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Abstract

Dense correspondence between humans carries powerful
semantic information that can be utilized to solve funda-
mental problems for full-body understanding such as in-the-
wild surface matching, tracking and reconstruction. In this
paper we present BodyMap, a new framework for obtain-
ing high-definition full-body and continuous dense corre-
spondence between in-the-wild images of clothed humans
and the surface of a 3D template model. The correspon-
dences cover fine details such as hands and hair, while
capturing regions far from the body surface, such as loose
clothing. Prior methods for estimating such dense surface
correspondence i) cut a 3D body into parts which are un-
wrapped to a 2D UV space, producing discontinuities along
part seams, or ii) use a single surface for representing the
whole body, but none handled body details. Here, we intro-
duce a novel network architecture with Vision Transformers
that learn fine-level features on a continuous body surface.
BodyMap outperforms prior work on various metrics and
datasets, including DensePose-COCO by a large margin.
Furthermore, we show various applications ranging from
multi-layer dense cloth correspondence, neural rendering
with novel-view synthesis and appearance swapping.

1. Introduction
Several fundamental problems related to human un-

derstanding in images can be addressed by labeling every
pixel covering the human body with semantic information.
This enables numerous applications including video anal-
ysis, image editing, texture generation and style transfer.
From a single RGB image of a human, the literature has
proposed methods to extract sparse information such as 2D
body keypoints (e.g., face, hands, body joints), or 2D seg-
mentation masks (e.g., for full body, clothes, hair or skin),
and also 3D body pose and shape parameters defined by
a template body model [6, 8, 13, 33, 35, 44], while work
on dense surface correspondence has further enabled pixel-
level understanding by establishing unique correspondences
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Figure 1. We introduce BodyMap — a method that establishes
accurate dense correspondences between a 2D image and the sur-
face of a 3D clothed human with high precision. Our approach
handles loose clothes, different hairstyles and various accessories,
like hats and bags, providing crisp silhouettes, and works well in
multi-person cases with occlusions.

between 2D pixels covering the visible regions of the human
body and 3D points on the surface of a body template.

In the seminal work DensePose [26], correspondences
are estimated between image pixels belonging to the hu-
man body and points in disjoint parts of a human body tem-
plate located using UV coordinates, similar to local texture
mapping. The method is trained on the large in-the-wild
dataset DensePose-COCO and is robust to human pose vari-
ability, image resolution, diversity in clothing, and occlu-
sions. However, it has some inherent limitations that im-
pact methods that rely on it (e.g., for clothed-human ap-
plications) [1, 21, 46]. First, the discretization generated by



dividing the body into disjoint parts produces clearly visible
seams and discontinuities between them that are not optimal
for learning models. Second, the DensePose estimates suf-
fer from inaccuracy as reported in prior work [26, 28, 39],
mainly due to the difficulty in acquiring ground-truth anno-
tations for the task [2,23]. Follow-up methods have tackled
some of its shortcomings and a few recent works addressed
the discontinuity of UV maps [4, 27, 47]. HumanGPS [41]
proposes to predict per-pixel embeddings using geodesic
distances between corresponding points on the surface of
a 3D human scan and does not produce an explicit map-
ping. None of the proposed approaches has established
high-definition correspondences for areas with finer details
such as hair and hands (with fingers), with generalization to
clothed humans, especially with loose clothing.

In this work we introduce a novel technique to establish
high-definition full-body and continuous dense correspon-
dence between images of clothed humans and the human
body surface. Our method, which we term as BodyMap,
takes as input an RGB image of a human and outputs ac-
curate per-pixel continuous correspondence estimates for
each foreground pixel (i.e. including the full body, with
clothes and hair). We designed a transformer-based ar-
chitecture that learns appearance-based and Continuous-
Surface-Embeddings-based representations to infer accu-
rate dense surface correspondence for the depicted human.
Our variant of Vision Transformer [11] as a computational
block of the encoder brings its advantageous properties for
dense prediction tasks. The vector dimension is kept con-
stant throughout all processing stages as well as global re-
ceptive field for every stage. With these properties, our net-
work is well designed for dense correspondence prediction.

Furthermore, we capitalize on the power of synthetic
data. Since no real-world dataset provides ground-truth an-
notation at the quality we aim for (fingers, clothes, hair),
we created a synthetic dataset of animated 3D clothed hu-
man scans. In that way, we obtained ground-truth dense
correspondence for a large variety of humans with diverse
clothing, in different poses and from different viewpoints.
A differentiating factor of our framework is that it is not tied
to a human body with topology constraints, and can handle
layered representations such as humans with separate cloth
geometries. To summarize, our key contributions are:

• BodyMap is the first method to establish dense continu-
ous correspondence for every foreground pixel of clothed
humans, whether that is fingers, hair, or clothes that are
displaced from the human body with high-precision —
something that all prior works fail to achieve.

• A novel transformer-based architecture designed specifi-
cally for this task that when trained in a multi-task learn-
ing manner with per-pixel classification losses for each

channel significantly outperforms prior works across sev-
eral datasets and tasks.

• We achieve state-of-the-art results on DensePose COCO
by a large margin. We show our approach can be applied
to real-world applications such as novel view synthesis.
Our method can be extended to learn layered representa-
tions with clothed humans and predict per-geometry sur-
face correspondences.

2. Related Work
Dense Surface Correspondences. One of the most widely
used approaches in this topic is DensePose [26], where clas-
sification and regression branches were trained to obtain
per-pixel body part and UV estimates. The body parts con-
stitute the I channel which takes one of 25 values (includ-
ing the background) and the UV estimates which are con-
tinuous numbers mapped to [0, 255]. However, its output
is discretized resulting in seams between body parts. This
problem is alleviated in Continuous Surface Embeddings
(CSE) [27], which for each pixel learns a positional embed-
ding of the corresponding vertex in the object mesh. In CSE
correspondences are learned without being constrained on
specific geometry types (e.g., humans), and show the effec-
tiveness of their approach on other deformable object cate-
gories, like animal classes which was later extended by dis-
covering correspondences between different object classes
automatically [29]. HumanGPS [41] maps each pixel to a
feature space, where the feature distances reflect geodesic
distances among vertices of a 3D body model correspond-
ing to every pixel. Similarly to CSE, for every image pixel
they produce an embedding capable of differentiating visu-
ally similar parts and aligning different subjects into an uni-
fied feature space. Zeng et al. [47] introduced, a model-free
3D human mesh estimation framework, which explicitly es-
tablishes the dense correspondences between the mesh and
the local image features in the UV space. They solve human
body estimation problem relying on dense local features
transferred to the UV space. Getting enough labeled data
(especially non-synthetic) to learn dense correspondences
is a challenging task. SimPose [49] proposed to alleviate
the problem by using simulated multi-person datasets and a
specific training strategy with multi-task objectives to learn
dense UV coordinates. They obtain favourable results using
only simulated human UV labels. The intricacy of getting
dense and accurately annotated correspondences is further
explored in UltraPose [45]. They provide a dense synthetic
benchmark focusing on faces, containing around 1.3 bil-
lion corresponding points as well as data generation system
based on novel decoupling 3D model.
Architecture Designs for Dense Correspondences. There
have been a couple of approaches in terms of network archi-
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Figure 2. BodyMap architecture. Given an RGB image we first obtain its CSE [27] estimates and feed both to their corresponding
encoders. We utilize vision transformers specifically designed for this task to learn to extract accurate high-dimensional representations
that are then fed to the BodyMap decoder that predicts per-pixel dense correspondences.

tectures to extract dense human correspondences. In Dense-
Pose [26] a Mask-RCNN [15] with Feature Pyramid Fea-
tures [22] is utilized to obtain accurate image features. Sim-
Pose [49] opted for a ResNet-101 backbone trained with
losses adjusted to each of their tasks (e.g., human pose,
segmentations, normals, UVs). Another simple yet effec-
tive choice employed by HumanGPS [41] is an Encoder-
Decoder architecture such as U-Net [36]. Our investiga-
tion indicated that while one can achieve satisfactory re-
sults with the aforementioned approaches they are all un-
able to capture finer-level details in the depicted human as
usually the extracted features are too coarse. To alleviate
this we turned into transformer architectures due to their
ability to learn these discriminative features necessary for
either downstream computer vision tasks or reconstruction
applications. Originating from Natural Language Process-
ing, a Transformer architecture [43] has shown its effective-
ness within a wide range of Computer Vision tasks: image
recognition and classification [11], image retrieval [12], im-
age generation [31] and image captioning [16]. We capital-
ize upon prior work on vision transformers for dense predic-
tion tasks [34] (e.g., depth estimation) and introduce a new
architecture explicitly design for predicting dense surface
correspondences for humans.

3. The Proposed Method: BodyMap
The main goal of the proposed approach is to estab-

lish dense surface correspondence between a single RGB
image and 3D body model. Our method takes as input
a single RGB image, foreground mask and coarse corre-
spondences retrieved using Continuous Surface Correspon-
dences (CSE) [27]. CSE serves as a sufficient initialization
which our method refines by providing more accurate esti-
mates for the areas covering loose clothes, hair, fingers, etc.
Thus, BodyMap provides per-pixel estimates for the fore-
ground image resulting in much more accurate represen-

tations and crisp silhouettes. The necessity of foreground
mask stems not only from the foreground silhouette that we
aim to complete with our estimates but also the image-level
features that we prove to be essential in Section 4.

3.1. Continuous Correspondences

Continuous correspondences have significant advantages
over their discretized counterparts. First, a continuous rep-
resentation provides no seams between body parts. Sec-
ond, it is conceptually simpler as there is no need to ex-
plicitly encode and later predict the body part. The bene-
fits of utilizing a continuous representation for surface cor-
respondences have already been discussed in a few prior
works [27, 41, 47]. We follow a similar direction with [27]
and design a continuous UV map that is then warped to
body models in different poses, providing ground truth cor-
respondences for our approach. The color scheme for cor-
respondences used in the paper is unique color-wise: we
chose different colors for every vertex of the parametric
body model. Given the colored 3D body model we trans-
form its surface into a 4K UV map, which is then utilized
during rendering over a body model in a determined pose
and from a desired view point. In that way, we obtain
ground truth for the synthetic data used for training.

3.2. Surface Embedding Transformers

A classic architectural for a network predicting Dense
Correspondences from an RGB image is an Encoder-
Decoder (e.g., U-net). While simple convolutional back-
bones in the encoder can usually provide sufficient results,
we observed that the right choice of the encoder architecture
may significantly boost the whole pipeline performance.
Compared to convolutions, transformer-based architectures
do not suffer from limited receptive fields, resulting in more
expressivity. Moreover, transformers avoid explicit down-
sampling of the input image embedding leading to more ac-



curate and refined final representations.
As illustrated in Fig. 2, we build upon the work of Ran-

ftl et al. [34] for monocular depth estimation and introduce
a simple yet novel transformer-based architecture designed
explicitly for the task of predicting dense surface corre-
spondences of humans. We transform the RGB image and
its CSE estimate into tokens by extracting non-overlapping
patches and then linearly projecting resulting flattened rep-
resentations. Similarly to text-transformers, we add a spe-
cific token to the set, that aggregates the global knowl-
edge about an image. The image and CSE embeddings are
supplemented with positional embeddings and fed to sep-
arate vision transformer backbones with separate weights
to retrieve dense features for each input. Later we refer to
these blocks as appearance and correspondence transform-
ers (Fig. 2). Positional encoding in Visual Transformers is
essential to capture sequence ordering of input tokens in-
stead of transforming the image into ”bag-of-patches” omit-
ting its relative order and global spatial consistency.

The transformer outputs are fused forming an interme-
diate representation which is first resampled and then pro-
jected via residual convolutional units. It is then fed into
the convolutional decoder where the representation is up-
sampled to generate a fine-grained correspondence predic-
tion. Finally, the network outputs per-pixel RGB values that
encode correspondences according to our coloring scheme
discussed in the previous section.

3.3. Supervision in the Image Space

For each pixel p in the foreground image, we predict 3-
channeled (RGB) color p′ ∈ Z3 which represents the corre-
spondence (the colors in such a representation are unique
which makes subsequent warping easy). Thus, we treat
the whole problem as a multi-task classification problem
where each task (predictions for the R, G and B channels)
is trained with the same set of losses:
Per-pixel classification loss Lcls. For every color channel,
we predict the per-pixel classification label l ∈ [0, 255].

BodyMap provides raw, unnormalized per-pixel scores
for each of the classes in each of the three color channels
and Lcls measures the cross-entropy between the predic-
tion and the ground truth. Since we noticed that it is quite
challenging to predict correspondences of realistic gestures,
we further define a loss weight for each pixel based on the
body part segmentation. We set a higher weight for hands
and head while a lower weight for the rest of the body to
encourage fine-grained correspondence estimation.
Silhouette loss Lsil. We penalize the model for non-
accurate silhouette predictions by calculating the IoU be-
tween the predicted and ground truth foreground masks.

3.4. Supervision in the 3D Geometry

Geodesic loss Lgeo. While per-pixel cross-entropy clas-
sification losses supervise our predictions in 2D image

space, we expand our supervision scheme to 3D by util-
ising geodesic distances on the surface of the body model.
Geodesic losses have been instrumental in the literature for
enforcing supervisions in the 3D space. We design a loss
that pushes features between non-matching pixels apart, de-
pending on the geodesic distance. We calculate geodesic
distances between vertices predicted with correspondences
for every foreground pixel and their ground truth coun-
terparts. Theoretically, such a supervision eliminates im-
perfection of the proposed coloring scheme for correspon-
dences: distant vertices may have resembling colors (green
head and shoulders, blue arm and right thigh). Thus, the
geodesic loss provides extra knowledge about the 3D ge-
ometry comparing distances between predicted vertices vs.
ground truth ones.

Lgeo(Ipred, Igt) =
∑
x

Dg(V
(Ipred(x)), V (Igt(x))), (1)

where V (I(x)) denotes the vertex corresponding to pixel lo-
cation x in the image I and Dg(·, ·) denotes the geodesic
distance between two 3D points on the body surface.

3.5. Regularization and Final Loss

Consistency loss Lcon. We further add a regularization
term to enforce the smoothness of the predictions in the
neighboring regions. Specifically, we constrain the predic-
tions from neighboring pixels to be geodesically close to
each other, i.e.,

Lcon(Ipred) =
∑
p∈I

log

(
1 + exp

(Dg(pr, p)

σgeo
− ∥pr − p∥1

σcol

))
,

(2)
where pr is a randomly chosen pixel within the foreground
silhouette, Dg(p1, p2) the geodesic distance between ver-
tices corresponding to pixels p1 and p2, σgeo is the normal-
izing constant for geodesic distances (maximum possible
distance between points in the body model), σcol the nor-
malizing constant for RGB colors, respectively. On each
iteration we calculate this loss 100 times for different ran-
domly chosen pixels later averaging the resulting values.
Final loss. The final loss is a weighted sum of all the terms:

Ltrain =λclsLcls + λsilLsil + λgeoLgeo + λconLcon, (3)

where a loss weight λ corresponds to each loss term in order
to balance them.

3.6. Training Details

The BodyMap network is first trained on synthetic data
to learn surface correspondences for every foreground pixel.
Given an RGB image, we obtain foreground mask and CSE
estimates which serve as an initialization for the corre-
spondences. However, if we were to test this model di-



rectly on DensePose-COCO that comprises multiple peo-
ple, heavy occlusions and low-resolution images, then the
results would be unsatisfactory. The annotations provided
in this dataset are sparse and noisy with ∼100 pixel-SMPL
vertex correspondences for each person in the image. To
bridge this domain gap, we fine-tune our model on the train-
ing set of DensePose-COCO but with a key change that
ended up having a significant impact. Given an image from
this dataset, we generate pseudo ground-truth estimates on
the fly by extrapolating both the available ground-truth an-
notations but also the CSE initialization such that they cover
the whole estimated silhouette of the human. In that way
we can fine-tune our model on real-data with denser super-
vision and utilize losses in both 2D and 3D spaces.

To further boost the generalization capabilities of
BodyMap, we introduce several augmentations. First, we
do specific crops in order to get upper-body samples. Sec-
ond, we generate frames with multiple synthetic people in it
to simulate crowds and diminish the gap between synthetic
and real data. Third, we do a standard set of augmentations,
like rotations, slight hue and saturation changes.

4. Experiments
Datasets. Our proposed approach is trained mainly on syn-
thetic data with the exception of the experiments reported
on DensePose-COCO where we utilize the provided train-
ing set. We opted for the RenderPeople dataset [10] which
has been used extensively in the literature [1, 5, 7, 17, 18,
21, 30, 32, 37, 41, 50] for various human reconstruction and
generation tasks. We used 1000 scans which are watertight
meshes wearing a variety of garments and in some cases
holding objects such as mugs or bags. Since the scans are
static we wanted to introduce additional pose variations and
as a result we performed non-rigid registration, rigged them
for animation and used a motion collection that provides
3D human animations from which we collect a set of 2, 446
3D animation sequences covering wide action categories of
daily activities and sports. With a large set of scans and
motions we randomly sample scan-motion pairs and ren-
der them with Blender Cycles from different views with
uniform lighting to obtain the RGB sequences as well as
the corresponding UV ground-truth. We perform a 90/10
train/test split based on identities. This large-scale dataset
represents an effort to cover a wide range of motions, poses,
and body shapes, captured from multiple views with peo-
ple that can move towards the camera our even outside the
frame and enables us to train our BodyMap network without
making any explicit assumptions.

At test-time BodyMap is evaluated quantitatively and
qualitatively on both synthetic as well as real data ranging
from COCO, fashion images (DeepFashion [24]) as well as
a few 3dMD scans of real people captured with a full-body
scanner. We used this solely for testing since we wanted to

Method AP AP50 AP75 AR AR50 AR75

AMA-net [14] 64.1 91.4 72.9 71.6 94.7 79.8
DensePose [2] 66.4 92.9 77.9 71.9 95.5 82.6
DensePose-DeepLab [2] 51.8 83.7 56.3 61.1 88.9 66.4
SimPose-Rendppl. [49] 57.3 88.4 67.3 66.4 95.1 77.8
SimPose-SMPL [49] 56.2 87.9 65.3 65.2 95.1 75.2
CSE [27] 67.0 93.8 78.6 72.8 96.4 83.7
CSE-DeepLab [27] 68.0 94.1 80.0 74.3 97.1 85.5
BodyMap RGB-only 71.0 94.3 83.3 75.2 94.3 86.1
BodyMap 75.2 95.8 89.7 79.8 97.3 89.7

Table 1. Average Precision (AP) and Recall (AR) on
DensePose-COCO. AP and AR are calculated at a number of GPS
thresholds ranging from 0.5 to 0.95. Our methods surpasses the
state-of-the art methods DensePose [26] and CSE [27]

evaluate to what extent our approach can handle the domain
gap between synthetic and real data. These real scans do not
include any objects but are noisier with complex facial ex-
pressions and enable us to stress-test whether our approach
can handle such complex inputs.
Baselines and Metrics. We consider two different ways of
measuring the quality of correspondences evaluating both
in 2D image space by comparing RGB values of the cor-
responding pixels and in 3D space by measuring geodesic
distances between predicted and ground truth vertices.

First, we calculate the accuracy of predictions in the 2D
image space by calculating the percentage of pixels colored
correctly within a specified threshold. Second, following
the evaluation scheme of DensePose that is used widely in
the literature [26, 27, 49] we measure average precision and
recall over GPS scores. Geodesic point similarity (GPS)
score is a correspondence matching score:

GPSj =
1

|Pj |
∑

p∈Pj

exp
−g(ip, îp)

2

2κ2
, (4)

where Pj is the set of points annotated on person instance
j, ip is the vertex estimated by a model at point p, îp is the
ground-truth vertex p, and κ is a normalizing parameter. We
calculate Average Precision (AP) and Average Recall (AR)
metrics considering a vertex prediction as correct if the GPS
score is higher than a threshold. Following the evaluation
scheme established by prior work [26, 27], GPS thresholds
are ranging from 0.5 to 0.95.

Additionally to metrics in 2D and 3D spaces, we eval-
uate the consistency over time of our predictions in order
to estimate quantitatively the amount of flickering. We cal-
culate percentage of positive correspondence matches be-
tween frames of the same video for visible vertices.

Using the aforementioned metrics we compare
BodyMap quantitatively to the previous works: Dense-
Pose [26], CSE [27], SimPose [49] as well as several other
baselines. However, calculating AP and AR metrics for
HumanGPS is not possible due to the fact, that HumanGPS
predicts only embeddings for every foreground pixel, that
provide no information on UV coordinates or correspond-



Synthetic Dataset DensePose-COCO

Error Window (px) 5 10 20 5 10 20

DensePose [2] 25.93 46.10 69.91 49.23 55.75 59.71
CSE [27] 44.52 67.51 75.13 58.10 60.34 64.14
BodyMap RGB-only 66.15 73.81 79.80 61.18 65.32 68.52
BodyMap 71.12 79.73 96.92 65.34 68.22 73.88

Table 2. Accuracy in 2D space. We show the percentage of pix-
els correctly matched within the established error window on syn-
thetic dataset and DensePose-COCO. Our methods surpasses the
state-of-the art methods DensePose and CSE.

Method AP AP50 AP75 APM APL AR AR50 AR75 ARM ARL

DP-DL [2] 55.3 85.6 60.1 48.3 58.2 66.8 90.1 68.2 50.1 66.1
CSE-DL [27] 72.8 95.7 84.2 65.7 73.1 78.2 97.3 87.5 67.2 78.0
BodyMap RGB-only 75.3 96.1 89.2 69.3 75.2 81.2 97.4 89.2 70.3 80.2
BodyMap 79.5 97.8 90.5 72.3 79.4 85.3 98.1 92.5 73.4 84.5

Table 3. Average Precision (AP) and Recall (AR) over GPS
scores in 3D space. We calculate AP and AR at GPS thresholds
ranging from 0.5 to 0.95 on our synthetic dataset. Our method
clearly outperforms DensePose-DeepLab and CSE-DeepLab.

ing to pixels SMPL vertices. In their approach warping and
appearance swapping is done by nearest neighbors search
over embeddings without going to 3D body model space.
Thus, we compare with HumanGPS only qualitatively and
using temporal consistency metrics.

4.1. Quantitative results

In Tables 2 and 3 we provide a quantitative compari-
son between BodyMap, DensePose, CSE and HumanGPS
on the test set of the aforementioned synthetic dataset.
In Tables 1 and 2 we do the same on DensePose-COCO
dataset but also provide additional comparisons with prior
work. Opposite to the synthetic dataset, for which we have
ground truth correspondences for every foreground pixel,
for DensePose-COCO we rely only on the available anno-
tated points to calculate the metrics. BodyMap shows a
substantial improvement over prior work across all the met-
rics for both our synthetic and DensePose-COCO datasets.
The reasons behind this improvement stem from: i) specifi-
cally designed architecture that separates and takes the best
out of RGB and CSE inputs; ii) training on well-designed
and rendered synthetic data and later fine-tuning on specif-
ically adapted DensePose-COCO with the additional tricks
discussed in Sec. 3.6, which helps to bridge the synth2real
domain gap; iii) the proposed training scheme that includes
supervision both in the image space with per-pixel classifi-
cation losses as well as the 3D space with geodesic losses.
Temporal Consistency. In Table 4 we test how temporally
consistent the dense correspondences of different methods
are. We were motivated to run this experiment by observ-
ing how jittery DensePose predictions can be on videos. In
terms of metrics, we estimate the percentage of positive
correspondence matches between the current frame and a

Frame Interval 1 12 120

DensePose [26] 77.79 40.86 16.32
CSE [27] 85.55 55.85 18.93
HumanGPS [41] 86.42 65.19 36.17

BodyMap 88.70 74.01 46.11

Table 4. Temporal consistency. We estimate the percentage of
positive correspondence matches between frames with a different
interval on a synthetic sequence of 18, 000 frames.

Synthetic Dataset DensePose-COCO

Error Window (px) 5 10 20 5 10 20

BodyMap
(ours)

ResNet 45.12 60.82 79.12 30.41 55.67 61.15
EffNet 51.22 65.77 82.19 40.25 61.17 70.22
U-Net 68.42 75.13 94.19 60.82 65.74 70.12
ViT 71.12 79.73 96.92 65.34 68.22 73.88

Table 5. Different network backbones: Ablation study

frame in the future with an interval in 1, 12, 120 on a syn-
thetic sequence consisting of 18, 000 frames. BodyMap
outperforms prior work by a large margin and establishes
accurate correspondences even if the time interval between
the 2 frames is substantial. In supplementary we provide
demo video showing consistency over time of our results.

4.2. Ablation studies

Different Architectures. We experiment with dif-
ferent backbones starting from a simple UNet with
skip-connections and then progressing to more complex
transformer-based solutions. In Table 5 we provide a com-
parison in terms of accuracy in the 2D space across all the
architectures. An interesting finding is that a simple UNet
architecture can get satisfactory results when trained with
all the proposed supervisions described in Sec. 3.3 and 3.4.
However, our proposed Vision Transformer (ViT) is capable
of learning more accurate correspondences in challenging
areas like neck, armpits, fingers and hair, making the pre-
dicted silhouette clear-cut and crisp. These differences are
mostly visible in hard DensePose-COCO examples (with
multiple people and occlusions), while on simple synthetic
data cases UNet is performing nearly as good as ViT.

We further experiment with the network design, feed-
ing only RGB inputs to the net and omitting the Cor-
respondence Transformer. While RGB-only method per-
forms comparatively worse, it still outperforms existing ap-
proaches, e.g.DensePose, CSE or HumanGPS (Tables 1, 2).
Different Losses. We also investigate the impact of the
proposed losses in Table 6. While the best score is
achieved with the whole set of proposed losses, per-pixel
cross-entropy classification losses for color channels con-
tribute the most. Silhouette loss makes the edges of final
prediction more accurate and extra supervision in hands
and head regions improves correspondences in these ar-



Synthetic Dataset DensePose-COCO

Losses
Error Window

5 10 20 5 10 20

Lcls 65.16 71.52 85.12 49.37 55.81 59.14
Lcls + Lsil 69.18 75.32 92.31 54.12 60.22 62.17

Lcls + Lsil + Lgeo 70.23 78.71 95.80 61.83 64.32 68.17
Lcls + Lsil + Lgeo + Lcon 71.12 79.73 96.92 65.34 68.22 73.88

Table 6. Ablation study on the impact of different losses in the
accuracy in 2D space (the percentage of pixels colored correctly
within the established error window)

eas. Geodesic losses give tangible improvement only on
DensePose-COCO, indicating that simple synthetic one-
person-per-frame cases can be handled sufficiently with
only image-space supervision. Thus, the model can learn
fine-grained body model details even with the first two
losses (both supervising in the 2D image space). How-
ever, more complicated cases including several people in
one frame and significant occlusions require extra supervi-
sion in 3D space to obtain satisfactory results.
Different Fine-tuning Schemes: We experimented with
two ways of fine-tuning on real data: (1) using only avail-
able sparse annotations (sparse fine-tuning); (2) using the
generated dense pseudo ground-truth estimates described in
Sec. 3.6 (dense fine-tuning). We observed that densifying
ground-truth on the fly results in superior performance com-
pared to either no fine-tuning or relying solely on sparse
annotations. More results are shown in the supplementary.
Model Complexity: Inference of our model takes ∼0.1 sec-
onds on a single Tesla V100-SXM2 for a 1024 × 1024 im-
age. The model has ∼600M trainable parameters.

4.3. Qualitative Results
In Figures 1, 3 we show correspondences for a few im-

ages from DeepFashion [24] which has lower quality inputs,
RenderPeople, DensePose-COCO and finally images from
real-people scans captured with a 3dMD system. The sil-
houettes of the inputs are well covered with our estimates,
the hands and fingers are accurately captured and the face is
well aligned. Loose clothes, even complicated cases like a
long robe in the are well-handled.

In Figure 3 we show qualitative comparisons between
BodyMap and competitors: HumanGPS, DensePose and
CSE on several examples from DensePose-COCO, Render-
People and our synthetic dataset. While DensePose and
CSE predictions are smooth and consistent, they do not
cover the whole silhouette, totally omitting hair and loose
clothes. HumanGPS handles silhouettes better, but still
struggles with accurate correspondences in challenging sce-
narios with occlusions or produces blurry patches for back
views (Line 4 in Figure 3). We also show in the supplemen-
tary, that HumanGPS predictions are not always temporally
consistent, jumbling correspondences for right and left arms
and legs while the person is rotating.

Figure 3. Qualitative comparison with competitors on DensePose-
COCO, our synthetic dataset and RenderPeople.

4.4. Applications & Discussions
Neural Re-rendering. One possible application is re-
rendering people from the source frame from another view
point and/or in another pose. We introduce a model for neu-
ral re-rendering which aims at learning a function that given
the complete texture map and the estimated BodyMap cor-
respondences generates a photorealistic render in the image
space. Before neural re-rendering it is needed to obtain a
complete texture map, which we do in the following way.
Given a source and a target view of a person we utilize the
predicted BodyMap estimates and defined a warping func-
tion W that outputs high-quality neural re-renders at the tar-
get viewpoint. We represent W with a neural network that
i) warps the input source RGB image to the UV space to ob-
tain a partial texture, ii) learns to complete it to obtain a full
texture estimate, and iii) warps it back to the image space
using BodyMap and then uses a neural renderer that gen-
erates the final output render. Given a source and a target
image our neural renderer generates overall higher-fidelity
details than prior work as seen in Fig. 4(left), also in the face
and hand regions, and does not suffer from color bleeding.



Figure 4. Applications. Neural re-rendering (left) and predicting
layered correspondences for clothed humans (right).

In the supplementary material we describe in detail this ap-
plication along with an architecture figure and also present
an application to cloth swapping and motion retargeting.
Layered Dense Correspondences. In all prior work dense
human correspondences are estimated only for the body sur-
face. That is because a body template (e.g., SMPL [25])
with UV information is available and sparse annotations
for COCO exist to accomplish this task. However, when
dealing with clothed humans (and especially in loose gar-
ments) estimating body correspondences in a single-layer
as DensePose or our proposed BodyMap does, can be a
challenging task. However, fine-grained clothes details like
wrinkles and textile folds can be represented better with
decoupling body and clothes correspondences to separate
representations. In a first attempt to do so we present
an application with a slight BodyMap variation predicting
three separate representations for the unclothed body, up-
per clothes and lower clothes. We named this variation
Layered-BodyMap. The architecture remains the same be-
sides the three output heads instead of one. To gener-
ate ground truth data for such a task, we run cloth sim-
ulation for the two garments given various walking and
hand-movement motions resulting in 12 sequences of peo-
ple wearing 3D clothes from our collection. Opposite to
BodyMap, where we use RGB together with CSE initializa-
tion as input, here we do not have any initialization for the
clothes correspondences, and as a result we feed this net-
work with RGB-only inputs, but condition the estimates on
semantic segmentation masks. The predicted layered cor-
respondences are accurate and cover the whole silhouette
(Fig. 4 (right)) which is a promising result that we believe
future work will improve upon as more 3D garment libraries
become available [3, 38, 42, 48].
Limitations. Our approach relies on foreground human
segmentation which makes it susceptible to the performance
of that step. We tested different segmentation and matting
approaches, [9, 19, 20, 40], and opted for MMSegmentation
due to its ability to preserve fine details like fingers and

Figure 5. Failure cases. Most failure cases happen for low reso-
lution images with occlusions and/or bad lightning.

hairstyles. BodyMap was trained on high-resolution mostly
full-body images which makes it susceptible to low-res in-
puts or when only the bottom of the body is visible. This
is partly solved by imposing heavy augmentations but oc-
clusions from objects remain a challenge. Moreover, due to
the nature of the task most of the training data is synthetic
which makes inference on real data challenging. We ad-
dress that with the fine-tuning scheme described in Sec. 4.2.
We show some failure cases in Figure 5, which mostly hap-
pen due to bad lightning or severe occlusions and provide
additional examples in the supplementary.

5. Conclusion
We present a novel framework for establishing accurate

dense correspondences between an image and the surface
of a 3D clothed human. Our key contribution, BodyMap, is
a transformer-based architecture that when trained with 2D
and 3D supervisions significantly outperforms prior work.
BodyMap addresses key limitations of current approaches,
such as inability to handle loose clothes, body and gar-
ments being represented as a single surface, non-continuity
of the correspondences for different body parts. We outper-
formed prior work by a large margin on synthetic as well as
DensePose-COCO datasets and investigated the impact of
each of our design selections. Finally, we provided exam-
ples of applications such as re-rendering in different poses
and extend BodyMap to clothed humans with multiple lay-
ers of geometry with promising results.
Acknowledgments. We thank Tuur Stuyck for his help to
run cloth simulation and Vasil Khalidov for his help with
running the code of the Continuous Surface Embeddings
paper.
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