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ABSTRACT
Recurring batch data pipelines are a staple of the modern enterprise-

scale data warehouse. As a data warehouse scales to support more

products and services, a growing number of interdependent pipelines

running at various cadences can give rise to periodic resource bot-

tlenecks for the cluster. This resource contention results in pipelines

starting at unpredictable times each day and consequently variable

landing times for the data artifacts they produce. The variability

gets compounded by the dependency structure of the workload, and

the resulting unpredictability can disrupt the project workstreams

which consume this data. We present Clockwork, a delay-based

global scheduling framework for data pipelines which improves

landing time stability by spreading out tasks throughout the day.

Whereas most scheduling algorithms optimize for makespan or

average job completion times, Clockwork’s execution plan opti-

mizes for stability in task completion times while also targeting

efined pipeline SLOs. We present this new problem formulation and

design a list scheduling algorithm based on its analytic properties.

We also discuss how we estimate the resource requirements for our

recurring pipelines, and the architecture for integrating Clockwork

with Dataswarm, Facebook’s existing data workflow management

service. Online experiments comparing this novel scheduling algo-

rithm and a previously proposed greedy procrastinating heuristic

show tasks complete almost an hour earlier on average, while ex-

hibiting lower landing time variance and producing significantly

less competition for resources in the cluster.
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1 INTRODUCTION
Data is used by almost all internet applications. Many apps are

backed by machine learning models trained on millions to billions

of training examples, and the new wave of big data analytics-driven

business intelligence is a thriving industry. As a large social media

platform with a global presence, Facebook processes data on an

immense scale, in the previous decade its data warehouse that has

grown in size from hundreds of petabytes [22] to several exabytes.

While this growth has unlocked innumerable new opportunities

for innovation, it comes with an ever-increasing demand on com-

puting resources, which if not managed properly can cause strain

on Facebook’s infrastrucutre.

At a high level, data arrives to Facebook’s data warehouse in few

different ways: raw ingestion, streaming ETL (Extract, Transform,

and Load) apps, and batch scheduled ETL pipelines, with pipelines

representing the bulk of the computational workload. Data pipelines

are executed by Dataswarm, which is Facebook’s internal data

workflow automation and scheduling platform [21]. Dataswarm

is centered around coordinating a directed acyclic graph (DAG)

of tasks, with a pipeline being defining as a set of tasks and their

dependencies (which may be either on intra-pipeline tasks or on

data artifacts produced by other pipelines). Other relevant features

of Dataswarm is that it allows users to define tasks for different

data processing engines, as well as the flexibility to define periodic

jobs (daily, hourly, weekly, etc.). An open-sourced variant which is

very similar to Dataswarm is Apache Airflow [2].

https://doi.org/10.1145/3447548.3467119
https://doi.org/10.1145/3447548.3467119
https://doi.org/10.1145/3447548.3467119
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The growth of Facebook’s data warehouse has raised new sched-

uling challenges for Dataswarm. Historically, Dataswarm has used

a very straightforward dispatch mechanism—kicking off a task as

soon as its upstream dependencies are satisfied. In practice this

leads to launching a significant volume of equal-priority pipelines

at periodic times of the day (principally around midnight), and with

the number of pipelines now growing well into the tens of thou-

sands this has invariably given rise to demand spikes and resource

bottlenecks. Due to this resource contention, tasks may need to

wait in queue for resources to become available, and the queueing

delay for a given task can vary significantly across days depending

on variable start and landing times for tasks occurring upstream.

These factors introduce an element of randomness in the actual

starting time for the given task, and subsequently in the landing

times of the Hive tables and other data artifacts these tasks produce,

which affects the landing times of tasks further downstream, and

so on. In other words, the randomness in landing times gets com-

pounded by the DAG structure of the overall Dataswarm workload,

with downstream tasks being affected not just by the variance in

their own queueing delays and execution times, but also by the

variance in the landing times of the tasks they depend on upstream.

Several processes at Facebook revolve around when data from

pipelines are expected to land, and variance in these landing times

causes disruption resulting possibly even in lost revenue and fines.

In fact, stakeholders with time-sensitive service-level objectives

(SLOs) routinely indicate a preference for stable landing times over

earlier average landing times in internal surveys, suggesting that

in practice a highly stable scheduler that reliably lands data by

the same time every day is more desireable than other objectives

which traditionally have dominated the scheduling literature such

as average job completion time and makespan. In this paper we

introduce Clockwork, a new global scheduling framework for re-

curring data pipelines designed to meet data SLOs while optimizing

for landing time stability. In short, Clockwork aims to accomplish

this by generating a global plan which strategically spreads its

workload throughout the day using delayed task dispatch times,

thereby tempering demand spikes which are the main root cause

for resource contention. Additionally, we observed more stable re-

source utilization in the cluster throughout the day, as a desireable

byproduct of our dependency-aware variance reduction strategy.

We frame Clockwork in the context of the broader scheduling

literature in section 2. We provide an overview of the relevant con-

cepts in Dataswarm and Facebook’s data warehouse to define the

scope for Clockwork, and present a formal statement of our mathe-

matical optimization problem in section 3. Resource and runtime

estimation for data pipelines as well as characterizing the global

dependency structure for the Dataswarm DAG presents its own do-

main of interesting challenges, and we discuss how we approached

these for Clockwork in section 4. In section 5, we perform analysis

of our optimization problem and discuss how we leveraged these in-

sights in Clockwork’s scheduling algorithm. In section 6, we detail

howwe designed the Clockwork planner as a service and integrated

it with Dataswarm. We evaluated Clockwork in live, controlled ex-

periments on subsets of Dataswarm’s regularly-scheduled pipelines,

comparing the new algorithm’s performance against the status quo

as well as a greedy procrastinating heuristic which was prevoiusly

proposed in [5], and these results are presented in section 7.

2 RELATEDWORK
There is an extensive literature on graph scheduling algorithms.

Graph scheduling problems traditionally optimize for makespan

(i.e., the difference between the start and end time for the entire

workload) or average job completion time, both of which are typi-

cally cast as a mixed integer linear program (MILP) [4, 16]. As is

true for combinatorial optimization problems in general, MILPs

tend to be solved primarily through various approximationmethods

or heuristic solutions, which has been a running theme through a

growing body of applied work on scheduling for pipelines [1, 3, 12].

Clockwork is conceptually related to reservation-based sched-

uling [5]. In this framework tasks are guaranteed a set amount of

resources at a specific time based on a declarative language frame-

work which also allows users to specify a dependency structure

and SLOs. The authors formulate the scheduling problem as a MILP

and propose a greedy procrastinating heuristic, effectively placing

the reservation as close to the deadline as possible. This is shown to

perform reasonably well in meeting task SLOs while maintaining

high cluster utilization and low latency for best effort jobs. Simi-

larly, Morpheus [11] uses the same declarative language with an

explicit goal to increase workload predictability and average cluster

utilization. They propose a bin-packing heuristic to place periodic

tasks with SLOs that are inferred from historical data.

More broadly, Clockwork can be compared to work on budget-

constrained workflow scheduling with fixed deadlines, otherwise

known as Quality of Service (QoS)-constrained workflow schedul-

ing [15]. A persistent challenge in this class of problems—in partic-

ular for the online setting—is framing and modeling the stochastic

nature of task runtimes, resource usage, or both [9, 10, 15]. Another

frequent source of complexity in this type of scheduling is han-

dling a tradeoff across multiple resource types [6, 7]. As we discuss

in the following section, Clockwork largely sidesteps the latter

by considering each underlying data processing engine separately

and leveraging an understanding of its bottlenecked resource for

scheduling.

Deep reinforcement learning has been advanced as an alterna-

tive proposal for workflow scheduling [13, 14]. One complication

with this approach is the curse of dimensionality (i.e., performing

policy iteration over a combinatorial state space), however Dec-

ima [14] addressed this through the use of a graph neural network

which encodes the state information in a set of embedding vectors.

Moreover, Decima demonstrated improvements in average job com-

pletion time compared to established heuristic-based schedulers

including Graphene [7] and Tetris [6]. On the other hand, Dec-

ima leans on a tradeoff between performance and interpretability

which is currently in vogue within the deep learning community

[8, 17]. Especially for operational systems running at scale, prag-

matic consideration such as the ability to perform effective triage

and root-cause analyses usually favor methods whose outputs are

easier to process and debug in practice.

3 CONCEPTS AND DEFINITIONS
We offer a brief review of the core concepts in workflow scheduling,

and use them to formally define Clockwork’s scheduling problem.
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3.1 Data pipelines
A Dataswarm pipeline is comprised of the following elements:

• A query is a command to read from or write to a database,

and is executed by a query engine. At Facebook, the two most

commonly used query engines are Presto [23] and Spark [24].

There are other query engines that can be accessed through

Dataswarm, but these technically execute outside of the data

warehouse.

• A task represents an atomic unit of work. A task can be de-

fined with a set of dependencies on other tasks or data artifacts

yielded by other pipelines, effectively permitting inter-pipeline

dependencies.

• An operator is an interface for defining a task. An operator is

analogous to a function within a program. A Spark or Presto

operator usually launches a single query, and produces a single

table or table partition. There are different operators for sub-

mitting queries to different query engines, as well as custom

operators to launch other processes like Python scripts or Bash

commands.

• A pipeline is a directed acyclic graph (DAG) of tasks. An indi-

vidual pipeline may produce one table or several tables, and

frequently invokes a hetereogenous set of operators. A schedule

for how often the tasks should run (daily, hourly, weekly, etc.)

is usually defined at the pipeline level, though it is possible to

set individual tasks to run at a different cadences. For example,

a task which trains a model may only need to run weekly, while

an evaluation task for the model is set to run daily.

3.2 Query and cluster taxonomy
Something to note about Dataswarm is that it technically does not

execute queries, it only dispatches these jobs to different query

engines running on separate clusters (as an aside, this is why

true reservation-based scheduling is not possible in our current

setup—Dataswarm controls when tasks are dispatched but does

not manage the underlying capacity). From a resource planning

perspective, it is important therefore for Clockwork to incorporate

a high-level awareness of how different distributed query engines

allocate queries and manage their cluster capacity. This behavior

is slightly different for Presto and Spark, which are the relevant

components to Facebook’s data warehouse planning as explained

above.

In Spark, an individual query gets broken down into contiguous

stages, with each stage requiring a different number of containers.

The number of containers for Spark queries is almost always de-

termined by the amount of memory that is required at each stage.

In order to estimate the resource requirements of a Spark query

for planning, we compute a "skyline" for each query, describing its

resource usage over time based on data from historical runs. The

details of our approach are covered in section 4.

Resource accounting for Presto is slightly simpler, Presto sched-

uling is premised on a hierarchical queueing structure with each

queue in the hierarchy capped at some number of concurrent

queries. Internally, Presto does more fine-grained allocation of

worker threads which is scaled dynamically based on the current

cluster utilization, however we chose to abstract away this level of

complexity for Clockwork’s budget tracking purposes.

3.3 Mathematical formulation
We frame our formulation of Clockwork’s optimization problem

using Spark tasks, the generalization to include Presto tasks should

be straightforward. As discussed in section 3.2, the resource require-

ments for a Spark task can be characterized using a skyline, with

the skyline for task 𝑖 denoted as

𝑆𝑖 = [(Δ1

𝑖 ,𝑚
1

𝑖 ), . . . , (Δ
𝑀
𝑖 ,𝑚𝑀

𝑖 )]

where (Δ 𝑗
𝑖
,𝑚

𝑗
𝑖
) specifies one stage of random duration Δ

𝑗
𝑖
requiring

𝑚
𝑗
𝑖
units of memory. Let 𝑐 denote the total capacity available in

the cluster (in units of memory for Spark and units of queries for

Presto, see section 3.2 for more details) and 𝑑𝑖 denote the absolute,

fixed-time deadline or SLO for the task.

The decision variable for Dataswarm can be expressed as a vector

𝑎 = (𝑎1, . . . , 𝑎𝑁 ), where 𝑎𝑖 is the dispatch time for task 𝑖 . We also

define a random variable 𝜏𝑖 as the actual starting time of the task,

where

𝜏𝑖 = max

(
𝑎𝑖 , max

𝑘∈U𝑖

(𝜏𝑘 +
∑
𝑗

Δ
𝑗

𝑘
)
)

usingU𝑖 to indicate the set of tasks upstream of task 𝑖 and (𝜏𝑘 +∑
𝑗 Δ

𝑗

𝑘
) corresponds to the landing time for task 𝑘 . In other words,

task 𝑖 will start running at its dispatch time or the time at which all

its upstream dependencies are satisfied, whichever is later.

Clockwork’s objective is to simultaneously minimize the vari-

ance in task landing times as well as the penalties for missing their

SLOs. By aiming to reduce an expected cost and variance, the formu-

lation resembles the conditional value-at-risk scheduling problem

[18, 19]. The objective function can be formalized as

min

𝑎

∑
𝑖

E(𝜏𝑖 +
∑
𝑗

Δ
𝑗
𝑖
− 𝑑𝑖 )+ +

𝛽

2

∑
𝑖

Var(𝜏𝑖 +
∑
𝑗

Δ
𝑗
𝑖
)

with E(·)+ is the expected value taken over the positive part func-

tion, Var(·) is the variance, and 𝛽/2 is a weighting factor (which can
alternatively be defined for each task separately). This function is

to be minimized subject to nonnegativity and cluster capacity con-

straints, which we include here for completeness introducing 1(·)
as notation for the indicator function and [0,𝑇 ] for the planning
time horizon:

𝜏𝑖 ≥ 𝑎𝑖 , 𝑖 = 1, . . . , 𝑁

𝜏𝑖 ≥ 𝜏𝑘 +
∑
𝑗

Δ
𝑗

𝑘
, ∀𝑘 ∈ U𝑖∑

𝑖, 𝑗

𝑚
𝑗
𝑖
1(𝜏𝑖 +

∑
ℓ< 𝑗

Δℓ
𝑖 ≤ 𝑡 ≤ 𝜏𝑖 +

∑
ℓ≤ 𝑗

Δℓ
𝑖 ) ≤ 𝑐, ∀𝑡 ∈ [0,𝑇 ]

𝑎 ≥ 0

4 RESOURCE ESTIMATION AND
DEPENDENCY DATA

One practical challenge in workflow scheduling is estimating task

durations and resource requirements, which are generally unknown

a priori [9, 10]. We provide some detail of our solutions on these

fronts, as well as other practical design considerations for the op-

timization problem defined in section 3.3 such as defining task

deadlines and processing a global DAG representation at scale.
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4.1 Task metrics and deadlines
Recurring data pipelines provide some advantage over scheduling

for adhoc workloads in that it is possible to mine rich telemetry

data from their run history. Some metrics that we collected from

historical data for scheduling and evaluation purposes included:

• Task state transition timestamps such as the start and end times

for each task, in addition to ready time–which is the time at

which all of the upstream dependencies for a task have been

satisfied. These data can be used to derive task duration and

queueing time.

• Query execution times and memory usage which are obtained

from query engine logs. See section 4.3 for more details on our

approach for estimating resource usage for Spark.

The distributions for the above quantities were approximated for

each task by collecting quantiles over a 4-week aggregation window.

For defining task SLOs, we relied on a custom metric for Face-

book’s data warehouse called healthy landing time, which is as-

signed to each Dataswarm task. The healthy landing time for a task

is calculated by taking the 90th percentile of a median-filtered and

winsorized sequence of its end times over a specified time period.

4.2 Global dependency structure
Global scheduling requires global awareness of precedence con-

straints, and maintaining an accurate representation of the de-

pendency structure for Dataswarm presents another challenge

especially given its scale, which stands at over 1 million tasks.

Dataswarm itself does not have awareness of its global task de-

pendency structure. As discussed in section 3.1, Dataswarm allows

users to specify dependencies on other data artifacts, which may

be produced by other pipelines, but the origin of the data is not

visible to Dataswarm.

We obtained the global task dependency structure for Dataswarm

by crawling a separate, internal data lineage tool which tracks

metadata and stdout logs from clients to continually audit data

flows between all data warehouse endpoints (Dataswarm tasks

runs, adhoc queries, Hive table partitions, etc.). In the process, we

collapsed intermediate nodes between task runs and dropped tasks

which are only set to wait for data artifacts, resulting in a complete

precedence ordering of the workload-bearing tasks in Dataswarm.

Because of its large size and complexity, performing a full crawl

of the data lineage through the provided APIs lasted over 36 hours,

making it infeasible under this approach to build a new precedence

ordering for scheduling on a daily basis. Instead, recognizing the

fact that the precedence ordering is expected to change marginally

day-over-day for recurring pipelines, we cache the precedence

graph from the previous day and re-crawl lineages only for those

tasks which are known to have been edited, added, or deleted. This

brings the processing time to within 1 hour.

4.3 Resource estimation for queries
As alluded to in section 3.2, one challenge pertaining to Spark

queries in particular is characterizing their resource requirements

in terms of memory units over time, corresponding to the input

variable 𝑆𝑖 in section 3.3. We are referring to this quantity as a

skyline. The skyline is difficult to estimate compared to other query

telemetry metrics cited in section 4.1 because the observed resource

Figure 1: A sample skyline showing the simulation-based expected
resource usage over time for a two-stage Spark query. Skylines are
simulated across several days and aggregated to their outer contour,
which is passed as an input to our scheduling algorithm for capacity
planning.

usage over time for a single run of a repeated Spark query is de-

termined not only by the complexity of the query, but also the

contention in the Spark cluster at the time. For example, if the stage

of a Spark query requests 1000 containers and only 10 are available,

it will start running with the available containers and accumulate

the remaining containers as they are released by other queries. Con-

sequently, both the observed resource usage over time and total

duration of the query can vary significantly day-over-day based on

the other workload running in the Spark cluster at the time. For

global planning purposes, our goal is to take noisy observations of

previous query runs and recover the signal of the skyline in the

absence of resource bottlenecks—which is how we expect it run

under a schedule produced by Clockwork.

The solution we designed is based on discrete-event simulation.

From the query metadata, we obtained the number of concurrent

and non-concurrent stages, the number of data partitions processed

at each stage and the distribution of their durations, and from the

Spark engine configuration we obtained the memory per worker

and limit on the number of workers per stage. Each set of concurrent

Spark stages was simulated with a separate shared-resource model,

where the number of shared resources was set at the per-query

worker limit and the individual events were the execution duration

of each data partition generated from an empirical CDF. The skyline

for each stage were conjoined to form the skyline of the query,

and these were further aggregated by taking the outer contour of

the query-level skylines over a historical time interval. The final

aggregated skyline rendered a sufficiently conservative estimate

of the task’s resource requirements, and was used to monitor the

cumulative cluster usage in our scheduling routine. A sample Spark

skyline is shown in figure 1.

5 SCHEDULING ALGORITHM
To our knowledge, the problem defined in section 3.3 represents

the first instance of a stochastic graph scheduling problem which

explicitly prioritizes minimizing the variance of task completion
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times. Morevoer, this formulation exhibits some compelling struc-

ture which lends intuition for suggesting an effective planning

heuristic.

5.1 Analytic properties of the objective
function

For notational convenienece, we introduceΔ𝑖 =
∑

𝑗 Δ
𝑗
𝑖
as shorthand

for the cumulative duration of the stages for task 𝑖 .

Claim 1. Let 𝑋𝑖 = max𝑘∈U𝑖
(𝜏𝑘 + Δ𝑘 ) represent the completion

time of all the predecessors to task 𝑖 , and further assume the duration
of all the tasks are pairwise independent. Setting 𝜕

𝜕𝑎𝑖
E(𝜏𝑖 +Δ𝑖 −𝑑𝑖 )++

𝛽
2
Var(𝜏𝑖 + Δ𝑖 ) = 0 yields the relation

P
(
Δ𝑖 > 𝑑𝑖 − 𝑎𝑖

)
= 𝛽

∫ ∞

𝑎𝑖

P
(
𝑋𝑖 > 𝑡

)
𝑑𝑡

for all 𝑖 with |U𝑖 | > 0.

Claim 2. In the absence of resource constraints, the values𝑎1, . . . , 𝑎𝑁
which satisfy the relation in claim 1 represent an upper bound on the
optimal dispatch times 𝑎∗

1
, . . . , 𝑎∗

𝑁
.

Claim 3. Define [0,𝑇 ] as the planning horizon for the problem
formulated in section 3.3. In the absence of resource constraints, if
U𝑘 = ∅ and P

(
Δ𝑘 > 𝑎𝑖

)
> 0 for any 𝑖 such that 𝑘 ∈ U𝑖 , and 𝑎𝑖

satisfies the relation in claim 1, then the optimal dispatch time for
task 𝑘 is 𝑎∗

𝑘
= 0.

The proof of the above claims are provided in the supplemental

material. Taken collectively, claims 1–3 suggest the optimal solu-

tion weighs a tradeoff between scheduling tasks early to fulfill their

SLOs and scheduling tasks distantly apart from their dependencies
to reduce the variance of the landing times. For instance, in lay-

men’s terms, claim 3 states that if a task with no upstreams has

downstream dependencies, and there is a nonzero probability of

finishing past the upper bound dispatch time—as derived in claim

1—for any of its downstreams, the upstream task should be dis-

patched as early as possible so as to minimize the uncertainty in

the effective start time of the downstream task. Likewise in the

relation in claim 1, we clearly see this tradeoff: opting for an earlier

dispatch time 𝑎𝑖 improves the likelihood of landing the task before its
deadline and decreases the quantity on the left hand side, but also

compresses it nearer to the stochasticity of its upstream dependencies
consequently increasing the value of the integral on the right hand

side. Rephrasing it succinctly, it is desireable to dispatch jobs early,

but not so early that the variance of its actual start time is heavily

influenced by the upstream variance.

This analysis formalizes the intuition motivating the greedy pro-

crastinating heuristic which has been proposed in other work [5], in

which the authors suggest that scheduling task reservations close

to their deadlines minimizes the likelihood the task will miss its

reservation window due to upstream delays. Also, while very few

formal results exist for the general graph scheduling problem with

stochastic job processing times, the best theoretical performance

guarantees that we are aware of are premised on delayed list sched-

uling, which similarly remedy the uncertainty in processing times

by inserting delays between tasks [20]. As has been shown here, in-

troducing landing time variance as an explicit term in the objective

Algorithm 1 Clockwork scheduling algorithm

INPUT: planning horizon [𝑇0,𝑇max]; cluster capacity 𝐶; set of
tasks T with attributes: earliest allowable start time ℓ𝑖 , deadline 𝑑𝑖 ,

task duration CDF 𝐹Δ𝑖
(·), resource skyline 𝑆𝑖 ; global precedence

graph 𝐺 = (T , 𝐸)
REQUIRE: 𝑑𝑖 > ℓ𝑖 + 𝐹−1Δ𝑖

(0.5)
OUTPUT: a global plan, represented as an indexed array of

dispatch times 𝑎 = (𝑎1, . . . , 𝑎𝑁 ) for all 𝑖 ∈ T
function ScheduleTasks(G)

PriorityQueue 𝑄 = ∅, PriorityQueue 𝐵 = ∅
for all 𝑖 ∈ReverseTopologicalSorted(T ) do

Δ̃𝑖 := 𝐹−1Δ𝑖
(0.5), 𝑞𝑖 :=

∫ ∞
Δ̃𝑖

𝐹Δ𝑖
(𝑡)𝑑𝑡

ΣΔ (𝑖) ← Δ̃𝑖 , Σ𝑞 (𝑖) ← 𝑞𝑖 , 𝑑 (𝑖) ← 𝑑𝑖

𝜙 (𝑖) ← Σ𝑞 (𝑖)/
(
𝑑 (𝑖) − ℓ𝑖 − ΣΔ (𝑖)

)
for all 𝑗 ∈ children(𝑖) do

𝜂 ← (Σ𝑞 ( 𝑗) + 𝑞𝑖 )/
(
𝑑 ( 𝑗) − ℓ𝑖 − (ΣΔ ( 𝑗) + Δ̃𝑖 )

)
if 𝜂 < 0 or 𝜂 = ∞ then

𝐵.addwithPriority(𝑖, ℓ𝑖 )

ΣΔ (𝑖) ← 0, Σ𝑞 (𝑖) ← 0, 𝑑 (𝑖) ← ℓ𝑖
else if 𝜂 ≥ 𝜙 (𝑖) and 𝑖 ∉ 𝐵 then

𝜙 (𝑖) ← 𝜂, 𝑑 (𝑖) ← 𝑑 ( 𝑗)
ΣΔ (𝑖) ← ΣΔ ( 𝑗) + Δ̃𝑖 , Σ𝑞 (𝑖) ← Σ𝑞 ( 𝑗) + 𝑞𝑖

if 𝑖 ∉ 𝐵 then 𝑄 .addwithPriority(𝑖, 𝜙 (𝑖))
return PlaceRankedTasks(𝑄, 𝐵)

function PlaceRankedTasks(𝑄 , 𝐵)

Array 𝑎, Set 𝐴 = ∅, GlobalPlanSkyline S
𝑎𝜈 ← ℓ𝜈 ∀𝜈 ∈ T
while |𝑄 | + |𝐵 | > 0 do

if |𝐵 | > 0 then 𝜈 ← 𝐵.pop() else 𝜈 ← 𝑄 .pop()

𝑡 ← S.findNearestPlacement(𝑆𝜈 , 𝑎𝜈 , ℓ𝜈 , 𝑑𝜈 )
𝑎𝜈 ← 𝑡 , S.addSkylineAtTime(𝑆𝜈 , 𝑎𝜈 ), 𝐴.add(𝜈)
for all 𝜈 ′ ∈

(
children(𝜈) ∩𝐴𝑐

)
do

ℓ𝜈′ ← max(ℓ𝜈′, 𝑎𝜈 + Δ̃𝜈 )
if 𝑑 (𝜈 ′) − ℓ𝜈′ − ΣΔ (𝜈 ′) ≤ 0 then

𝑎𝜈′ ← ℓ𝜈′

𝑄 .remove(𝜈 ′), 𝐵.addwithPriority(𝜈 ′, ℓ𝜈′ )
else

𝑤 ← 𝑑 (𝜈 ′) − 𝑎𝜈 − ΣΔ (𝜈 ′) − Δ̃𝜈

𝑎𝜈′ ← max

(
𝑎𝜈′, 𝑎𝜈 + Δ̃𝜈 +𝑤 ∗ 𝑞𝜈/(𝑞𝜈 + Σ𝑞 (𝜈 ′))

)
𝜂 ← Σ𝑞 (𝜈 ′)/(𝑑 (𝜈 ′) − 𝑎𝜈′ − ΣΔ (𝜈 ′))
if 𝜂 > 𝜙 (𝜈 ′) then

𝑄 .updatePriority(𝜈 ′, 𝜂)

for all 𝜈 ′ ∈
(
parents(𝜈) ∩𝐴𝑐

)
do

𝑑𝜈′ ← min(𝑑𝜈′, 𝑎𝜈 )return 𝑎

function makes delaying some tasks an even stronger imperative,

and it is further likely that this novel reformulation of the stochastic

graph scheduling problem carries interesting theoretical properties

extending well beyond the initial claims cited above.

5.2 Implementation
Algorithm 1 shows the scheduling algorithm for Clockwork in psue-

docode. Guided by the intution gained from the analysis in section



KDD ’21, August 14–18, 2021, Virtual Event, Singapore Valdez-Vivas, Sharma, Stanisha, et al.

Figure 2: System design for the Clockwork planner service, and its integration with Dataswarm

5.1, at a high level the algorithm proceeds by a critical path-based

scheduling approach which first ranks tasks based on a measure of

their outgoing paths, and then spaces them proportionally between

their upstreams and their deadline according to a measure of un-

certainty in the task processing times. The measure of uncertainty

we use is the area under the CDF curve above the median value,

which resembles the right-hand quantity in claim 1 and is denoted

as 𝑞𝑖 in algorithm 1.

The task ranking step of the algorithm finds the longest path

originating from each node, where the length of a path is defined

as a ratio of the cumulative uncertainty measure along the path to

slack. We define a path’s slack here as the time remaining until the

deadline of the last task if all tasks along the path run end-to-end

with their median processing times. A path with less slack relative

to its cumulative uncertainty is assigned higher priority. Intuitively,

this leads to nodes along the paths with themost uncertainty packed

within a fixed time budget to be scheduled first. If there is no slack

along a path, the algorithm takes this as an indication that the tasks

along the path should run best-effort, which is to say dispatched

as soon as possible, and are given the highest priority. Tasks are

scheduled in order of priority, and the amount of delay inserted

after each task is in proportion to its contribution to the uncertainty

measure along its outgoing paths. The time complexity of this

ranking routine is O
(
( |T | + |𝐸 |) log |T |

)
.

Note we omit the implementation of S in algorithm 1 in the

interest of brevity. The GlobalPlanSkyline is a bookkeeping con-

struct to update the planned cluster usage and check for feasi-

bility against the capacity constraint. Our implementation used

discretized time increments and segment trees. The skyline values

𝑆𝑖 which are inserted in S refer to the static quantities developed

in section 4.3. With segment trees, FindNearestPlacement is a

binary search, and AddSkylineAtTime is an O(log𝑁 ) operation
for each block of 𝑆𝑖 , where 𝑁 is the number of time increments in S.
Taken collectively, the complexity of all the skyline operations are

O
(
( |T | + 𝐵) log𝑁

)
, with 𝐵 defined as the total number of blocks

across all task skylines.

6 DEPLOYMENT
We deploy the Clockwork planner as a stand-alone service which

takes the task precedence graph, resource skylines, and deadlines as

input. On every invocation, the planner defines a planning horizon

relative to the current time and persists a global plan of dispatch

times in a database. The planner itself has four main components

• A data ingestion module which fetches data for all tasks in the

current planning horizon.

• A configurable scheduling algorithm which accepts the normal-

ized data as input and computes a global plan based on the

algorithm’s specific objectives.

• A ready state predictor modulewhich estimates the time at which

we expect a given task to have all of its upstream dependencies

satisfied (this time is specified as a task’s ready time).

• A validation and publishing module which performs a series of

quality checks on the planner output before publishing.

Dataswarm has its own scheduler service which, by default,

dispatches tasks whenever they transition to the ready state. We in-

tegrate the Clockwork plan into the existing scheduler by adding a

lightweight client to each worker (a single worker is responsible for

managing a subset of tasks). Dispatch times are pre-fetched by the

clients in the order determined by the ready state predictor. When a

task is ready, the worker checks the client for a Clockwork-assigned

dispatch time. If one exists, the task is enqueued for dispatching at

that future time, otherwise it is dispatched immediately. With this

prioritization and pre-fetching design, we are reliably able to exe-

cute all the intended Clockwork dispatch times while minimizing

storage and network I/O in the existing Dataswarm scheduler.

7 EXPERIMENTS
We ran several initial trial runs with Clockwork by scheduling a sub-

set of the Spark workload in a separate dedicated queue. Although

this showed strongly positive results with respect to reducing both

queueing delays and landing time variance, it is unclear the extent

to which Clockwork benefitted from its isolation from the rest of

the workload in the cluster. On the same token, we expect that a

global scheduler like Clockwork will produce progressively better

results relative to non-global heuristics when it is able to plan a

larger share of the cluster workload, since otherwise the uncer-

tainty posed by the landing times of any upstream tasks that are

not planned by Clockwork will limit the variance reduction that is

attainable.
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Figure 3: The cumulative distribution function of standard deviation in task landing times, shown for test and control groups. The distribution
for the control group (right) remained constant through the three experimental phases, whereas the distribution for the test group (left)
showed more stable landing times with our baseline greedy heuristic and Clockwork scheduling algorithm.

Figure 4: The cumulative distribution function of task landing
times, relative to its generation time. The baseline is able to deliver
earlier landing times in the aggregate compared to the other two
approaches, at the cost of significantly less stability. Clockwork de-
livers earlier landing times in aggregate compared to the procrasti-
nating heuristic, while offering the greatest predictability among
the three approaches.

Figure 5: In addition to more stable landing times, Clockwork
achieves lower resource contention and more stable and pre-
dictable cluster utilization. Looking at memory allocation for
Spark (above), we see that the cluster tends to be used more evenly
during off-peak times with Clockwork compared to the baseline
cluster behavior.

For both of these reasons, the rollout plan for Clockwork relied

on testing the algorithm in an online experiment over a sufficiently

large pool of tasks, while also avoiding any modifications to our

existing queue and cluster configurations to eliminate these changes

as potential confounding factors. The test group was defined by

selecting the existing Dataswarm workload in one of Facebook’s

data centers, which roughly maps to one Spark and one Presto

cluster. In all, the test group amounted to tens of thousands of daily

and hourly Dataswarm tasks. Dataswarm tasks are assigned to data

centers in a way that minimizes interactions with tasks outside of

the cluster, so even though cross-cluster dependencies are still a

possibility, the workload in a data center approximately constitues

a self-contained DAG of tasks.

To confirm our observed effect sizes were not attributable to

other widespread changes to the warehouse during our experiment

time frame, we further defined a control group of proportional size

in a different Facebook data center. In addition, we compared the

performance of our proposed solution against a simple, greedy pro-

crastinating heuristic from previous work [5]. The greedy heuristic

schedules a task as close to its deadline as possible, and its rela-

tionship to Clockwork was touched on in sections 2 and 5. Both

algorithms were run in different weeks within the same month.

Since we opted to run our evaluation on live production clusters,

and each experiment needed to be run sequentially on the same

workload for a minimum of 1 week to draw meaningful compar-

isons of the task-level standard deviations for landing times, this

naturally constrained the number of experiments we could run

outside of a simulated environment. In effect we traded breadth

for scale and practical relevance. The central feature of the present

scheduling problem also contributed to the complexity in interpret-

ing observed effect sizes in our experiments, namely the tightly

interconnected structure of the workload. Because the landing times

in our experiments are tightly correlated, it is difficult to make any

conclusive claims with regards to statistical significance.
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Average queueing time

SPARK PRESTO

Pre-Experiment 36.3s – 74.9s –

Greedy Heuristic 39.5s +8.8% 86.3s +15.2%

Clockwork Algorithm 24.3s -30.8% 51.7s -31.0%

Table 1: Average queueing time for the Spark and Presto queries
in the test group. The Clockwork scheduling algorithm reduces
queueing-based latency by about 30% based on reduced contention
for cluster resources.

7.1 Landing times
The landing time of a task run was normalized relative to its pe-

riod ID, a timestamp which specifies the task generation time and

uniquely identifies a single task instance. We measured landing

time variance for each task using a trimmed standard deviation,

removing the min and max value over each 7 day window, as this

metric proved to be more robust to outliers. The distribution of

landing time variance over all the tasks in the test and control

groups are shown in figure 3. In the test group, we observed pro-

gressively improved landing time variances in aggregate over the

pre-experiment period using the greedy heuristic and Clockwork,

respectively. Clockwork reduced the trimmed standard deviation in

landing times by 72 minutes on average with an interquartile range

of 100s and 5496s compared against the pre-experiment period,

and 653s on average with an interquartile range of -65s and 88s

compared to the greedy heuristic. The control group, on the other

hand, showed no discerneable changes to landing time variances

as expected.

As previously alluded to, variances in landing times are attrib-

utable to two sources: competition for resources in the cluster as

well as uncertainty in the landing times of a task’s upstream de-

pendencies. The greedy heuristic by design exclusively attempts

to attenuate the latter source of uncertainty by edging the task as

close to its deadline as possible. Consequently, we observe Clock-

work lands tasks earlier than the greedy heuristic in aggregate, by

a median and mean of 3 and 56 minutes, respectively. Clockwork

also landed tasks 40 minutes later on average than during the pre-

experiment baseline as expected, though interestingly the median

task landed 5 minutes earlier (56% of tasks had an earlier average

landing time). The discrepancy suggests that while a fraction of

the workload was postponed to later in the day, the capacity that

was subsequently left free was used to move up the start times of

tasks higher up in the DAG hierarchy. The daily SLO attainment

rate for tasks in our workload largely remained at the baseline rate

of about 97% throughout our experiment time frame.

7.2 Cluster utilization and contention
The case for global scheduling lies in its ability to better leverage

cluster resources, in such a way to reduce contention between tasks.

Queueing time—defined as the time a task spends waiting in queue

for resources after its upstream dependencies have been satisfied—

is used here as a proxy for resource contention. Clockwork reduced

queuing delays significantly in both Spark and Presto, by approxi-

mately 30% compared to the pre-experiment window on average.

Conversely, the procrastinating heuristic increased average queue-

ing delays on the order of 10%. These results are summarized in

table 1.

Furthermore, the cluster exhibited smoother resource utilization

with both Clockwork and the greedy heuristic compared to our

pre-experiment baseline. This effect is shown for Spark in figure 5.

We measured the roughness of the hourly time series for allocated

memory for Spark by taking the variance of the first differences, in

other words Var(𝑚𝑡+1 −𝑚𝑡 ). By this metric, Clockwork reduced

roughness by 16.7% compared to the pre-experiment phase, while

the greedy heurstic achieved a 13.1% reduction against the same

baseline.

8 CONCLUDING REMARKS
In this paper, we present Clockwork, a dependency-aware sched-

uling framework for data pipelines that improves landing time

stability with delayed dispatch times. Our solution is designed to

address a novel formulation of the stochastic graph scheduling

problem, and we demonstrate its effectiveness in large online ex-

periments against a greedy procrastinating heuristic from previous

work as well as the prior baseline performance with the default

scheduling logic in Dataswarm. Clockwork is deployed as a stan-

dalone service and currently is coordinating tens of thousands of

daily tasks as part of Facebook’s data warehouse infrastructure.

The Clockwork planner code has been released open-source at

https://github.com/facebookresearch/Clockwork.

The algorithm presented in section 5 amounts to an offline sched-

uling algorithm. An interesting extension would be to consider the

online variant. Especially under the objective of minimizing land-

ing time variance, this direction becomes highly nontrivial, as it

explores a tension between the imperative to stick to a somewhat

static schedule while also adapting to unforeseen events which

are commonplace in any data warehouse environment running at

scale. This framing hints at a potentially rich adverserial learning

problem.

Clockwork takes an agnostic view of task priorities, effectively

assuming priority information is encoded in the task SLOs. An open

question is whether and to what extent explicit user-defined priori-

ties can improve both landing time stability and SLO attainment by

themselves, and the implications for designing a complementary

scheduling algorithm. Lastly, we observe that Clockwork produces

more even resource utilization, which in itself is a desireable out-

come from a cluster management perspective. Augmenting Clock-

work to explicitly pursue higher average cluster utilization presents

an interesting exercise. The main challenge derives from simulta-

neously weighing multiple objectives, namely balancing between

competing priorities at the cluster and individual task levels.
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A PROOF OF CLAIMS IN SECTION 5.1
A.1 Proof for claim 1
The proof for claim 1 proceeds in 3 steps: we derive

𝜕
𝜕𝑎𝑖

𝛽
2
Var(𝜏𝑖+Δ𝑖 )

and
𝜕
𝜕𝑎𝑖
E(𝜏𝑖 + Δ𝑖 − 𝑑𝑖 )+ separately and combine these results. For

notational simplicity, we introduce𝑋𝑖 = max𝑘∈U𝑖
(𝜏𝑘+Δ𝑘 ), in other

words 𝑋𝑖 is the latest completion time across all the upstreams for

task 𝑖 .

Claim 4. Assuming task durations are pairwise independent, and
the duration of a task is independent of its start time,

𝜕

𝜕𝑎𝑖

𝛽

2

Var(𝜏𝑖 + Δ𝑖 ) = 𝛽

( ∫ ∞

𝑎𝑖

P(𝑋𝑖 > 𝑡)𝑑𝑡
) (
P(𝑋𝑖 > 𝑎𝑖 ) − 1

)
Proof.

𝜕

𝜕𝑎𝑖

𝛽

2

Var(𝜏𝑖 + Δ𝑖 ) =
𝛽

2

(
𝜕

𝜕𝑎𝑖
Var(𝜏𝑖 ) +

𝜕

𝜕𝑎𝑖
Var(Δ𝑖 )

)
=

𝛽

2

(
𝜕

𝜕𝑎𝑖
Var(max(𝑋𝑖 , 𝑎𝑖 ))

)
𝜕

𝜕𝑎𝑖
Var(max(𝑋𝑖 , 𝑎𝑖 )) =

𝜕

𝜕𝑎𝑖

(
E
(
max(𝑋𝑖 , 𝑎𝑖 )2

)
− E

(
max(𝑋𝑖 , 𝑎𝑖 )

)
2

)
Since 𝑎𝑖 ≥ 0, the expectation E

(
max(𝑋𝑖 , 𝑎𝑖 )

)
can be written as

E
(
max(𝑋𝑖 , 𝑎𝑖 )

)
=

∫ ∞

0

P
(
max(𝑋𝑖 , 𝑎𝑖 ) > 𝑡

)
𝑑𝑡

=

∫ 𝑎𝑖

0

P
(
max(𝑋𝑖 , 𝑎𝑖 ) > 𝑡

)
𝑑𝑡

+
∫ ∞

𝑎𝑖

P
(
max(𝑋𝑖 , 𝑎𝑖 ) > 𝑡

)
𝑑𝑡

= 𝑎𝑖 +
∫ ∞

𝑎𝑖

P(𝑋𝑖 > 𝑡)𝑑𝑡

By similar logic,

E
(
max(𝑋𝑖 , 𝑎𝑖 )2

)
= 𝑎2𝑖 +

∫ ∞

𝑎2
𝑖

P
(
𝑋 2

𝑖 > 𝑡
)
𝑑𝑡

Combining the above terms,

Var(max(𝑋𝑖 , 𝑎𝑖 )) =
∫ ∞

𝑎𝑖

P
(
𝑋 2

𝑖 > 𝑡
)
𝑑𝑡 − 2𝑎𝑖

∫ ∞

𝑎𝑖

P
(
𝑋𝑖 > 𝑡

)
𝑑𝑡

−
( ∫ ∞

𝑎𝑖

P
(
𝑋𝑖 > 𝑡

)
𝑑𝑡

)
2

𝜕

𝜕𝑎𝑖
Var(max(𝑋𝑖 , 𝑎𝑖 )) = 2

( ∫ ∞

𝑎𝑖

P
(
𝑋𝑖 > 𝑡

)
𝑑𝑡

) (
P
(
𝑋𝑖 > 𝑎𝑖

)
− 1

)
□

Claim 5.

𝜕

𝜕𝑎𝑖
E(𝜏𝑖 + Δ𝑖 − 𝑑𝑖 )+ = P

(
Δ𝑖 > 𝑑𝑖 − 𝑎𝑖

)
P
(
𝑋𝑖 < 𝑎𝑖

)
Proof. Re-writing

𝜕
𝜕𝑎𝑖
E(𝜏𝑖 + Δ𝑖 − 𝑑𝑖 )+ using the law of total

expectation,

𝜕

𝜕𝑎𝑖
EΔ𝑖

(
E𝑋𝑖

(
max(𝑋𝑖 , 𝑎𝑖 ) + 𝜙 − 𝑑𝑖 |Δ𝑖 = 𝜙

) )
= EΔ𝑖

( 𝜕

𝜕𝑎𝑖
E𝑋𝑖

(
max(𝑋𝑖 , 𝑎𝑖 ) + 𝜙 − 𝑑𝑖 |Δ𝑖 = 𝜙

) )

Expanding the inner term, and introducing 𝑝𝑋𝑖
(·) as notation for

the probability measure of random variable 𝑋𝑖 ,

𝜕

𝜕𝑎𝑖
E𝑋𝑖

(
max(𝑋𝑖 , 𝑎𝑖 ) + 𝜙 − 𝑑𝑖 |Δ𝑖 = 𝜙

)
=

𝜕

𝜕𝑎𝑖

( ∫ 𝑎𝑖

0

(𝑎𝑖 + 𝜙 − 𝑑𝑖 )+𝑝𝑋𝑖
(𝜔)𝑑𝜔

+
∫ ∞

𝑎𝑖

(𝑋𝑖 (𝜔) + 𝜙 − 𝑑𝑖 )+𝑝𝑋𝑖
(𝜔)𝑑𝜔

)
= 1(𝑎𝑖 > 𝑑𝑖 − 𝜙)P

(
𝑋𝑖 < 𝑎𝑖

)
where the last step follows after applying Leibniz’s rule and cancel-

ing out terms. Lastly, we return to our application of law of total

expectation to obtain

𝜕

𝜕𝑎𝑖
E(𝜏𝑖 + Δ𝑖 − 𝑑𝑖 )+ = EΔ𝑖

(
1(𝑎𝑖 > 𝑑𝑖 − Δ𝑖 )P

(
𝑋𝑖 < 𝑎𝑖

) )
= P

(
Δ𝑖 > 𝑑𝑖 − 𝑎𝑖

)
P
(
𝑋𝑖 < 𝑎𝑖

)
□

Proof for claim 1. Collecting the results from claim 4 and claim

5, and setting this equal to 0 we obtain

P
(
Δ𝑖 > 𝑑𝑖−𝑎𝑖

)
P
(
𝑋𝑖 < 𝑎𝑖

)
+𝛽

( ∫ ∞

𝑎𝑖

P(𝑋𝑖 > 𝑡)𝑑𝑡
) (
P(𝑋𝑖 > 𝑎𝑖 )−1

)
= 0

P
(
Δ𝑖 > 𝑑𝑖 − 𝑎𝑖

)
= 𝛽

( ∫ ∞

𝑎𝑖

P
(
𝑋𝑖 > 𝑡

)
𝑑𝑡

)
Introducting 𝐹Δ𝑖

(·) as the cumulative distribution function for

the duration of task 𝑖 , and recalling the fact that P
(
𝑋𝑖 > 𝑡

)
=

P
(
max𝑘∈U𝑖

(𝜏𝑘 + Δ𝑘 ) > 𝑡
)
, we can further expand the result as

1 − 𝐹Δ𝑖
(𝑑𝑖 − 𝑎𝑖 ) = 𝛽

∫ ∞

𝑎𝑖

(
1 −

∏
𝑘∈U𝑖

𝐹Δ𝑘
(𝑡 − 𝜏𝑘 )

)
𝑑𝑡

□

A.2 Proof for claim 2
Proof. LetD𝑖 and 𝑐𝑙 (D𝑖 ) represent the immediate downstreams

and all downstream ancestors of task 𝑖 , respectively. 𝜕
𝜕𝑎𝑖

( ∑
𝑖 E(𝜏𝑖 +

Δ𝑖 −𝑑𝑖 )++ 𝛽
2

∑
𝑖 Var(𝜏𝑖 +Δ𝑖 )

)
can be decomposed into the following

terms:

𝜕

𝜕𝑎𝑖

(
E(𝜏𝑖 + Δ𝑖 − 𝑑𝑖 )+ +

𝛽

2

Var(𝜏𝑖 + Δ𝑖 )
)

+
∑

𝑗 ∈𝑐𝑙 (D𝑖 )

𝜕

𝜕𝑎𝑖

(
E(𝜏 𝑗 + Δ 𝑗 − 𝑑 𝑗 )+ +

𝛽

2

Var(𝜏 𝑗 + Δ 𝑗 )
)

+
∑

𝑗∉𝑐𝑙 (D𝑖 ), 𝑗≠𝑖

𝜕

𝜕𝑎𝑖

(
E(𝜏 𝑗 + Δ 𝑗 − 𝑑 𝑗 )+ +

𝛽

2

Var(𝜏 𝑗 + Δ 𝑗 )
)

The third term evaluates to zero, since 𝜏 𝑗 is independent of the

placement for 𝑎𝑖 when 𝑗 ∉ 𝑐𝑙 (D𝑖 ). Inside the second summation, if

𝑗 ∈ D𝑖 we can write 𝜏 𝑗 (𝑎𝑖 ) as

𝜏 𝑗 (𝑎𝑖 ) = max

(
𝑎 𝑗 ,max(𝑎𝑖 , 𝑋𝑖 ) + Δ𝑖 , max

𝑘∈U𝑗 ,𝑘≠𝑖
(𝜏𝑘 + Δ𝑘 )

)
where 𝑋𝑖 corresponds to the notation introduced in claim 4. Since

𝜏 𝑗 (𝑎𝑖 ) is monotonically nondecreasing in 𝑎𝑖—and by extension it

can be seen that 𝜏 𝑗 (𝑎𝑖 ) for its downstreams are similarly monotonic

in𝑎𝑖—it follows that
𝜕
𝜕𝑎𝑖
E(𝜏 𝑗 (𝑎𝑖 )+Δ 𝑗−𝑑 𝑗 )+ will be nonnegative. For



Clockwork: a Delay-Based Global Scheduling Framework KDD ’21, August 14–18, 2021, Virtual Event, Singapore

the variance term inside the second summation, if task durations are

assumed to be independent from their start times this term reduces

to
𝜕
𝜕𝑎𝑖

𝛽
2
Var(𝜏 𝑗 (𝑎𝑖 )). Since Var(max(𝑋 ′

𝑗
, 𝑎 𝑗 )) ≥ Var(max(𝑋 𝑗 , 𝑎 𝑗 ))

when 𝑎 𝑗 is a constant and 𝑋 ′
𝑗
stochastically dominates 𝑋 𝑗 (proof

of this fairly intuitive property is omitted), and 𝑋 𝑗 is montonically

nondecreasing with 𝑎𝑖 ,
𝜕
𝜕𝑎𝑖

𝛽
2
Var(𝜏 𝑗 (𝑎𝑖 )) can also be guaranteed

to be nonnegative. Combining the above logic with the results of

claims 4 and 5 renders

𝜕

𝜕𝑎𝑖

(∑
𝑖

E(𝜏𝑖 + Δ𝑖 − 𝑑𝑖 )+ +
𝛽

2

∑
𝑖

Var(𝜏𝑖 + Δ𝑖 )
)

= P
(
𝑋𝑖 < 𝑎𝑖

) (
P
(
Δ𝑖 > 𝑑𝑖 − 𝑎𝑖

)
− 𝛽

∫ ∞

𝑎𝑖

P(𝑋𝑖 > 𝑡)𝑑𝑡
)
+𝜓 (𝑎𝑖 )

for some nonnegative function𝜓 (·). From this it follows that plug-

ging into the above relation 𝑎𝑖 suggested in claim 1 yields𝜓 (𝑎𝑖 ) ≥ 0,

which means the objective function can only be further reduced by

decreasing 𝑎𝑖 . Since the above relation also establishes a necessary

condition for optimality in the resource-unconstrained problem

(assumed in this claim), it further follows that 𝑎∗
𝑖
≤ 𝑎𝑖 . □

A.3 Proof for claim 3
Proof. Assume the alternate case holds, in other words that

a task 𝑘 which satisfies the conditions in claim 3 has an optimal

dispatch time 𝑎∗
𝑘
> 0, with corresponding optimal dispatch times

𝑎∗
𝑖
for its immediate downstream tasks. Consider a new dispatch

time 𝑎′
𝑘
satisfying 0 ≤ 𝑎′

𝑘
< 𝑎∗

𝑘
and 𝐹Δ𝑖

(𝑡 − 𝑎′
𝑘
) > 𝐹Δ𝑘

(𝑡 − 𝑎∗
𝑘
) for

any 𝑡 ∈ [𝑎∗
𝑖
,∞). Note that 𝐹Δ𝑖

(𝑡 −𝑎′
𝑘
) ≥ 𝐹Δ𝑘

(𝑡 −𝑎∗
𝑘
) for all 𝑡 and all

𝑎′
𝑘
≤ 𝑎∗

𝑘
. Recall from the proof of claim 2 that a necessary condition

for optimality in the resource-unconstrained problem is

P
(
𝑋𝑖 < 𝑎∗𝑖

) (
P
(
Δ𝑖 > 𝑑𝑖 − 𝑎∗𝑖

)
− 𝛽

∫ ∞

𝑎∗
𝑖

P(𝑋𝑖 > 𝑡)𝑑𝑡
)
+𝜓 (𝑎∗𝑖 ) = 0

where, as cited in the proof of claim 1, P
(
Δ𝑖 > 𝑑𝑖−𝑎∗𝑖

)
−𝛽

∫ ∞
𝑎∗
𝑖

P(𝑋𝑖 >
𝑡)𝑑𝑡 can be rewritten as

1 − 𝐹Δ𝑖
(𝑑𝑖 − 𝑎∗𝑖 ) − 𝛽

∫ ∞

𝑎∗
𝑖

(
1 −

∏
𝑘∈U𝑖

𝐹Δ𝑘
(𝑡 − 𝜏𝑘 )

)
𝑑𝑡

Substituting the definition 𝜏𝑘 = max(𝑋𝑘 , 𝑎𝑘 ) and noting 𝑋𝑘 = 0 by

definition for a task 𝑘 with no upstreams, then 𝛽
∫ ∞
𝑎∗
𝑖

(1 − 𝐹Δ𝑘
(𝑡 −

𝑎′
𝑘
) ∗∏𝑗 ∈U𝑖 , 𝑗≠𝑘 𝐹Δ𝑗

(𝑡 − 𝜏 𝑗 ))𝑑𝑡 < 1 − 𝐹Δ𝑖
(𝑑𝑖 − 𝑎𝑖 ). This implies

the partial derivative in shown in claim 2 is positive, which is a

contradiction. The contradiction further holds for all 𝑎′
𝑘
unless

P
(
𝑎′
𝑘
+Δ𝑘 > 𝑎∗

𝑖

)
= 0 for all 𝑖 such that 𝑘 ∈ U𝑖 . If P

(
Δ𝑘 > 𝑎𝑖

)
> 0 as

stated in the claim, then necessarily P
(
Δ𝑘 > 𝑎∗

𝑖

)
> 0 since 𝑎𝑖 ≥ 𝑎∗

𝑖
as per claim 2, which completes the proof. □


	Abstract
	1 Introduction
	2 Related Work
	3 Concepts and Definitions
	3.1 Data pipelines
	3.2 Query and cluster taxonomy
	3.3 Mathematical formulation

	4 Resource Estimation and Dependency Data
	4.1 Task metrics and deadlines
	4.2 Global dependency structure
	4.3 Resource estimation for queries

	5 Scheduling algorithm
	5.1 Analytic properties of the objective function
	5.2 Implementation

	6 Deployment
	7 Experiments
	7.1 Landing times
	7.2 Cluster utilization and contention

	8 Concluding remarks
	Acknowledgments
	References
	A Proof of claims in section 5.1
	A.1 Proof for claim 1
	A.2 Proof for claim 2
	A.3 Proof for claim 3


