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ABSTRACT

In this paper, we introduce the Kaizen framework that uses
a continuously improving teacher to generate pseudo-labels
for semi-supervised speech recognition (ASR). The proposed
approach uses a teacher model which is updated as the ex-
ponential moving average (EMA) of the student model pa-
rameters. We demonstrate that it is critical for EMA to be
accumulated with full-precision floating point. The Kaizen
framework can be seen as a continuous version of the iterative
pseudo-labeling approach for semi-supervised training. It is
applicable for different training criteria, and in this paper we
demonstrate its effectiveness for frame-level hybrid hidden
Markov model-deep neural network (HMM-DNN) systems as
well as sequence-level Connectionist Temporal Classification
(CTC) based models. For large scale real-world unsupervised
public videos in UK English and Italian languages the pro-
posed approach i) shows more than 10% relative word error
rate (WER) reduction over standard teacher-student training;
ii) using just 10 hours of supervised data and a large amount
of unsupervised data closes the gap to the upper-bound super-
vised ASR system that uses 650h or 2700h respectively.

Index Terms— speech recognition, semi-supervised
training, pseudo-labeling, low-resource, teacher-student

1. INTRODUCTION

Self-training [1, 2, 3] is one of the most widely used ap-
proaches for semi-supervised training of automatic speech
recognition (ASR). This approach uses an initial model that
is called “teacher” or “seed” model to generate labels for
unsupervised data. The generated labels are called pseudo-
labels (PLs). The labeling can be done at the frame-level,
which is usually in the form of soft targets or a distribution as
in the case of knowledge distillation [4, 5, 6], or at sequence-
level. While there are approaches to use a distribution over
sequences [7, 8, 9] for sequence-level distillation, often only
the best hypothesis sequence is used as PLs. The unsuper-
vised data with the PLs is combined with the supervised
data to train a new model. This approach is also known as
“pseudo-labeling” (PL) and serves as the baseline for semi-
supervised training methods. This process can be repeated for

several “generations” to obtain better models in successive
generations [10]. Strong data augmentation while training the
student model is shown to improve self-training and helps to
avoid local optima [11, 12, 13]. As opposed to changing the
teacher model in discrete steps, i.e. after each PL generation,
some recent works explored updating the model continuously
and using it to generate PLs [13, 12, 14]. In this class of ap-
proaches, we propose a new PL framework, called Kaizen. In
Kaizen, we propose to use the Exponential Moving Average
(EMA) of the student model as the teacher model.

Our research is focused on semi-supervised learning for
low-resource scenarios when only 1-10h of supervised data
is available. In this paper, we make the following novel con-
tributions: 1) We propose EMA teacher for semi-supervised
ASR and empirically show that Kaizen framework in combi-
nation with data augmentation stabilizes the training even on
large-scale realistic datasets with more than 10k hours of un-
labeled data and only 1-10h of labeled data. 2) We analyse
the training dynamics with EMA teacher and show that for
stable training it is critical for the teacher to be sufficiently far
away from the student model: EMA teacher being too close
to the student model causes model’s collapse and divergence,
while being too far leads to slow convergence. 3) Kaizen out-
performs a 10h supervised baseline and a single generation
of PL by more than 50% and 10% relative WER reduction,
respectively, with large scale real-world unsupervised public
videos in UK English and Italian languages. 4) EMA teacher
combines effectively with slimIPL [14], an alternate approach
to stabilize training, and achieves new state-of-the-art results
for greedy decoding on LibriSpeech [15] using labeled 10h
and unlabeled 54k hours of Libri-Light [16] data.

In Section 2, we compare our proposed work to related
works in the literature. In Section 3, we describe the Kaizen
framework and the training criteria used. In Section 4, we
describe the experimental setup and discuss results. In Sec-
tion 5, we provide our conclusions and planned future work.

2. RELATED WORK

EMA has been used previously for semi/self-supervised train-
ing. Temporal Ensembling [17] uses EMA on network pre-



dictions while in this work we apply it on the network pa-
rameters. Mean Teacher [18] uses EMA on parameters and
consistency cost for image recognition tasks. In this work,
we generalize EMA teacher to use with sequence-level loss
like Connectionist Temporal Classification (CTC) [19] and
on ASR tasks. BYOL [20] showed that EMA teacher can
be used for self-supervised learning without using negative
examples while our work focuses on semi-supervised learn-
ing. Multiple iterations of PL along with strong data aug-
mentation are shown to be superior to the single generation
of PL [11, 12]. Work [13] extends this to continuously train a
single model and use the latest model state to generate new
PLs. In [14], this approach was found to be unstable and
prone to divergence. slimIPL algorithm [14] gets around this
via a dynamic cache containing PLs generated from the older
model states. Our proposed Kaizen framework is an alterna-
tive way of stabilizing the training when using a continuously
updating teacher via EMA with a sufficiently large discount
factor. Independently, a concurrent work [21] proposed to
use EMA teacher with CTC criterion and applied it to semi-
supervised ASR with 100s of hours of supervised data. In this
work, we focus on the low resource scenario of 1-10hr of su-
pervised data, and understanding the training dynamics with
EMA teacher in this setting.

3. METHOD

3.1. Kaizen: continuously improving teacher

The Kaizen framework consists of a pair of models – the
teacher model and the student model – that are trained si-
multaneously. The student model is trained using standard
gradient-based optimization. Let its parameters be θt after t
updates. The teacher model parameters ξt are updated every
∆ steps as the EMA of the student model parameters:

ξt = (1− α)ξt−∆ + αθt, t = n∆, n ∈ Z+, (1)

where α is a discount factor. A higher α discounts the older
student models’ parameters and gives more weight to the
more recent student models’ parameters.

In Kaizen framework, training progresses in 2 stages –
burn-in and continuous PL. In the burn-in stage, the student
model is trained using PLs from a previous seed model. In the
continuous PL stage, the student model is trained using the
PLs generated by the continuously updating teacher model.

The continuous PL stage can be described using a block
diagram, Figure 1. The audio features x from an utterance in
the unsupervised dataset is fed through both teacher and stu-
dent neural network models. For the student model, the data
is augmented on-the-fly using data augmentation approaches
like SpecAugment [22]. The student network hidden activa-
tions are also randomly dropped using dropout [23], while
dropout is not applied on the teacher network. The resultant
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Fig. 1. Block diagram of the Kaizen framework.

outputs from the teacher and student models, ŷ and y respec-
tively, are used to compute the loss F(ŷ, y). The gradients
are backpropagated through the student network to update its
parameters θt. The gradients are not backpropagated through
the teacher model, which instead is updated as EMA of the
student model parameters with Eq. (1). Supervised data can
be used along with unsupervised data during training.

3.2. Exponential Moving Average (EMA)

EMA is more commonly described by λ = 1− α, a decay
factor. However, we find the discount factor α to be more in-
tuitive to quantify the ”distance” between the student model,
which is also referred to as the online model, and its slow
moving average (teacher model). The EMA model parame-
ters can also be unrolled as a summation over student models
after different number of updates, with each student model θi
contributing with a weight wi to the summation:

ξt =
∑
i≤t

wiθi

, αθt + (1− α)αθt−∆ + · · ·+ (1− α)
n
αθt−n∆ + . . .

Another useful quantity is the half-life τ which is defined as:

wt−τ =
wt
2

or τ = −∆
ln 2

ln (1− α)
(2)

Table 1 shows the half-lives for some α and ∆ values.

λ α ∆ τ

0.99 0.01 1 69
0.999 0.001 1 693
0.9999 0.0001 1 6931
0.999 0.001 10 6928
0.975 0.0025 10 2769

Table 1. Half-lives for common values of α and ∆.

A larger α or equivalently a small half-life results in the
teacher model being “too close” to the student model. This



can encourage the model to produce targets that are easier for
the model to predict and also leads to the model “collapse” so
that the model starts to predict just silence or CTC <blank>
token. For α = 1 and ∆ = 1 this is consistent1 with the ob-
served divergence in [14] but is in contrast to the [13] where
the authors were able to train the model successfully. How-
ever, our setup is significantly different from the setup in [13]
because we have only 1-10 hours of supervised data.

A smaller α gives smaller weight for the recent student
model which results in more stable training. However, the
teacher model is more static and this can lead to worse perfor-
mance. We find that for better performance and stable training
the half-life should be at least 1000 or higher.

In one extreme of α = 0, the teacher model is not updated
at all. This is equivalent to the single-stage PL a.k.a. teacher-
student training. In the other extreme of α = 1, the teacher
model is replaced with the student model every ∆ updates.
This is equivalent to iterative PL (IPL) [12]. Kaizen thus pro-
vides a generalized framework for semi-supervised training
that encompasses both single-stage PL as well as IPL.

3.3. Training criteria

The Kaizen framework can be used with different training cri-
teria and modeling paradigms. In this paper, we investigate
two modeling paradigms.

Hybrid HMM-DNN Hybrid hidden Markov model –
deep neural network (HMM-DNN) is the simplest paradigm
where the neural network predicts context-dependent charac-
ter (chenone) units [24] at the frame-level. Here, we train
the student network to minimize the Kullback-Leibler diver-
gence [25] between the teacher network’s chenone posterior
distribution ŷ and student network’s chenone posterior distri-
bution y, F(ŷ, y;x) = D(ŷ || y). This is similar to the case
of standard teacher-student training. In our work, we take the
top-k posteriors from the teacher network to get at least 0.99
probability mass as done in [26].

CTC In this paradigm, the neural network is trained with
the sequence-level criterion of CTC. We train the student net-
work by minimizing the conditional probability of the token
sequence ŷ predicted by the teacher network, F(ŷ, y;x) =
− log pθ(ŷ | x). In this work, we use greedy decoding as in
[13, 14] where the sequence ŷ is obtained by de-duplicating
the output label sequence of the teacher model and removing
the <blank> labels. Alternatively, a beam-search decoding
can be used to obtain ŷ. However, this is computationally
more expensive and we did not try it in the current work.

3.4. Half-precision floating-point (fp16) training

When the models are in full-precision floating point (fp32)
representation, the Kaizen framework is straightforward.
However, when the models are trained with half-precision

1[14] regularizes training via the dynamic cache while we do it via EMA.

floating point (fp16) for efficiency, we found that it is critical
that the EMA parameters are accumulated in fp32. This re-
sults in an extra copy of EMA parameters in fp32. Without
this, there is a significant degradation relative to full fp32
training, and for some parameter settings it does no better
than single generation of PL. This shows that high precision
is essential to capture the small changes in the EMA model.

Note that the additional fp32 copy is only used for the
EMA update step. After the update step of EMA parameters,
it can be cast back to fp16 so that the forward pass through the
teacher network is in fp16. This allows using 1.5 times larger
batch size compared to fp32 without any loss in accuracy.

4. EXPERIMENTS

4.1. Data Preparation

Public videos For training data, we use de-identified pub-
lic videos with no personally identifiable information (PII) in
UK English and Italian languages. In this paper, we simulate
a low-resource scenario by limiting to a subset of 10h of su-
pervised data, and a more extreme scenario with just 1h of
supervised data in UK English. For both these languages, we
use a much larger amount of unsupervised data consisting of
75k hours for UK English and 50k hours for Italian. As an
upper-bound experiment, we compare with a supervised-only
setting where we have 650h for UK English and 3,700h for
Italian. The supervised data is augmented 3x with speed per-
turbation [27]. For evaluation, we use a 23h test set for UK
English and 3 test sets for Italian – clean, noisy and extreme –
which contain 24h, 24h and 45h of data, respectively. We use
a separate 14h development set for hyper-parameter tuning for
both UK English and Italian. For UK English, we use tran-
scripts corresponding to 650h plus an additional 13k hours of
generic English video transcripts for n-gram language model
(LM) training. For Italian, we use the transcripts from the
same 3.7k hours for n-gram LM training.
LibriSpeech We also perform experiments using Libri-Light
data [16]: 10h labeled Libri-Light subset and 54k hours of
unlabeled audio plus LibriSpeech [15] itself without labels.
The standard LibriSpeech validation sets (dev-clean and dev-
other) are used to tune all hyper-parameters, as well as to se-
lect the best models. Test sets (test-clean and test-other) are
used only to report final word error rate (WER). All features
are normalized to have zero mean and unit variance per in-
put sequence before feeding them into the acoustic model.
We report not only WER without an LM, but also WER ob-
tained by a one-pass beam-search decoder [28] leveraging a
4-gram word-level LM [29] and further rescoring the beam
of hypothesis with a strong Transformer LM [30], following
the procedure from [30]. The LMs here were trained on the
official LibriSpeech language modeling data [15].

To prepare public videos we use a time-delay neural
network, bi-directional long short-term memory [31, 32]



(TDNN-BLSTM) model trained using flatstart lattice-free
maximum mutual information (LF-MMI) [33, 34] on the 10h
supervised data. We refer to this as the alignment model and
it was used to align and segment the labeled data into 10s seg-
ments for training. The unsupervised data was pre-processed
using a voice activity detection model to select only speech
segments of 45s maximum duration. These segments were
then decoded using the alignment model to produce machine
generated transcriptions which are used as PLs for burn-in
stage of training. The same hybrid TDNN-BLSTM LF-MMI
model is trained on 10h labeled Libri-Light data and is used
to generate burn-in PLs with the 4-gram GB \ LV \ LS
LM [12] for all LibriSpeech training data.

4.2. Model details

The input features to all the models are 80 dimensional
Mel-scale log filterbank coefficients computed every 10ms
over 25ms windows. Spectral masking (both frequency and
time) is applied on-the-fly using SpecAugment except for the
teacher model in Kaizen framework. The TDNN-BLSTM
alignment model has 2 BLSTM [35] layers with 640 hid-
den units in each recurrence direction and 3 TDNN layers
[36, 37] with 640 hidden units interleaved between input
and first BLSTM layer, and between the 2 BLSTM layers.
The modeling units are context-dependent bi-character units,
each modeled with a 1-state HMM topology with state-tying
done using context-dependency tree built using purely the
text transcripts (no alignments) and silence inserted randomly
between words as done in [38, 34].
Public videos We investigate two modeling paradigms – hy-
brid HMM-DNN and CTC. For hybrid HMM-DNN paradigm,
the modeling units are context-dependent tri-character units,
each modeled with a 1-state HMM topology with state-tying
done using a context-dependency tree build using statistics
from the frame-level character alignments produced by the
alignment model. For CTC paradigm, we use sentence-piece
[39] units. For both these paradigms, we use a 80M parame-
ter neural network with a 2 VGG layers [40] followed by 12
Transformer blocks (768 hidden units, 8 heads) [41] follow-
ing [42]. Each VGG layer sub-samples by 2 in the time-axes
using max-pooling [43], resulting in the model that outputs at
a rate of 25Hz (40ms time step).
LibriSpeech Here we investigate only CTC paradigm us-
ing English alphabet letters as modeling units. The neural
network strictly follows [14]: a 1-D convolution with kernel
size 7 and stride 3 followed by 36 4-head Transformer blocks
(768 hidden units, 4 heads), resulting in a 270M parameter
model that outputs at a rate of 33.(3)Hz (30ms time step).

4.3. Training details

For 1h/10h of public videos data, the hybrid TDNN-BLSTM
LF-MMI trained alignment model has lower WER than

the 12-layer Transformer model trained using either cross-
entropy (CE) or CTC losses. For example, the dev results in
Table 2 for 10h supervised with CTC paradigm is significantly
worse than the hybrid model. Thus the alignment model also
serves as the supervised baseline. For LibriSpeech a hybrid
model also outperforms a CTC model on 10h of supervised
data, however the gap is small, see Table 5.

For the semi-supervised experiments we use only unsu-
pervised data for both burn-in and continuous PL stages, hav-
ing in total 150k/200k updates for public videos and 500k
for LibriSpeech. During the burn-in updates (25k for public
videos and 80k for LibriSpeech), we use the PLs produced
by the baseline model. For public videos, EMA is accumu-
lated only after 15k updates. This was found to not affect the
performance on Librispeech; hence on Librispeech EMA was
accumulated from the beginning. After the burn-in updates,
we switch to using PLs from continuously updated teacher
model (continuous PL stage). We follow the continuous PL
stage with a fine-tuning stage where the final student model2

is fine-tuned on the supervised data only.
We use the Adam [44] and Adagrad [45] optimizer with

mixed-precision [46] training and gradient norm clipping at
10 and 1 for public videos and LibriSpeech, respectively. For
the supervised LF-MMI baseline, we use a learning rate that
rises from 1.25e-6 to 1.25e-4 in 500 updates and then reduces
by a factor of 0.5 when the valid loss improvement is less than
1e-4 relative. We use distributed data-parallel training with
batch of 40min of audio distributed across 4 GPUs. For semi-
supervised experiments with public videos, the total batch is
17.1h distributed across 64 GPUs and learning rate rises lin-
early for 7.5k updates to 1.5e-4 and decreases linearly to 0.
For LibriSpeech, the total batch is 0.9h distributed across 16
GPUs and learning rate rises linearly for 64k updates to 0.03
and then is decayed by 2 once valid WER reaches the plateau.
For fine-tuning stage, a learning rate rises linearly for 500 up-
dates and decreases linearly until 10k updates and the number
of GPUs is reduced to 2-4.

4.4. Results

4.4.1. Public videos

Tables 2, 3 and 4 show WER results (including LM decod-
ing) comparing standard PL, Kaizen and IPL on 10h UK En-
glish, 1h UK English and 10h Italian public videos setups.
For Kaizen, we used α = 0.0025,∆ = 10. For IPL, we used
∆ = 1000 for UK English and ∆ = 2000 for Italian. We also
use a hybrid model trained on 10h or 1h of supervised data
as the baseline. The WER reductions (WERR) are reported
relative to this baseline for all the models. We also report per-
formance of an upper-bound model that is trained on all the

2The final EMA teacher model is only slightly better than the final stu-
dent model (0.2% absolute WER difference). Due to the small performance
difference and for consistency with experiments not using EMA, we use the
student model as the final model for fine-tuning.



supervised data that we have access to, i.e. 650h on UK En-
glish and 2.7k hours on Italian. On UK English setups, we
show WER on dev and test sets. On Italian setup, we show
WER on 3 test sets – clean, noisy and extreme.

Model Paradigm dev test WERR
10h sup Hybrid 53.9 51.1
10h sup CTC 74.4 -
650h sup Hybrid 23.3 22.4 56.3
PL Hybrid 30.2 29.8 41.7
Kaizen Hybrid 27.3 26.8 47.6
PL CTC 26.2 25.5 50.2
Kaizen CTC 23.2 22.7 55.5
IPL CTC 23.9 23.4 54.2

Table 2. WERs on 10h UK English setup with 75k hours of
unsupervised data.

Model Paradigm dev test WERR
1h sup Hybrid 81.1 79.9
650h sup Hybrid 23.3 22.4 72.0
PL Hybrid 64.6 62.3 22.0
Kaizen Hybrid 53.4 53.0 33.7
PL CTC 55.3 54.8 31.4
Kaizen CTC 37.2 35.3 55.8
IPL CTC 37.9 36.7 54.1

Table 3. WERs on 1hr UK English setup with 75k hours of
unsupervised data.

Model clean noisy extreme WERR
10h sup Hybrid 39.7 43.9 60.4
2700h sup 9.3 11.8 17.2 73.8
PL 13.2 17.2 26.3 61.4
Kaizen 11.5 14.6 21.8 67.2
IPL 11.5 14.6 21.8 67.2

Table 4. WERs on 10hr Italian setup with 50k hours of unsu-
pervised data. If not stated all models are CTC-based.

We can see from the results that Kaizen outperforms PL
by more than 10% relative on all the setups for both hybrid
HMM-DNN and CTC paradigms while Kaizen is similar to
or slightly better than IPL. On both UK English and Ital-
ian languages, using just 10h of supervised data and a large
amount of unsupervised data we close the gap to the upper-
bound ASR system that uses 650h or 2.7k hours, respectively.

4.4.2. LibriSpeech

Table 5 shows WER results comparing Kaizen and other
methods. We use a hybrid model and a CTC model trained
on 10h of supervised data only as the baseline. Kaizen

(α = 10−4,∆ = 1) demonstrates similar performance to
slimIPL [14] (cache = 1000, p = 0.1), while a combination
of slimIPL and Kaizen together (α = 10−3,∆ = 1, cache =
1000, p = 0.1) achieves better performance than individual
approaches. Moreover, the combination achieves a new state-
of-the-art result for the greedy decoding and almost closes
the gap with state-of-the-art self-supervised methods [47, 48]
for decoding with a language model.

Model LM dev test
clean other clean other

10h sup Hybrid 4-gram 15.9 37.2 16.6 38.2
GB \ LV \ LS 15.1 36.3 15.9 37.1

10h sup [14] 4-gram 18.8 39.3 19.6 39.7

w2v 2.0 [47] - 6.3 9.8 6.3 10.0
Transformer 2.4 4.8 2.6 4.9

HUBERT [48] - 6.8 9.6 6.7 9.9
Transformer 2.2 4.3 2.4 4.6

slimIPL - 5.5 9.4 5.6 9.9
Transformer 2.6 5.4 3.2 6.1

Kaizen - 5.4 9.5 5.5 10.1
Transformer 2.5 5.3 3.0 6.0

Kaizen+slimIPL - 5.1 8.2 5.1 8.8
Transformer 2.4 4.9 2.9 5.5

Table 5. LibriSpeech WERs for supervised baselines and dif-
ferent semi/self-supervised methods trained on Libri-Light,
10h labeled and 54k hours unlabeled data. If not stated all
models are CTC-based.

4.4.3. Effect of EMA parameters

In this section, we study the effect of two EMA parameters –
the discount factor α and update frequency ∆. We do this
investigation on the UK English videos dataset in the hybrid
HMM-DNN paradigm. The stability of training depends on
the distance between teacher and student models, which for
Kaizen is quantified using half-life, Eq. (2).

The plots in Figures 2, 3 and 4 show the WER on UK
English 10 hours supervised setup (fine-tuning stage is not
included) as a function of number of training hours for various
training runs. For each training run, the point where the model
switches to using the continuously generated PLs is marked
with a solid circle.

Figure 2 shows various training runs with ∆ = 1 and α ∈
{0.1, 0.01, 0.001, 0.0001}. We see that the model diverges
very quickly when α = 0.1 (τ = 7). The model training gets
more stable progressively as we increase the α value towards
the most stable 0.0001 (τ = 6931).

Figure 3 demonstrates the effect of EMA update fre-
quency ∆. For α = 0.001, there is divergence with ∆ = 1
(τ = 693), but the training is stable and WER improves con-
tinuously with ∆ = 10 (τ = 6928). For higher value of α like
0.1 or 0.25 where half-life is less than 10 if ∆ = 1, the train-
ing diverges almost immediately as seen for α = 0.1,∆ = 1.
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Fig. 2. Effect of EMA discount factor α.

But even with such α, the training is stable if ∆ is increased
to 1000 as seen for α = 0.25,∆ = 1000 (τ = 2409). We find
that the post-fine-tuning model performance is also similar for
similar half-life values.
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Fig. 3. Effect of EMA update frequency ∆.

Figure 4 compares the basic Kaizen case of α =
0.00025,∆ = 1 with IPL (α = 1,∆ ∈ {100, 1000, 10000}).
We see that with ∆ = 100, IPL diverges very soon after
switching to using continuously generated PLs. Increasing
∆ stabilizes it as seen with ∆ = 1000 where the divergence
happens only after training on 1M hours. Using a much larger
∆ value of 10000 (for batch size of 17.1h and dataset of 75k
hours, this is 171k hours = 2.8 epochs), the model trains stably
but improves more slowly. Using typical Kaizen parameters
of α = 0.00025,∆ = 1 (τ = 2772), the training is stable
while also showing better WER after 2M hours.

These results show that the model training is not stable un-
less the distance between teacher and student models is suffi-
ciently large (half-life of more than 2000). Smaller distances
i.e. smaller half-lives lead to “collapse” and WER degrades
rapidly. In particular, we find that for updating the model con-
tinuously ∆ = 1 as in [13] requires a small EMA discount
factor to discount most recent student models. We also tried
to mix-in some supervised data such that 10% of data in each
epoch is supervised. This did not help stability. We hypothe-
size that this is partly due to our supervised dataset being very
small in the order of 1-10h. Further experiments with larger
supervised datasets are needed in the future to confirm this.
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Fig. 4. Comparing IPL and Kaizen.

5. CONCLUSIONS AND FUTURE WORK

We introduce the Kaizen framework for semi-supervised
training that uses a continuously improving teacher model to
generate pseudo-labels. The teacher model is updated as the
exponential moving average of the student model. The pro-
posed framework is shown as a generalization of PL and IPL.
We analyzed the effect of the EMA parameters and showed
that the distance between the teacher and student models is the
key for effective and stable training. A small EMA half-life
leads to collapse of the model and poor performance, while
too large half-life leads to slow improvement. We showed
that the proposed approach gives more than 10% WERR over
standard teacher-student training and performs comparatively
to IPL on public videos dataset in UK English and Italian
languages. We also demonstrated that Kaizen can be com-
bined with slimIPL to achieve new state-of-the-art result for
the greedy decoding and further close the gap with state-of-
the-art self-supervised methods for decoding with an LM on
LibriSpeech with 10h of labeled and 54k unlabeled data.

5.1. Future Work

This work has explored Kaizen for Hybrid HMM-DNN and
CTC based models, and we plan to explore this further for
sequence-to-sequence models like RNN-T. Preliminary ex-
periments also show that scheduling EMA parameters is
promising. Using larger discount factor in the beginning of
training allows the teacher to forget the history and benefit
from the fast improving student in the beginning. The dis-
count factor can be later reduced to make the training more
stable. While current work has shown applicability in low-
resource scenario, we plan to further expand it to higher re-
source settings that have 100s to 1000s of hours of supervised
data. The proposed approach naturally fits into online training
of ASR models.
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Geoffrey Zweig, and Michael L Seltzer, “From senones
to chenones: Tied context-dependent graphemes for hy-
brid speech recognition,” ASRU, 2019.

[25] Solomon Kullback and Richard A Leibler, “On infor-
mation and sufficiency,” The annals of mathematical
statistics, vol. 22, no. 1, pp. 79–86, 1951.



[26] Kritika Singh, Vimal Manohar, et al., “Large scale
weakly and semi-supervised learning for low-resource
video asr,” in Interspeech, 2020.

[27] Tom Ko, Vijayaditya Peddinti, Daniel Povey, and San-
jeev Khudanpur, “Audio augmentation for speech recog-
nition.,” in Interspeech, 2015.

[28] Ronan Collobert, Christian Puhrsch, and Gabriel
Synnaeve, “Wav2letter: an end-to-end convnet-
based speech recognition system,” arXiv preprint
arXiv:1609.03193, 2016.

[29] Tatiana Likhomanenko, Gabriel Synnaeve, and Ronan
Collobert, “Who needs words? lexicon-free speech
recognition,” Proc. Interspeech 2019, pp. 3915–3919,
2019.

[30] Gabriel Synnaeve et al., “End-to-end asr: from super-
vised to semi-supervised learning with modern architec-
tures,” in SAS workshop ICML, 2020.

[31] Gaofeng Cheng, Vijayaditya Peddinti, Daniel Povey, Vi-
mal Manohar, Sanjeev Khudanpur, and Yonghong Yan,
“An exploration of dropout with lstms.,” in Interspeech,
2017, pp. 1586–1590.

[32] Vijayaditya Peddinti et al., Low latency modeling of
temporal contexts for speech recognition, Ph.D. thesis,
Johns Hopkins University, 2017.

[33] Daniel Povey, Vijayaditya Peddinti, Daniel Galvez, Pe-
gah Ghahremani, Vimal Manohar, Xingyu Na, Yim-
ing Wang, and Sanjeev Khudanpur, “Purely sequence-
trained neural networks for asr based on lattice-free
mmi,” in Interspeech, 2016.

[34] Xiaohui Zhang, Vimal Manohar, David Zhang, et al.,
“On lattice-free boosted MMI training of HMM and
CTC-based full-context ASR models,” arXiv preprint
arXiv:2107.04154, 2021.

[35] Sepp Hochreiter and Jürgen Schmidhuber, “Long short-
term memory,” Neural computation, vol. 9, no. 8, pp.
1735–1780, 1997.

[36] Kevin J Lang, Alex H Waibel, and Geoffrey E Hinton,
“A time-delay neural network architecture for isolated
word recognition,” Neural networks, vol. 3, no. 1, pp.
23–43, 1990.

[37] Vijayaditya Peddinti, Daniel Povey, and Sanjeev Khu-
danpur, “A time delay neural network architecture for
efficient modeling of long temporal contexts,” in Proc.
Interspeech, 2015.

[38] Hossein Hadian, Hossein Sameti, Daniel Povey, and
Sanjeev Khudanpur, “End-to-end Speech Recognition
Using Lattice-free MMI,” in Interspeech, 2018, pp. 12–
16.

[39] Taku Kudo and John Richardson, “SentencePiece: A
simple and language independent subword tokenizer
and detokenizer for neural text processing,” in EMNLP,
2018.

[40] Karen Simonyan and Andrew Zisserman, “Very deep
convolutional networks for large-scale image recogni-
tion,” arXiv preprint arXiv:1409.1556, 2014.

[41] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin, “Attention is all you need,” in Ad-
vances in neural information processing systems, 2017,
pp. 5998–6008.

[42] Yongqiang Wang, Abdelrahman Mohamed, Duc Le,
Chunxi Liu, Alex Xiao, et al., “Transformer-based
acoustic modeling for hybrid speech recognition,” in
ICASSP, 2020.

[43] Kouichi Yamaguchi, Kenji Sakamoto, Toshio Akabane,
and Yoshiji Fujimoto, “A neural network for speaker-
independent isolated word recognition,” in First Inter-
national Conference on Spoken Language Processing,
1990.

[44] Diederik Kingma and Jimmy Ba, “Adam: A method for
stochastic optimization,” ICLR, 2014.

[45] John Duchi, Elad Hazan, and Yoram Singer, “Adaptive
subgradient methods for online learning and stochastic
optimization,” Journal of machine learning research,
vol. 12, no. Jul, pp. 2121–2159, 2011.

[46] Sharan Narang, Gregory Diamos, Erich Elsen, Paulius
Micikevicius, Jonah Alben, David Garcia, Boris Gins-
burg, Michael Houston, Oleksii Kuchaiev, Ganesh
Venkatesh, et al., “Mixed precision training,” in Int.
Conf. on Learning Representation, 2017.

[47] Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed,
and Michael Auli, “wav2vec 2.0: A framework for
self-supervised learning of speech representations,” Ad-
vances in Neural Information Processing Systems, vol.
33, 2020.

[48] Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai,
Kushal Lakhotia, Ruslan Salakhutdinov, and Abdelrah-
man Mohamed, “Hubert: Self-supervised speech rep-
resentation learning by masked prediction of hidden
units,” arXiv preprint arXiv:2106.07447, 2021.


