) 62.9 47.7 Ours (SH FT from [34]) 53.4 40.1
Hossain & Little [16] (GT) 41.6 31.7 Ours (D PT) 54.8 42.0
Lee et al. [27] (GT) 38.4 – Ours (D FT) 51.6 40.3
Ours (CPN PT) 52.1 40.1 Ours (CPN FT) 46.8 36.5

Table 3: Effect of the 2D detector on the final result, un-
der Protocol 1 (P1) and Protocol 2 (P2) Legend: ground-
truth (GT), stacked hourglass (SH), Detectron (D), cascaded
pyramid network (CPN), pre-trained (PT), fine-tuned (FT).

Walk Jog Box
S1 S2 S3 S1 S2 S3 S1 S2 S3

Pavlakos et al. [41] (MA) 22.3 19.5 29.7 28.9 21.9 23.8 – – –
Martinez et al. [34] (SA) 19.7 17.4 46.8 26.9 18.2 18.6 – – –
Pavlakos et al. [40] (+) (MA) 18.8 12.7 29.2 23.5 15.4 14.5 – – –
Lee et al. [27] (MA) 18.6 19.9 30.5 25.7 16.8 17.7 42.8 48.1 53.4

Ours (SA) 14.5 10.5 47.3 21.9 13.4 13.9 24.3 34.9 32.1
Ours (MA) 13.9 10.2 46.6 20.9 13.1 13.8 23.8 33.7 32.0

Table 4: Error on HumanEva-I under Protocol 2 for single-
action (SA) and multi-action (MA) models. Best in bold,
second best underlined. (+) uses extra data. The high error
on “Walk” of S3 is due to corrupted mocap data.

3D pose sequences. Table 2 shows that our temporal model
reduces the MPJVE of the single-frame baseline by 76% on
average resulting in vastly smoother poses.

Table 4 shows results on HumanEva-I and that our model
generalizes to smaller datasets; results are based on pre-
trained Mask R-CNN 2D detections. Our models outper-
form the previous state-of-the-art.

Finally, Table 5 compares the convolutional model to the
LSTM model of [16] in terms of complexity. We report the

Model Parameters ≈ FLOPs MPJPE

Hossain & Little [16] 16.96M 33.88M 41.6

Ours 27f w/o dilation 29.53M 59.03M 41.1

Ours 27f 8.56M 17.09M 40.6
Ours 81f 12.75M 25.48M 38.7
Ours 243f 16.95M 33.87M 37.8

Table 5: Computational complexity of various models un-
der Protocol 1 trained on ground-truth 2D poses. Results
are without test-time augmentation.

number of model parameters and an estimate of the floating-
point operations (FLOPs) to predict one frame at inference
time (details in Appendix A.2). For the latter, we only con-
sider matrix multiplications and report the amortized cost
over a hypothetical sequence of infinite length (to disregard
padding). MPJPE results are based on models trained on
ground-truth 2D poses without test-time augmentation. Our
model achieves a significantly lower error even when the
number of computations are halved. Our largest model with
receptive field of 243 frames has roughly the same com-
plexity as [16], but at 3.8 mm lower error. The table also
highlights the effectiveness of dilated convolutions which
increase complexity only logarithmically with respect to the
receptive field.

Since our model is convolutional, it can be parallelized
both over the number of sequences as well as over the tem-
poral dimension. This contrasts to RNNs, which can only be
parallelized over different sequences and are thus much less
efficient for small batch sizes. For inference, we measured
about 150k FPS on a single NVIDIA GP100 GPU over a
single long sequence, i.e., batch size one, assuming that 2D
poses were already available. Speed is largely independent
of the batch size due to parallel temporal processing.
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Figure 5: Top: comparison with [45] on Protocol 3, using a
downsampled version of the dataset for consistency. Mid-
dle: our method under Protocol 1 (full frame rate). Bottom:
our method under Protocol 1 when trained on ground-truth
2D poses (full frame rate). The small crosses (“abl.” series)
denote the ablation of the bone length term.

6.2. Semi-supervised approach

We adopt the setup of [45] who consider various subsets
of the Human3.6M training set as labeled data and the re-
maining samples are used as unlabeled data. Their setup
also generally downsamples all data to 10 FPS (from 50
FPS). Labeled subsets are created by first reducing the num-
ber of subjects and then by downsampling Subject 1.

Since the dataset is downsampled, we use a receptive
field of 9 frames, equivalent to 45 frames upsampled. For

the very small subsets, 1% and 5% of S1, we use 3 frames,
and we use a single-frame model for 0.1% of S1 where only
49 frames are available. We fine-tuned CPN on the labeled
data only and warm up training by iterating only over la-
beled data for a few epochs (1 epoch for ≥ S1, 20 epochs
for smaller subsets).

Figure 5a shows that our semi-supervised approach be-
comes more effective as the amount of labeled data de-
creases. For settings with less than 5K labeled frames, our
approach achieves improvements of about 9-10.4 mm N-
MPJPE over our supervised baseline. Our supervised base-
line is much stronger than [45] and outperforms all of their
results by a large margin. Although [45] uses a single-frame
model in all experiments, our findings still hold on 0.1% of
S1 (where we also use a single-frame model).

Figure 5b shows results for our method under the more
common Protocol 1 for the non-downsampled version of the
dataset (50 FPS). This setup is more appropriate for our ap-
proach since it allows us to exploit full temporal informa-
tion in videos. Here we use a receptive field of 27 frames,
except in 1% of S1, where we use 9 frames, and 0.1% of
S1, where we use one frame. Our semi-supervised approach
gains up to 14.7 mm MPJPE over the supervised baseline.

Figure 5c switches the CPN 2D keypoints for ground-
truth 2D poses to measure if we could perform better with
a better 2D keypoint detector. In this case, improvements
can be up to 22.6 mm MPJPE (1% of S1) which con-
firms that better 2D detections could improve performance.
The same graph shows that the bone length term is crucial
for predicting valid poses, since it forces the model to re-
spect kinematic constraints (line “Ours semi-supervised GT
abl.”). Removing this term drastically decreases the effec-
tiveness of semi-supervised training: for 1% of S1 the er-
ror increases from 78.1 mm to 91.3 mm which compares to
100.7 mm for the supervised baseline.

7. Conclusion
We have introduced a simple fully convolutional model

for 3D human pose estimation in video. Our architecture ex-
ploits temporal information with dilated convolutions over
2D keypoint trajectories. A second contribution of this
work is back-projection, a semi-supervised training method
to improve performance when labeled data is scarce. The
method works with unlabeled video and only requires in-
trinsic camera parameters, making it practical in scenarios
where motion capture is challenging (e.g. outdoor sports).

Our fully convolutional architecture improves the previ-
ous best result on the popular Human3.6M dataset by 6mm
average joint error which corresponds to a relative reduc-
tion of 11% and also shows improvements on HumanEva-I.
Back-projection can improve 3D pose estimation accuracy
by about 10mm N-MPJPE (15mm MPJPE) over a strong
baseline when 5K or fewer annotated frames are available.
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A. Supplementary material
A.1. Dilated convolutions and information flow

Dilated convolutions are a particular form of convolu-
tion with a sparse structure, whose kernel points are spaced
uniformly and filled with zeros in between. For instance,
the discrete filter h = [ 1 2 3 ] (where 2 is the center)
becomes [ 1 0 2 0 3 ] with dilation factor D = 2, and
[ 1 0 0 2 0 0 3 ] with D = 3. This particular structure
enables optimized implementations that skip computations
over zero points.

Consider a discrete convolution of two signals f (of
length N ) and h (zero-centered, of length 2M + 1), which
can be computed as

(f ∗ h)[n] =
M∑

m=−M

f [n−m]h[m] (2)

Instead of spacing the kernel explicitly and applying a reg-
ular convolution, a dilated convolution can be computed as

(f ∗ hD)[n] =

M∑
m=−M

f [D(n−m)]h[m] (3)

yielding roughly the same computational cost as regular
convolutions for the same number of non-zero entries, while
increasing the receptive field.

For illustration purposes, in Figure 6 we depict the infor-
mation flow in our models. We also highlight the difference
between symmetric convolutions and causal convolutions.

(a) Symmetric convolutions.

(b) Causal convolutions.

Figure 6: Information flow in our models, from input (bot-
tom layer) to output (top layer). Dashed lines represent
skip-connections.

A.2. Computational cost analysis

In this section we show how we computed the compu-
tational complexity of our model and that of [16]. The
common practice is to consider only matrix multiplications,
as other operations (e.g. biases, batch normalization, ac-
tivations) have negligible impact on the final complexity.
For [16], we evaluated its reference implementation in Ten-
sorFlow. We computed the amortized cost to predict one
frame using the TensorFlow profiler, and only counted op-
erations corresponding to matrix multiplications. Accord-
ing to TensorFlow’s approximation, multiplying a N ×M
matrix by a M × K matrix has a cost of 2NMK FLOPs
(floating-point operations), which is equivalent to NMK
multiply-add operations.

For our model, we adopted the same convention. We
provide a sample cost analysis for a model with a recep-
tive field of 27 frames, which consists of 2 residual blocks.
Since the matrix multiplications in our model are only due
to convolutions, the analysis is straightforward and can be
computed by hand.
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Figure 7: Architecture of a model with a receptive field of
27 frames, with the corresponding amortized cost to predict
one frame in convolutional layers.

As can be seen in Figure 7, the model consists of 6 con-
volutional layers. Disregarding padding (i.e. for sequences
of length N � 0), performing a 1D convolution with Cin

input channels, Cout output channels, and width W has a
cost of 2N W Cin Cout FLOPs, i.e. 2W Cin Cout FLOPs
per frame. In our 27-frame model, the results can be sum-
marized as follows:

1. W = 3, channels 17 · 2→ 1024, cost 0.209 MFLOPs.

2. W = 3, channels 1024→ 1024, cost 6.291 MFLOPs.

3. W = 1, channels 1024→ 1024, cost 2.097 MFLOPs.

4. W = 3, channels 1024→ 1024, cost 6.291 MFLOPs.

5. W = 1, channels 1024→ 1024, cost 2.097 MFLOPs.

6. W = 1, channels 1024→ 17 · 3, cost 0.104 MFLOPs.

Total: 17.089 MFLOPs per frame.

A.3. Ablation of receptive field and channel size

In Figure 8b we report the test error for different recep-
tive fields, namely 1, 9, 27, 82, and 243 frames. To this end,
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Figure 8: Top: Error as a function of the channel size, with
a fixed receptive field of 27 frames. Bottom: Error as a
function of the receptive field, with a fixed channel size of
1024. Fine-tuned CPN detections for both experiments.

we stack a varying number of residual blocks, each of which
multiplies the receptive field by 3. In the single-frame sce-
nario, we use 2 blocks and set the convolution widths of
all layers to 1, obtaining a model functionally equivalent
to [34]. As can be seen, the model does not seem to over-
fit as the receptive field increases. On the other hand, the
error tends to saturate quickly, suggesting that the task of
3D human pose estimation does not require modeling long-
term dependencies. Therefore, we generally adopt a recep-
tive field of 243 frames. Similarly, in Figure 8a we vary the
channel size between 128 and 2048, with the same findings:
the model is not prone to overfitting, but the error saturates
past a certain point. Since the computational complexity in-
creases quadratically with respect to the channel size, we
adopt C = 1024.

A.4. Data augmentation and convolution type

When we remove test-time augmentation, the error in-
creases to 47.7 mm (from 46.8 mm) in our top-performing
model. If we also remove train-time augmentation, the error
reaches 49.2 mm (another +1.5 mm).

Next, we replace dilated convolutions with regular dense

convolutions. In a model with a receptive field of 27 frames
and fine-tuned CPN detections, the error increases from
48.8 mm to 50.4 mm (+1.6 mm), while also increasing
the number of parameters and computations by a factor of
≈ 3.5. This highlights that dilated convolutions are crucial
for efficiency, and that they counteract overfitting.

A.5. Batching strategy

We argue that the reconstruction error is strongly depen-
dent on how the model is trained, and we suggested to gen-
erate minibatches in a way that only one output frame at a
time is predicted. To show why this is important, we intro-
duce a new hyperparameter – the chunk sizeC (or step size),
which specifies how many frames are predicted at once per
sample. Predicting only one frame, i.e. C = 1, requires
a full receptive field F as input. Predicting two frames
(C = 2) requires F + 1 frames, and so on. It is evident
that predicting multiple frames is computationally more ef-
ficient, as the results of intermediate convolutions can be
shared among frames – and in fact, we do this at inference.
On the other hand, we show that during training this is detri-
mental to generalization.

Figure 9b illustrates the reconstruction error (as well as
the relative speedup in training time) when training a 27-
frame model with different step sizes, namely 1, 2, 4, 8, 16,
and 32 frames. Since predicting multiple frames is equiv-
alent to increasing the batch size – thus hurting generaliza-
tion [25] – we make the results comparable by adjusting the
batch size so that the model always predicts 1024 frames.
Therefore, the 1-frame experiment adopts a batch size of
1024 sequences, which becomes 512 for 2 frames, 256 for
4 frames, and so on. This methodology also ensures the
models will be trained with the same number of weight up-
dates.

The results show that the error decreases in conjunction
with the step size, at the expense of training speed. The
impaired performance of the models trained with high step
size is caused by correlated batch statistics [14]. Our im-
plementation optimized for single-frame outputs achieves a
speed-up factor of≈ 2, but this gain is even higher on mod-
els with larger receptive fields (e.g. ≈ 4 with 81 frames),
and enabled us to train the model with 243 frames.

A.6. Optimized training implementation

Figure 10 shows why our implementation tailored for
single-frame predictions is important. A regular implemen-
tation computes intermediate states layer by layer. This is
very efficient for long sequences, as the states computed in
layer n can be reused by layer n + 1 without recomputing
them. However, for short sequences, this approach becomes
inefficient because states near boundaries are not used. In
the extreme case of single-frame predictions (which we use
for training), many intermediate computations are wasted,
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Figure 9: Top: batch creation process for training. This
example shows a video of 7 frames which is used to train
a model with a receptive field of 5 frames. We generate a
training example for each of the 7 frames, such that only
the center frame is predicted. The video is padded by repli-
cating boundary frames. Bottom: reconstruction error and
training speed-up with different step sizes. The speed-up is
relative to C = 1. The 1f variant shows the speed up corre-
sponding to the implementation optimized for single-frame
predictions.

as can be seen in Figure 10a. In this case, we replace dilated
convolutions with strided convolutions, making sure to ob-
tain a model which is functionally equivalent to the original
one (e.g. by also adapting skip-connections). This strategy
ensures that no intermediate states will be discarded.

As mentioned, at inference we use the regular layer-by-
layer implementation since it is more efficient for multi-
frame predictions.

A.7. Demo videos

The supplementary material contains several videos
highlighting the smoothness of the predictions of our tem-
poral convolutional model compared to the single frame
baseline. Specifically, we show side by side the origi-
nal video sequence, poses predicted by the single-frame
baseline, poses from the temporal convolutional model as
well as the ground-truth poses. Some demo videos can
also be found at https://dariopavllo.github.
io/VideoPose3D.

(a) Layer-by-layer implementation.

(b) Implementation optimized for single-frame predictions.

Figure 10: Comparison between two implementations for
a single-frame prediction, receptive field of 27 frames. In
the layer-by-layer implementation many intermediate states
are wasted, whereas the optimized implementation com-
putes only required states. As the length of the sequence
increases, the layer-by-layer implementation becomes more
efficient.

https://dariopavllo.github.io/VideoPose3D
https://dariopavllo.github.io/VideoPose3D

