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Abstract

We propose DiffQ a differentiable method for model compression for quantizing model
parameters without gradient approximations (e.g., Straight Through Estimator). We suggest
adding independent pseudo quantization noise to model parameters during training to
approximate the effect of a quantization operator. DiffQ is differentiable both with respect
to the unquantized weights and the number of bits used. Given a single hyper-parameter
balancing between the quantized model size and accuracy, DiffQ optimizes the number of bits
used per individual weight or groups of weights, in end-to-end training. We experimentally
verify that our method is competitive with STE based quantization techniques on several
benchmarks and architectures for image classification, language modeling, and audio source
separation. For instance, on the ImageNet dataset, DiffQ compresses a 12 layers transformer-
based model by more than a factor of 8, (lower than 4 bits precision per weight on average),
with a loss of 0.3% in model accuracy. Code is available at github.com/facebookresearch/diffq.

1 Introduction

An important factor in the adoption of a deep learning model for real-world applications is how easily it can
be pushed to remote devices. It has been observed that larger models usually lead to better performance, for
instance with larger ResNets (He et al., 2016) achieving higher accuracies than smaller ones. In response, the
community has worked toward smaller, and more efficient models (Tan & Le, 2019). Yet an EfficientNet-B3
is still almost 50MB, a considerable amount if the model is to be included in online applications, or updated
with limited network capabilities. For other applications, such as language modeling (Vaswani et al., 2017)
or source separation (Défossez et al., 2019), the typical model size is closer to 1GB, ruling out any kind of
mobile usage. Efficient model compression is thus important for on device adoption of deep learning models.
Thus, we focus in the present work on reducing model size, rather than achieving computational gains.

The simplest method to reduce model size consists in decreasing the number of bits used to encode individual
weights. For instance, using 16 bits floating point numbers halves the model size, while retaining a sufficient
approximation of the set of real numbers, R, to train with first-order optimization methods (Micikevicius
et al., 2018). When considering lower precision, for instance, 8 or 4 bits, the set of possible values is no
longer a good approximation of R, hence preventing the use of first-order optimization methods. Specifically,
uniform quantization requires using the round function, which has zero gradients wherever it is differentiable.

Quantization can be done as a post-processing step to regular training. However, errors accumulate in a multi-
plicative fashion across layers, with a possibly uncontrolled decrease in the model accuracy. Courbariaux et al.
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(2016) and later Krishnamoorthi (2018) propose to use a gradient Straight-Through-Estimator (STE) (Bengio
et al., 2013) in order to provide a non-zero gradient to the original weights. This allows the model to adapt
to quantization during training and reduces the final degradation of performance. However, Fan et al. (2021)
noticed instability and bias in the learned weights, as STE is not the true gradient to the function.

The nature of quantization noise has been extensively studied as part of Analog-to-Digital Converters (ADC).
In particular, a useful assumption to facilitate the design of post-processing filters for ADC is the independence
of the input value and the “Pseudo Quantization Noise” (PQN), as formalized by Widrow et al. (1996). In
this work, we show that it also applies to deep learning model quantization, and provides a simple framework
in which the output and the quantized model size are both differentiable, without any use of STE. This
allows to optimally set the number of bits used per individual weight (or group of weights) to achieve a
trade-off between size and accuracy, in a single training and at almost no extra cost. Even when the number
of bits to use is fixed, we show that unlike STE, using independent pseudo quantization noise does not
introduce bias in the gradient and achieves higher performance. Although PQN has been proposed before for
quantization (Baskin et al., 2018a;b), it has never been used on its own without any need for STE or other
quantization methods, while achieving state-of-the-art performance.

Our Contribution: (i) With DiffQ, we propose to use pseudo quantization noise only to approximate
quantization at train time, as a differentiable alternative to STE, both with respect to the unquantized
weights and number of bits used.
(ii) We provide a differentiable model size estimate, so that given a single penalty level λ, DiffQ optimizes the
number of bits per weight or group of weights to achieve a given trade-off between model size and accuracy.
(iii) We provide extensive experimental validation using various models (ConvNets and Transformers) and
domains (image classification, language modeling, audio source separation). We demonstrate the efficiency of
DiffQ both in providing small footprint models with comparable performance to the uncompressed ones,
together with easy and stable optimization, using only one sensitive hyper-parameter.

2 Related Work

Early network quantization methods focused on low-bitwidth networks such as BinaryNet Courbariaux et al.
(2015; 2016), XOR-Nets Rastegari et al. (2016), or Ternary networks Li et al. (2016); Wu et al. (2018).
Although these methods produce highly quantized models, their performance is not on par with uncompressed
ones. To improve accuracies, higher bitwidth quantization methods were studied Jung et al. (2019); Zhang
et al. (2018a); Mishra et al. (2017). These methods followed the STE approach Bengio et al. (2013). STE
allows the gradients to be backpropagated through the quantizers and, thus, the network weights can be
adapted with gradient descent Courbariaux et al. (2016).

Variational approaches were used to make the categorical distribution over quantized weights differentiable.
Louizos et al. (2019) uses a Gumbel-softmax (Jang et al., 2017) but requires 2 hyper-parameters and has no
bitwidth tuning. DiffQ has a single hyper-parameter and supports automatic bitwidth tuning. Shayer et al.
(2018) relies on a Central Limit Theorem (CLT) application, however this prevents weights from converging
to a deterministic value, which would break the assumptions of the CLT. With DiffQ, weights are free to
converge to any optimal value. Finally Ullrich et al. (2017) uses a gaussian mixture model trained on top of
the weights, adding significant complexity both in terms of code, and computation. In contrast, DiffQ adds
only one penalty term to the loss, optimized along the rest of the model in an end-to-end fashion.

An alternative is to use a smoothed version of the quantization operator, possibly with a trained meta-network
(Chen et al., 2019), however as the smoothed operator converges to the true one, gradients will eventually be
zero almost everywhere. Gong et al. (2019) use a meta-network to provide gradients despite quantization.
However, their implementation for training the meta-network still relies on STE.

Additive noise injection has been studied by Baskin et al. (2018a), although only during the first few epochs,
after which STE based approximation is used. This work was extented to non uniform quantization (Baskin
et al., 2018b). In contrast, DiffQ uses only noise injection, and as demonstrated in Results Section, achieves
a better accuracy for an equivalent compression level than both methods. Non uniform quantization was
also studied by Polino et al. (2018), but without differentiability with respect to the weights, with worse
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performance than DiffQ. Additive noise was also studied in the context of image compression (Ballé et al.,
2017; Choi et al., 2019) in order to provide a differentiable pseudo-quantization operator. However, those work
rely on an explicit estimation of the quantized values entropy, in particular with respect to a distribution of
images. This formalism breaks down when having to quantize a single model, not a distribution, and DiffQ
uses a simpler approach where the bitwidth is directly tuned. More recently, Park et al. (2022) extended our
method for activation quantization.

An important contribution from DiffQ is the automatic tuning of the bitwidth using mixed-precision. Other
mixed-precision quantization methods are based on Reinforcement Learning (Wang et al., 2019; Elthakeb
et al., 2020; Liu et al., 2021), second-order optimization (Dong et al., 2019; 2020; Yao et al., 2021), and
differentiable quantization methods (Uhlich et al., 2020; Wang et al., 2020). Comparing to DiffQ, such
methods are more complex (e.g., require plenty of parameter tuning), more computationally heavy, and most
importantly based on STE approximations. Wang et al. (2019); Elthakeb et al. (2019) suggested learning
a bitwidth assignment policy using reinforcement learning methods. In contrast, our method select bitwidth
along training, using only first order optimization. Jain et al. (2019); Esser et al. (2020), and Bhalgat et al.
(2020) proposed learning the quantizer step-size or dynamic-range using STE, but do not allow to select the
bitdwidth. Our experiments show that DiffQ outperforms (Esser et al., 2020) (LSQ) both on most vision and
natural language tasks. Uhlich et al. (2020) proposed a re-parametrization that allows to select the bitwidth
for each layer through first order optimization, while also relying on STE. The re-parametrization is more
complex than the additive noise used in DiffQ, and suffers from the biased gradient of STE. Results suggest
that DiffQ achieves similar or better trade-offs between model size and accuracy. Besides, in the present
work we explore setting a bitwidth for individual groups of weights within each layer, rather than layer-wise.

The limitations of STE methods for quantization were first noticed by Liu & Mattina (2019). They recommend
using a linear combination of the unquantized and quantized weight, with the gradient flowing only through
the unquantized contribution. In a similar spirit, Fan et al. (2021) sample for each layer and iteration whether
to use the quantized or unquantized weight. Both methods reduce the bias from STE, but also remove some
of the quantization noise during training. In contrast our method allows to keep a full pseudo quantization
noise without the STE bias. Liu et al. (2022) proposed the Generalized STE method to deal with gradient
instabilities by calculating the expectation of the stochastic quantization during the backward phase. Finally,
Nagel et al. (2022) extend the analysis we present in Section 3.3 on the oscillations of weights when using
STE and suggest tracking the weight oscillations in order to freeze them when needed, as an ad-hoc solution.

A last line of related work is Product Quantization (PQ) Stock et al. (2019), where code words are being
learned to quantize blocks of weights rather than single weights. This method achieves a higher compression
level than per-weight quantization but also requires carefully choosing the size of the codebooks for each
layer. In contrast, our method requires only choosing a single hyper-parameter to balance between model size
and accuracy. Besides, as noted by Fan et al. (2021), per-weight quantization and PQ can be combined. We
compare with PQ on vision and language tasks: while PQ can reach smaller model size than DiffQ, it can
also suffer from unacceptable accuracy loss, in particular for language modeling.

3 Background

Let us consider a weight vector w ∈ Rd, where d ∈ N, typically the weights of convolution or linear layer.
Each entry of the vector is typically coded over 32 bits with floating-point precision. We aim to reduce the
number of possible states to 2B , where B ≪ 32 is the number of bits of precision. First, we assume wi ∈ [0, 1]
for all 1 ≤ i ≤ d. In practice, one would first normalize w as

ŵ = w − min(w)
max(w) − min(w) ,

and provide the tuple (min(w), max(w)) separately as a 32 bits IEEE float. Given that for typical deep
learning models d ≫ 1, storing this range has a negligible cost. For readability, we describe the method for
scalar values w ∈ [0, 1], however, this can be easily extended to vectors w ∈ Rd.
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3.1 Uniform quantization

The simplest quantization methods consist of taking 2B points evenly spaced in the range [0, 1] and round
each entry of w to the nearest point. One can then store the rounded value by its index, which requires only
B bits. Formally, we quantize a number w ∈ [0, 1] over B bits as

∀w ∈ [0, 1], B ∈ N∗, Q(w, B) =
round

(
w · (2B − 1)

)
2B − 1 . (1)

While the intuitive definition of quantization is for an integer number of bits, we can extend the previous
definitions to a real-valued number of bits B ∈ R∗+. Note that variants of this scheme exist, for instance,
symmetric uniform quantization, which enforces that 0 is always exactly represented (Krishnamoorthi, 2018).

3.2 Optimization of the quantized weights

The weight vector w is typically obtained through the process of training a predictor function parameterized
by w, denoted as fw, to minimize a loss function L,

min
w∈Rd

L(fw), (2)

where L(fw) is the empirical risk over a given dataset. The process of quantizing a vector w over B bits
introduces a quantization noise N(w, B) = Q(w, B) − w, which is unaware of the training objective L. Even
if w is close to the optimum, Q(w, B) might deteriorate arbitrarily the performance of the predictor.

Thus, given a fixed budget of bits B, one would ideally like to minimize the empirical risk when considering
the quantization process,

min
w∈Rd

L(fQ(w,B)), (3)

where fQ(w,B) is the predictor function using the quantized model parameters.

Unfortunately, the gradients of Q(w, B) are zero over its definition domain because of the rounding operation,
and as a result, it cannot be optimized using first-order optimization methods such as SGD or Adam (Kingma
& Ba, 2015). One possible solution is to replace the Jacobian of Q(·, B) with the identity matrix during the
backward phase, as suggested in the STE method (Bengio et al., 2013). The STE method was popularized
for quantization as the Quantization Aware Training (QAT) technique by Krishnamoorthi (2018).

3.3 The instability and bias in STE

As described by Fan et al. (2021), following the STE approach can cause instability during training and bias
in the models’ gradients and weights. As a result optimization will fail to converge to the optimal value even
on simple cases. To demonstrate that, consider the following 1D least-mean-square problem, where B ∈ N∗,
the optimal weight w∗ ∈ [0, 1] such that Q(w∗, B) ̸= w∗, and Q(w∗, B) ∈ (0, 1). Given a random variable
X ∈ R with σ2 = E

[
X2]

such that 0 < σ2 < ∞, we would like to minimize the following using STE based
QAT:

min
w∈[0,1]

L(w) := E
[

1
2 (XQ(w, B) − Xw∗)2

]
. (4)

We immediately have that the optimum is achieved for Q(w, B) = Q(w∗, B). Let us try to optimize equation 4
using SGD with STE starting from w0 = w∗, with wn the sequence of iterates. We call w− and w+ the
quantized values just under and above w∗, and we assume without loss of generality that Q(w∗, B) = w+.
The expected gradient with STE at iteration n is given by

Gn = σ2(Q(wn, B) − w∗). (5)

In particular, G0 = σ2(w+ − w∗) > 0, and Gn will stay positive until Q(wn, B) = w−. At this point, we will
have Gn < 0, and will stay so until Q(wn, B) = w+. Thus, we observe that using STE, Q(wn, B) will oscillate
between w− and w+, while the optimal value is w+. The pattern of oscillation will depend on the learning
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Figure 1: (a) Using STE and SGD to optimize the 1D least-mean-square problem given by equation 4 (with
B = 4 and X = 1 a.s.). Q(wn, B) oscillates between the quantized value just above (w+) and just under (w−)
the unquantized ground truth w∗, while wn oscillates around the boundary (w+ + w−)/2. (b) Model accuracy
vs. epochs for ImageNet using EfficientNet-b3. Results are presented for both QAT over 4 bits and DiffQ.

rate and relative position of w∗ within the segment [w−, w+]. Taking a smaller step size will reduce the
amplitude of the oscillations of wn, but not of Q(wn, B), which is what interests us. Indeed, wn oscillations
are centered at the boundary (w+ + w−)/2. We provide one example of those oscillations on Figure 1 with
w∗ = 0.11, B = 4, X = 1 a.s. and a step size of 0.5.

Extrapolating to a model with millions of parameters, at any point in time, a significant fraction of the weights
could be quantized to a suboptimal value due to the oscillations implied by the STE method. We conjecture
that this behavior explains the oscillations of the accuracy observed when training an EfficientNet-b3 with
QAT using 4 bits per weight on ImageNet (see Figure 1(b)). In the following section, we introduce DiffQ,
a method based on independent additive pseudo quantization noise, that does not suffer from such a bias,
while approximating well enough quantization noise to perform efficient quantization aware training.

4 Method

Pseudo quantization noise. A classical assumption in digital signal processing when working with
quantized signals is that the quantization noise is approximated by independents uniform variables over
[−∆/2, ∆/2] with ∆ = 1

2B−1 the quantization step. This approximation was studied in depth by Widrow et al.
(1996) as Pseudo Quantization Noise (PQN). Following this assumption, we define the pseudo quantization
function Q for all x ∈ R and B ∈ R+∗ as

Q(x, B) = x + ∆
2 · U [−1, 1], (6)

with U [−1, 1] an independent sample from the uniform distribution over [−1, 1]. This pseudo quantization
function is differentiable with respect to x and B. Unlike QAT, this differentiability does not require an STE.
It also provides a meaningful gradient with respect to the number of bits used B (extended to be real-valued).

If we look back at the example from Figure 1, using now equation 6 instead of STE, the expected gradients
for SGD become

Gn = E
[
x ·

((
wn + ∆

2 · U [−1, 1]
)

x − w∗x

)]
= σ2(wn − w∗), (7)
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which cancels out for wn = w∗, so that at convergence we indeed have Q(wn, B) = Q(w∗, B), i.e. the gradient
estimate is unbiased and converges to the right solution.

Mixed precision. We used a common precision B for all the entries of the weight vector w. One can instead
use different values for different entries. Formally, the entries in w are grouped by considering w ∈ Rg×d/g

with g the group size and d/g the number of groups. We can then extend the definition of Q(w, B) given by
equation 1 and equation 6 to use a number of bits bs for the group s, with b ∈ R∗+d/g.

Training objective. Given w ∈ Rg×d/g with g groups of d/g entries, and a number of bits b ∈ Ng
∗, we

define the model size, expressed in MegaBytes (1MB = 8 · 220 bits)

M(b) = g

223

d/g∑
s=1

bs. (8)

A typical objective of quantization is to achieve the best possible performance within a given model size
budget or to achieve the smallest model size that reaches a given performance, i.e. we want to minimize with
b ∈ Nd/g

∗ , and w ∈ Rg×d/g either,

min
w,b

L(fQ(w,b)),

s.t. M(b) ≤ m.
or

min
w,b

M(b),

s.t. L(fQ(w,b)) ≤ l.
(9)

We can relax b to be real valued, and replace Q by our differentiable pseudo quantization function Q. Then,
following the exact penalty method (Bertsekas (1997), Section 4.2, Bertsekas (2014), Chapter 4), there is
λ(m) > 0 (or λ(l) for the right hand side problem), such that the left hand size problem is equivalent to

min
w,b

L(fQ(w,b)) + λ(m)M(b), (10)

which is fully differentiable with respect to w and b and can be optimized with first order optimization.

Parametrization. In practice, the number of bits used for each group b ∈ Rg
∗+ is obtained from a logit

parameter l ∈ Rg, so that we have
b = bmin + σ(l)(bmax − bmin), (11)

with σ is the sigmoid function, and bmin and bmax the minimal and maximal number of bits to use. The
trainable parameter l is initialized so that b = binit. We set binit = 8.

Evaluation and noise distribution. At evaluation time, we round the value b obtained from equation 10
as b̃ = round(b) and quantize w as Q(w, b̃). Thus, the amount of quantization noise at evaluation can be
larger than the amount of noise injected at train time. We observed that using a noise distribution with larger
support, such as Gaussian noise with unit variance (i.e. 3 times the variance of U([−1, 1])), makes the model
more robust to this operation. An empirical comparison between uniform and Gaussian noise can be found in
Table B.7 in the Appendix. Thus in the rest of the paper, we always use Gaussian noise at train time.

True model size. The mode size given by equation 8 is used at train time but does not account for part of
the true model size. At evaluation time, we represent each weight by the integer obtained from the rounding
operation in equation 1. For each layer in the network, we also store two 32 bits float numbers for the
minimum and maximum scale. Finally, the actual value of b̃ must be coded, as it is no longer a fixed constant.
For each layer, we compute the maximum value of Cs = log2(1 + b̃s − bmin) over all groups s ∈ {1, . . . , d/g}.
We encode once the value max(C) as an 8-bit integer, and for each group, we encode bs − bmin over max(C)
bits. The true size for one layer, expressed in MegaBytes, is thus given by

M̃(b) = 1
223

2 · 32 + 8 + d

g
max(C) + g

d/g∑
s=1

bs

 . (12)
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Table 1: Comparison of DiffQ against baselines presented in the Related Work section. Sizes marked with †

are reported after Huffman coding, following Polino et al. (2018). Accuracies marked with ∗ are the best
rather than last one to match previous practices.

Model Method Top-1 Acc. (%) M.S. (MB)

CIFAR10

ResNet-18 Uncompressed 95.3 42.7

ResNet-18 UNIQ Baskin et al. (2018b) 89.1 2.7
ResNet-18 NICE Baskin et al. (2018a) 92.7 2.7
ResNet-18 DiffQ (Ours) 93.9 2.7

ResNet-20 Uncompressed 92.7* 1.48

ResNet-20 DQ Uhlich et al. (2020) 91.4* 0.07
ResNet-20 DiffQ (Ours) 91.6* 0.06

CIFAR100

Wide-ResNet Uncompressed 76.2 139.4

Wide-ResNet DiffQuant Polino et al. (2018) 49.3 7.9
Wide-ResNet DiffQ (Ours) 75.6 4.7

ImageNet

ResNet-18 Uncompressed 70.9* 44.6

ResNet-18 Meta-Quant Chen et al. (2019) 60.3 1.3
ResNet-18 DQ Uhlich et al. (2020) 70.1* 5.4
ResNet-18 LSQ 4 bits Esser et al. (2020) 70.7* 5.6
ResNet-18 DiffQ (Ours) 71.1* 5.3

ResNet-50 Uncompressed 77.1* 97.5

ResNet-50 LSQ 4 bits Esser et al. (2020) 76.2* 12.3
ResNet-50 LSQ 3 bits Esser et al. (2020) 75.6* 9.3
ResNet-50 DiffQ (Ours) 76.6* 10.5
ResNet-50 DiffQ (Ours) 76.3* 8.8

5 Results

We present experimental results for language modeling, audio source separation, and image classification.
We show that DiffQ can often provide a model with comparable performance to the uncompressed one
while producing a model with a smaller footprint than the baseline methods (STE based). We provide
a finer analysis of different aspects of DiffQ hyper-parameters and their impact on quantized models
in next Section. Finally, we discuss limitations of DiffQ in the Limitation Section. Both experimental
code, and a generic framework usable with any architecture in just a few lines, is available on our Github
github.com/facebookresearch/diffq. All hyper-parameters for optimization and model definition are detailed
in the Appendix. In all tables, ↑ (resp. ↓) indicates that highest is best (resp. lowest is best). All results
referred to as “QAT” are obtained using the formula given by equation 1 with a layer-wise min-max scaling
of the weights. When using DiffQ, we use the same per layer min-max scaling. When also doing activation
quantization, we use per-channel min-max scaling of the activations. All DiffQ experiments use Gaussian
noise as explained in Section 4.

5.1 Comparison to related work

On Table 1, we compare DiffQ to some of the related work presented in Section 2. Compared with the
NICE (Baskin et al., 2018a) and UNIQ (Baskin et al., 2018b) methods, which also rely on additive noise,
DiffQ achieves significantly better accuracy for the same model size. We then compare to the differentiable
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Table 2: Language modeling results for a 16 layer Transformer trained on Wikitext-103. We also test
combining weight and activation quantization. We compared DiffQ to QAT and Quant-Noise (QN) method
proposed by Fan et al. (2021) (models with † were trained with a layer-drop of 0.2 Fan et al. (2019)).
Activations are quantized over 8 bits, with a per-channel scaling.

Weights Activation PPL ↓ M. S. (MB) ↓

Uncompressed - 18.1 942

8 bits 8 bits 18.3 236
QAT 8bits 8 bits 19.7 236
QAT 4bits 8 bits 29.9 118
LSQ 4 bits (Esser et al., 2020) 8 bits 18.9 118
DiffQ (λ=5, g=16) 8 bits 18.1 130
DiffQ (λ=10, g=16) 8 bits 18.6 113

Uncompressed † - 18.3 942

QN 8 bits† Fan et al. (2021) QN 8 bits 18.7 236
QN 4 bits† Fan et al. (2021) QN 8 bits 19.5 118
PQ† Fan et al. (2021) - 20.7 38

quantization method by (Polino et al., 2018), which only optimizes the non uniform quantization points, not
the pre-quantization weights. Following their practice, we report numbers after Huffman coding. We achieve
a model almost half as small, with a gap of 25% in accuracy, proving that optimizing pre-quantization weights
is more important than tuning a non uniform quantization grid. Meta-Quant (Chen et al., 2019) achieves
smaller model size than DiffQ, with 1 bit per weight, a regime where the PQN assumption breaks down, at
the price of losing nearly 10% of accuracy. Finally, compared with two quantization methods: DQ by Uhlich
et al. (2020) and LSQ by Esser et al. (2020). When considering DQ, DiffQ achieves slightly smaller model
size and better accuracy on ImageNet using ResNet-18, and a 15% smaller model with sightly better accuracy
for a Resnet-20 trained on CIFAR-10. Comparing to LSQ 1, DiffQ achieves better accuracy with smaller
model size on ImageNet using both ResNet-18 and ResNet-50. Additional comparison between DiffQ and
LSQ for higher compression rates can be on Table B.1 in the Appendix.

5.2 Language Modeling

We trained a 16 layers transformer (Vaswani et al., 2017) based language model on the Wikitext-103 text
corpus (Merity et al., 2016), following Baevski & Auli (2019), and using the Fairseq framework (Ott et al.,
2019). Results are presented in Table 2. We compare to the Quant-Noise method by Fan et al. (2021), but use
a reduced layer-drop (Fan et al., 2019) of 0.1 instead of 0.2. This both improves the baseline, as well as the
performance of DiffQ models. For DiffQ, we explicitly set the gradient for the number of bits parameters
to zero for all layers that have been dropped. In order to test the compatibility of DiffQ with efficient int8
kernels, we further quantize the activations to 8 bits using PyTorch native support (Paszke et al., 2019).

The transformer model has some tied parameters (e.g. word embedding in the first and pre-softmax layer).
It is important to detect such tied parameters with DiffQ. We use a single shared bits parameter when a
parameter tensor is reused multiple times, and for each forward, we sample a single pseudo quantization noise
per group of shared weights and reuse it appropriately. Failure to do so led to a significant worsening of the
performance at validation time.

While QAT breaks down when trying to get to 4 bits precision (perplexity of 29.9), using DiffQ allows to
achieve a lower model size (113MB vs. 118 MB for QAT 4 bits) with a perplexity closer to the uncompressed
one (18.6, vs. 18.1 uncompressed). We also tried fine-tuning a pre-trained model with LSQ (Esser et al.,
2020). While this works better than QAT, LSQ reaches a worst perplexity for a slightly larger model size

1We used our own LSQ implementation, with only weight quantization, since no official code is available. Comparison with
the results reported in Esser et al. (2020) can be found on Table B.1.
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Table 3: Music source separation results for the Demucs model (Défossez et al., 2019). We report Signal-to-
Distortion Ration (SDR) together with Model Size (M.S.).

SDR (dB) ↑ M. S. (MB) ↓

Uncompressed 6.31 1014

QAT 4bits 5.99 130
QAT 5bits 6.27 162
DiffQ (λ=3e−4) 6.28 120

than DiffQ (18.9 perplexity for 118 MB). Similarly, Quant-Noise (Fan et al., 2021) improves on QAT but
performs worse than DiffQ, even when using more than twice as many bits. With just 4.4 bits per weight
on average, DiffQ achieve the same perplexity as the baseline. We also compare to PQ (Stock et al., 2019),
as reported by Fan et al. (2021). While PQ achieves higher compression levels, with just 38MB, its perplexity
is the worst of all methods.

5.3 Music Source Separation

We use the Demucs architecture by Défossez et al. (2019) with 64 initial hidden channels. The model is
trained on the standard MusDB benchmark (Rafii et al., 2017), for 180 epochs, and evaluated with the Signal-
To-Distortion Ratio (SDR) metric (Vincent et al., 2006). The unquantized model is 1GB. We compare DiffQ
with QAT training with either 5 or 4 bits, with the results presented in Table 3. With 5 bits, QAT is able to
replicate almost the same performance as the uncompressed model. When trying to further compress the model
to 4 bits per weight, QAT leads to a sharp decrease of the SDR, losing 0.3dB, for a 130MB model. DiffQ
achieves a model size of 120MB, with only a drop of 0.03dB of SDR compared to the uncompressed baseline.

5.4 Image Classification

Next, we evaluated three image classification benchmarks: ImageNet Deng et al. (2009), CIFAR-10 and
CIFAR-100 Krizhevsky et al. (2009). For CIFAR-10 and CIFAR-100 results are reported for MobileNet-
v1 Howard et al. (2017), ResNet-18 He et al. (2016), and Wide-ResNet with 28x10, depth and width levels
respectively Zagoruyko & Komodakis (2016). ImageNet results are reported using EfficientNet-B3 Tan & Le
(2019) and DeiT-B Touvron et al. (2020) models. More details regarding hyper-parameters and augmentations
used can be found in the Appendix.

CIFAR10 & CIFAR-100. Results for CIFAR10 and CIFAR100 are depicted in Figures 2(a) and 2(b).
We compare DiffQ, QAT and LSQ (without activation quantization) using 2, 3, and 4 bits quantization.
Performance of the uncompressed model is additionally presented as an upper-bound. To better understand
the effect of the penalty level λ on both model size and accuracy, we train models with DiffQ using different
penalty levels. Exact results are presented in Table B.2, in the Appendix, together with a detailed analysis.

Results suggest DiffQ models reach comparable performance to the LSQ and outperforms QAT models
while producing models with a smaller footprint. When considering 2 bits quantization, QAT is always worse
than both LSQ and DiffQ. While LSQ works well for Resnet18, it suffers from large drops in accuracies for
MobileNet and WideResNet, failing entirely to train for MobileNet on CIFAR10, despite initialization from a
pre-trained model.

ImageNet - DeiT. Results for ImageNet using DeiT-B model are presented in Table 4. We compared
DiffQ to QAT when training with 4 and 8 bits. Both QAT with 8 bits and DiffQ reach comparable
performance to the uncompressed model, while DiffQ yields a model almost half of the size as QAT, however
still bigger than QAT with 4 bits. When we increase λ, we get a smaller model-size than QAT with 4 bits
but with better accuracy levels.
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Figure 2: Model accuracy and size on CIFAR10 (a) and CIFAR100 (b) using MobileNet, ResNet-18, and
WideResNet (WRN) models for various penalty levels using DiffQ, QAT, LSQ, and the baseline.

Table 4: Image classification results for the ImageNet benchmark. Results are presented for DiffQ and QAT
using 4 and 8 bits using the DeiT model (Touvron et al., 2020). We report Top-1 Accuracy (Acc.) together
with Model Size (M.S.).

Top-1 Acc. (%) ↑ M.S. (MB) ↓

Uncompressed 81.8 371.4

QAT 4bits 79.2 41.7
QAT 8bits 81.6 82.9

DiffQ (λ=1e−2) 82.0 45.7
DiffQ (λ=0.1) 81.5 33.02

ImageNet - EfficientNet. We evaluate the performance of DiffQ on the memory-efficient EfficientNet-B3
model. Results are depicted on Figure B.1 (c) as well as in Table B.5, both in the Appendix. Both QAT 8
bits and DiffQ achieves similar accuracy (QAT 81.3 %, DiffQ 81.5%) but with a smaller model size for
DiffQ (8.5MB vs. 12MB for QAT). When considering QAT 4 bits, DiffQ produces a smaller model with a
significantly better accuracy level (80.8%). For QAT 4, we noticed considerable instability close to the end of
the training, see Figure B.1 (b) in the Appendix.

5.5 Analysis

Bits Histogram. Figure 3 presents the weight bitwidth assignment over layer groups for the EfficientNet-B3
Tan & Le (2019) and DeiT Touvron et al. (2020) models trained on ImageNet. The capacity distribution
over depth for ConvNets (EfficientNet-B3) and Transformers (DeiT) are different (fp32 shows uncompressed
capacity). Notice, that the quantization trends are different too: for the ConvNet, smaller bitwidths are used
for deeper layers of the model while large bitwidth is more common in the first layers (except for the last
linear layer which seems to need some precision). For the Transformer, this effect of varying quantization by
layer is similar but less pronounced, due to the more symmetric nature of the architecture.

Fixed bitwidth. On Table B.4 in the Appendix, we compare QAT to DiffQ using a fixed number of bits,
i.e. comparing strictly PQN to STE. On MobileNet, ResNet-18, and WideResNet for both CIFAR10 and
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CIFAR100, DiffQ outperforms QAT, with a gap especially noticeable for 2 bits models, a regime where
QAT becomes unstable, as we described in previous section.

Group size. We additionally evaluate the affect of the group-size, g, on model size and accuracy, by
optimizing DiffQ models using g ∈ {1, 4, 8, ∞}. When g=∞, we use a single group for the entire layer.
Results for ResNet-18 using CIFAR-100 are depicted in Figure 1(a) in the Appendix. Interestingly, we
observed that increasing g, yields in a smaller model size on the expense of a minor decrease in performance.
However, when setting g=∞ model performance (model size and accuracy) is comparable to g=8 for this task.

Runtime overhead and loading time. Using DiffQ usually increase the training time by some amount.
On the language modeling task, the time per batch went from 115ms to 125ms. When training a ResNet18
on CIFAR-10, it increased from 120ms to 150ms. For the Demucs model, it went from 0.9s to 1.1s. However,
when training the EfficientNet-b3 model, we observed that the time per batch would nearly double. Thus it
seems that for most architectures the training time overhead is limited, although the worst case can be up
to twice as slow. At evaluation time, decompressing the Demucs model from its variable bitwidth compact
representation takes around 2.81 seconds on a MacBook Pro with 2.4 GHz 8 cores Intel i9 processor.

5.6 Limitations

The model size given by equation 12 is obtained with a traditional encoding of the quantized model. However,
more efficient coding techniques exist when the entropy of the data is low, such as Huffman coding (Huffman,
1952). Using the ZLib library, we obtain an estimate of the Huffman compressed model size after quantization.
For instance, for the language model described in Table 2, the QAT 8 model gets further compressed from
236MB to 150MB, showing that the entropy of its quantized weight is significantly lower than the maximal
one for 8 bits integers. However, the DiffQ model naive size is 113MB, and after compression by ZLib, gets
to 122MB. This is a sign that the entropy is close to its maximal value, with ZLib adding only overhead for
no gain. In equation 10, we only penalize the naive number of bits used, while asking for the best possible
accuracy. In that case, the model maximally use the entropy capabilities for a given number of bits. An
interesting line of research would be to replace the model size equation 8 to account for the actual entropy of
the data, for instance with differentiable kernel density estimation. We leave that for further research.

Another limitation of DiffQ is that it can make training up to twice as slow, due to the extra parameters to
optimize for and the more complex gradient calculation graph. Besides, in order to achieve a specific model
size or accuracy, one has to tune the λ penalty parameter.

6 Discussion

We presented DiffQ, a novel and simple differentiable method for model quantization via pseudo quantization
noise addition to models‘ parameters. Given a single hyper-parameter that quantifies the desired trade-off
between model size and accuracy, DiffQ can optimize the number of bits used for each trainable parameter
or group of parameters during model training. We conduct expensive experimental evaluations on various
domains using different model architectures. Results suggest that DiffQ is superior to the baseline methods
on several benchmarks from various domains. On ImageNet, Wikitext-103, and MusDB, we achieve a model
size that is smaller than a 4 bits quantized model, while retaining the same performance as the unquantized
baseline. For future work, we consider adapting the model size penalty to account for Huffman encoding,
which could allow to further reduce the model size when it is gzipped. Another line of work would be using
PQN to improve activation quantization, enabling 4-bits kernels for a larger number of tasks.
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Supplementary Material for
Differentiable Model Compression via Pseudo Quantization Noise

We provide in Section A all the details on the exact hyper-parameters, models, and datasets used for the
results in Section 5 of the main paper. Then, we provide supplementary results in Section B, in particular
tables for the scatter plots given on Figures 1(b) and 2(b).

A Detailed experimental setup

All experiments are conducted using NVIDIA V100 GPUs with either 16GB or 32GB RAM, depending on the
applications (with language modeling requiring larger GPUs) on an internal cluster. For all models trained
with QAT or DiffQ, we do not quantize tensors with a size under 0.01 MB (0.1 MB for the DeiT model).

DiffQ hyper-parameters

For all experiments, we use bmin = 2, bmax = 15, binit = 8 and Gaussian noise. We observed on most
models that taking bmin < 2 is unstable, with the notable exception of Resnet-20. We use a separate Adam
optimizer (Kingma & Ba, 2015) for the logit parameters controlling the number of bits used, with a default
momentum β1 = 0.9 and decay β2 = 0.999. We use the default learning rate α = 1e−3 for all task, except
language modeling where we use α = 1e−2. The remaining hyper-parameters are λ, the amount of penalty
applied to the model size, and g, the group size. When g is not mentioned, it is set to the default value
g = 8, which we found to be the best trade-off between the model freedom and the overhead from storing the
number of bits used for each group.

Music Source Separation

We train a Demucs source separation model (Défossez et al., 2019) (MIT license) with a depth of 6 and 64
initial hidden channels, on the MusDB dataset (Rafii et al., 2017)2, which is released under mixed licensing3.
All the training details are exactly as in (Défossez et al., 2019).

Language Modeling

We trained a 16 layers transformer (Vaswani et al., 2017) based language model on the Wikitext-103 text
corpus (Merity et al., 2016)4 released under the CC-BY-SA license, following Baevski & Auli (2019), and using
the Fairseq framework (Ott et al., 2019), released under the MIT license. We used the hyper-parameters and
the script provided by (Fan et al., 2021) in the Fairseq repository5, however, and unlike what they mention
in their paper, this script does not include layer drop (Fan et al., 2019). For DiffQ, we tried the penalty
levels λ in {1, 5, 10}, with group size 8, as well as λ = 10 and g = 16. For LSQ, we used the same training
hyper-parameters as DiffQ, except we initialized the model to a pre-trained model and used a learning rate
10 time smaller for fine tuning. Without this initialization, LSQ was failing to get under 40 of perplexity.

Tied weights and DiffQ. The model we trained was configured so that the word embedding in the first
layer and the weight of the adaptive softmax are bound to the same value. It is important to detect such
bounded parameters with DiffQ, as otherwise, a different number of bits could be used for what is in fact,
the very same tensor. Not only do we use a single bits logit parameter when a parameter tensor is reused
multiple times, but for each forward, we make sure that the pseudo quantization noise is sampled only once

2https://sigsep.github.io/datasets/musdb.html
3https://github.com/sigsep/website/blob/master/content/datasets/assets/tracklist.csv
4https://blog.einstein.ai/the-wikitext-long-term-dependency-language-modeling-dataset/
5https://github.com/pytorch/fairseq/tree/master/examples/quant_noise

https://sigsep.github.io/datasets/musdb.html
https://github.com/sigsep/website/blob/master/content/datasets/assets/tracklist.csv
https://blog.einstein.ai/the-wikitext-long-term-dependency-language-modeling-dataset/
https://github.com/pytorch/fairseq/tree/master/examples/quant_noise
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and reused appropriately. Failure to do so led to a significant worsening of the performance at validation
time.

Image classification

CIFAR10/100. On the CIFAR10/100 datasets, we train 3 different models: MobileNet-v1 (Howard
et al., 2017), ResNet-18 (He et al., 2016), and a Wide-ResNet with 28x10 depth and width levels respec-
tively (Zagoruyko & Komodakis, 2016). All experiments are conducted on a single GPU with a batch
size of 128, SGD with a learning rate of 0.1, momentum of 0.9, weight decay of 5e−4. The learning rate
is decayed by a factor of 0.2 every 60 iterations. To generate Figure 2(b), we evaluated DiffQ for λ in
{0.01, 0.05, 0.1, 0.5, 1, 5} and the group size g in {4, 8, 16}.

For LSQ (Esser et al., 2020), we initialize from a pre-trained model. We tested both training for 90 epochs
with a cosine schedule as originally done, or keeping the original learning rate schedule, only reducing the
initial learning rate from 0.1 to 0.01. The second option achieved better overall results and that is the one we
report. We also tried training with LSQ from a randomly initialized model, but that performed the worst of
all approaches.

The dataset has been obtained from the torchvision package6. The input images are augmented with a
random crop of size 32 with padding of 4, and a random horizontal flip. The RGB pixel values are normalized
to mean 0 and standard deviation 1. We use the default split between train and valid as obtained from the
torchvision package.

CIFAR-10 - Resnet 20. We use the implementation of Resnet 20 from Idelbayev (2018). We train for 600
epochs with a batch size of 128, with a learning rate of 0.1, momentum of 0.9, weight decay of 2e−4, and
decrease the learning rate by a factor of 10, every 200 epochs. We quantize all parameters except biases, we
set the minimum number of bits to bmin = 1 as we observe this was stable for this particular task, and lower
the maximum number of bits to bmax = 10. We use a group size g = 16 and a penalty λ = 10 and a learning
rate of 2e−4, for the separate Adam optimizer used for the bits parameters, which allows stay stable while
going under 2 bits per weight.

ImageNet. We train an EfficientNet as implemented by (Wightman, 2019) (Apache license), as well as a
DeiT vision transformer (Touvron et al., 2020) (MIT license) on the ImageNet dataset Deng et al. (2009)7.
We use the original dataset split between train and valid. The images go through a random resize crop to
300px, a random horizontal flip, and pixel RGB values are normalized to have zero mean and unit variance.

ImageNet - EfficientNet. We trained for 100 epochs, using RMSProp Tieleman & Hinton (2012) as
implemented in the timm package8 with a learning rate of 0.0016, a weight decay of 1e − 5 and a momentum
of 0.9. The learning rate is decayed by a factor of 0.9875 with every epoch. As a warmup, the learning rate is
linearly scaled from 0 to 0.0016 over the first 3 epochs. Following (Wightman, 2019), we evaluate with an
exponential moving average of the weights of the model, with a decay of 0.99985. We use the random erase
augmentation from (Wightman, 2019), as well as cutmix (Yun et al., 2019), with a probability of 0.2 and
parameter to the beta distribution of 0.2. All the models are trained on 8 GPUs. For DiffQ, we used the
penalties λ in {5e−4, 1e−3, 5e−3, 1e−2, 5e−2, 0.1, 0.5} and the default group size g = 8.

ImageNet - DeiT. We use the official DeiT implementation by Touvron et al. (2020)9, with the default
training parameters, but without exponential moving averaging of the weights. More precisely, we trained for
300 epochs over 16 GPUs, with a batch size per GPU of 64, AdamW (Loshchilov & Hutter, 2019), a weight
decay of 0.05, learning rate of 5e−4, cosine learning rate scheduler, a learning rate warmup from 1e−6 over 5
epochs and label smoothing (Szegedy et al., 2016). As data augmentation, we used color-jitter, random erase,
and either cutmix or mixup (Zhang et al., 2018b).

6https://github.com/pytorch/vision
7http://www.image-net.org/
8https://github.com/rwightman/pytorch-image-models
9https://github.com/facebookresearch/deit
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For DiffQ, we tested the penalty λ in {1e−3, 1e−2, 0.1, 0.5, 1, 5}, and group size g in {1, 4, 8}. We use a
minimum number of bits of 3, instead of 2, as this led to better stability. We use Adam (Kingma & Ba, 2015)
to optimize the bits parameters, with a learning rate of 5e−4.

ImageNet - ResNet18 and ResNet50. We trained all models (DiffQ and LSQ) for 400 epochs over 4
GPUs, with a batch size per GPU of 256, using RMSProp Tieleman & Hinton (2012) as implemented in the
timm package10 (also experimented with SGD however RMSProp provides better results), a weight decay of
0.05, learning rate of 5e−4, where we multiply the learning by 0.9875 after every epoch. We used a learning
rate warmup from 1e−6 over 3 epochs and label smoothing (Szegedy et al., 2016) with smoothing factor of
0.3. As data augmentation, we used color-jitter, random erase and cutmix using β = 0.2 with probability of
0.3.

For DiffQ, we tested the penalty λ in {1e−2, 3e−2, 4e−2, 5e−2, 8e−2, 0.1}, and group size g in {8, 16}. We
use a minimum number of bits of 2. We use Adam (Kingma & Ba, 2015) to optimize the bits parameters,
with a learning rate of 5e−4.

B Supplementary results

ImageNet

On Table B.1 results are reported for DiffQ and LSQ Esser et al. (2020) using ResNet-18 and ResNet-50 on
ImageNet dataset. We compared different model sizes and compression rates. Results suggest that DiffQ is
superior both in terms of accuracy and smaller model size.

Results marked with * are the ones reported in Esser et al. (2020) using slightly better uncompressed model.
For fair comparison we reported both numbers. Notice, DiffQ achieves comparable and even superior results
over LSQ also under considering this setting.

CIFAR-10/100

We report on Table B.2 the results on the CIFAR10/100 datasets, which are shown for CIFAR100 in
Figure 2(b) in the main paper. Results are presented using MobileNet-v1, ResNet-18, and WideResNet. For
CIFAR100 the presented results used for creating Figure 2(b) in the main paper. As we cannot show all
the DiffQ runs, we selected for each model and dataset two versions: v1 is the smallest model that has an
accuracy comparable to the baseline (accuracy is greater than 1 − 1/100 times the baseline accuracy), while
v2 is the model with the highest accuracy that is comparable in size with the QAT 2 bits model (size must be
smaller than 1 + 1/100 times the baseline size, except for MobileNet, for which we had to allow a 4% relative
increase in size. The penalty and group size selected with this procedure is displayed on Table B.3.

Looking first at v1 models, we achieve on all tasks and datasets a model that is competitive with the baseline
(sometimes even better), with a model size that is smaller than a QAT 4 bits model (for instance more than
2MB saved on a ResNet-18 trained on CIFAR-10 compared to QAT 4 bits, for the same accuracy).

Now for v2, first note that as the minimum number of bits used by DiffQ is exactly 2, it is not possible
here to make a model smaller than QAT 2 bits. However, even with as little as 0.01 MB extra, DiffQ can
get up to 30% increase in accuracy compared to QAT 2 bits (for a Wide ResNet). On all architectue and
datasets, the gain from DiffQ over QAT 2 bits is at least 10% accuracy. This confirms in practice the bias
of STE-based methods when the number of bits is reduced, a bias that we already demonstrated in theory in
Section 3.3. In particular, it is interesting that the largest improvement provided by DiffQ is for the Wide
ResNet model, which should be the easiest to quantize. But having the largest number of weights, it also
likely the one that is the most sensitive to the oscillations of QAT quantized weights described in Section 3.3.

Ablation. Table B.4 summarizes the results of comparing QAT against DiffQ for model quantization
using a fixed number of bits using MobileNet, ResNet-18, and WideResNet on both CIFAR10 and CIFAR100.

10https://github.com/rwightman/pytorch-image-models
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Table B.1: Additional comparison between DiffQ and LSQ Esser et al. (2020) for different model sizes and
compression rates. Results marked with * are the ones reported in Esser et al. (2020) using slightly better
uncompressed baseline model. For fair comparison we reported both numbers. All results reported are for
the best model accuracy.

Model Method Top-1 Acc. (%) M.S. (MB)

ImageNet

ResNet-18 Uncompressed 70.9 44.6

ResNet-18 LSQ 8 bits Esser et al. (2020) 71.8 11.2
ResNet-18 LSQ 4 bits Esser et al. (2020) 70.7 5.6
ResNet-18 LSQ 3 bits Esser et al. (2020) 69.0 4.2

ResNet-18 LSQ* 8 bits Esser et al. (2020) 71.1 11.2
ResNet-18 LSQ* 4 bits Esser et al. (2020) 71.1 5.6
ResNet-18 LSQ* 3 bits Esser et al. (2020) 70.2 4.2

ResNet-18 DiffQ (Ours) 71.8 7.6
ResNet-18 DiffQ (Ours) 71.1 5.3
ResNet-18 DiffQ (Ours) 70.2 4.5
ResNet-18 DiffQ (Ours) 69.7 4.1

ResNet-50 Uncompressed 77.1 97.5

ResNet-50 LSQ 8 bits Esser et al. (2020) 76.8 24.5
ResNet-50 LSQ 4 bits Esser et al. (2020) 76.2 12.3
ResNet-50 LSQ 3 bits Esser et al. (2020) 75.6 9.3

ResNet-50 LSQ* 8 bits Esser et al. (2020) 76.8 24.5
ResNet-50 LSQ* 4 bits Esser et al. (2020) 76.7 12.3
ResNet-50 LSQ* 3 bits Esser et al. (2020) 75.8 9.3

ResNet-50 DiffQ (Ours) 76.9 14
ResNet-50 DiffQ (Ours) 76.6 10.5
ResNet-50 DiffQ (Ours) 76.3 8.8

DiffQ outperforms QAT, where this is especially noticeable while using 2 bits quantization, in which training
is less stable for QAT.

Next, we evaluated the affect of the group-size, g, on model size and accuracy, by optimizing DiffQ models
using g ∈ {1, 4, 8, ∞}. When g = ∞, we use a single group for the entire layer. Results for ResNet-18
using CIFAR-100 are summarized in Figure B.1 (a). Interestingly, we observed that increasing g, yields in a
smaller model size on the expanse of a minor decrease in performance. However, when setting g = ∞ model
performance (model size and accuracy) is comparable to g = 8 for this task.

EfficientNet-b3 on ImageNet

On Table B.5 we report the results for training EfficientNet-b3 Tan & Le (2019) on the ImageNet dataset,
matching the results reported on Figure 1(b).

As previously, we selected two versions of DiffQ, one matching the size of QAT 8bits, and one smallest than
QAT 4 bits. At 8 bits, DiffQ achieves the same accuracy as the uncompressed baseline, for a slightly smaller
model than QAT 8bits. As we lower the number of bits, we again see a clear advantage for DiffQ, with
both a smaller model (5.7MB against 6.1MB) than QAT 4bits, and significantly higher accuracy (76.8% vs.
57.3%).

The lower accuracy for QAT4 on ImageNet led us to take a closer look at the model performance. Figure B.1
(b) depicts the model accuracy as a function of the number of epochs for both QAT4 and DiffQ. Notice,
similarly to the toy example presented in Section 3.3 training with QAT4 creates instability in the model
optimization (especially near model convergence), which leads to significant differences in performance across
adjacent epochs. When considering DiffQ, model optimization is stable and no such differences are observed.
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Table B.2: Detailed results of QAT and DiffQ on the CIFAR-10/100 datasets. For each architecture
and dataset, we provide the performance of the baseline, QAT models with 2 to 4 bits, and two DiffQ
runs: v1. is the smallest model that is within a small range of the baseline performance, v2. is the best
model of comparable size with QAT 2 bits, selected from the pool of candidates described in Section A. For
Wide-ResNet, we report a single variant of DiffQ, as it is both the smallest and the one with the best
accuracy.

MobileNet ResNet-18 WideResNet

Acc. (%) ↑ M. S. (MB) ↓ Acc. (%) ↑ M. S. (MB) ↓ Acc. (%) ↑ M. S. (MB) ↓

C
IF

A
R

-1
0

Uncompressed 90.9 12.3 95.3 42.7 95.3 139.2

QAT 2bits 78.1 0.88 87.2 2.70 70.8 8.81
QAT 3bits 88.2 1.26 94.0 4.03 94.3 13.16
QAT 4bits 90.1 1.64 95.0 5.36 94.4 17.50

LSQ 2 bits 10.0 0.88 95.0 2.70 81.9. 8.81
LSQ 3 bits 90.8 1.26 95.3 4.03 88.8 13.16
LSQ 4 bits 90.9 1.64 95.2 5.36 89.9 17.50

DiffQ v1 90.3 0.94 94.9 3.17 94.1 8.81
DiffQ v2 87.9 0.91 93.9 2.71 94.1 8.81

C
IF

A
R

-1
00

Uncompressed 68.1 12.6 77.9 42.8 76.2 139.4

QAT 2bits 10.9 0.91 58.7 2.72 46.5 8.83
QAT 3bits 59.7 1.29 73.7 4.05 75.0 13.18
QAT 4bits 66.9 1.69 77.3 5.39 75.5 17.53

LSQ 2 bits 64.9 0.91 77.5 2.72 40.9 8.82
LSQ 3 bits 67.7 1.29 77.7 4.05 55.6 13.18
LSQ 4 bits 68.5 1.69 77.8 5.39 56.5 17.53

DiffQ v1 68.5 1.10 77.6 4.82 75.3 8.83
DiffQ v2 64.6 0.94 71.7 2.72 75.6 8.84

Table B.3: Penalty λ and group size g for the v1 and v2 DiffQ models reported on Table B.2

MobileNet ResNet-18 WideResNet

λ g λ g λ g

CIFAR-10 DiffQ v1 1 16 0.1 8 5 16
DiffQ v2 5 8 5 4 5 16

CIFAR-100 DiffQ v1 1 16 0.05 4 5 16
DiffQ v2 5 16 5 8 1 16

Activation Quantization for Language Modeling

In Table B.6 we report language modeling results for a 16-layers Transformer models while applying activation
quantization. Unlike the results in Table 2 where we used per-channel activation quantization, here we
report results with a histogram quantizer. Additionally when considering histogram quantizer, results suggest
DiffQ is superior to both QAT and QN when considering both model size and model performance.

Uniform Noise vs. Gaussian Noise

In Table B.7 we provide an empirical comparison between uniform noise and Gaussian noise using ResNet-18
on CIFAR10 for DiffQ. We found that using Gaussian noise acheives the same model size with better
accuracy levels.
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Table B.4: A comparison between QAT and DiffQ while we consider a fixed number of bits for all model
parameters, specifically using 2, 3, and 4 bits. Results are reported for CIFAR-10 and CIFAR-100 using
MobileNet-v1, ResNet-18. and WideResNet. We report Accuracy (Acc.) and Model Size (M.S.).

MobileNet ResNet-18 WideResNet

Acc. (%) ↑ M. S. (MB) ↓ Acc. (%) ↑ M. S. (MB) ↓ Acc. (%) ↑ M. S. (MB) ↓

C
IF

A
R

-1
0

Uncompressed 90.9 12.3 95.3 42.8 95.3 139.4

QAT 2bits 78.1 0.88 87.2 2.70 70.8 8.81
QAT 3bits 88.2 1.26 94.0 4.03 94.3 13.16
QAT 4bits 90.1 1.64 95.0 5.36 94.4 17.50

LSQ 2 bits 10.0 0.88 95.0 2.70 81.9 8.81
LSQ 3 bits 90.8 1.26 95.3 4.03 88.8 13.16
LSQ 4 bits 90.9 1.64 95.2 5.36 89.9 17.50

DiffQ 2bits 84.1 0.88 92.3 2.70 94.4 8.81
DiffQ 3bits 89.7 1.26 94.4 4.03 94.4 13.16
DiffQ 4bits 90.4 1.64 95.1 5.36 94.6 17.50

C
IF

A
R

-1
00

Uncompressed 68.1 12.6 77.9 42.8 76.2 139.4

QAT 2bits 10.9 0.91 58.7 2.72 46.5 8.82
QAT 3bits 59.7 1.29 73.7 4.05 75.0 13.18
QAT 4bits 66.9 1.69 77.3 5.39 75.5 17.53

LSQ 2 bits 64.9 0.91 77.5 2.72 40.9 8.82
LSQ 3 bits 67.7 1.29 77.7 4.05 55.6 13.18
LSQ 4 bits 68.5 1.69 77.8 5.39 56.5 17.53

DiffQ 2bits 17.2 0.91 66.6 2.72 72.8 8.82
DiffQ 3bits 60.1 1.29 76.7 4.05 76.9 13.18
DiffQ 4bits 66.8 1.69 77.5 5.39 76.9 17.53

Table B.5: Image classification results for the ImageNet benchmark. Results are presented for DiffQ and
QAT using 4 and 8 bits using the EfficientNet-b3 model (Tan & Le, 2019). We report Top-1 Accuracy (Acc.)
together with Model Size (M.S.).

Top-1 Acc. (%) ↑ M.S. (MB) ↓

Uncompressed 81.6 46.7

QAT 4bits 57.3 6.3
QAT 8bits 81.3 12.0
PQ (Fan et al., 2021) 80.0 3.1

DiffQ (λ=0.05) 80.8 6.0
DiffQ (λ=0.01) 81.5 8.7
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Figure B.1: (a): DiffQ results with various groups sizes (g ∈ {1, 4, 8, ∞}). g = ∞ refers to a single group
for the entire layer. For reference, we report the accuracy of the uncompressed model (42.8 MB). Models are
Resnet-18 trained on CIFAR-100. (b): ImageNet results using EfficientNet-B3 model. We plot the model
size vs. model accuracy using different penalty levels. We additionally, present the uncompressed models
(uncomp.) and Quantization Aware Training (QAT) using 4 and 8 bits.

Table B.6: Language modeling results for a 16 layer Transformer trained on Wikitext-103. We also test
combining weight and activation quantization using a histogram quantizer. We compared DiffQ to QAT
and Quant-Noise (QN) method proposed by Fan et al. (2021) (models with † were trained with layer drop of
0.2 Fan et al. (2019), and 0.1 for the others.).

Weights Activation PPL ↓ M. S. (MB) ↓

Uncompressed (Ours) - 18.1 942
QAT 8bits - 18.2 236
QAT 4bits - 28.8 118
DiffQ (λ=1, g=16) - 18.0 182
DiffQ (λ=10, g=16) - 18.5 113

8 bits 8 bits 19.5 236
QAT 8bits 8 bits 26.0 236
QAT 4bits 8 bits 34.6 118
DiffQ (λ=1, g=16) 8 bits 19.1 182
DiffQ (λ=10, g=16) 8 bits 19.2 113

Uncompressed † - 18.3 942
QN 8 bits† QN 8 bits 18.7 236
QN 4 bits† QN 8 bits 20.5 118

Table B.7: Empirical comparison between uniform noise and Gaussian noise using ResNet-18 on CIFAR10 for
DiffQ.

Noise distribution Top-1 Acc. (%) ↑ M.S. (MB) ↓

Uniform 86.9 2.7
Gaussian 93.6 2.7
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