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ABSTRACT

Semi-supervised learning through pseudo-labeling has become a staple of state-of-the-art monolingual
speech recognition systems. In this work, we extend pseudo-labeling to massively multilingual speech
recognition with 60 languages. We propose a simple pseudo-labeling recipe that works well even
with low-resource languages: train a supervised multilingual model, fine-tune it with semi-supervised
learning on a target language, generate pseudo-labels for that language, and train a final model using
pseudo-labels for all languages, either from scratch or by fine-tuning. Experiments on the labeled
Common Voice and unlabeled VoxPopuli datasets show that our recipe can yield a model with better
performance for many languages that also transfers well to LibriSpeech.

1 Introduction

One of the long-term goals of automatic speech recognition (ASR) research is a single system that can transcribe speech
in any language [1, 2]. Such a multilingual system would be simpler to maintain than a collection of monolingual
models, enable users to comfortably speak any language without needing to tell the system which language to expect in
advance, and share knowledge between all languages for improved performance.

A key ingredient of modern state-of-the-art monolingual ASR missing from current multilingual models is pseudo-
labeling [3], a technique for harnessing unlabeled datasets that has recently begun consistently yielding performance
gains even for ASR tasks with large labeled datasets like LibriSpeech [4, 5, 6]. In pseudo-labeling, a model trained on a
labeled dataset is used to generate labels for an unlabeled dataset, and those pseudo-labels (PLs) are then used to train a
model. Many variants of pseudo-labeling exist: for instance, the same model used to generate PLs can also be trained
on those PLs [7, 8, 9], or PLs generated by a teacher model can be used to train a new student model [4, 6, 10, 11].

In this work, we go beyond the monolingual setting and demonstrate the use of pseudo-labeling to improve a massively
multilingual speech recognizer trained on all 60 languages of the Common Voice dataset [12] simultaneously. First, we
show that self-training on all unlabeled data in the multilingual VoxPopuli dataset [13] at once tends to produce poor
PLs for low-resource languages, and instead propose a simple recipe (Fig. 1) in which the model is first fine-tuned for a
particular language before pseudo-labeling. Next, we compare a number of methods for training with the generated PLs,
and find that training a larger model from scratch on all labeled and pseudo-labeled data works best. Finally, we show
that the use of pseudo-labeled data improves out-of-domain generalization through experiments on LibriSpeech [14].
Unlike much previous work on this topic, our experiments use only open-source data, and we release our code and
models.2

∗Work done during an internship at FAIR. †Currently at Apple.
2https://github.com/flashlight/wav2letter/blob/49087d575ddf77aa5a99a01fee980fc00e92c802/recipes/

mling_pl/README.md
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Figure 1: Illustration of our method: to produce better pseudo-labels for a given language, we first fine-tune the
multilingual model on that language.

2 Model

The model used in our experiments (Fig. 2) is identical to the neural network used for LibriSpeech in [9], except for the
output layer(s). The input to the encoder is a sequence of 80-dimensional log mel filterbank frames, extracted using
25 ms Hamming windows every 10 ms from the 16 kHz audio signal. The encoder has a single convolutional layer
with a filter length of 7 and a stride of 3, followed by 36 transformer layers with 4 heads, feedforward dimension 3072,
and self-attention dimension 768, using the relative position embeddings of [15]. The output of the encoder is fed to a
CTC [16] head and a language identification (LID) head. The CTC head is a linear layer with 8065 outputs: one for
each character (most of which are Chinese characters), including punctuation, space, and the CTC <blank> symbol.
The CTC head is shared across all languages: it is a “joint” multilingual model, using the terminology of [2]. The LID
head is a linear layer with 60 outputs (one per language), followed by mean-pooling to aggregate the variable-length
sequence of output vectors into a single vector of logits. The LID head outputs are only used during training: during
inference, standard decoding algorithms can be applied to the CTC head outputs. The model is implemented and trained
using Flashlight [17].

While we do not perform explicit empirical comparisons with other multilingual models in the literature (as the focus of
this work is on pseudo-labeling), it is worth noting that our model is significantly simpler than existing multilingual
models, forgoing the use of language- or language-family-specific parameters, decoders, and tokenizers. We are not
the first to use an encoder-only CTC architecture for multilingual ASR [18, 19, 20], but we believe we are the first to
demonstrate this for massively multilingual end-to-end ASR. Previous work on this topic [21, 22, 23, 24, 25] has instead
used more sophisticated sequence transduction models with autoregressive decoder networks [26, 27, 28, 29, 30], citing
the flaw of CTC’s conditional independence assumption. In practice, CTC models implemented using modern neural
network architectures are able to learn strong implicit language models [4, 9] and achieve state-of-the-art results for the
low-resource setting [31, 9]. For those reasons, we focus on CTC models in this paper.

3 Data

The model is trained using the December 2020 release (6.1) of Common Voice (CV) [12], which has 3.6k hours of
training data. CV is a continuously growing multilingual speech dataset recorded online by volunteer speakers. The 60
constituent languages vary greatly in the amount of available data: 7 languages have more than 100h of data, and 10
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Figure 2: Illustration of the model used in our experiments, with optional language identification head (Sec. 4) shown
in grey.

languages have less than 1h of data. We do not remove punctuation and capitalization from the CV transcripts, as this
makes it easier to replicate our setup3 and learning speed was not noticeably impacted. We downsample all audio to 16
kHz.

In addition to CV, we use VoxPopuli (VP) [13], a very large scale (384k hours) unlabeled multilingual dataset of
European languages. The dataset is split into 23 languages. 19 of the 23 VP languages are in CV (Czech, German,
Greek, English, Spanish, Estonian, Finnish, French, Hungarian, Italian, Lithuanian, Latvian, Maltese, Dutch, Polish,
Portuguese, Romanian, Slovenian, and Swedish): we use only those 19 languages for semi-supervised learning.

4 Supervised training

We train supervised models on CV for ∼500k updates. The hyperparameters and training procedure are identical to
those used in [9], except we use 2 SpecAugment [33] time masks instead of 10 (using 10 masks was found to cover
too much of the shorter CV audio), and the learning rate is halved just once, at 250k updates. We do not use the
language balancing technique of [22, 2] to sample languages evenly (which we found easily overfit to the low-resource
languages), or curriculum learning as in [2]. In addition to the base model (275M params), we also train larger models
(1.06B params) by doubling the feedforward and self-attention dimensions. The base models are trained on 16 GPUs
with dynamic batching using 200s of audio per batch per GPU, and the large models are trained using 64 GPUs with
50s of audio per GPU, resulting in the same effective batch size.

Following [34], we add an LID loss, so that the loss ` used for training is ` = `CTC + γ · `LID, where `CTC represents the
CTC loss, `LID represents the LID loss (the cross-entropy between the LID head outputs and the one-hot language label
for a given utterance), and γ is a hyperparameter. We trained models on CV with γ ∈ {0, 0.1, 1, 10}: γ = 1 yielded the
best results, with 2.6% absolute improvement in average validation character error rate (CER) over the baseline with
γ = 0 (no LID), using greedy decoding. Some examples of greedy decoding outputs for the base supervised model are
shown in Fig. 3 and Fig. 4.

5 Semi-supervised training

To train on the unlabeled data in VP, we use slimIPL [9], an iterative approach in which a model is trained for a number
of updates on labeled data, followed by continuous training using labeled data and pseudo-labeled data stored in a

3While there have been attempts to standardize the formatting of transcripts for Common Voice for English [32], most reported
results use an ad-hoc normalization scheme, and so cannot readily be compared.
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ref:

hyp:

The Nawabs of Bengal and Morshadab were the rulers of Bengal, Bihar and Orisa.

The Nawabs of Bengal and Murshidabad were the rulers of Bengal, Bihar and Orissa.

ref:

hyp:

新努库茨基市镇是俄罗斯联邦伊尔库茨克州努库茨基区所属的一个市镇。

西姆库茨基市镇是俄罗斯联邦伊尔库茨克州努库自基区所属的一个市镇。

ref:

hyp:

Наконец, многие члены подтвердили свою официальную политику в
пользу расширения членского состава Конференции.

Наконец, многие члены потвердили свою официальную политику в
пользурасширения членского состава Конференции.

ref:

hyp:

Col Rose Kabuye yatawe muri yombi, bakurikiranyweho ibyaha byo guhungabanya
umutekano w’igihugu.

Colonel Rose Kabo yatawe muri yombi bamukurikiranyweho ibyaha byo guhungabanya
umutekano w’igihugu

ref:

hyp:

"Il a effectué des résidences d'écritures à Ouagadougou, en Guinée et à Paris."

"Il a effectué des résidences d'écriture à Wagadougu, en Guinée et à Paris."

ref:

hyp:

Humfried war zunächst Mönch, dann Dompropst in Würzburg und Kaplan am
kaiserlichen Hofe.

Humfried war zunächst Münch, dann Dompropst in Würzburg und Kablan am
Kaiserlichen Hofe.

Figure 3: Example greedy decoding outputs from the base supervised model for 6 utterances from the validation sets of
some of the higher-resource CV languages: English, Chinese (China), Russian, Kinyarwanda, French, and German.

ref:

hyp:

what do you mean sir

What do you mean, sir?

ref:

hyp:

george

Gرجe

ref:

hyp:

mister shimerda went with him

Mr. Shameridta went with him.

ref:

hyp:

il popolo e una bestia

Lo popolo è una bestia.

ref:

hyp:

its yellow bristles rather a mane
than a head of hair covered and
concealed a lofty brow evidently

made to contain thought

Its yellow bristles, rather amain
than ahead of hair, covered and
concealed a lofty brow, evidently

made to contain thought.

ref:

hyp:

mode pare and slice the
cucumbers as for the table
sprinkle well with salt and let
them remain for twenty four
hours strain off the liquor pack
in jars a thick layer of
cucumbers and salt alternately
tie down closely and when
wanted for use take out the
quantity required

twent-fr-r alternately

ref:

hyp:

three days later minnitaki
became newsome's wife at the

hudson bay post

"Three days later, Minnitauke
became Newsom's wife at the

Hudson Bay Post."

Figure 4: Examples of LibriSpeech dev-clean outputs with greedy decoding for base supervised model, trained only on
CV, not on LibriSpeech. (Substitutions are colored: red = genuine error, blue = punctuation/truecasing counted as error.)
Note that the model almost correctly transcribes the unusual Italian sentence in dev-clean, unlike a typical LibriSpeech
model (cf. [31 (Table 12)]).
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basic:

finetuned:

αναfeoρisi του κιακτiμανου sengen, μeταγιακρατi, criteρia ποsμo πisamα
καiγατisυπopψήfiεs χoρeς, ενoτosenginsiζitiτe δiακi βerνitiκa, tα proclimaτaθαs
neχήsουnaifista, γαrtoθα πrέπι nαδiadramatisμe, μeγαliteroorol δitε τηsiζiti si γατi
Rumania, κhe tη vulgaria to, efricaicoκi propecocino volie caneoti, boruse eni.

αναθεώρηση του κι κτημένου σέγγαν μεταίδιακκρητήρια που χρισμοπίσαμε και για
τις υποψήφιες χώρες ενώ το σέγγαν συζητήτε διακυβερνητικά τα προλήματαθα
συνεχήσου να ηφήσταντα, γι αυτό θα πρέπει να διατραματήσουμε μεγαλύτερορόλο,
δίτε τη σηζήτηση γιατη ρουμανία και τη βουλγαρίατο ευρωκαικόκικρωπακό
κινοβούλιο έκανε ότηπορούσεεγή

Figure 5: Pseudo-labels for an utterance from the Greek subset of VP with basic slimIPL (top) or with slimIPL after
monolingual fine-tuning (bottom). Red letters are Latin characters.

Table 1: (Semi-)supervised learning results with slimIPL for the CV Greek data given different training sets.
Labeled Unlabeled Valid CER Test CER

CV All – 53.2 47.8
CV Greek – 30.6 33.6
CV Greek VP Greek 23.9 25.1
CV Greek VP English4 24.3 28.4

CV All→ CV Greek – 9.9 9.6
CV All→ CV Greek VP Greek 8.7 8.5

dynamic cache which is periodically updated with pseudo-labels (PLs) re-generated by the current model state using
greedy decoding without an external language model (LM). We use a cache size of 1000, replacement probability 0.1,
and λ = 10 (ratio of unlabeled batches to labeled batches).

5.1 Fine-tuning before pseudo-labeling

The simplest way to perform semi-supervised learning would be to pool the unlabeled data for all languages, as we do
for the labeled data, and run slimIPL. We found that doing so led to poor PLs for low-resource languages, such as Greek,
which has only 2.75h of training data (see top of Fig. 5 — the transcript has a mix of Greek and Latin characters).

Instead, to produce PLs for a VP language, we first fine-tune the trained multilingual model by training only on CV
data for that language for 10k updates, and then run slimIPL using the corresponding VP data (bottom of Fig. 5). The
same effect could also be achieved by generating PLs using a monolingual model, but our proposed approach yields
better results by taking advantage of multi-task learning (Table 1).

After training slimIPL models for all 19 languages in (CV languages ∩ VP languages), we generate a final set of PLs for
all unlabeled VP utterances using the appropriate slimIPL models. We filter out all utterances for which the PL length
is 0 or >630 (maximum label length supported by the CTC loss implementation). The PLs for all languages can then
be pooled and used either by continuing training the non-fine-tuned multilingual model checkpoint with all available
CV and VP data, or by training a new model on that data from scratch. When training a model from scratch, we found
it necessary for convergence to lower the learning rate from 0.03 to 0.01 and to delay the use of SpecAugment until 50k
updates; we also lower the learning rate when using VP data to fine-tune the base model already trained on CV.

Distilling the per-language fine-tuned models’ knowledge back into a single final model is similar to the recently
proposed multi-task self-training (MuST) [35]. In MuST, a separate teacher model is trained for each task and used to
pseudo-label every available training example, and a general student model with one head for each task is then trained
on all the pseudo-labels. The difference here is that our final model only performs one “task”, since we use a single
shared CTC head over all languages, and the model itself must determine which language is being spoken.

5.2 Avoiding collapse: cropping warmup period

Another difficulty arose from the fact that the utterances of VP (average duration of 30s) are much longer than those of
CV (average duration of 5.3s). The model trained only on CV generates mostly empty transcripts for VP, a commonly
observed failure mode for out-of-domain audio or utterances longer than those observed during training [8, 36, 37].
Semi-supervised learning failed as a result, usually collapsing to generating all blanks even for the labeled data. To

4See Sec. 8 for a more detailed discussion of semi-supervised learning with language mismatch.
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Figure 6: Validation CER for CV Greek (after training on CV All) with supervised fine-tuning or semi-supervised
fine-tuning with VP Greek via slimIPL, using either a cropping warmup period or always cropping.

acclimate the model to the longer VP utterances, we use a warmup period of 10k updates during which we crop
unlabeled audio into 10s segments before running the acoustic model, then stitch the resulting logit sequences back
together and decode to obtain PLs. The model is then trained on the original uncropped utterance using those PLs.
Cropping the utterances results in poor pseudo-labels, so after a number of updates, we stop cropping the unlabeled
utterances during pseudo-labeling. This warmup period approach works better than simply always cropping (Fig. 6).

6 Performance on Common Voice

Table 2 lists the performance of the multilingual model averaged over all CV languages in various settings.5 Table 3
reports the same information for CV languages that are in VP. All results for CV are reported using greedy decoding in
terms of character error rate (CER), as suggested in [12].

In addition to the base model (trained only on CV), we report performance when the VP audio with the final set of PLs
is added back into the training set, either by fine-tuning the model already trained on CV (“+ all PLs (fine-tune)”) or
by training a model from scratch on CV+VP (“+ all PLs (from scratch)”). We only report results for the large model
when training it from scratch on CV+VP, as the large model overfit to CV after a few epochs (see Fig. 7, “CV (large)”).
Test CER is measured by selecting the checkpoint with the best average validation CER across all languages. While
performance is degraded on average (Fig. 7), it is greatly improved for the VP languages (Fig. 8(a)), with the best
results achieved training a larger model from scratch.

The degradation for CV languages on average can be explained by the fact that VP is much larger than CV, leading to an
imbalance in favor of the 19 languages in (CV languages ∩ VP languages). If we then fine-tune the models trained on
CV+VP on only CV (“↪→ fine-tune on CV only”), they not only still have improved performance over the base model
when averaging over the VP languages, but also close the gap when averaging over all CV languages.

We also train a monolingual model for each language separately using the same hyperparameters as the multilingual
model, and report the performance of those models along with the performance of the multilingual model when
fine-tuned using only labeled data for that language (“supervised fine-tuning”) or, when unlabeled data is available
(Table 3), using both labeled and unlabeled data for that language (“slimIPL fine-tuning”). For monolingual models,
or multilingual models with monolingual fine-tuning, the test CER is measured using the checkpoint with the best
validation CER. There is still a large gap between the base model and fine-tuned models (see e.g. Greek in Table 1), but
the gap is reduced for the VP languages when training on the pseudo-labeled data.

5Detailed per-language training logs and decoded outputs for all 60 languages can be found at (link to be added later).
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Table 2: CER averaged over all CV languages.
Model Valid CER Test CER

Base model 26.8 28.8
+ all PLs (fine-tune) 27.6 29.7
+ all PLs (from scratch, base) 38.0 39.9
↪→ fine-tune on CV only 26.6 28.2
+ all PLs (from scratch, large) 35.4 37.1

Monolingual baseline 33.8 35.5
Supervised fine-tuning 10.6 11.4

Table 3: CER averaged over languages in (CV languages ∩ VP languages).
Model Valid CER Test CER

Base model 24.4 24.8
+ all PLs (fine-tune) 17.5 17.9
+ all PLs (from scratch, base) 15.0 15.6
↪→ fine-tune on CV only 13.8 14.0
+ all PLs (from scratch, large) 11.7 12.2

Monolingual baseline 25.1 26.8
Supervised fine-tuning 7.7 8.3
slimIPL fine-tuning 6.9 7.5
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Figure 7: Validation CER curves for CV averaged over all languages for various training settings.
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(a) CV languages ∩ VP languages.
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(b) CV languages \VP languages.

Figure 8: Validation CER curves for CV when averaging over the subset of languages in VP (left) and the subset of
languages not in VP (right).
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(b) Finnish — 0.55h
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(c) Lithuanian — 1.18h

Figure 9: Validation CER curves for the base multilingual models’ performance on three low-resource CV languages
with a corresponding subset in VP.
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(c) Kabyle — 109h

Figure 10: Validation CER curves for the base multilingual models’ performance on three high-resource CV languages:
English (∈ VP), Catalan ( 6∈ VP), Kabyle (6∈ VP).

Fig. 9 shows the performance of the multilingual model being improved by pseudo-labeled data for three low-resource
CV languages. In Fig. 10, in contrast, the opposite occurs for three high-resource languages: performance is worse
when fine-tuning on CV+VP and much worse when training a new model from scratch on CV+VP.

There is a straightforward explanation for why the model trained from scratch on CV+VP initially performs so much
worse on Catalan and Kabyle, before the model is fine-tuned only on CV: those languages are not in VP, so the amount
of training data observed by the model for those languages is dwarfed by the amount of training data observed for the
VP languages. However, English is among the VP languages, so it is surprising that the performance of English is also
worse for the model trained from scratch on CV+VP, and that performance becomes worse when the model trained on
CV is fine-tuned on CV+VP. It is worth noting that VP data is somewhat noisy: much of it is spoken by interpreters
attempting to translate, in real-time, what is being said by another speaker in another language—sometimes stumbling
over a word or repeating themselves. The domain mismatch between this type of speech, as opposed to the prompted
speech in CV, may explain the performance gap. Even though performance is degraded for the English subset of CV,
the use of VP data does improve the model’s ability to process English in a new domain, as we show in the next section.
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Table 4: LibriSpeech WER for different training sets.

Data LM Dev WER Test WER

clean other clean other

CV - 59.7 60.1 62.0 62.8
4-gram 33.7 34.3 37.6 37.7

CV - 34.1 41.7 33.5 42.5
→ CV+VP 4-gram 8.8 15.9 9.0 16.8

CV+VP - 39.7 47.9 39.0 49.4
→ CV 4-gram 10.1 17.8 10.4 19.5

CV - 4.8 13.7 5.1 13.6
→ LS-100 4-gram 3.3 9.7 3.8 9.9

CV - 3.0 7.5 3.1 7.4
→ LS-960 4-gram 2.1 5.3 2.6 5.8

LS-100 - 6.2 16.8 6.2 16.8
4-gram 4.1 12.4 4.5 12.7

LS-960 - 2.7 6.8 2.8 6.9
4-gram 2.0 5.1 2.6 5.7

Table 5: WERs for test-other split over audio duration.

Data LM Duration

<10s 10-15s 15-20s >20s

CV - 46.6 83.6 99.1 99.9
4-gram 15.6 54.7 93.3 98.7

CV - 43.5 38.6 41.3 47.7
→ CV+VP 4-gram 17.0 15.2 17.2 20.8

CV+VP - 48.2 47.3 52.8 63.5
→ CV 4-gram 17.9 18.8 23.0 33.3

7 Transferring to LibriSpeech

To see how well the multilingual models perform on out-of-domain audio, we evaluate them on LibriSpeech in Table 4.
Word error rate (WER) is reported both using greedy decoding and using a beam search for

argmax
y

log pθ(y|x) + α log pLM(y) + β|y|, (1)

where pθ(y|x) is the probability of transcript y given input audio x according to the acoustic model, pLM(y) is the
probability of y according to an external 4-gram word-level LM trained on the LibriSpeech LM corpus, |y| denotes the
length of y, and α, β are set using a small grid search on the dev sets. We find that the multilingual model fine-tuned
with all VP PLs performs much better on LibriSpeech across all settings. It can be seen from Table 5, in which test-other
is split by the duration of utterances, that the improvement is due mostly to the model’s ability to process longer
sequences acquired from training on the longer VP utterances (see Sec. 5.2).

We also demonstrate the base model’s transfer capability by fine-tuning it either on the 100h or 960h subset of
LibriSpeech (Table 4, “CV→ LS-{100,960}”). During fine-tuning, instead of 2 SpecAugment masks (Sec. 4), we
use 10 masks, as in [9], which we found yielded better performance. With fine-tuning on LibriSpeech, performance is
greatly improved for the 100h setup over the 100h-only training, while with 960h performance is similar or slightly
worse. We have not yet made these comparisons for the CV+VP models, but our other results suggest that similar
benefits may be observed.

10
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Figure 11: Validation CER for CV Greek for purely supervised monolingual training on CV Greek, using VP Greek as
unlabeled data for slimIPL, or using VP English as unlabeled data.

8 Pseudo-labeling the wrong language

To our surprise, we found that training a monolingual speech recognizer by pseudo-labeling the wrong language could
also improve test performance. Fig. 11 shows the validation CER of CV Greek when no unlabeled data, unlabeled data
in the right language (VP Greek), and unlabeled data in the wrong language (VP English) is used.

This result may not currently be of much practical interest, since we can easily train a better monolingual Greek
speech recognizer through other methods (Table 1). Still, we believe it may be useful for understanding how and why
semi-supervised learning works, and we hope to explore the phenomenon for more language pairs in the future.

9 Conclusion

We have demonstrated the use of pseudo-labeling to improve an end-to-end joint model for massively multilingual ASR
with Common Voice. Fine-tuning a multilingual model with semi-supervised learning on each language of VoxPopuli
separately, and then training on all VoxPopuli pseudo-labels combined, i) significantly improves the performance of the
model for those 19 languages, ii) helps the model generalize to a new domain (LibriSpeech), and iii) enables training a
larger model than was possible with Common Voice alone without overfitting. Many interesting questions and problems
remain, such as reducing the gap between the performance of the multilingual model on its own and after fine-tuning
on a particular language, improving performance for languages without unlabeled data, integrating language models
into the PL generation process, and running iterative pseudo-labeling instead of a single round with all languages. The
method we have employed requires knowledge of which language is spoken in the unlabeled audio: overcoming this
requirement, so that even more data in the wild can be used, would also be worth exploring.
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