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ABSTRACT

High-fidelity 3D audio experience requires accurate indi-
vidual head-related transfer function (HRTF) representation.
However, the process of measuring individual HRTFs typ-
ically involves measurements from hundreds of directions,
with specialized and expensive equipment, which makes this
process inaccessible for most users. In this paper, a new
technique to reconstruct high resolution individual HRTFs
from sparse measurements is presented. This is achieved by
minimizing the spatial aliasing error in the spherical harmon-
ics (SH) representation of the HRTFs, and by incorporating
statistics calculated from a set of reference HRTFs, leading to
an optimal minimum mean-square error solution. A quanti-
tative analysis of the proposed method illustrates its benefits
even for extreme cases, such as using only 25 individual
HRTF measurements and a generic HRTF as a reference.

Index Terms— HRTF, Head-related transfer function,
Sparse representation, Spatial aliasing, Spatial sound, Spher-
ical harmonics, Minimum mean-square error

1. INTRODUCTION

The head-related transfer function (HRTF) provides a char-
acterization for how a sound source from different directions
is captured at each of the listener ears and is primarily use-
ful for binaural reproduction. Accurate HRTF representa-
tion provides a high-fidelity spatial audio experience. For
this reason individual HRTFs are preferable. There are two
main approaches for accurately measuring HRTF. The first
approach is based on acoustical measurements, which typ-
ically include microphones at the listener ears and a sound
source that plays sound from different directions and at differ-
ent frequencies [1–5]. The second approach is based on com-
puter simulations using a 3D geometrical model of the head
which can be obtained using a laser scanner [6], MRI scan-
ning [2], or image-based modeling [7, 8]. These approaches
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are either time consuming or involve the use of expensive
specialized equipment, which makes the process of measur-
ing individual HRTFs inaccessible for the vast majority of
users. One way to simplify the HRTF measurement process
would be to reduce the required number of HRTF direction
measurements, which may lead to a less expensive measure-
ment setup and to a faster process. However, reducing the
number of HRTF measurements may also lead to an increase
in interpolation errors. Alternatively, generic HRTFs can be
used. The advantages of generic HRTFs is that these func-
tions are widely available. However, generic HRTFs provide
a limited spatial audio experience with degradation in local-
ization and externalization compared with individual HRTFs
[9]. Several methods that aim to improve the performance of
generic HRTFs by means of individualization were previously
presented [10–14]. These approaches show improved char-
acteristics of the individualized HRTFs relative to the non-
individual HRTFs. Among the methods that rely on a small
set of HRTF measurements, the most promising results were
obtained using an optimal linear minimum mean square error
(LMMSE) estimator for the HRTF coefficients in the SH do-
main, as presented by Romigh [11]. The LMMSE was eval-
uated for estimating the SH coefficients of minimum-phase

HRTFs, using a small number of coefficients (less than 50).

This paper adopts the approach of mean square error min-
imization to estimate the HRTF coefficients in the SH do-
main. The approach presented in this paper, referred to as
aliasing cancellation (AC), aims to reduce spatial aliasing er-
ror by means of using an optimal transformation matrix to the
SH domain. A novel analysis reveals that both the AC and
LMMSE estimators yield high accuracy in estimating a high
order HRTF representation in the complex SH domain (i.e.
hundreds of coefficients). In addition, unlike the LMMSE es-
timator, the derivation of AC does not assume that the mean
HRTF coefficients are known, which facilitates the use of AC
based on a small HRTF database, including the case of a sin-
gle HRTF reference. Results in this paper illustrate that a full
individual HRTF can be reconstructed from 25 measurements
with a reconstruction error that is lower than �6 dB.



2. HRTF AND SPARSITY ERROR

In this section the representation of HRTFs in the space do-
main and in the SH domain is presented. The error in these
representations due to a small number of HRTF measure-
ments, referred to as sparsity error, is then formulated.

2.1. Matrix formulation of HRTF in the SH domain

Consider the HRTF, H(k,⌦), for the left or right listener’s
ears, where k is the wave number, and ⌦ = (✓,�) is the angu-
lar direction, with elevation angle ✓ and azimuth angle � [15].
The HRTF represents a function on the surface of a sphere
and can, therefore, be represented in the SH domain using
complex SH basis functions Y

m

n
(⌦) of order n and degree

m, at the angular direction ⌦ [15]. Assuming that the HRTF
is a function limited to order eN , the HRTF can be represented
using a finite SH expansion, also known as the inverse spher-
ical Fourier transform (SFT) [16], and can be formulated in
matrix form as:

h = Ỹh̃nm, (1)
where the Q ⇥ 1 vector h = [H(k,⌦1), . . . , H(k,⌦Q)]

T

holds the HRTF measurements over Q directions, h̃nm =⇥
H00(k), H0(�1)(k), . . . , H eN eN (k)

⇤T is an ( eN + 1)2 vector
that holds the HRTF coefficients in the SH domain, and the
Q⇥ ( eN + 1)2 SH transformation matrix, Ỹ is defined by its
qth row as

�
Ỹ
 
q
=
⇥
Y

0
0 (⌦q) , Y

�1
1 (⌦q) , . . . , Y

eN
eN
(⌦q)

⇤
.

Given a set of HRTF measurements over a sufficient num-
ber of directions Q �

� eN +1
�2, the HRTF coefficients in the

SH domain can be calculated from the HRTF measurements
by multiplying (1) with the pseudo inverse of the SH trans-
formation matrix Ỹ† = (ỸHỸ)�1ỸH , which forms the dis-
crete SFT [16], with (·)H denotes the Hermitian property,

h̃nm = Ỹ†h. (2)

2.2. Sparsity error in HRTF representation

The number of HRTF coefficients in the SH domain that can
be estimated using the SFT in (2) is constrained by the HRTF
measurement scheme, following Q � � (N + 1)2, where
N represents the measurement scheme order and � � 1 is
scheme dependent. As long as the HRTF order eN is not
larger than the sampling scheme order N , i.e. N � eN is
satisfied, the HRTF coefficients can be accurately calculated
from the Q HRTF measurements using (2). However, as the
frequency increases, the HRTF becomes more spatially com-
plicated and the HRTF order, eN , increases, roughly following
the relation eN ⇠ kr [17], where r denotes an average head
radius. At high frequencies where

� eN+1
�2

> Q, the number
of measurements is insufficient for using (2) and the SFT is
therefore reformulated to compute only the first (N + 1)2

HRTF coefficients according to the sampling scheme order

ĥN

nm = Y†h =
�
YHY

��1
YHh, (3)

where the Q ⇥ (N + 1)2 matrix Y is composed of the first
(N + 1)2 columns of matrix Ỹ.

An attempt to use SFT to estimate the HRTF coefficients
up to order N with an insufficient number of measurements
may lead to spatial aliasing error. The spatial aliasing error
can be explicitly formulated by splitting matrix Ỹ and the
HRTF coefficients vector into two parts, Ỹ =

h
Y, Ỹ�

i
and

h̃nm =
⇥
hT

nm,hT

�

⇤T , where Ỹ� and h� hold the elements
of orders higher than N . Substituting these expressions into
(1) and then into (3) leads to,

ĥN

nm = Y†[Y, Ỹ�]


hnm

h�

�
= hnm|{z}

desired

+Y†Ỹ�h�| {z }
aliasing error

. (4)

Equation (4) shows how high order HRTF coefficients in the
vector h� are aliased and added to the desired low order
HRTF coefficients hnm, which leads to spatial aliasing er-
ror in the estimated HRTF coefficients. Using these corrupted
HRTF coefficients to calculate the HRTF at some L desired
directions with the inverse SFT will lead to an error in the
space domain as well:

ĥL = YLĥ
N

nm, (5)

where YL is the SH transformation matrix, as in equation (1),
calculated only for the first (N + 1)2 columns at the L desired
directions, and the HRTF at the L desired directions is given

in ĥL =
h
Ĥ (k,⌦1) , . . . , Ĥ (k,⌦L)

iT
.

The aliasing matrix Y†Ỹ� depends on the HRTF mea-
surement scheme and is frequency independent. Thus, at high
frequencies where the magnitude of high order HRTF coeffi-
cients in h� increases, the aliasing error is expected to in-
crease. In addition to the distortion in low order HRTF coeffi-
cients, it is important to note that the N th order representation
using the standard SFT lacks the truncated high order HRTF
coefficients. An overall error which incorporates errors due to
both aliasing and truncation is defined here as sparsity error,
and can be formulated as the mean-square error between the
estimated HRTF and the true higher order HRTF,

✏ =
���ĥnm � h̃nm

���
2
=

����


ĥN

nm

0

�
� h̃nm

����
2

. (6)

3. SPARSITY ERROR REDUCTION BY ALIASING
CANCELLATION

In the previous section the sparsity error was presented for
the case where the HRTF is represented in the SH domain
and with ( eN + 1)2 > Q. In order to reduce the sparsity error
to a minimum, a new ( eN + 1)2 ⇥Q transformation matrix C
is introduced, such that by multiplying it with the HRTF mea-
surements h in (1), the HRTF coefficients in the SH domain



up to the high SH order eN can be estimated:

ĥnm = Ch = CỸh̃nm, (7)

where ĥnm is an ( eN + 1)2 length column vector that holds
the estimated HRTF coefficients in the SH domain. Equa-
tion (7) represents an under-determined system in which the
number of unknowns ( eN + 1)2 is larger than the number of
equations Q.

One approach to minimize the sparsity error is to as-
sume that the unknown HRTF coefficients, ĥnm, form a
random vector, i.e. each person’s HRTF coefficients are
realizations from a set of possible outcomes with some
probability distribution and a given autocorrelation matrix

Rhh = E

h
h̃nmh̃H

nm

i
. Matrix C that minimizes the mean

sparsity error, referred to as the AC matrix, can be calculated
by solving the following minimization problem:

CAC = argmin
C

E [✏] = argmin
C

E

���ĥnm � h̃nm

���
2
�
. (8)

The error expression can be formulated using (7) as follows:

E

���ĥnm � h̃nm

���
2
�
= E

���
⇣
CỸ � I

⌘
h̃nm

���
2
�

(9)

=

( eN+1)2X

l=1

⇣
clỸ � ĩl

⌘
Rhh

⇣
clỸ � ĩl

⌘H

=

( eN+1)2X

l=1

|✏l|2 ,

where cl and ĩl are the lth row vectors of matrix C and the
( eN +1)2 identity matrix I, respectively. The error expression
in (9) is composed of a sum of ( eN + 1)2 positive and inde-
pendent elements |✏l|2. Finding the optimal coefficients in cl
that will minimize the corresponding error element |✏l|2 for
all 1 < l < ( eN + 1)2 will lead to the minimum value of the
overall error. The optimal cl is found by calculating the par-
tial derivative of |✏l|2 with respect to cl and setting the result
to zero, which leads to the optimal solution for the lth row,
and by concatenating the solutions for all values of l, which
gives the optimal transformation matrix,

CAC = RhhỸ
H

⇣
ỸRhhỸ

H

⌘�1
. (10)

By substituting the transformation matrix CAC into (7), the
estimation of the HRTF coefficients is given by

ĥAC
nm = CACh = RhhỸ

H

⇣
ỸRhhỸ

H

⌘�1
h. (11)

The AC solution in (11) provides an estimation of the
HRTF coefficients from a set of HRTF measurements. Given
an HRTF database with a number of subjects that is signifi-
cantly larger than the number of estimated HRTF coefficients
( eN + 1)2, it can be assumed that Rhh can be accurately esti-
mated. In practice, the number of subjects in the database may

be limited and Rhh must therefore be approximated from a
relatively small sample of reference HRTFs. Therefore, two
approaches to approximate the HRTF autocorrelation matrix
are suggested. The first is to estimate Rhh from an existing
database of S subjects’ HRTFs. Several databases are avail-
able online [1, 2, 18] and can be used in this case, with

Rhh = E

h
h̃nmh̃H

nm

i
⇡

SX

s=1

h̃s

nm

�
h̃s

nm

�H
, (12)

with h̃s

nm representing one HRTF from the database. The
second is to use a single reference HRTF coefficients vector
h̃ref
nm that is selected from an HRTF database:

Rhh ⇡ h̃ref
nm

�
h̃ref
nm

�H
+ �I, (13)

where the purpose of the diagonal loading �I is to increase the
rank of matrix Rhh. Such loading can also be applied when
using (12) in the case of an insufficient number of subjects S.

4. SIMULATION STUDY

This section presents a simulation study that provides an ob-
jective performance evaluation of the AC approach, based on
a comparison between original and estimated HRTFs. The
HRTFs of 15 subjects (14 humans and a KEMAR manikin
[19]) were simulated using the boundary element method that
was applied on a 3D scan of the head and torso of the subjects.
In this database, 2030 directions were simulated according
to a Lebedev sampling scheme [20], providing an accurate
HRTF representation in the SH domain of an order higher
than eN = 27. A sparse version of each subject’s HRTF is
generated by down-sampling the original 2030 directions to
a subset of Q = 25 directions that were chosen to approxi-
mate the extremal sampling scheme [21]. The sparse HRTF
is used to estimate the HRTF coefficients in the SH domain
using either the standard SFT or the AC approach. The es-
timated HRTF coefficients in the SH domain are then used
to reconstruct the HRTF at the original L = 2030 directions
using inverse SFT, similarly to (5). A total of three methods
for estimating the HRTF coefficients are investigated in this
study: the SFT in (4), and two versions of the AC in (11), one
with a single reference and another with a set of references,
as described in equations (12) and (13), respectively.

Fig.1 shows the left ear’s HRTF magnitude of one subject
over the horizontal plane and for different frequencies. The
colors indicates the HRTF magnitude in decibels. Fig.1(a)
shows the original HRTF that was simulated over 2030 direc-
tions. It illustrates, for example, that the HRTF magnitude
is higher for sound sources from ipsilateral directions com-
pared to contralateral directions. The following sub-figures
of Fig.1 show the reconstruction of the same HRTF from a
sparse measurement grid with 25 directions using the standard



(a) (b)

(c) (d) 10

0

-10

-20

-30

10

0

-10

-20

-30

Fig. 1. Magnitude of HRTF over the horizontal plane: (a) true
HRTF; (b) SFT interpolation N = 4; (c) AC-single reference
N = 27; (d) AC-multiple references N = 27.

SFT and the AC approaches. The white dashed line repre-
sents the aliasing-free frequency limit. Comparing the recon-
structed HRTFs with the true HRTF reveals that at frequencies
lower than the aliasing-free limit the reconstructed HRTFs re-
semble the original HRTF, due to the low sparsity error at
low frequencies. At higher frequencies, the sparsity error is
higher and the reconstructed HRTF using SFT in Fig.1(b) is
corrupted. In contrast, Fig.1(c) shows a reconstruction that
is much closer to the original HRTF, which indicates the im-
provement gained by the AC approach with a single HRTF
reference (which is the KEMAR HRTF). Interestingly, rely-
ing on all 14 available HRTF references to approximate the
autocorrelation matrix, Rhh, further improves the AC perfor-
mance, as is evident from comparing between Fig.1(d) and
the original HRTF in Fig.1(a). This result illustrates the im-
provement achieved by the AC approach for a specific subject
over the horizontal plane.

A more general and quantitative evaluation is obtained by
averaging the reconstruction error, ✏⌦, over the original 2030
directions, over all 14 human subjects, for a wide bandwidth
up to 15kHz. ✏⌦ is computed by

✏⌦ =

���ĥL � h
���
2

khk2
, (14)

where ĥL are the estimated HRTFs in L directions similar to
(5) and h holds the original HRTF measurements at the same
directions. Both ĥL and h are complex and the reconstruction
error accounts for differences in magnitude and phase of the
reconstructed HRTF. The averaged reconstruction error is cal-
culated by averaging the reconstruction error over all 14 hu-
man subjects. For the AC method with a single reference, the
autocorrelation matrix is calculated using KEMAR’s HRTF.
For the AC method with multiple references, the autocorrela-
tion matrix is calculated for each human subject with all other
subjects as references.

Fig.2 shows the reconstruction error, averaged over
14 subjects, represented in both percentage and decibels.

(a) AC (b) LMMSE [11]
Fig. 2. HRTF reconstruction error using different approxima-
tion techniques

Fig.2(a) shows the errors using: SFT, AC with a single ref-
erence and AC with multiple references, represented by the
dotted black, light blue and blue lines respectively. At low
frequencies the error using the three methods is low. At
higher frequencies the error of the SFT increases signifi-
cantly. The dashed line represents the average error between
KEMAR’s HRTF and each of the subjects’ HRTF, calculated
using (14) with ĥL = hKEMAR. It illustrates that the AC method
with a single reference yields a noticeable improvement com-
pared to standard SFT, and also compared to the reference
itself. Using AC with multiple references further improves
the estimation accuracy with an error of less than �6dB up
to 12kHz. As a comparison to the results in Fig.2(a), Fig.2(b)
shows the same error measures obtained using the LMMSE
estimator, based on Romigh’s approach [11]. Although it is
possible to use the LMMSE estimator with a single reference,
the improvement in the reconstruction accuracy with respect
to the reference HRTF is limited. For the case of multiple
references, the LMMSE reconstruction error is comparable
to the AC reconstruction error. This may imply that with
an increasing number of references the two approaches con-
verge. Fig.2 demonstrates that the significant improvement
achieved by the AC method holds for a wide bandwidth, over
all directions, and for a variety of human HRTFs.

5. CONCLUSIONS

In this paper a new method for estimating the HRTF coef-
ficients in the SH domain was developed by minimizing the
expected sparsity error. Unlike the standard SFT that requires
as many samples in space as the number of SH coefficients, it
has been shown that the new method enables the estimation of
a large number of HRTF SH coefficients even from a sparse
HRTF measurement. This is achieved by incorporating statis-
tics obtained from reference HRTFs with the sparsely mea-
sured HRTF. An advantage of this method over previously
suggested methods is that even a single HRTF reference sig-
nificantly reduces the sparsity error, and using more HRTF
references may further improve the results. Informal listening
tests indicate some clear perceptual benefits of the proposed
method. A formal listening test is proposed for future work.
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