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Abstract—Although OLTP and OLAP database systems have
fundamentally disparate architectures, most research work on
concurrency control is geared towards transactional systems and
simply adopted by OLAP DBMSs. In this paper we describe a
new concurrency control protocol specifically designed for ana-
lytical DBMSs that can provide Snapshot Isolation for distributed
in-memory OLAP database systems, called Append-Only Snapshot
Isolation (AOSI). Unlike previous work, which are either based on
multiversion concurrency control (MVCC) or Two Phase Locking
(2PL), AOSI is completely lock-free and always maintains a
single version of each data item. In addition, it removes the need
for per-record timestamps of traditional MVCC implementations
and thus considerably reduces the memory overhead incurred by
concurrency control. In order to support these characteristics, the
protocol sacrifices flexibility and removes support for a few op-
erations, particularly record updates and single record deletions;
however, we argue that even though these operations are essential
in a pure transactional system, they are not strictly required in
most analytic pipelines and OLAP systems. We also present an
experimental evaluation of AOSI’s current implementation within
the Cubrick in-memory OLAP DBMS at Facebook, and show
that lock-free single-version Snapshot Isolation can be achieved
with low memory overhead and minor impact in query latency.

I. INTRODUCTION

Traditional concurrency control protocols can be organized
into two broad categories. The first comprises protocols that
use locking to preserve mutual exclusion between conflicting
transactions, leveraging Two Phase Locking (2PL) or one of
its variations. The second, protocols that assign a timestamp
to each transaction and begin execution immediately, checking
either at execution or commit time for conflicting operations.
Most timestamp-based implementations use Multiversion Con-
currency Control (MVCC), in a way to generate new versions
of data items for each update, thus allowing concurrent readers
and writers to proceed in parallel. Today, the vast majority
of commercial DBMSs are either based on MVCC with
timestamps, 2PL or some combination of both. [1] [2] [3]
[4].

Although widely used in practice, MVCC incurs significant
memory overhead in order to store multiple versions of data
items, in addition to the required timestamps per record version
to control which transactions are allowed to see which ver-
sions. This overhead is sometimes tolerable for transactional
systems where the working sets are smaller, but for in-memory

OLAP DBMSs where the system tries to fit in memory
as much of the dataset as possible, this overhead can be
prohibitive. Moreover, despite having fundamentally different
characteristics, most research work on concurrency control is
geared towards transactional systems and simply adopted by
OLAP DBMSs without considering that OLAP transactions
might have different characteristics and requirements.

We argue in this paper that not all low-level operations
supported by OLTP are strictly required by OLAP systems,
and if one is willing to sacrifice flexibility, a more efficient
concurrency control protocol can be designed while still pro-
viding the same level of guarantees and adequate functionality.
Particularly, we show that if the system drops support for
record updates and single record deletes, it is possible to
provide Snapshot Isolation (SI) in a timestamp based protocol
in a completely lock-free manner, without using MVCC or
maintaining per record timestamps.

In this paper we also present a new concurrency control
protocol specially designed for in-memory distributed OLAP
databases called Append-Only Snapshot Isolation (AOSI).
The presented protocol is compatible to any column-oriented
DBMS implementation based on vectors, in addition to sup-
porting systems where data is further horizontally partitioned.
AOSI is based on timestamps and maintains only one version
of each data item at all times since there is no support for
record updates. Query performance is also improved since
it is guaranteed that records are always stored contiguously
in memory, thus removing many branches and cache misses
caused by having to find the correct data item version.

AOSI enforces isolation by maintaining an auxiliary vector
per partition to control the ranges of records inserted by
each transaction, while deletes are implemented by inserting
a special marker on this vector. Since it is common that
only a small fraction of OLAP datasets change on a regular
basis, the size of this vector is usually small as compared to
the full dataset; in addition, these entries can be frequently
recycled. AOSI also leverages Logical Clocks to locally as-
sign timestamps to globally consistent distributed transactions,
without requiring additional synchronization other than the
communication needed for the execution of operations.

Finally, we present an experimental evaluation of AOSI



in the context of the Cubrick in-memory distributed OLAP
DBMS developed at Facebook, described in a previous work
[5].

This paper makes the following contributions:
• We present a discussion about the differences between

transaction requirements in both analytical and trans-
actional systems, and how some operations commonly
found in OLTP can be relaxed in an OLAP system
without sacrificing its ability to support most analytical
data pipelines.

• We describe AOSI, a new concurrency control proto-
col able to provide Snapshot Isolation (SI) in column-
oriented OLAP systems without leveraging locking or
MVCC, in addition to eliminating the need to store
timestamps per record.

• We detail how AOSI leverages Logical Clocks in order
to locally assign timestamps to globally consistent dis-
tributed transactions without requiring extra synchroniza-
tion.

• We present an experimental evaluation of our AOSI’s
implementation in the context of the Cubrick OLAP
DBMS running on production workloads at Facebook.

The remaining of this paper is organized as follows. Section
II discusses requirements for analytical transactions and the
minimum set of operations needed to build a full-featured
and scalable OLAP system. Section III presents the AOSI
protocol, describing how timestamps are assigned and ex-
emplifying each supported operation. Section IV discusses
how timestamps are handled in the context of a distributed
cluster and how logical clocks are leveraged. Section V
outlines Cubrick’s data model and internal data structures,
while Section VI presents an experimental evaluation of our
current implementation. Finally, Section VII points to related
work and Section VIII concludes the paper.

II. OLAP TRANSACTION REQUIREMENTS

Database transaction processing and concurrency control is
a topic being studied since the early days of database systems,
where DBMSs were uniquely focused on online transaction
processing (OLTP) and concurrency control was mostly done
through locking and the use protocols such as 2PL. About
two decades ago, a new movement led by R. Kimball [6]
emphasized the need for systems focused on the execution
of less complex queries over a larger volume of data, mostly
focused on analytics, Business Intelligence (BI) workloads and
reporting. In the following years, several commercial offerings
started being released [4] [7] due to a large portion of the
database market adopting the data warehouse model.

From the orientation in which data is stored (row-wise vs.
column-wise) to data encoding, compression and ultimately
low level query optimization details, the architecture of these
two types of systems is drastically different, even though most
OLAP’s concurrency control subsystems were inherited from
OLTP systems and left unchanged. In order to decide whether
to reuse or propose a new concurrency control mechanism,

one must first understand the requirements for transactions in
an OLAP system.

Beyond the well understood differences between transaction
life time, amount of data scanned and transactional throughput,
we advocate in this paper that a few operations supported
by OLTP systems are not strictly required in OLAP systems,
namely record updates and single record deletion, and could
be sacrificed for performance. These operations are discussed
in the following subsections.

A. No Record Updates

Handling conflicting updates is a challenging task in con-
currency control protocols. Traditional pessimistic approaches
lock the data item being updated in such a way to stall and
serialize all subsequent accesses, thus sacrificing performance
and causing data contention. An alternative protocol based
on multiversioning creates a new version of a data item
once it is updated, hence preventing writes from blocking
readers. However, the system needs to keep track of the data
items updated by each transaction in order to detect write
set conflicts, and rollback one of the conflicting transactions
(optimistic approach), as well as implement some form of
garbage collection for older versions. Another approach is to
use multiversion concurrency control in conjunction with locks
so that writers only block other writers, but never readers [8].

Regardless of the approach, the database system must either
(a) lock the data item or (b) keep additional metadata per
record informing which transaction last updated a data item.
Neither approach is ideal in an in-memory OLAP database:
(a) introduces unnecessary contention and is particularly in-
adequate for in-memory systems that are supposed to deliver
high transactional throughput and very low latency; (b) can be
implemented in a lock-less manner, but increases the memory
footprint since the system needs to maintain one transaction
id or timestamp per data item. In fact, in some cases the
timestamp overhead can even double the memory requirements
of a dataset (if the table has only a few columns, for example).

In the next two subsections, we argue that record updates
are not strictly necessary for most OLAP ETL workflows and
can be sacrificed by a database system in favor of performance.

1) Changing Facts: Data warehouses are commonly mod-
eled following a dimensional data model and hence composed
of fact and dimension tables. ETL pipelines are the periodic
workflows responsible for scrapping data out of transactional
(OLTP) systems, transform, clean and load it into the data
warehouse, thereby updating both fact and dimension tables.
Facts, by their very nature, are immutable. Still, we acknowl-
edge a few cases where users would like to be able to update
a particular fact stored in the data warehouse. They fall into
one of the two categories: (a) the fact itself changed, such as
a post previously made by a user being removed or an order
being canceled; (b) measurement or ETL pipeline error, such
as data collection errors, data cleaning issues, business logic
bugs or data corruption.

In the first situation (a), an update to a fact is in reality a new
fact, and should be modeled and recorded as such. Treating a



fact update as a new fact instead of updating records in-place
gives the data warehouse model more context and makes it
able to answer a broader type of queries, still not requiring
the database system to support individual record updates. In
the second category (b), if an error on a specific fact was
detected, the entire ETL workflow must be executed again
after the root cause was fixed. In practice, updating individual
records in-place in a data warehouse is an inefficient and
error prone process. Maintaining a single idempotent ETL
workflow that can be re-run whenever errors are found is a
better engineering practice overall, since it reduces the amount
of code to be written, tested and maintained, as well as being
easier to monitor than having specific ad-hoc workflows to fix
data issues.

2) Changing Dimensions: Another possible requirement
for record updates is changing dimension tables. Changes to
dimension tables are required, for instance, whenever a user’s
marital status changes. In [6], Kimball defines eight different
strategies to deal with changes in dimension tables in a data
warehouse, the so-called slowly changing dimensions. From
adding a new row or column that holds the updated value
to further normalizing the history of values in a new mini-
dimension table, they all require a burdensome workflow of
comparing values item by item and resolving updates. This
is an onerous operation and impractical at scale, considering
that dimension tables alone collected by nowadays companies
may contain over a few billion records and many updates per
day.

One approach that trades ETL workflow complexity for
storage space is taking a full snapshot of the dimensions tables
every time the ETL workflow is executed, instead of com-
paring each single record and running in place updates. This
strategy is similar to Type 1 - Overwrite as defined by Kimball,
which basically overwrites the previous value, but with the
difference that a whole new copy (a new partition) of the table
is created and that older partitions are kept for history. On the
downside, this approach requires more logic when querying in
order to join the correct partition, and can only keep history up
to the dimension table’s snapshot retention policy. However,
this approach makes the ETL significantly simpler and more
efficient and eliminates the needs for burdensome in-place
updates.

B. No Record Deletes

Handling deletion in a concurrency control protocol is
analogous to handling updates. A concurrent read transaction
must always see the previous (the record value before deletion)
or the updated value (the fact that the record has been deleted),
as well as concurrent write transactions with overlapping write
sets (two transactions deleting the same records) may conflict.

In order to support this operation, one timestamp recording
the transaction in which a particular record has been deleted
must be associated to each data record (deleted at). Further-
more, based on this timestamp it is possible to control, for
instance, which read transactions are supposed to see this data
item, as well as rollback a transaction trying to delete an item

that has been deleted by a previous transaction. In practice,
many modern database systems associate two timestamps to
each record, controlling both record creation and deletion
timestamps, and based on this range control which records
each transaction is supposed to see.

In its simpler form, this strategy requires additional 16 bytes
per record if no special packing is used, assuming two 64
bit timestamps. Considering a dataset containing 10 billion
records (which is commonly found nowadays), this approach
incurs on 160 GB of memory footprint overhead. In addition,
the fact that the write set of an OLAP database is usually small
if compared to the amount of historical data stored (usually
only the newest partition being processed and the one in the
tail of the retention window being deleted) makes a great part
of these timestamps unnecessary.

The same arguments presented in Section II-A for in-place
updates are valid for single record delete: fact deletions must
be recorded as new facts, and deleted dimension items will be
skipped on the next snapshot. In our view, the only valid use
cases for deletes in an OLAP system is deleting (or dropping)
an entire partition, for instance, when a data quality problem
was found or to enforce retention policies. In these cases, one
would only need one timestamp per partition, instead of one
timestamp per record, to record the transaction in which the
partition was deleted.

III. AOSI

Append-Only Snapshot Isolation (AOSI) is a distributed
concurrency control protocol specially designed for in-mem-
ory OLAP DBMSs. AOSI provides Snapshot Isolation (SI)
guarantees to column-oriented DBMSs on a completely lock-
free manner and without using MVCC — or always keeping a
single version of each data item. In order to achieve this, AOSI
drops support for two operations, namely record updates and
single record deletions.

AOSI is an optimistic concurrency control protocol based
on timestamps, and thus assigns monotonically increasing
timestamps to transactions. Transactions are always free to
execute without any type of database locks. If record updates
were to be supported on a lock-free system, the DBMS would
be required to store multiple versions of updated data items
(MVCC), and select the correct version to read based on
the transaction’s timestamp. Similarly, if single record deletes
were to be supported, one deleted at timestamp would have
to be maintained per deleted record in order to control which
transactions are supposed to see the delete. AOSI makes the
design choice of dropping support for these two operations and
keep the protocol simple and memory efficient. We argue that
although these are valid concerns on transactional systems,
they are not strictly required on most OLAP workflows, as
discussed in Section II.

The protocol assumes that the underlying database engine is
column-oriented and that each attribute of a record is stored on
a separate vector-like structure. Moreover, AOSI also assumes
that records are appended to these vectors in an unordered



and append-only manner, and that records can be materialized1

by using the implicit ids on these vectors. The protocol also
supports further horizontal partitioning of these records by the
use of some function f(x) that can map records to partitions,
where f can be based on any criteria such as ranges, lists or
hashes, for instance.

In the remaining of this section we describe the different
transaction types (Subsection III-A), the timestamps main-
tained and how they are assigned to transactions (Subsection
III-B) and how low-level database operations are executed
(Subsection III-C).

A. Transactions

AOSI transactions are timestamp based. Each transaction
receives a timestamp at initialization time generated by the
local node’s transaction manager, which we refer to as epochs.
Epochs advance in a cadence of num nodes epochs at a time
shifted by node id on each node, in such a way that epochs as-
signed by different nodes never conflict. In addition, Lamport
logical clocks [9] are used to maintain epoch counters mostly
synchronized between cluster nodes. Distributed transaction
synchronization is further discussed in Section IV.

Transactions can be composed by three basic operations:
read, append and delete. An implicit transaction is created
whenever a user executes one of these operations outside the
scope of an open transaction, and is finalized as soon as the
operation finishes. Alternatively, users can explicitly initialize
a transaction and use it to execute successive operations in
the context of the same transaction. Naturally, users must also
actively commit or rollback explicit transactions.

Transactions can also be read-only (RO) or read-write
(RW), depending on the type of operations involved. Implicit
transactions initialized by a read operation (query) are al-
ways RO, as well as explicitly declared RO transactions. RO
transaction are always assigned to the latest committed epoch,
whereas RW transactions generate a new uncommitted epoch
and advance the system’s clock.

B. Timestamps

Each cluster node must maintain three local atomic global
counters to represent timestamps:
• Epoch Clock (EC). Ever-increasing counter that maintains

the timestamp to be assigned to the next transaction
in the local node. EC is initialized to node id and
incremented by node num at a time to avoid conflicts
between timestamps assigned by different cluster nodes.
On initialization, RW transactions atomically fetch and
advance this counter.

• Latest Committed Epoch (LCE). Latest epoch committed
by a RW transaction in the system. LCE only advances
on a transaction commit event if all prior RW transactions
are also finished.

• Latest Safe Epoch (LSE). Latest epoch for which (a) all
prior transactions are finished, (b) no read transaction is

1Record materialization is the process of converting the column-wise
representation of a record into a more natural row-wise format.

being executed against an older epoch and (c) all data
is safely flushed to disk on all replicas. Essentially, LSE
controls which transaction logs must be kept and which
logs can be purged.

The following invariant is maintained on each node at all
times:

EC > LCE >= LSE

It has been pointed out in previous work [10] that maintain-
ing shared atomic counters to track transaction timestamps
can become a bottleneck in a multi-threaded environment
once the transactional throughput scales. However, loads are
usually batched into larger transactions on in-memory OLAP
system (so that other transactions cannot see partial loads),
and the amount of queries in the system is in the order of tens
to hundreds of queries per second. This makes even worst
case predictions of transactional throughput to be comfortably
served with shared atomic counters.

Pending Transactions. Each node also maintains an addi-
tional set containing the epochs of all pending RW transactions
seen so far, called pendingTxs. Whenever a RW transaction is
created, the transaction epoch is inserted on this set and when
transactions commit or rollback, the corresponding epoch is
removed. In addition, each transaction i holds a similar set
denoted by Ti.deps that holds the epochs of all pending RW
transactions prior to i, created based on pendingTxs when
Ti is initialized. Ti.deps prevents i from seeing operations
made by any uncommitted transaction, in such a way that Ti

is only allowed to see operations made by all transactions j,
such that j < i and j /∈ Ti.deps. Hence, the changes made
by all transactions j form the snapshot of the database that
transaction i is supposed to see.

action EC LCE pendingTxs T1 T2 T3

— 1 0 {}
start T1 2 0 {1} {}
start T2 3 0 {1,2} {} {1}
start T3 4 0 {1,2,3} {} {1} {1,2}

commit T1 4 1 {2,3} {1} {1,2}
commit T3 4 1 {2,3} {1}
commit T2 4 3 {}

TABLE I
HISTORY OF EXECUTION OF THREE TRANSACTIONS. THE THREE LAST

COLUMNS DENOTE THE SETS OF DEPENDENT EPOCHS FOR EACH
TRANSACTION.

Table I describes how timestamps and pending sets are
updated within a single node when concurrent RW transactions
are executed. Initially, EC is 1 (denoting that 1 is the epoch
to assign to the next RW transaction), LCE is zero and
pendingTxs is empty. T1 is the first transaction to start,
followed by T2 and T3. They advance EC and insert their
epochs to the pendingTxs set. T2.deps is set to {1} since
T1 had already started when T2 was initialized, and similarly
T3.deps is set to {1, 2}. When T1 decides to commit, 1 is
removed from pendingTxs and LCE advances since all prior
transactions are also finished. However, LCE cannot be update



when T3 commits, since one of its dependent transactions, T2,
is still running. In this case, T3 is committed but it is still not
visible for subsequent read transactions until T2 finishes and
LCE can finally advance to 3.

C. Operations

The following subsections describes how AOSI executes
low-level database operations such as insertions, deletes, reads
(queries), garbage collection and rollbacks.

1) Insertion: Column-oriented DBMSs partition data verti-
cally by storing different record attributes in different vectors
(or partitions). Therefore, appending a new record to the
database involves pushing one new element to each vector
and records can be materialized by using the implicit index on
these vectors. We assume in this paper that records are pushed
to the back of these vectors without following any specific
order. Without loss of generality, in the next few subsections
we illustrate records as being composed by a single attribute
and hence stored on a single vector.

In addition to the data vectors, within each partition AOSI
maintains an auxiliary vector called epochs that keeps track
of the association between records and the transactions that
inserted them. Each element on this vector is comprised by
the pair 〈epoch, idx〉, referencing a transaction’s epoch (times-
tamp), and the implicit record id of the last record inserted by
that transaction on the current partition, respectively.

Figure 1 illustrates the basic flow of an insertion. Before
initializing the operation, a new unique epoch greater than
all current transactions is generated and assigned to the new
transaction. T1 is the first transaction to initialize and in (a)
inserts 3 records to the illustrated partition. Consequently, the
pair 〈T1, 2〉 is appended to the epochs vector to denote that the
first three records belong to T1. Later, in (b), 2 more records
are appended by T1. Since T1 is the transaction in epochs’
back, the last element’s idx is simply incremented to point to
the new last position. In (c), a new transaction (T2) inserts 4
new records to the current partition while T1 is still running.
Since T2 is not the transaction at the end of the epochs vector,
a new 〈T2, 8〉 pair is appended to the vector. Finally, in (d),
T1 inserts 4 more records and a new entry in added to the
epochs vector.

T1 T1

T1

T2 T2 T2

T2

T2 T1 T1

(a) (b)

(c) (d)

data

epochs

T1 T1 T1 T1 T2

T1

T1 T1

T1

T2 T2 T2

T2

T2 T1 T1

data

epochs

T1

T1 T1

T1

T2

data

epochs

T1 T1

T1

T2 T2 T2

data

epochs

Fig. 1. Two transactions T1 and T2 running in parallel and appending data
to the same partition.

Note that, even though the auxiliary epochs vector must
be held in memory to keep track of transactional history, its

structure is relatively lightweight and only requires a pair of
integers per transaction, differently from current approaches
that store one or a couple of timestamps per record. Moreover,
the epochs vector is only required to keep history from LSE
onwards, while history of older transactions can be safely
purged.

2) Delete: As presented in Section II-B, deletes are re-
stricted to removing entire partitions, whereas single record
deletes are not supported. We have decided to drop support
for single record deletes since it would increase the metadata
overhead (in order to control which records have been deleted
from a partition), and the fact that none of the use cases
evaluated truly required it.

Deleting a partition is done by appending a special tuple
to the epochs vector. In order to support deletions and still
keep low memory overhead, we reserve one bit from one
of the integers on the tuple to use as the is delete flag, that
dictates whether the tuple represents a delete event. Similarly
to insertions, the delete tuple contains the current transaction’s
epoch and a pointer to the back of the data vector.

To this extent, delete operations do not actually delete data
but simply mark data as deleted. In fact, data cannot be deleted
immediately since a prior read transaction might still need to
scan it. The proper data removal is conducted by a background
procedure (purge) at a later time when all prior transactions
have already finished.

(a) (b)

T1 T1

T1

T2 T2 T2

T3

T2 T1 T1

data

epochs

T1

T1 T1 T3

data

epochs

T1 T1 T3 T1T3

T1 T1 T2 T2 T2 T2 T1 T1 T1 T1 T1 T1 T2

T3 T7T5

Fig. 2. State of the epochs vector after the execution of two sequence of
operations containing deletes. The red outline represents a delete operation.

Figure 2 illustrates the resulting epochs vector after the
operations shown in Table II have been executed.

(a) (b)
T1: loads 2 records T1: loads 2 records
T3: loads 2 records T3: loads 2 records
T1: loads 1 record T1: loads 1 record
T5: deletes partition T3: deletes partition
T3: loads 3 records T1: loads 3 records
T7: loads 1 record T3: loads 3 records

T1: loads 2 records

TABLE II
SEQUENCE OF OPERATIONS EXECUTED OVER THE PARTITIONS

ILLUSTRATED BY FIGURE 2.

3) Query: In order to properly exploit the benefits of
column-wise data organization, most column-oriented DBMSs
delay record materialization whenever possible. Therefore,
column-wise scans usually carry a bitmap containing one bit
per row, dictating whether a particular value should be con-
sidered by the scan or skipped. These bitmaps are commonly
used for filtering and joining, but they can also be integrated



with concurrency control and leveraged to ensure transactional
isolation with low friction on the query execution engine.

Prior to scan execution, a per-partition bitmap is generated
for Ti based on the epochs vector by setting bits to one
whenever a record was inserted by j, such that j 6 i and
j /∈ Ti.deps. The remaining bits are set to zero. Additional
bits may be set to zero in order to apply further filtering logic,
but records skipped due to concurrency control may never be
reintroduced.

Every time a delete on Tk is found by Ti, such that k < i
and k /∈ Ti.deps, Ti must do another pass and clean up all
bits related to transactions smaller than k, as well as records
from k up to the delete point. If i < k no special processing
is needed since i is not supposed to see k’s delete.

Table III illustrates the bitmaps generated by different read
transactions when executed against the partitions depicted in
Figure 2 (a) and (b). The secondary cleanup pass mentioned
above is necessary in column (a) for transactions 6 and 8, and
in column (b) for transactions 4, 6, and 8.

Read Tx (a) (b)
2 110010000 1100111100011
4 111111110 0000000011100
6 000000000 0000000011100
8 000000001 0000000011100

TABLE III
BITMAPS GENERATED BY DIFFERENT READ TRANSACTION SCANS OVER

FIGURE 2’S DATA.

4) Garbage Collection: Garbage collection is implemented
by a procedure called purge. Purge always operates over LSE,
since it is guaranteed that all data prior to it is safely stored
on disk (so that recovery won’t be needed), and that there
are no pending read transactions over an epoch prior to LSE.
Naturally, LSE only advances if all prior transactions are
finished.

The purge procedure has two main responsibilities: (a)
removing old transactional history and (b) applying deletes.
In both cases, if a cleanup is needed, a brand new partition is
created by copying only the entries on epochs vector newer or
equal than LSE as well as applying deletes older than LSE, and
finally swapping new and old partitions atomically for future
queries. If there are no entries in the epochs vector older than
LSE and no pending delete operations, the purge procedure
skips the current evaluated partition.

Figure 3 illustrates the state of the partition shown in Figure
2 (a) after the purge procedure is executed, when LSE is 3
and 5, in (a) and (b), respectively. Purging when LSE = 3
allows (a) to merge all pointers on epochs prior to LSE into a
single entry (when contiguous). However, the pending delete
still cannot be applied since it comes from a transaction later
than LSE, and therefore there might still be a read transaction
in flight reading data prior to it. In (b), however, when LSE
= 5, all data prior to 5 can be safely deleted, even if it was
inserted after the delete operation chronologically. Hence, the
only record and epoch entry required is the one inserted by
T7.

(a)

T1 T1 T2 T2 T2 T2 T1 T1

data

epochs

T1

T3 T3 T7

(b)

T5

T1

data

epochs

T7

Fig. 3. State of the partition shown in Figure 2 (a) after purging it when
LSE is 3 (a) and 5 (b).

5) Rollbacks: Most trasactional conflicts observed in tradi-
tional concurrency control protocols come from some sort of
conflicting record update. A common situation that requires
rollback is a transaction Ti trying to update a record that
was read (or modified) by Tj , such that j > i. An optimistic
protocol would execute both transactions, detect the conflict
at i’s commit time and ultimately rollback i [11].

Since AOSI drops support for record updates and single
record deletes, all deterministic reasons why a transaction
might have to be aborted due to isolation violations are
removed. However, there are still a few situations where
rollback support is required, such as database consistency vio-
lations, non-deterministic failures or explicit user aborts. AOSI
assumes that rollbacks are unlikely events, being optimistic
and largely optimized for commits.

Rollbacks are intensive operations that need to scan the
epochs vector in every single partition in the system and
remove all data related to the transaction being rolledback.
The deletion of these records is done by creating a new in-
memory object containing all records but the ones inserted
by the target transaction and swapping new and old partitions
atomically.

One alternative to make rollbacks more efficient operations
and avoid scanning the epochs vector of every single partition
is to keep an auxiliary global hash map to associate trans-
actions to the partitions in which they appended or deleted
data. We do not recognize this as a good trade-off though,
considering that rollbacks are uncommon operations in OLAP
workflows and this hash map would increase the in-memory
footprint.

D. Persistency and Durability

In-memory OLAP databases maintain persistency and en-
sure durability by using two basic mechanisms: (a) disk
flushes and (b) replication. AOSI assumes that disk flushes
are constantly being executed in the background in order
to reduce the amount of data lost in the event of a crash.
Every time a disk flush round is initialized, a new candidate
LSE (LSE′) is selected and data between LSE and LSE′ is
flushed on every single partition. Data on this range can be
identified by analyzing the epochs vectors. After the flush
procedure finishes, LSE is eventually updated to LSE′. Since
transactional history prior to LSE can be safely purged (by
definition all transactions prior to that are already finished) no
transactional history needs to be flushed to disk, and only a
single timestamp containing the current LSE is saved on disk.

On the event of a crash, data should be recovered up to the
last complete execution of a flush, ignoring any subsequent



partial flush executions that might be found on disk. Lastly,
data from LSE onwards can be retrieved from the replica
nodes. Important to notice that LSE needs to be prevented
from advancing if data is not safely stored on all replicas or
if any replica is offline.

IV. DISTRIBUTED TRANSACTIONS

In a distributed DBMS, the execution of operations such
as reads, appends and deletes require communication with all
nodes that store data for the target table. Read and delete
operations must test the user’s predicates against each partition
on every node, while append requests need to forward the
input records to the correct host. Hence, a message between
the node initiating the operation and every other node must
be sent even without any transactional synchronization. AOSI
leverages these messages in order to synchronize clocks and
get the list of pending transactions from remote nodes, and
avoid introducing additional network overhead.

Since there is no deterministic reason why a transaction
could fail once it starts execution (no possible isolation con-
flicts), there is no need to use any consensus protocol and the
commit message can be implemented using a single roundtrip
to each node. The single message commit technique can
only be leveraged since our current database implementation
does not support any types of data consistency checks or
triggers that could cause transaction aborts and violate this
assumption. In addition, non-deterministic failures are handled
using replication in order to ensure durability.

The following subsections discuss how timestamps are
maintained and assigned to transactions by different cluster
nodes, and how regular node communication is leveraged
in order to guarantee that each transaction operates over a
consistent snapshot of the database (SI).

A. Logical Clocks

Timestamps are assigned locally to transactions without
requiring any network communication by the use of Lamport
Logical Clocks [9]. Lamport Logical Clocks provide a simple
algorithm to specify a partial order of events on a distributed
system with minimum overhead and without requiring extra
synchronization. In its simpler form, each node maintains a
local clock (atomic counter) that is incremented before each
event and attached to every message sent to other nodes.
Whenever a remote node receives a message, it first updates
its current clock in case the received clock is greater, and
optionally returns its current clock so that the source node
can execute the same procedure. Using this simple schema,
events can be ordered by the assigned clock timestamps, and
in case different servers assign the same clock to concurrent
events, some deterministic node ordering can be used as a tie
breaker.

In AOSI, we set each node’s local clock (EC) to node idx
on initialization and increment it num nodes units at a time
to prevent ties, thus avoiding that concurrent events (transac-
tions) starting on different nodes have conflicting timestamps.
Naturally, all messages between cluster nodes (both request

event n1 n2 n3
— 1 2 3

create(n1) → T1 4 2 3
append(T1) 4 5 6

create(n3) → T6 4 5 9
create(n2) → T5 4 8 9

commit(T1) 10 8 9

TABLE IV
EPOCH CLOCKS ADVANCING ON A 3 NODE CLUSTER.

and response) are piggybacked with its local EC in order to
maximize the synchrony between nodes.

Table IV illustrates how ECs advance on a cluster comprised
by 3 nodes (n1, n2 and n3). Initially, each node’s EC is set
to its own node idx. When the first transaction is created, on
node n1, it gets the current value of EC (1) and increments
it by num nodes. In the following event, when an append
operation is executed in T1, the input records need to be
forwarded to each of the remote nodes, thus carrying the
local node’s EC and updating EC on n2 and n3 to 5 and
6, respectively. Next, two transactions are started in nodes n3
and n2 and are assigned to their local ECs. Note that in this
case the logical order does not reflect the chronological order
of events since transaction T6 was actually started before T5.
In the last event, T1 is committed and sends a message to
inform the other nodes carrying n1’s EC; in the same way, n2
and n3 include their local EC’s on the response, making n1
finally update its EC to 10.

Despite having low overhead and being relatively simple
to reason about, logical clocks do not always reflect the
chronological order of events, as shown in the example above.
It is possible that two consecutive chronological events a and
b, where a happened before b, end up in a situation where
timestamp(b) < timestamp(a). In the context of a concur-
rency control where transaction sequencing is solely dictated
by timestamp ordering, Tb might have to be rolledback, since
a could depend on data supposed to be generated by b. In fact,
a non-trivial number of transactions might need to be restarted
due to this type of conflicts in case transactional throughput
is considerably high, hurting the overall system performance.
In the following subsection we describe how the presented
protocol deal with this situation without having to rollback or
restart transactions.

B. Isolation Level

In a traditional timestamp based concurrency control pro-
tocol, a transaction Ti is supposed to see all operations from
transactions Tj , such that j < i. In fact, timestamp based
systems usually rollback delayed or out-of-order transactions
that could violate this invariant, such as a transaction in j
updating a value read by Ti.

The presented protocol guarantees to never rollback transac-
tions by excluding all pending transactions j from i’s snapshot
of the database. However, this strategy allows for a situation
where given two concurrent transactions, Tk and Tl where
k < l, neither Tk sees Tl because of regular timestamp order-



ing restrictions, nor Tl sees Tk, since Tk was pending when Tl

executed. Even though this approach violates Serializability,
since there is no serial transaction order in which this schedule
could be possible, it does not violate SI since each transaction
ran on a consistent snapshot of the database containing only
committed transactions. This situation is a particular case of
the well-known write-skew anomaly that differentiates SI from
Serializable isolation levels [12].

C. Distributed Flow

Whenever a RW transaction Ti starts, a broadcast message
is sent to all nodes in order to retrieve their list of pending
RW transactions. This operation is usually piggybacked in the
message sent to execute the actual operation, such as forward
a delete request or an insertion buffer, removing the need for
an extra roundtrip 2. Once the message is received, Ti.deps is
set to the union of all remote pendingTxs, representing the
set of all pending transactions in the system at that specific
point in time. In addition, this message carries the local node’s
EC (which by definition is guaranteed to be larger than i)
and updates every EC in the cluster following the Logical
Clocks methodology. Hence, after the initial broadcast of i
every transaction j in the system must fall into one of these
categories:
• If j is committed in at least one node and j > i, j is not

visible to i due to timestamp ordering.
• If j is committed in at least one node and j < i, j is

visible to i due to timestamp ordering. Moreover, j is
guaranteed to be finished since it is already committed
in at least one node and the fact that commits are
deterministic.

• If j is pending and j > i, j is not visible because of
timestamp ordering.

• If j is pending and j < i then at least one node will
have j in its pendingTxs set, and therefore Ti.deps will
contain j after the initial broadcast.

• If j is yet to be initialized, then it is guaranteed that j > i,
since all nodes’ EC were updated to a number larger than
i.

RO transactions do not require this step considering they
simply run on a committed snapshot of the database, usually
on LCE.

When committing transaction i, the coordinator node must
send a new broadcast containing the local EC (to update
logical clocks) and Ti.deps, which contains the list of pending
transactions gathered when i initialized. Next, each node
marks i as committed, but can only update their local LCEs
when all transactions in Ti.deps are finished.

Delaying updating LCE when committing i and prior trans-
actions are pending is a design choice. On the one hand,
it creates the invariant that all transactions prior to LCE
must be finished, so that RO transactions can safely run on
LCE without keeping track of pending transactions, hence

2However, if the first operation in a RW transaction is a read, then the list
of pending transaction must be materialized before the read (query) execution.

speeding up queries. On the other hand, the system loses
read-your-writes consistency between transactions, since in
two consecutive transactions from the same client, k and l,
k might not be visible to l even after k is committed, if there
is still any pending transaction p in the systems such that
p < k. We decided to delay LCE to make query execution
simpler, and assume that if a client needs read-your-writes
consistency, the operations much be done in the context of
the same transaction.

V. CUBRICK

This section presents an overview of the Cubrick OLAP
DBMS and the details about its data model and architecture
required to understand the current AOSI implementation and
the conducted experiments in Section VI. A complete descrip-
tion of the system can be found in [5].

Cubrick is a distributed in-memory OLAP DBMS written
from the ground-up at Facebook, targeting interactive analytics
over highly dynamic datasets. Cubrick deployments are usu-
ally focused on smaller data marts of curated datasets that can
either be periodically generated and loaded in batches from
the larger data warehouse, or ingested directly from realtime
streams.

All data is organized according to an indexing technique
called Granular Partitioning, that provides amortized constant
time lookups and insertions, constant space complexity and
indexed access through any combination of columns.

A. Data Organization

The data model of Cubrick is composed by cubes (the
equivalent of relational database tables), where each column is
either a dimension or a metric. Each dimension must have its
cardinality estimated and specified beforehand at cube creation
time, as well as a range size that dictates the size of each
partition. The overlap of one range on each dimension forms
one partition, also called brick, which stores the set of records
falling into these ranges.

All bricks (partitions) are sparse and only materialized when
required for record ingestion. Each brick is identified by one
id (bid) that dictates the spatial position in the conceptual d-
dimensional space where this brick occupies and is composed
by the bitwise concatenation of the range indexes on each
dimension. Bids are also used to assigning bricks to cluster
nodes through the use of consistency hashing. Internally,
bricks store data column-wise in an unordered and append-
only fashion.

An auxiliary map is associated to each string column
(dimension or metric) in order to dictionary encode all string
values into a more compact representation. Dictionary en-
coding all strings makes the core aggregation engine more
concise and simpler, considering that it only needs to cope
with numeric values.

Example. Figure 4 illustrates Cubrick’s internal data orga-
nization for the example dataset shown in Figure 4 (a). The
following DDL is executed in Cubrick in order to create the
respective cube:
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Fig. 4. Data layout of Cubrick using an example dataset.

c q l=> c r e a t e cube t e s t
[ r e g i o n 4 : 2 s t r i n g , g en d e r 4 : 1 s t r i n g ]
( l i k e s i n t , comments i n t ) ;

This statement creates a cube containing two dimensions,
region and gender, both with cardinality of 4 and range size
of 2 and 1, respectively. Since both dimensions are created as
strings, two auxiliary encoding maps are maintained in order to
encode string values to a monotonically increasing counter. In
addition, two integer metrics are defined, likes and comments.

Figure 4(b) illustrates the data model by placing region on
the x-axis and gender on the y-axis. For region, cardinality
was set to 4 and range size to 2, meaning that two ranges are
available. In a similar way, there are 4 ranges available for
gender. Since 4 ranges are available for gender (2 bits) and 2
for region (1 bit), 3 bits are required to represent bid, resulting
in at most 8 bricks to represent the dataset.

Figure 4(c) depicts the inner-brick layout. A brick map
maintains the collection of bricks materialized in memory
indexing them by bid. Within each brick, data is stored
column-wise using one vector per column and implicit record
ids.3.

B. Ingestion Pipeline

Cubrick data ingestion pipeline can be organized into three
main steps: (a) parsing, (b) validation and forwarding and (c)
flushing.

Parsing. Parsing is the first step executed when a buffer is
received for ingestion. This is a CPU only procedure that can
be executed on any node of the cluster and is always executed
by the node that receives the buffer to avoid traffic redirection.
During the parsing phase, input records are extracted and
validated regarding number of columns, metric data types,
dimensional cardinality and string to id encoding. Records
that do not comply to these criteria are rejected and skipped.
After all valid input records are extracted, based on each input
record’s coordinates the target bid and responsible node are
computed — the latter by placing bid in the consistent hashing
ring.

Validation and Forwarding. Each load request takes an
additional max rejected parameter that dictates the maximum
amount of records that can be rejected before the system

3In reality all dimension columns are packed together and encoded in a
single vector called bess. Details can be found in [5].

discards the entire batch. If the amount of rejected records
is below max rejected a transaction is created, following the
rules defined in Subsection III-B, and the parsed records are
forwarded to their target cluster nodes. It is important to note
that at this point, all deterministic reasons why a transaction
could fail are already discarded; therefore, all remote nodes
are required to commit the transaction and no consensus
protocol is required (also emphasizing that commit order is
not important). Replication is used to achieve durability in
face of non-deterministic failures such as hardware issues or
remote node out of memory. A strategy with similar trade-offs
has been described in the past in [13].

Flushing. The flushing procedure is triggered once parsed
records are received by a target node. In order to avoid syn-
chronization when multiple parallel transactions are required
to append records to the same bricks, all bricks are sharded
based on bid — where number of shards is equal to the
number of available CPU cores. Each shard has an input
queue where all brick operations should be placed, such as
queries, insertions, deletions and purges, and a single thread
consumes and applies the operations to the in-memory objects.
Furthermore, since all operations on a brick (shard) are applied
by a single thread, no low-level locking is required. This
strategy is similar to the one described in [14] and [15], given
the context of transactional database systems.

This sharding technique is specially interesting for OLAP
systems where most queries are composed of large scans, since
they can be naturally parallelized. In addition, this allows the
system to exploit low-level optimizations, such as pinning
shard threads to particular CPU cores and leverage NUMA
architectures to store bricks closer to the CPU in charge of
executing operations on a specific shard. Finally, this sharding
technique helps providing transactional guarantees, since the
system can assume that operations will be applied in the exact
same order an seen by the transaction manager — assuming
there is no race condition between transaction manager and
inserting operations on the flush queues.

Figure 5 depicts the typical latency distribution observed
in load requests on a Cubrick production cluster continuously
ingesting about 1 million records per second. Parse and flush
latency are usually small and the total time is dominated by
network latency incurred in order to forward records to remote
nodes.
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VI. EXPERIMENTAL EVALUATION

In this Section, we present an experimental evaluation
of our current implementation of AOSI within the Cubrick
distributed OLAP DBMSs. For all experiments, the servers
had 32 logical cores and 256 GB of memory, although each
experiment may leverage a different cluster size. The experi-
ments are organized as follows. The first experiment measures
the memory overhead caused by AOSI in order to maintain the
epochs vector under different usage scenarios and compare
to the expected overhead of traditional MVCC approaches.
Further, we compare latency results of queries implementing
AOSI against queries running on read uncommitted isolation
mode in order to measure the CPU overhead of controlling
pending transactions and enforcing Snapshot Isolation. Lastly,
we illustrate the scale that can be currently achieved by
Cubrick’s ingestion pipeline.

A. Memory Overhead

In this experiment we measure the amount of memory
required by AOSI in order to maintain the epochs vectors.
Figures 6 and 7 show the execution of a Cubrick load task
ingesting data from Hive, using 4 clients in parallel issuing
batches of 5000 rows at a time and creating one implicit
transaction per request. The target Cubrick cluster is composed
by a single node. In both experiments, we show the total
number of records ingested over time, the dataset size in bytes
and the amount of memory being used to store the epochs
vectors — the AOSI overhead. In addition, for the sake of
comparison we also show a baseline overhead representing
the amount of memory required to store two timestamps per
record, a common practice in MVCC implementations [1].
Baseline overhead is set to 16 ∗ num records, representing
two 8-byte timestamps. For clarity, y-axis is shown on a log
scale in both charts.

Figure 6 shows the results of a load task of a single column
dataset containing about 100 million rows. A single column
dataset is the worst case scenario when evaluation memory
overhead of concurrency protocols, since most metadata is
stored per record. As shown in the chart, after about 10
minutes of execution AOSI’s overhead reaches its peak, at 35
MB but still only about 5% if compared to the current dataset
size. The baseline overhead at that point reached 1 GB or
about 130% of the dataset size. Shortly after, a purge procedure
is triggered by LSE being advanced, therefore recycling old
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Fig. 6. Memory overhead of 4 clients loading in parallel 100 million records
of a 1 column dataset to a single node cluster.
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Fig. 7. Memory overhead of 4 clients loading in parallel 176 million records
of a 40 column dataset to a single node cluster.

epochs entries and bringing memory overhead down to 10 MB,
or about 1% of the dataset. Eventually, after the jobs finishes
LSE advances again and more epochs entries are recycled,
dropping AOSI’s overhead to 300 KB (0.02% of the full
dataset size), while the baseline maintains steady at 1.6 GB,
roughly 4 orders of magnitude larger than AOSI.

Figure 7 shows the results of a similar experiment on a
typical 40 column dataset. After about 5 minutes of execution,
all 176 million records of the dataset are loaded, consuming
roughly 22 GB of memory. In that instant, the baseline
overhead is approximately 2.8 GB (13% of the full size) whilst
AOSI’s overhead is 74 MB. Moreover, after LSE advances and
some epochs pointers are recycled, AOSI’s overhead drops to
about 60 MB, or 0.2% of the dataset.

B. Query Performance

This experiment presents a comparison of queries running
on SI and best-effort queries that simply read all available data
— or read uncommitted (RU) mode. We started a single thread
of execution running the same query successively, alternating
between SI and RU in order to evaluate the overhead and
subsequent latency increase observed when controlling which
records each transaction in supposed to see using the epochs
vector, pendingTxs set and bitmap generation.

We ran two experiments in a single node cluster: (a) queries
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a batch load.
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Fig. 9. Query latency of the same query running in SI and RU mode while
the cube is continuously loaded in realtime.

during a batch load of a cube of about 170 million records
from 4 consecutive clients sending 5000 records per batch
(one transaction per batch) running in Hive, and (b) queries
on a cube being continuously loaded from a realtime stream
by 32 parallel threads executing one load transaction for each
5000 records batch.

Figure 8 shows the results for (a). During the first 2 minutes
of execution when most records were loaded, there was an
increase on the overall query latency due to ingestion and
queries competing for CPU. However, the ratio between query
latency on SI and RU remained constant during the entire
experiment, close to 1%.

For the second part of this experiment, we stressed AOSI
by loading a dataset in realtime using 32 clients issuing load
requests every 5000 records. In addition, we disabled the purge
procedure in order to force the epochs’ vector size to grow,
and evaluate the worst case overhead for query latency. During
the experiments the cube was comprised by about 240 to 320
million records of a dataset containing about 20 columns.

Figure 9 shows the results for (b). More processing is
required in order to iterate over the large epochs vectors when
running in SI mode, but even in the worse case scenario the
query latency increase is below 10%.

C. Ingestion Scale

The purpose of this experiment is to illustrate the scale in
which Cubrick can ingest data. To that end, we measured the
number of records as well as the amount of raw data in bytes
ingested per second in a daily job that loads data from an
HDFS warehouse running Hive [7] to a 200 node Cubrick
cluster. Similarly to the experiment shown in Section VI-A, we
present the results for a single-column dataset that maximizes
the effect and overhead of concurrency control protocols.
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Figure 10 shows the results. About 4 minutes after the job
initializes, the ingestion reaches its peak at about 390 million
records per second, corresponding to roughly 6 GB/s of raw
incoming data, and slowly decreases when Hive tasks start to
finalize. In about 25 minutes the job is finished, having loaded
about 400 billion records from the data warehouse.

VII. RELATED WORK

This section describes the main commercial offerings for
in-memory OLAP databases and their concurrency control
protocols.

Hive [7] is a widely used OLAP query engine built on top
of map-reduce that allows the execution of SQL-like queries
over files stored on a distributed filesystem such as HDFS.
Starting with version 0.13, Hive introduced support for ACID
transactions (SI only). Since HDFS does not support in-place
changes to files, Hive’s concurrency control protocol works
by creating a delta file per transaction containing updates and
deletes, and merging them at query time to build the visible
dataset [16]. Periodically, smaller deltas are merged together
as well as deltas are merged into the main files. Hive relies on
Zookeeper to control shared and exclusive distributed locks in
a protocol similar to 2PL (Two Phase Locking).

SAP HANA is an in-memory DBMS that allows the execu-
tion of both OLTP and OLAP workloads in the same database
system. It is comprised by a layered architecture, where incom-
ing records are stored in an uncompressed row-oriented format
and periodically merged to a compressed and encoded column-
wise format [17]. HANA’s concurrency control protocol is
based on MVCC and maintains two timestamps per record



(created at and deleted at) that enforces the snapshot isolation
model. Updates are modeled as a deletion plus reinsertion and
record-level locks are used to prevent update conflicts [18].

Oracle’s In-Memory Database [3] also offers a hybrid OLTP
and OLAP architecture by selecting a few columns of the
OLTP database to be materialized column-wise. Concurrency
control is handled in the same multiversioned manner as for
OLTP by using timestamps and locks, and changes on the
materialized columns are stored as deltas and periodically
merged - a process called repopulation [19].

HyPer [20] is another in-memory DBMS that can handle
both OLTP and OLAP simultaneously by using hardware-
assisted replication mechanisms to maintain consistent snap-
shots. All OLTP transactions are executed serially, since they
are usually short-lived and there is no halt to await IO, whereas
OLAP transactions are forked into a new child process and
rely on the operating system’s page sharing and copy-on-
write techniques for isolation. HyPer supports serializable
transactions by updating records in place and storing a list of
older versions (undo log) associated with the transaction that
created it, hence maintaining an extra pointer for each record
[21]. Update conflicts are handled optimistically by rolling
back one of the updates when a conflict is detected.

Hekaton [1] is a lock-free in-memory OLTP engine built
on top of SQL Server in order to speed-up transactional
workloads. Hekaton provides several levels of isolation by
using MVCC and storing two timestamps per record version
to determine visibility.

VIII. CONCLUSION

This paper presented a new concurrency control protocol
called Append-Only Snapshot Isolation (AOSI), suited for in-
memory OLAP systems. Unlike previous work, which are
either based on locking or MVCC, the presented protocol is
able to provide Snapshot Isolation (SI) in a completely lock-
free manner and always maintain a single version of each data
item. In addition, the protocol removes the need to store per
record timestamps, common in MVCC implementations, and
allows for more efficient memory usage.

The protocol supports these characteristics by sacrificing
a few operations commonly found in transactional systems,
but that we advocate are not strictly required in order to
build flexible and scalable OLAP systems, namely updates and
single-record deletes. Through an experimental evaluation, we
have shown that the presented protocol is able to provide SI
with considerably less memory overhead than traditional tech-
niques. In addition, we have also shown that the performance
overhead on query latency is minor, which is a crucial factor
for in-memory OLAP systems.
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