
Physics-based Character Controllers Using Conditional VAEs

JUNGDAMWON,Meta AI, USA
DEEPAK GOPINATH,Meta AI, USA
JESSICA HODGINS,Meta AI / Carnegie Mellon University, USA

Fig. 1. Given an input motion capture dataset, conditional VAEs are used to learn a controller for physically simulated characters. The controller can perform
behaviors that are similar to but not identical to the input without conditioning on a specific goal. A variety of downstream tasks can then be solved efficiently
based on the pre-trained controller such as Point-Goal Navigation, Joystick Control, Path Follower, and Maze Runner.

High-quality motion capture datasets are now publicly available, and re-
searchers have used them to create kinematics-based controllers that can
generate plausible and diverse human motions without conditioning on spe-
cific goals (i.e., a task-agnostic generative model). In this paper, we present
an algorithm to build such controllers for physically simulated characters
having many degrees of freedom. Our physics-based controllers are learned
by using conditional VAEs, which can perform a variety of behaviors that
are similar to motions in the training dataset. The controllers are robust
enough to generate more than a few minutes of motion without condi-
tioning on specific goals and to allow many complex downstream tasks to
be solved efficiently. To show the effectiveness of our method, we demon-
strate controllers learned from several different motion capture databases
and use them to solve a number of downstream tasks that are challenging
to learn controllers that generate natural-looking motions from scratch.
We also perform ablation studies to demonstrate the importance of the
elements of the algorithm. Code and data for this paper are available at:
https://github.com/facebookresearch/PhysicsVAE

CCS Concepts: • Computing methodologies → Physical simulation;
Motion capture; Reinforcement learning; Learning from demonstrations.

Additional KeyWords and Phrases: Character Animation, Physics-based Sim-
ulation and Control, Motion Capture, Reinforcement Learning, Variational
Autoencoder, Behavior Cloning

Authors’ addresses: JungdamWon,Meta AI, Pittsburgh, USA, jungdam@fb.com; Deepak
Gopinath, Meta AI, Pittsburgh, USA, dgopinath@fb.com; Jessica Hodgins, Meta AI /
Carnegie Mellon University, Pittsburgh, USA, jkh@fb.com.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
© 2022 Copyright held by the owner/author(s).
0730-0301/2022/7-ART96
https://doi.org/10.1145/3528223.3530067

ACM Reference Format:
Jungdam Won, Deepak Gopinath, and Jessica Hodgins. 2022. Physics-based
Character Controllers Using Conditional VAEs. ACM Trans. Graph. 41, 4,
Article 96 (July 2022), 12 pages. https://doi.org/10.1145/3528223.3530067

1 INTRODUCTION
Recently, publicly availablemotion capture datasets [CMU 2002; Har-
vey et al. 2020; Mahmood et al. 2019; Tsuchida et al. 2019] have been
used to learn machine learning models that can produce plausible
human motions. Kinematics-based controllers based on generative
models such as variational autoencoders (VAEs) [Ling et al. 2020]
or normalizing flow [Henter et al. 2020] have been developed to
model many variations of common behaviors existing in these large
datasets. Once learned, those models can generate full-body human
motions without conditioning on specific goals and the generated
motions resemble the original motions in the input database. More
specifically, they output a pose (i.e., a set of skeletal joint angles) at
the next timestep given both the current pose and a latent random
vector sampled from a fixed random distribution (e.g., the standard
normal distribution), this process can repeat to generate a long se-
quence. Once learned, the controller can play the role of a manifold
for generating plausible human motions when learning other down-
stream tasks such as motion prediction or direct control through
user-provided inputs.
Physics-based controllers for generating human motions often

use large motion capture datasets [Chentanez et al. 2018; Fussell
et al. 2021; Merel et al. 2019b; Park et al. 2019; Won et al. 2020].
Some controllers generate physically simulated motions that are
almost indistinguishable from the ground truth motion capture data.
However, most approaches either learn pure imitation controllers
or are based on non-generative models, so the learned controller
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requires the original reference motion capture data as input to gen-
erate plausible motions at runtime. Furthermore, the transfer to
new downstream tasks requires extensive reward engineering to
maintain motion quality.

The goal of this paper is to build controllers for physically simu-
lated characters, that have similar functionality to what has been
shown in kinematics-based controllers [Henter et al. 2020; Ling
et al. 2020]: (a) generate motions that look natural and resemble the
training data without conditioning on specific goals, (b) reuse in
many downstream tasks without complex reward engineering. If
we have physics-based controllers equipped with such functionality,
they can be used for a much wider variety of applications than
kinematic characters because using physics simulation allows for
new scenarios that are not in the training data. For example, new
physical interactions, unseen environments, and characters that do
not exactly match the motion capture data are all possible with phys-
ically simulated characters. However, achieving such functionality
is challenging because physical constraints make it more difficult to
generate plausible motions. For example, a small error can push the
characters to an unrecoverable state such as falling down. To tackle
these challenges, we learn a physics-based controller in a supervised
manner by using conditional VAEs, where behavior cloning and
a differentiable physics simulation layer are combined. Our con-
troller is learned and run without any information on downstream
tasks. Once learned, the physically simulated character can transit
among different behaviors autonomously by sequentially feeding
random latent vectors into the learned controller. The transfer of
the pre-trained task-agnostic controller to a specific downstream
task can be performed by deep reinforcement learning (deep RL)
with a control policy that uses the controller as the low-level motor
primitives. We observed that the simulated character equipped with
our pre-trained controller could often perform plausible behaviors
even in the first learning iteration of deep RL. This capability re-
duces the exploration burden for deep RL algorithms, allowing the
efficient learning of new tasks while generating natural-looking
motions. To show the effectiveness of our method, we test our meth-
ods with various motion capture databases and several high-level
downstream tasks that are challenging to solve from scratch. The
contributions of this paper are as follows:

• Novel Results.We present a physics-based controller that
can generate long sequences of natural-looking motion for
high degree-of-freedom bipedal characters without any task-
specific inputs. More specifically, the motion can simply be
generated by sequentially conditioning random latent vectors
sampled from the standard normal distribution. The approach
works for a wide variety of behaviors, given appropriate mo-
tion capture data for training. This problem is very challeng-
ing for bipedal characters because we should consider not
only balancing but also naturalness. We test it for several
motion capture databases including locomotion, sports, and
dance.

• Novel Technical Components. We develop a stochastic
and generative structure for physically simulated characters
based on conditional VAEs, which is enabled by combining
behavior cloning and a differentiable physics simulation layer.

We further develop an auxiliary method (which we call a
helper branch) that aids in effective transfer learning that
avoids motion degradation. By using the helper branch, the
pre-trained controller produces natural-looking motions for
tasks that the input motion capture database does not fully
cover.

• Support for Other DownstreamApplications.We demon-
strate the usefulness of our pre-trained controllers by show-
ing that various high-level downstream tasks can be solved
efficiently. Because they are fully task-agnostic, applications
are not limited to what we demonstrated in this paper. We
believe that our pre-trained controllers could provide a solid
foundation for developing a variety of physics-based char-
acter controllers that are challenging to learn from scratch
such as combining monocular-camera motion capture with
physics simulations or learning competitive policies for large
multi-agent environments.

2 RELATED WORK
We review the prior work that is most closely related to our work
in physics-based character control with deep RL. We also review
several studies in kinematics-based motion controllers that use deep
neural networks because our work is inspired by some approaches
using auto-regressive generative models.

2.1 Physics-based Character Controller
Using physics simulation to generate plausible motions for articu-
lated characters has been studied since the 1990’s [Hodgins et al.
1995; Laszlo et al. 1996]. This area of research includes motor-
actuated humans [Coros et al. 2010; Lee et al. 2010; Liu et al. 2016; Ye
and Liu 2010; Yin et al. 2007], muscle-actuated humans [Geijtenbeek
et al. 2013; Lee et al. 2019, 2014; Wang et al. 2012], other animals
and creatures [Coros et al. 2011; Luo et al. 2020; Peng et al. 2015;
Tan et al. 2011a; Won et al. 2017; Wu and Popović 2003]. Recently,
the control capability of physically simulated characters has sig-
nificantly developed because of breakthroughs in deep RL. Liu et
al. [2017] proposed controllers trained by deep Q-learning where a
short-horizon linear feedback controller was used as a single action
unit. Peng et al. [2018] introduced an imitation controller for a single
motion clip, where the basic idea is to compute rewards directly
by comparing the simulated humanoids with the input motion cap-
ture data. It was then extended to multiple motion clips [Bergamin
et al. 2019; Park et al. 2019; Peng et al. 2021], large motion capture
datasets [Chentanez et al. 2018; Fussell et al. 2021; Merel et al. 2019b;
Won et al. 2020]. One of the primary benefits of using deep RL is
that its capability can be extended to learn new skills, for example,
other types of terrains [Peng et al. 2017; Xie et al. 2020], handling
small objects such as balls or boxes [Liu and Hodgins 2018; Merel
et al. 2020; Peng et al. 2019], different morphologies [Ryu et al. 2020;
Won and Lee 2019], diverse skills [Lee et al. 2021; Yin et al. 2021], or
multi-agent scenarios [Haworth et al. 2020; Liu et al. 2021; Won et al.
2021]. Theses methods generated an impressive array of behaviors
and demonstrated the value of physical simulation for characters
interacting in complex ways with the environment.
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2.2 Kinematics-based Character Controller
Kinematics-based controllers can generate plausible human motions
automatically based on deep neural networks and large motion cap-
ture databases such as [CMU 2002; Harvey et al. 2020; Mahmood et al.
2019]. One popular network model is a fixed-length model, where
the entire motion (a sequence of poses) is generated at once. Holden
et al. [2016] proposed a feed-forward network model with convo-
lution along the time axis, and the learned manifold can be used
for the motion editing and synthesis. Harvey et al. [2020] solved a
fixed-duration motion in-betweening problem by using an encoder-
decoder LSTM architecture with additional positional encoding and
time-to-arrival inputs. Another popular model is an auto-regressive
model, where the motion is generated frame by frame. The key chal-
lenge in using auto-regressive models is to prevent the model from
collapsing or diverging during rollouts. Auxiliary inputs such as
phase variables or user-provided control inputs are frequently used
to further constrain possible poses at the next timestep [Holden
et al. 2017; Lee et al. 2018; Starke et al. 2019, 2020]. For pure auto-
regressive models which do not take any extra inputs, incorporating
stochastic components into the model resolved the challenge of the
uncertainty (or ambiguity) of the future motion. Henter et al. [2020]
used normalizing flows while Ling et al. [2020] and Ghorbani et
al. [2020] used conditional VAEs, where the uncertainty on next
possible poses is encoded by a random distribution conditioned on
the latent space and the generated motions can be further condi-
tioned by an input action label. Unlike the models using auxiliary
inputs, these models can generate motions in a fully autonomous
(i.e., task-agnostic) manner from a random vector sampled from the
random distribution used in training the models. This performance
demonstrated impressive generalization of the training data. The
learned model can also be reused as a base controller when learning
other downstream tasks such as motion prediction or direct control
through user-provided inputs. For example, a navigation controller
that modulates the latent vector of the pre-trained base controller
can be learned by using deep RL [Peng et al. 2019].

2.3 Manifold (Latent Space) Learning for Physically
Simulated Humanoids

Just as task-agnostic kinematics-based controllers can be used as
manifolds to constrain the generated motions to be natural, there
have been approaches that attempt to construct manifolds for phys-
ically simulated characters. Peng et al. [2019] proposed a multiplica-
tive composite policy composed of the expert policies that are first
learned in a task-agnostic manner by imitation rewards. Merel et
al. [2019b] performed distillation with an encoder-decoder policy
with the AR(1) prior by using expert trajectories generated by the
pre-trained imitation policies. The model was further fine-tuned for
object catching and carrying skills [Merel et al. 2020] and soccer
play [Liu et al. 2021]. Won et al. [2021] used a policy composed of a
task-encoder and a mixture-of-experts motor-decoder, where the
decoder was first learned by an imitation policy similarly to [Peng
et al. 2019] then fine-tuned for other multi-agent tasks. Although
the pre-trained latent space models mentioned above were able to
encapsulate the input motion capture data efficiently, they cannot

generate long sequences of natural-looking motions without condi-
tioning on the original reference motions because they are based
on a deterministic latent space model. Hasenclever et al. [2020] pro-
posed joint training of imitation and downstream tasks using the
shared latent space, where the stochastic latent space model was
incorporated. However, the motion quality of the downstream task
policies was significantly degraded when compared to the input mo-
tions, and the ability to generate long sequences of natural-looking
motions was not demonstrated. Our method aims to build models
that can autonomously generate long sequences that are similar
to the input motion capture data and can be transferred to other
downstream tasks with less motion degradation. To the best of our
knowledge, such robust models have not been demonstrated for
high degrees-of-freedom physically simulated humanoids with a
floating base.

3 CONTROLLERS USING CONDITIONAL VAES
Our method for learning physics-based controllers using conditional
VAEs can be understood as an extension of behavior cloning that
learns an expert’s policy (e.g., a mapping from state to action) given
input expert trajectories {s1, a1, s2, · · · , s𝑇 }𝑁1 , where s𝑡 and a𝑡 are
the state and action at time 𝑡 , respectively, and 𝑁 is the total num-
ber of trajectories. In our application, the expert trajectories can
be given by any existing controllers such as deep imitation con-
trollers [Bergamin et al. 2019; Fussell et al. 2021; Park et al. 2019;
Peng et al. 2018, 2021; Won et al. 2020] or traditional linear-feedback
controllers [Coros et al. 2009; Lee et al. 2010; Ye and Liu 2010; Yin
et al. 2007]. The basic loss function for behavior cloning is the sum
of squared error

∑
𝐾 ∥a𝑖 − 𝑐 (s𝑖 )∥2, where 𝐾 is the total number

of state-action pairs included in the entire trajectory and 𝑐 (·) is a
learnable control policy, which is a deep neural network in our case.
Once the policy is learned in a supervised manner, the simulation
updates the state sequentially (i.e., rollouts) while the actions are
computed from the policy during runtime.

One of the primary challenges in behavior cloning is that the state
can easily drift out-of-distribution because approximation error is
accumulated during rollouts. Physically simulated humanoids are
brittle to such errors, for example, a small prediction error on the
foot landing position can easily make the simulated humanoid lose
balance. Naïve behavior cloning using the basic loss function does
not perform well for humanoid characters in general because the
function only considers errors occurred in a single timestep. To
tackle this challenge, we develop a conditional VAE [Sohn et al. 2015]
to further constrain (or regularize) the predicted action. Figure 2
illustrates our conditional VAE structure, where it takes the current
and next states (s𝑡 , s𝑡+1) as inputs then reconstructs the next state
s′
𝑡+1, where both the encoder and the decoder are conditioned by
the current state s𝑡 . The conditional VAE decoder includes two sub-
components, the differentiable physics simulation layer (i.e., the
function from the current state, action to the next state) and the
motor-decoder. During the decoding process, the action a′𝑡 is first
computed by the motor-decoder then it is passed to the simulation
layer to predict the next state s′

𝑡+1 induced by the given action.
The simulation layer is pre-trained by supervision with the input
expert trajectories and the weights are frozen when learning the
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Fig. 2. A conditional VAE structure for learning controllers of physically simulated characters

other components in the conditional VAE. Once it is learned, we can
use the motor-decoder to generate motions by simply conditioning
both the current state s𝑡 and a random latent vector z𝑡 at each
timestep, where z𝑡 is sampled from the standard normal distribution
𝑁 (0, I) of which mean and covariance matrix are zero and identity,
respectively.
We use the state representation s𝑡 = (p𝑡 , q𝑡 , v𝑡 ,w𝑡 ), where p𝑡 ∈
R𝐽 𝑥3, q𝑡 ∈ R𝐽 𝑥6, v𝑡 ∈ R𝐽 𝑥3, and w𝑡 ∈ R𝐽 𝑥3 are positions, orien-
tations, linear velocities, and angular velocities of all links of the
simulated humanoid at time 𝑡 , respectively, and are represented
with respect to the current facing transformation, which is defined
by the facing direction, the gravity direction, and the root position
projected on the ground [Won et al. 2020]. Note that we use a 6-dof
representation for the orientation, which uses the first two columns
of the rotation matrix. Our simulated humanoid is equipped with
stable PD (proportional derivative) controllers [Tan et al. 2011b] and
the action space a𝑡 is a set of target joint angles for the controllers
where the value in each dimension is bounded by [−3 𝑟𝑎𝑑, 3 𝑟𝑎𝑑].
The loss function we use to train the conditional VAE is∑︁
𝑁

[
∥a𝑡−a′𝑡 ∥2+𝛼 ·∥s𝑡+1−s′𝑡+1∥

2+𝛽 ·𝐷𝐾𝐿
(
𝑁 (𝜇𝑡 , 𝜎𝑡 ) ∥ 𝑁 (0, I)

) ]
(1)

where (s𝑡 , a𝑡 ) is a state-action pair in the input expert trajectories,
(s′𝑡 , a′𝑡 ) is a state-action pair generated from the conditional VAE,
𝐷𝐾𝐿 (· ∥ ·) measures the KL-divergence of the two distributions, 𝜇𝑡 ,
𝜎𝑡 are the mean and standard deviation generated from the encoder,
and 𝛼 , 𝛽 are relative weights of the terms. The first term is a typi-
cal behavior cloning loss, the second self-supervision term further
regularizes the output action a′𝑡 so that the motor-decoder consid-
ers the future results by the gradient signals propagated through
the simulation layer (i.e., preventing the next state s′𝑡 induced by
the current output action a′𝑡 from being out-of-distribution), and
the third term allows us to use the motor-decoder as a generative
model which we can generate motions via simulation rollouts in a
task-agnostic manner.

4 LEARNING DOWNSTREAM TASKS
We use deep RL to learn control policies for various downstream
tasks. At each time step 𝑡 , the agent (the simulated character in our
case) observes its environment through the proprioception state s𝑡
and the goal state g𝑡 , and performs an action a𝑡 . Then, the states

(a) A deep RL control policy without a helper branch.

(b) A deep RL control policy with a helper branch.

Fig. 3. Control policy structures using a pre-trained motor-decoder. During
control policy learning, the weights of the pre-trained motor-decoder are
frozen while the remaining weights are updated.

change to the new states s𝑡+1, g𝑡+1 and the agent receives a scalar-
valued signal 𝑟𝑡 = 𝑟 (s𝑡 , g𝑡 , a𝑡 , s𝑡+1, g𝑡+1), where high rewards mean
that the performed action and the state change were desirable. In
deep RL, we use a control policy 𝜋𝜃 (a𝑡 |s𝑡 , g𝑡 ) represented by a
deep neural network to compute the actions, where 𝜋𝜃 (·|·) is the
probability of taking actions under the given states and 𝜃 is the
network weights. The goal of deep RL is to find an optimal policy
that maximizes the expected returns 𝐽 (𝜃 ) = 𝐸

[ ∑∞
𝑡=0 𝛾

𝑡𝑟𝑡
]
, where

𝛾 ∈ (0, 1) is a discount factor that considers how far into the future
will be taken into account. The formulation can also be further
extended for multiple agents based on a partially observable Markov
game, please refer to [Littman 1994] for the details.

Figure 3a illustrates how we construct a deep RL control policy by
using a pre-trained motor-decoder, where a task-encoder modulates
the latent vector z𝑡 according to the task-specific observation (i.e.,
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the goal state g𝑡 ). During control policy learning, we update the
task-encoder while freezing the weights of the motor-decoder. We
observed that the deep RL control policy equipped with the pre-
trained motor-decoder could generate plausible motions even in the
first learning iteration. This property enables deep RL algorithms to
learn complex and high-level behaviors efficiently while generating
natural-looking motions.
Using a control policy like Figure 3a guarantees decent motion

quality with reasonable task performance when the input expert
trajectories include complete motor skills for the target downstream
task. However, the task performance could be degraded if the tra-
jectories are not a good match, for example, if we are attempting
to learn a navigation skill for uneven terrain using only walking
motions recorded on flat ground. A quick remedy is to update the
pre-trained motor-decoder (i.e., end-to-end learning). This approach
would provide better task performance because the motor skills
that the motor-decoder generates can be adapted for the situations
that are not well covered by the input trajectories. However, this
adaptation could cause a forgetting problem where the motions
generated by the motor-decoder are no longer similar to the mo-
tions in the input expert trajectories and appear unnatural when
compared to the original motions. There always exists a trade-off
between adaptability and naturalness when reusing a pre-trained
motor-decoder for a new task, the learnable motor-decoder and the
frozen motor-decoder methods are two extremes.
We develop a hybrid method that allows the policy to adapt to

new environments while maintaining the original motion style
(or naturalness) and allows users to explicitly tune the degree of
adaptation. Figure 3b shows a control policy structure, where we use
an additional branch that gets both the current proprioception state
s𝑡 and the latent vector z𝑡 as inputs then outputs the action offset
Δa𝑡 , which is then added to the pre-trained motor-decoder output
a𝑡 . The sum â𝑡 = a𝑡 + Δa𝑡 becomes an action for our simulated
humanoid, more specifically, it is computed as follows:

Δa𝑡 = 𝜎 ⊗ 𝑇𝑎𝑛ℎ(𝐻 (s𝑡 , z𝑡 )) (2)

where 𝑇𝑎𝑛ℎ is the element-wise hyperbolic tangent function, ⊗
is the element-wise multiplication, 𝐻 is a function composed of
learnable layers in the additional branch which we call helper, and
𝜎 = (𝜎1, 𝜎2, · · · ) is a set of user-specified parameters that controls
the range of the action offset where the 𝑖-th range is confined by
(−𝜎𝑖 , 𝜎𝑖 ) accordingly. The original target joint angles a𝑡 generated
by the motor-decoder are modulated only as much as allowed by
the parameters 𝜎 , which can be manually specified by the user. The
policy will be updated in a similar fashion to the end-to-end method
if the parameters are very large because the helper can dominate the
output of the motor-decoder, whereas it will be updated similarly
to the frozen motor-decoder when the parameters are near zero
because the helper does not significantly affect the action output.
The primary benefit of this structure is that users can explicitly tune
the allowable motion adaptation (or degradation) depending on the
input dataset, the target downstream task, and their preference. For
example, when the input expert trajectories are incomplete, users
can achieve both plausible motions and acceptable task performance
by gradually increasing the degree of adaption.

Table 1. Parameters used in our experiments

Physics
Simulation

Simulation rate (Hz) 480
Control rate (Hz) 30

Deep RL
(DD-PPO)

Learning rate (𝛼𝜋 ) 2.0𝑒−5
Discount factor (𝛾 ) 0.99
GAE and TD (𝜆) 0.95
# tuples per update (𝑇 ) 50000
Iteration per update (𝑁 ) 20
Batch size (𝑛) 256
Clip parameter (𝜖) 0.2

Conditional
VAE

Parameters

𝛼 1.0𝑒−4
𝛽 2.0
Latent dimension 32

Table 2. Deep Neural Network Structure

Conditional
VAE

Encoder

Type MLP
Depth (layers) 2
Width (hidden units) (256, 128)
Activation (ReLu, ReLu, Linear)

Motor
Decoder

Type MLP
Depth (layers) 3
Width (hidden units) (512, 512, 512)
Activation (ReLu, ReLu, ReLu, Linear)

Physics
Simulation

Layer

Type MLP
Depth (layers) 2
Width (hidden units) (1024, 1024)
Activation (ReLu, ReLu, Linear)

Task
Encoder

Type MLP
Depth (layers) 2
Width (hidden units) (256, 128)
Activation (ReLu, ReLu, Linear)

Helper

Type MLP
Depth (layers) 2
Width (hidden units) (128, 128)
Activation (ReLu, ReLu, Linear)

5 RESULTS
Our environments were implemented based on a publicly avail-
able framework [Won et al. 2020], which uses PyBullet [2019], Py-
Torch [2019], and RLlib [2018] for physics simulation, deep neural
network evaluation, and deep RL algorithms, respectively. The mov-
able joints in the simulated humanoid are modeled by ball joints,
which are controlled by stable PD servos given a target posture
as an input. Table 1 summarizes all parameters related to physics
simulation, deep RL, conditional VAEs and Table 2 includes infor-
mation on the deep neural network structures that we use in the
experiments. We use a workstation equipped with 2 CPUs (Intel
Xeon CPU E5-2698 v4) and 2 GPUs (Quadro GP100) when learn-
ing controllers using conditional VAEs, and combine the same four
machines together when learning deep RL control policies for the
downstream tasks.
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Fig. 4. Ten rollouts using the controller learned with the locomotion dataset.
All characters were initialized with the same initial state and simulated for
30 seconds. The size of the grid is 1m by 1m.

5.1 Controllers using conditional VAEs
5.1.1 Expert Trajectory Generation. Because there is no existing
dataset that provides expert trajectories (state-action pairs) for sim-
ulated humanoid characters, we create our own datasets using ex-
isting motion capture data in every experiments. More specifically,
given motion capture data, we learn imitation controllers for the
motion clips by using deep RL. We use DeepMimic-style [Peng et al.
2018] imitation controllers with multiplicative rewards [Won et al.
2020], and the controllers are learned by DD-PPO [Wijmans et al.
2020]. State-action pairs are collected through simulation rollouts,
we repeat the rollouts ten times for each motion clip so that the
generated data cover the state and the action spaces widely. Similar
to previous studies, our imitation controllers also use a multivari-
ate Gaussian policy with a constant diagonal covariance matrix 𝜖I,
where we use 𝜖 = 0.05 when collecting state-action pairs.

5.1.2 Learning. Given expert trajectories, constructing a controller
requires two supervised learning stages: learning a differentiable
physics simulation layer and the entire conditional VAE structure.
For both cases, we apply a straightforward supervised learning
procedure with the Adam optimizer for weight updates, 256 batch
size for SGD computation, decaying the initial learning rate 0.01
by 0.7 every 50 epochs. The maximum training epochs that we use
are 300 and 600, respectively, the training time usually takes 3-4
hours for the simulation layer, one day for the entire conditional
VAE structure. Note that we only use CPUs for the computation.

5.1.3 Random Rollouts. We demonstrate a controller learned with a
locomotion dataset generated by PFNN [2017] because locomotion is
essential for many high-level downstream tasks such as navigation
or joystick control. The total length of the motions that we use
is 10 minutes, which includes walking, running, and crouching
with various speeds and directions on the flat ground. By following
the procedure mentioned in section 5.1.1, the raw motion clips are
converted into expert trajectories that include 180,000 state-action
pairs (600 seconds x 30 FPS x 10 repetitions).
Figure 4 shows the motions generated by ten rollouts, where all

the characters started from the same initial state (a standing posture

with zero velocity located at the center of the scene). More specifi-
cally, at every timestep, we randomly sample a latent vector z𝑡 from
the standard normal distribution whose mean and covariance matrix
are zero and identity, respectively, compute an action a𝑡 through the
motor-decoder, and update the state of the character through the
physics simulator. This rollout lasts for 30 seconds and we repeat
this ten times. Although all the generated motions resemble the
input locomotion dataset, their actual trajectories are all different,
which shows that the controller successfully learned not only the
style but also the variance existing in the dataset. Furthermore, the
fact that the motions generated by our controller cover a wider
repertoire than the input expert trajectories implies that generaliza-
tion was also achieved to some extent. In other words, our controller
can transit between different behaviors such as walking, running,
and crouching in an arbitrary order without conditioning any extra
input except for s𝑡 and z𝑡 .

5.2 Baseline Downstream Tasks
To understand how effective the pre-trained controllers are in learn-
ing various downstream tasks, we first test the four baseline down-
stream tasks shown in Motion-VAEs [2020]. Please note that their
results are kinematic whereas we generate similarly plausible be-
haviors for physically simulated characters. The four tasks are Point-
Goal Navigation, Joystick Control, Path Follower, and Maze Runner,
we use the helper branch with 𝜎 = (0.1, 0.1, · · · ) for every task, and
the details for each environment are described below:
Point-Goal Navigation. The task is to reach a goal point on the

ground andwe regard the task as being completed when the distance
between the root joint position projected on the ground and the
goal point is less than 0.5 meter (see Figure 1a). The reward function
we use is 𝑟𝑡 = (𝑑𝑡−1 − 𝑑𝑡 ), where 𝑑𝑡−1 and 𝑑𝑡 are distances to the
goal point in the previous and the current timesteps. The goal state
g𝑡 = ( x𝑟𝑒𝑙

∥x𝑟𝑒𝑙 ∥ , ∥x𝑟𝑒𝑙 ∥) includes the direction and the distance to
the goal point, where x𝑟𝑒𝑙 = R−1

𝑓 𝑎𝑐𝑒
(p𝑔𝑜𝑎𝑙 − p𝑓 𝑎𝑐𝑒 ) is the relative

location of the goal point p𝑔𝑜𝑎𝑙 with respect to the current facing
transformation of which rotation and position are R𝑓 𝑎𝑐𝑒 and p𝑓 𝑎𝑐𝑒 ,
respectively.
Joystick Control. The task is to match the character’s center-

of-mass (COM) velocity with a 2D planar target velocity that is
parallel to the ground (see Figure 1b). The reward function we use is
𝑟𝑡 = 𝑒𝑥𝑝

(
−5∥ v𝑐𝑜𝑚

∥v𝑐𝑜𝑚 ∥ −
v𝑡𝑎𝑟𝑔𝑒𝑡
∥v𝑡𝑎𝑟𝑔𝑒𝑡 ∥ ∥

2) ·𝑒𝑥𝑝 (−5∥∥v𝑐𝑜𝑚 ∥−∥v𝑡𝑎𝑟𝑔𝑒𝑡 ∥∥2
)
,

where v𝑐𝑜𝑚 and v𝑡𝑎𝑟𝑔𝑒𝑡 are the character’s COM and the target
velocities, respectively. The goal state g𝑡 = R−1

𝑓 𝑎𝑐𝑒
(v𝑡𝑎𝑟𝑔𝑒𝑡 − v𝑐𝑜𝑚)

includes the difference of the two velocities that is represented with
respect to the current facing transformation.
Path Follower. The task is to follow the given ∞-shaped path

on the ground (see Figure 1c). The goal point at time 𝑡 is given
by x𝑡 = 𝐴(𝑠𝑖𝑛(𝑏𝑡), 𝑠𝑖𝑛(𝑏𝑡)𝑐𝑜𝑠 (𝑏𝑡)), where we used 10 and 2 for 𝐴
and 𝑏, respectively. The reward function is 𝑟𝑡 = 𝑒𝑥𝑝

(
− ∥p𝑐𝑜𝑚 −

x𝑡 ∥2
)
· 𝑒𝑥𝑝

(
− 2.5∥v𝑐𝑜𝑚 − ¤x𝑡 ∥2

)
, where we measure the position

and velocity differences between the COM and the current goal.
The goal state includes both the current and the two future goal
points (x𝑡 , x𝑡+1, x𝑡+2, ¤x𝑡 , ¤x𝑡+1, ¤x𝑡+2), which are converted into values
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relative to the current facing transformation (similar to the previous
two tasks).
Maze Runner. Given a maze completely surrounded by walls,

the goal is to explore the maze as fully as possible in a fixed time
(120 seconds). Figure 1d shows the maze used in our experiment,
where we discretize the entire map (24m by 24m) into a 8x8 grid
to compute rewards efficiently, the agent gets a sparse reward of 1
when entering a new region, then that region is marked as visited.
Once the agent cover the entire map, it gets a sparse reward of 30,
then the episode terminates. As a result, the maximum return (the
sum of rewards in an episode) is 94 (64+30). For the goal state, we
use vision input and visit information in the vicinity of the character.
More specifically, the vision input includes two consecutive visual
sensory inputs (l𝑡−1, l𝑡 ) where each input l𝑡 = (𝑑1, 𝑑2, · · · , 𝑑32)
includes 32 rays that are 5 meters long maximum and span 270
degree wide, where 𝑑𝑖 is the distance of 𝑖-th ray which stops when
it collides other objects. The visit information is a 3x3 bit matrix
marking whether the regions around the character position have
been previously visited or not. The matrix corresponds to 5m by 5m
in the maze.
The deep RL control policies built by our method were able to

complete all the tasks successfully while also generating natural-
looking motions. In Point-Goal Navigation and Joystick Control, our
simulated characters were very agile when the goal position or
the target velocity were changed, respectively. Although the path
that we used in Path Follower was more challenging because it is
composed of sharper turns, our controller showed very accurate
path following capability. In Maze Runner, our character was able
to visit all the cells within 90 seconds. Please note that hierarchical
RL was used to disentangle high-level navigation planning and
low-level motion planning in the previous study [Ling et al. 2020],
however, our control policy (non-hierarchical) was able to solve
the task directly. This result implies that our pre-trained controller
has the capability of the low-level motion planning that is mostly
related to maintaining balance. Consequently, deep RL algorithms
can learn high-level navigation planning directly.

5.3 Other Downstream Tasks
In addition to the baseline downstream tasks, we also test Uneven
Terrains to understand how our control policy structure with the
helper branch adapts to unseen environments and Crowd Simulation
to understand how effective the pre-trained locomotion controllers
are in solving multi-agent environments. We use the helper branch
with 𝜎 = (1.0, 1.0, · · · ) for better adaption to complex scenarios.

5.3.1 Uneven Terrains. Uneven Terrains tasks are basically the same
as the Point-Goal Navigation task except that the flat ground is re-
placed with challenging uneven terrains. We test on a rough terrain
made by adding a random offset into the height map (maximum 1
meter) and a terrain that includes five peaks of 4 meters where the
character must climb and descend approximately 38 degree inclines
to transit between the peaks (see Figure 5). To enable the character
to observe the terrains, a local height map in the vicinity of the
current position of the character is included in the goal state. More
specifically, we use a 3m by 3m patch discretized into 8 by 8 cells
where the character is located slightly behind the center to be able

(a) Rough Terrain.

(b) Five Peaks Terrain.

Fig. 5. Two examples of rough terrain. The top (a) was made by adding a
random offset to the height map and the bottom (b) was manually designed.
The green dots represent a local height map near the simulated character.

to see more vision to the front and less to the back (see the green
dots in Figure 5).

Our character is able to perform the navigation task successfully
in both terrains, it is also resilient to unexpected external perturba-
tions and can recover from perturbed states. The character often
detoured around steep areas to reduce the risk of falling down,
which is similar to what humans do. These examples show the main
benefit of using physically simulated characters, which is the adap-
tation to new environments, whereas the behaviors generated by
kinematics-based controllers are strictly limited by what is included
in the input motion capture data.

5.3.2 Crowd Simulation. We hypothesize that the robustness of our
pre-trained controllers will be especially helpful in tasks that involve
complex interaction with other agents. To validate our hypothesis
we run crowd simulations using physically simulated humanoids
for three environments, Circle, Carrefour, and Corridor, where each
agent is asked to walk to a designated goal position (see Figure 6).
Crowd simulation using physically simulated humanoids was first
demonstrated in [Haworth et al. 2020], where a hierarchical policy
structure with a shared value function was used. In contrast to their
method, we use a very simple formulation with no hierarchical
control policy and no multi-agent specific deep RL algorithm. The
goal state includes visual sensory inputs (rays) to observe the other
agents and the relative goal position with respect to the agent’s
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(a) Circle (b) Carrefour

(c) Corridor

Fig. 6. Crowd Simulation Environments

facing transformation. The reward function is

𝑟𝑡 = 𝑟goal + 𝑟reached − 0.1 𝑟collision (3)
𝑟goal = 𝑑𝑡−1 − 𝑑𝑡

𝑟reached =

{
1 if the agent is close to the goal position
0 otherwise

𝑟collision =

{
1 if collision occurs with any other agent
0 otherwise

where 𝑑𝑡 is the distance to the designated goal position. The first
term brings the agents closer to the goal position, the second term
encourages them to stay close after arrival, and the third term pe-
nalizes collisions among the agents.

InCircle andCarrefour, the agents showed a behavior that could be
observed in a typical traffic circle. In Corridor, the agents swerved to
the right to prevent collisions. In our experiment setting, successful
control policies (i.e., each agent reaching their own goal position)
were learned within one day for Circle and Corridor, two days for
Carrefour. The difference in learning speed is reasonable because the
Carrefour example includes 16 agents whereas the others include 8
agents, so more collisions could happen at the center location and
the physics simulation also takes more time.

5.4 Other Datasets
To test the generality of our method, we test with other datasets:
a set of boxing motions selected from the CMU motion capture
dataset [CMU 2002], and a set of dancing motions from the AIST
dataset [Tsuchida et al. 2019]. Unlike the locomotion dataset, the
boxing and dancing motions do not contain enough transitions
among the different behaviors in each dataset. This characteristic
can lead to the sinking problem as pointed out in [Ling et al. 2020],

where the learned controller generates only a small subset of be-
haviors and does not transit to the other behaviors regardless of
what random latent vectors are given. To solve this problem, we
construct a motion graph using a loose connectivity threshold to
allow many transitions between the different behaviors. We then
generate motions that are 10 minutes long by traversing the nodes
of the graph in a random order, and we follow the procedure de-
scribed in section 5.1 to learn the controllers. Figure 7 shows random
simulation rollouts generated by our task-agnostic controllers for
the two datasets. All the characters start with the same state at the
beginning (the left most screenshot), and gradually follow different
paths in the space over time (the right most screenshot).
We develop a downstream task that is suitable for the boxing

dataset, which we call Boxing Bag Training (see Figure 8). The goal
is to hit the boxing bag as hard as possible with the gloves while
avoiding collisions with the other body parts. The boxing bagweighs
40 kg and has a spherical joint on its top so that it can move when
hit by the boxer character. The goal state g𝑡 = (p𝑡 , v𝑡 , h𝑡 ) involves
the relative position p𝑡 and linear velocity v𝑡 of the bag with respect
to the character’s root joint and a 2-bit array h𝑡 representing the ex-
pected pattern of punches. During learning, we randomly generate
patterns among left-punch (1, 0), right-punch (0, 1), and no-punch
(0, 0). The reward function is

𝑟𝑡 = 0.2 ∗ 𝑟close + 𝑟hit − 0.1 𝑟collision (4)

𝑟close = 𝑒𝑥𝑝 (−5∥𝑑𝑡 − 1.2∥2)
𝑟hit =

(
𝑚𝑎𝑥 (𝑓𝑅 − 100, 0),𝑚𝑎𝑥 (𝑓𝐿 − 100, 0)

)
· h𝑡 (5)

𝑟collision =

{
1 if unexpected collision occurs
0 otherwise

where 𝑑𝑡 is the distance measured on the ground plane between
the bag and the boxer and 𝑓𝑅 , 𝑓𝐿 are contact forces measured in the
right and left gloves, respectively. The first term 𝑟close encourages
the boxer to keep an appropriate distance (1.2m in our setting) from
the boxing bag, the second term 𝑟hit becomes positive only when
the boxer hits the boxing bag by using the glove that matches to the
expected punch pattern and the contact force occurred is larger than
100N, and the third term 𝑟collision penalizes any collision that does
not match the current punch pattern. Learning a plausible control
policy takes approximately 1 day (200M tuples), and then the boxer
can hit the bag reliably with the punch patterns changing over time.

5.5 Evaluation
We compare our full model with other models in the literature and
observe the differences quantitatively and qualitatively.

5.5.1 Rollout Performance. Our conditional VAE has two major
technical components: the physics simulation layer and the sto-
chastic latent variables. To understand how the components affect
the results, we compare performance with various settings. More
specifically, we measure performance by the elapsed time until the
simulated character falls down (time-until-fall). First, we change the
weight on the simulation consistency 𝛼 , where zero is equivalent
to using no simulation layer during training. Figure 9 shows the
average and the standard deviation over 100 simulation rollouts,
where we terminate a rollout either if the character falls down or if

ACM Trans. Graph., Vol. 41, No. 4, Article 96. Publication date: July 2022.



Physics-based Character Controllers Using Conditional VAEs • 96:9

(a) Boxing

(b) Dancing

Fig. 7. Random rollouts generated by the controllers learned with boxing and dancing datasets. The screenshots are shown in chronological order.

Fig. 8. Boxing Bag Training experiment setup

Fig. 9. Rollout performance comparison for various 𝛼 (simulation consis-
tency).

Fig. 10. Screenshots of the deep RL control policies without helper branches.

the length exceeds 60 seconds. For every dataset, the models trained
with the simulation layer consistently performed three times better,
where the best performances were shown in the values between
0.0003 to 0.003. If the weight is too high, the performance was de-
graded because the behavior cloning loss could be dominated by the
simulation consistency. Second, we learned controllers without the
stochastic latent variables (i.e., no KL term in the loss), the charac-
ters fell within less than 1 second (please refer to the supplemental
video). Those results make sense because non generative models
can generate meaningful outputs only when conditioned by the
outputs of their original encoders.

5.5.2 Helper Branch. We do an ablation study on the helper branch
to understand its effectiveness when learning downstream tasks
that are not fully covered by the input expert trajectories. Point-
Goal Navigation tasks on uneven terrains serve as a good example
because the locomotion dataset only includes motions captured
on flat ground. Figure 10 shows results when the deep RL control
policies without a helper branch (Figure 3a) are used for uneven
terrain tasks. The characters can walk a few steps on a relatively
flat surface, however, they failed on rougher terrain. On the other
hand, the characters could perform both tasks successfully when
used with the policy that includes the helper branch (see Figure 5)
demonstrating that the helper branch provided effective adaptation
for such challenging tasks.
We run an experiment to understand the effectiveness of the

adaptation parameter 𝜎 (Figure 3b). This parameter allows users to
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control style when the input expert trajectories include all the mo-
tor skills required to perform a downstream task. When this is the
case, there are many solutions and the user can control the style of
the solution. Using a small value provides better style preservation
but task performance could be degraded. A large value provides
the opposite behavior. We show how visually distinctive results
could be created with different adaptation parameters by comparing
parameter values of 0.1 and 0.5 for the Boxing Bag Training task.
Because the radian is used to measure angles in our experiment
setup, values of 0.1 and 0.5 mean that the deep RL control policies
can alter the output (joint angles) of the pre-trained controller up
to approximately 5.7 and 28.6 degrees, respectively. In both experi-
ments, we achieve plausible control policies, however, the results
were visually distinctive. The control policy learned with the higher
parameter value could generate contact forces up to 500N while
showing energetic movements, whereas the maximum contact force
generated by the policy learned with the lower parameter value
was approximately 200N and generated motions that looked more
similar to the original motions.

5.5.3 Performance Comparison to Other Latent Space Models in
Downstream Tasks with Sparse Rewards. In environments composed
of high-dimensional state and action spaces such as ours, it is very
challenging to learn plausible control policies when only sparse
rewards are available. Deep RL algorithms get little meaningful
learning signals (i.e., feedback) from the environment and there
could be many local minima (i.e., under-constrained). As a result,
carefully engineered dense rewards are typically required to learn
plausible control policies for physically simulated humanoids, how-
ever, the reward engineering is non-trivial and time-consuming.

It would be ideal if plausible control policies could be learned
successfully from simple and intuitive sparse rewards. To understand
the benefits of using our conditional VAE model in learning with
sparse rewards, we compare the performance between our control
policy structure and an alternative structure, a latent space model
that resembles to the structure used in [Merel et al. 2019a, 2020; Won
et al. 2021]. Note that we report a latent space model without the
AR(1) prior because it did not produce a meaningful improvement in
our experiments. We compare two different control policy structures
by using the Point-Goal Navigation task with the reward function
modified as follows:

𝑟𝑡 =

{
1 if 𝑑𝑡 is less than 0.5m
0 otherwise

where 𝑑𝑡 is the distance to the goal point from the character’s root
position projected on the ground. Figure 11a shows the maximum
return achieved during learning, where our model performs better
than the alternative latent space model due to significantly better
exploration capability especially in the initial learning phase. A
qualitative comparison is also demonstrated in the supplemental
video, where the motions generated by our model look natural and
resemble the original motions in the locomotion dataset. We also
run another experiment with the Maze Runner task, which requires
a more complex strategy and already uses a sparse reward (i.e., the
character gets 1 only when entering new unvisited area). Figure 11b

(a) Point-Goal Navigation (Sparse)

(b) Maze Runner

Fig. 11. Performance Comparison in the Sparse Reward Environments.

illustrates the maximum return achieved during the learning, where
the graph shows that our control policy structure is able to learn
much faster and eventually cover the entire mapwithin 60M training
tuples whereas the alternative model can not cover the entire map
even after generating 140M tuples.

6 CONCLUSION
In this paper, we develop controllers for physically simulated hu-
manoid characters using conditional VAEs that can generate various
motions by conditioning the controllers on a random vector sam-
pled from the standard Gaussian distribution. We also demonstrate
various use cases for the pre-trained controllers by learning deep
RL control policies for various downstream tasks.

Although the capability of pre-trained controllers can be extended
by the control policy structure using a helper branch during the
downstream task learning, the base capability is still limited by the
input expert trajectories just as with other data-driven methods. The
base capability can be considered from two perspectives, the motion
quality and the variability. First, if the input expert trajectories have
flaws in their motion quality, our controller also generates motions
with the same flaws by matching the style. For example, in the early
stages of development, we mistakenly used reference motions with
heights taller than our simulated characters, which generated a
stomping-gait because the simulated character tried to match the
reference root joint position. Second, our controller can also have
the sinking problem mentioned in [Ling et al. 2020], where it fails
to transition among different behaviors if the input trajectories lack
such transitions. Using datasets composed of many heterogeneous
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behaviors where individual recordings are relatively short might
cause this problem. Augmenting datasets by constructing motion
graphs, which we used in our experiments, might be a quick remedy,
however, preparing datasets rich in transitions would create the
most natural-looking motions.

We tested our model with the CMU dataset [CMU 2002] included
in the AMASS dataset [Mahmood et al. 2019] to further understand
how scalable our conditional VAE model is. Because there are many
short clips less than 5 seconds in the dataset, we also construct a
motion graph and generate 2 hours of motion clips as described
in section 5.4. From this experiment, we observed that the model
learned from the CMU dataset does not perform well when com-
pared to other models learned from either the locomotion dataset or
the dancing dataset. We assume that the diversity of the dataset is be-
yond our model capacity because the current single motor-decoder
structure might not be suitable for learning many heterogeneous
behaviors simultaneously as pointed out in [Won et al. 2020]. Learn-
ing task-agnostic physics-based controllers such as our conditional
VAE model with large uncurated datasets such as the CMU or the
entire AMASS dataset still remains an open problem.
In our current implementation, we built the physics simulation

layer separately based on supervised learning with input expert
trajectories. Due to approximation errors, the learned simulation
layer could generate slightly different output from the PyBullet
physics simulator. Recently, many differential physics simulators
have been proposed [Heiden et al. 2021; Nimble 2021]. Using one
of these, we could unify all the simulation-related components (the
simulation layer and the actual simulator) as a single neural physics
simulator. Such unification would provide outputs that are always
consistent with actual simulation rollouts when learning controllers,
so ideal performance could be achieved.

One exciting future direction would be to learn the controllers di-
rectly from a motion capture dataset without going through expert
trajectories generated by imitation policies. Because the actions a𝑡
are not available to access with motion capture data only, the be-
havior cloning loss could be omitted in Equation 1 by incorporating
a neural physics simulator. Another promising direction would be
to apply the controllers to more complex multi-agent competitive
tasks such as [Liu et al. 2021], where 2:2 soccer game strategies for
physically simulated agents are demonstrated. Because our method
provides an efficient way of learning downstream tasks while pre-
serving the original motion styles well, we believe that more realistic
and natural-looking soccer strategies could be achieved.
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