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Abstract

We ask the question: to what extent can recent large-
scale language and image generation models blend vi-
sual concepts? Given an arbitrary object, we identify a
relevant object and generate a single-sentence descrip-
tion of the blend of the two using a language model.
We then generate a visual depiction of the blend us-
ing a text-based image generation model. Quantitative
and qualitative evaluations demonstrate the superiority
of language models over classical methods for concep-
tual blending, and of recent large-scale image genera-
tion models over prior models for the visual depiction.

Introduction
Throughout the development of human civilization, our
unique capacity to blend unfamiliar concepts has led to in-
novation of advanced tools, invention of new art styles, and
breakthroughs in science. Machines demonstrating this abil-
ity is considered to be one of the hallmarks of creativity
and intelligence. Such systems could help understand hu-
man creativity. Moreover, they can assist humans in explor-
ing the inexhaustible space of combinations of different con-
cepts. This has been an area of research for decades (Fau-
connier and Turner 1998), which has led to both theoretical
work (Cunha, Martins, and Machado 2020) as well as proto-
types of support tools to assist users (Karimi et al. 2018;
Chilton, Petridis, and Agrawala 2019). In the meantime,
deep learning has achieved exceptional success in many ar-
eas where humans excelled, from beating the best profes-
sional player[(Silver et al. 2016)] in Go to making creative
advertising designs[(Brown et al. 2020)].

In this paper, we examine deep neural networks trained
on large-scale data in a general scenario of visual concep-
tual blending: given a single object as input (e.g., moon),
can a relevant object [that is conceptually grounded (Cunha,
Martins, and Machado 2020)] be identified (e.g., an orange),
can a relevant property that a blend can hinge on be identi-
fied (e.g., sliced), and finally, can an image be generated to
depict the blend (e.g., “the moon sliced like an orange”)?
We use prompt-engineering with language models for the
reasoning phase (identifying a relevant object and property),
and text-based image generation models for the visualization
phase. See Figure 1 for example outputs.

(a) “A tree made of blue and red
blood vessels”.

(b) “The moon that is sliced like
an orange”.

Figure 1: Visual conceptual blends generated by our frame-
work using large-scale language and vision models.

We compare our approach quantitatively and qualitatively
to representative existing approaches. To evaluate the abil-
ity to associate concepts, we compare our approach to tradi-
tional knowledge bases on a simile dataset. To evaluate the
visual generation, we compare our approach to an existing
GAN approach via human studies. We show that large-scale
models significantly outperform these baseline models. In
general, we find that an appropriate composition of recent
large-scale models results in encouraging creative abilities
like visual conceptual blending.

Related Work
Visual Conceptual Blending Fauconnier and Turner first
proposed the idea of conceptual blending and pointed out
its indispensability in human development (Fauconnier and
Turner 1998; 2008). Cognitive and neural scientists have
been fascinated by the human ability to blend concepts
and view such an ability as a milestone for AI develop-
ment (Eppe et al. 2018). More practically, the idea of vi-
sual conceptual blending has been applied in many commer-
cial areas from advertising, journalism, to public service an-
nouncements (Chilton, Petridis, and Agrawala 2019). In this
section, we discuss the recent progress in developing sys-
tems that automatically blend visual concepts and the stud-
ies that measure the success of conceptual blending.

[Computational approaches to conceptual blending such
as Divago (Pereira and Cardoso 2006) and COIN-
VENT (Schorlemmer et al. 2014; Eppe et al. 2018) follow



the seminal idea based on Mental Spaces Theory (Faucon-
nier 1994)]. Many systems developed by these studies act
as support tools for augmenting human creativity. (Chilton,
Petridis, and Agrawala 2019) [present] a workflow where
users identify the associated concepts, retrieve appropriate
images, and label the analogous parts of the objects while
the system automatically blends the images by combining
these common parts. [Vismantic (Xiao, Linkola, and others
2015) on the other hand retrieve and preprocess the images
for given words, ask a human to pick ideal photos, and auto-
matically combine the images in fixed ways.] (Karimi et al.
2018) [explore] visual conceptual blends in the context of
sketching by leveraging the idea of concept shifts. (Cunha
et al. 2017) [propose] a description-based method that can
blend sketches using detailed annotations. See (Cunha, Mar-
tins, and Machado 2020) for a road map of visual con-
ceptual blending. (McCaig, DiPaola, and Gabora 2016;
Berov and Kuhnberger 2016) [apply] style transfer models
and the deep dream algorithm to render an image in a partic-
ular artistic style. (Sbai, Couprie, and Aubry 2021) [study]
placing objects in uncommon contexts using a search-and-
compose method. Measuring the creativity of visual blends
is known to be difficult. Fauconnier and Turner proposed
several optimality principles to guide the conceptual blend-
ing (Fauconnier and Turner 1998). (Martins et al. 2015)
[analyze] what makes a good blend using 15 hybrid animal
images and a questionnaire.

Analogical Reasoning with Language Models Language
models were first proposed to model the sequential nature of
language (Mikolov and Zweig 2012). With the increasing
sizes of training data and model capacities, large-scale lan-
guage models such as BERT (Devlin et al. 2018) fine-tuned
on the downstream tasks have dominated standard leader-
boards. Interestingly, several recent studies use language
models as knowledge bases to solve different problems with-
out training on the task of interest (Petroni et al. 2019;
Jiang et al. 2020). These methods rely on task-specific
prompts – converting the task of interest to that of language
modeling. Letting the language model predict masked parts
from the prompt then becomes equivalent to the model solv-
ing the task of interest (Petroni et al. 2019; Jiang et al.
2020). We propose to apply a similar idea to concept blend-
ing – we design appropriate prompts to identify relevant
concepts and properties along which to blend the concepts.
Analogical reasoning has also been approached with large-
scale knowledge bases (Liu, Wu, and Yang 2017). However,
knowledge bases are known to be incomplete and rigid. We
argue that this makes them less suitable for associating con-
cepts in flexible ways (Cunha, Martins, and Machado 2020).

Deep Generative Models for Images Most state-of-the-
art image generation methods are built on either Genera-
tive Adversarial Networks (GANs) (Goodfellow et al. 2014)
or Variational AutoEncoders (VAEs) (Kingma and Welling
2014). In this paper, we are primarily interested in gen-
erating conceptually blended objects. (Bau et al. 2020)
[propose] to modify the images through manipulating the
intermediate layers in GANs which admits the possibility
to blend concepts. In this work we use a textual descrip-

Table 1: Top 5 concepts relevant to moon, and associated
properties using simile-inducing prompts to a BERT model.

concept property

ghost dead killed gone alive murdered
dream over real complete gone broken
rainbow broken colorful green white black
beacon lit active red closed automated
jewel lost gone precious beautiful gold

tion of the blend to guide the generation. Text-based im-
age generation models (Reed et al. 2016; Zhu et al. 2019;
Tao et al. 2020) are relevant. DALL·E (Ramesh et al. 2021)
is one such recent model that uses a pretrained discrete VAE
to compress images into low-dimensional vectors and then
models the joint distribution of the vectors with text embed-
dings autoregressively.

Approach
Next, we describe how we use large language and image
generation models to produce conceptually blended images
given an input object. We decompose the visual conceptual
blending process into two phases: reasoning and generation.
Reasoning Phase The reasoning phase produces a textual
description of the blend. We formulate the problem as fol-
lows: given an input object, the model identifies a relevant
object and generates a description of the blend of the two.
Note that our setting is more general than one where both
concepts to be blended are given as input (Cunha, Martins,
and Machado 2020). [We explore two prompt engineering
approaches, simile-inducing and property-guided prompts,
which connect the input objects to other objects that are ei-
ther generally relevant, or in terms of a specific property.]
We use moon as the example input to explain the details of
our prompt engineering approach.

To identify a relevant object, we use a simile-inducing
input: “the moon is like a [MASK]” and ask the language
model to predict the masked word. The language model pro-
duces ghost, i.e. “the moon is like a ghost”. Next, we utilize
the prompt “the ghost has the property of [MASK]”, where
the language model predicts the word dead. We plug the
predictions into a template and produce the description of
the blend “a moon that is dead like a ghost”. Other concepts
and their properties identified using a pretrained BERT (De-
vlin et al. 2018) model are shown in Table 1. Sometimes
the retrieved objects are semantically similar rather than vi-
sually similar to the moon such as ghost and dream. We see
some interesting blends such as “a moon that is lit like a
beacon” and “a moon that is broken like a rainbow”.

Shape is often recognized as the bridge to connect differ-
ent visual concepts (Steinbrück 2013; Chilton, Petridis, and
Agrawala 2019). This motivates a shape-guided prompt to
identify relevant objects. Specifically, we first use language
models to predict the shape of the moon with the prompt
“The shape of the moon is [MASK1]”. The language model
outputs spherical. This gives us “The shape of the moon is
spherical”. Then we plug the word spherical into the prompt



Table 2: Top 5 concepts relevant moon, and associated prop-
erties using shape-guided prompts to a BERT model.

concept property

shell white smooth thin brown small
head rounded black white brown small
fruit edible white yellow red purple
egg white yellow laid blue red
eye open closed small red black

DF-GAN

BigSleep

DeepDaze

A leaf that is 

glossy like a jewel

Streams of water 

that form a tree

An avocado that is 

open like an eye

A bulb with 

the ocean in it

A moon that is color-

ful like a rainbow

Figure 2: Visual blends generated using different methods
using blend descriptions shown at the bottom as input.

“The shape of the [MASK2] is spherical”, and the language
model predicts the relevant object shell, i.e. “The shape of
the shell is spherical”. This leads to a blend description “a
moon that is smooth like a shell” with the property smooth
of the shell. More identified concepts and their properties
are shown in Table 2. We find that the candidate concepts
we obtain are visually similar to the moon in terms of shape.
Some interesting descriptions include “a moon that is laid
like a egg” and “a moon that is edible like a fruit”. In prac-
tice, shape can be replaced by other properties that connect
visual concepts. For example, speed connects bullet and
runner and reflection connects mirror and lake.
Generation Phase In this phase we generate an image based
on the description output by the reasoning phase. To demon-
strate the ability of large models in realizing the blends, we
explore BigSleep1 and DeepDaze2 which utilize the CLIP
model (Radford et al. 2021) to guide the BigGAN (Brock,
Donahue, and Simonyan 2019) and SIREN (Sitzmann et al.
2020) models for text-based image generation.

Specifically, suppose we are given a trained CLIP model
fθ(xi, xs) which takes an image xi and a sentence xs as in-
put and outputs the similarity, and a trained BigGAN model
gφ(z) which takes a random Gaussian vector z as input and
outputs an image. We first sample a vector z0 from a stan-
dard Gaussian distribution. z is iteratively updated to max-
imize the similarity of the generation gφ(zt) and the text

1https://github.com/lucidrains/deep-daze
2https://github.com/lucidrains/big-sleep

xs as computed by the CLIP model fθ(xi, xs). DeepDaze
adopts a similar process with BigGAN replaced by SIREN.

Overall, we now have a full pipeline to go from an input
concept (e.g., moon) to a description of its blend with a re-
lated concept (e.g., “a moon that is sliced like an orange”) to
an image that depicts this blend (e.g., Figure 1).

Evaluation
Reasoning Phase To evaluate how well language
models blend concepts, we evaluate on the simile
dataset (Chakrabarty, Muresan, and Peng 2020). It
contains pairs of literal input and its simile version in the
form of <Source, Target>, e.g. <The city was beautiful,
The city was like a painting>. It evaluates the model’s
ability to identify “painting” based on “the beautiful city”.
However, we found that the language is inconsistent across
the dataset. For instance, many pairs lack a subject or
use a pronoun as subject, e.g. <Felt worthless, Felt like
a low budget film>. We instead focus our evaluation on
the model’s ability to accomplish the core reasoning step –
predicting the property “worthless” based on the object “a
low budget film”. Using heuristics for pre-processing, we
extracted 66, 442 property-objects pairs for evaluation.

We compare language models to knowledge bases. For
the language model we use the prompt “a low budget film is
[MASK]” as the input and ask the model to generate candi-
date predictions for the masked word. We consider 4 trained
language models: ELMO (Peters et al. 2018), BERTBase
and BERTLarge (Devlin et al. 2018), and GPT (Radford et
al. 2018). For knowledge base, we use ConceptNet (Speer,
Chin, and Havasi 2017) which contains relations including
“IsA”, “HasA”, “HasAProperty”, etc., which form candidate
predictions for properties relevant to the object.

Note that sometimes the object in our dataset is described
as a phrase including qualifiers (e.g., “a low budget film”)
while ConceptNet only contains the root objects. We use
dependency parsing to find the root of the phrase and use it
to query ConceptNet. In our example, “film” instead of “a
low budget film” is used. After this processing, 96.34% of
objects from our evaluation set can be found in ConceptNet.

For each method, we produced 1000 candidates, and re-
port the precision, i.e. percentage of time that the property
(e.g., “worthless”) is in the top 10, 100, 1000 candidates.
Note that the ConceptNet API does not offer a straightfor-
ward way to request an exact number of relations for an ob-
ject. Different objects have different number of properties
associated with them. When requesting 1000 relations for
objects in our evaluation set, 688.90 were returned on aver-
age. As shown in Table 3, the precision using ConceptNet is
significantly lower than using language models.

Additionally, we notice that using larger language models
can further improve the precision. In general, these results
demonstrate that language models are better at associating
concepts than knowledge bases. We hypothesize this is due
to their flexibility and comprehensiveness.
Generation Phase We collect 20 text descriptions of blends
(see Figure 2 for examples) – half generated with our rea-
soning approaches and rest by us. We use these descriptions



Table 3: Precision of language models and knowledge base
on the simile dataset.

P@10 P@100 P@1000

ConceptNet 1.12 2.70 5.90
Elmo 0.13 7.69 37.33
BERTBase 1.59 15.72 53.08
BERTLarge 1.42 15.89 46.56
GPT 2.59 24.84 66.38

Figure 3: Human preference for different methods w.r.t.
different questions. Values outside the band between the
dashed lines are statistically significant at 95% confidence.

as input to the large-scale BigSleep and DeepDaze models
described earlier, as well as a recent DF-GAN (Tao et al.
2020) model. We run human evaluation on Amazon Me-
chanical Turk (AMT). We show subjects a pair of images
generated by different methods to depict the visual blend
of two objects and ask six questions: 1. In which image
do you recognize OBJECT1 more? 2. In which image do
you recognize OBJECT2 more? 3. Which image blends
the two objects better? 4. Which image conveys the DE-
SCRIPTION better? 5. Which image looks more interesting
to you? 6. Which image looks more aesthetically pleas-
ing to you? These are designed using the optimality prin-
ciples for concept blending [(Fauconnier and Turner 1998;
Cunha, Martins, and Machado 2020)]. Specifically, 1 and
2 relate to the unpacking principle, 3 and 4 to the integra-
tion principle, and 5 and 6 to general quality. Each question
(6) for every pairwise comparison of models (3) and every
textual description (20) is answered by 9 unique subjects.

See results in Figure 3. The CLIP-based models
(BigSleep and DeepDaze) significantly outperform DF-
GAN, demonstrating the superiority of large models in gen-
erating visual blends. BigSleep is preferred over DeepDaze.
We conjecture that this is because BigGAN learns a better
prior on the image distribution than SIREN.

Conclusion
In this paper, we apply large-scale language and image gen-
eration models to a classic computational creativity prob-

lem – visual conceptual blending. Our experiments show
that these models allow us to use simple yet effective ways
to generate visual blends that are significantly better than
previous methods. Future work includes engineering novel
prompts to connect concepts and developing more complex
blending strategies given the identified concepts. For exam-
ple, the classic blend of boat and house (houseboat) – “a
man lives in a house that is built on the water like a boat” –
considers structural relationships of the objects and includes
two different properties from the two objects – a place of ac-
commodation (from house) and being on water (from boat).
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