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Abstract—In Virtual Reality (VR), the requirements of much
higher resolution and smooth viewing experiences under rapid
and often real-time changes in viewing direction, leads to
significant challenges in compression and communication. To
reduce the stresses of very high bandwidth consumption, the
concept of foveated video compression is being accorded renewed
interest. By exploiting the space-variant property of retinal visual
acuity, foveation has the potential to substantially reduce video
resolution in the visual periphery, with hardly noticeable per-
ceptual quality degradations. Accordingly, foveated image / video
quality predictors are also becoming increasingly important, as a
practical way to monitor and control future foveated compression
algorithms. Towards advancing the development of foveated
image / video quality assessment (FIQA / FVQA) algorithms,
we have constructed 2D and (stereoscopic) 3D VR databases of
foveated / compressed videos, and conducted a human study of
perceptual quality on each database. Each database includes 10
reference videos and 180 foveated videos, which were processed
by 3 levels of foveation on the reference videos. Foveation was
applied by increasing compression with increased eccentricity.
In the 2D study, each video was of resolution 7680x3840 and
was viewed and quality-rated by 36 subjects, while in the 3D
study, each video was of resolution 5376x5376 and rated by
34 subjects. Both studies were conducted on top of a foveated
video player having low motion-to-photon latency (~50ms). We
evaluated different objective image and video quality assess-
ment algorithms, including both FIQA / FVQA algorithms
and non-foveated algorithms, on our so called LIVE-Facebook
Technologies Foveation-Compressed Virtual Reality (LIVE-FBT-
FCVR) databases. We also present a statistical evaluation of
the relative performances of these algorithms. The LIVE-FBT-
FCVR databases have been made publicly available and can be
accessed at https://live.ece.utexas.edu/research/LIVEFBTFCVR/
index.html.

Index Terms—foveation, subjective video quality, Virtual Real-
ity, subjective study, stereoscopic 3D, foveated video compression,
objective video quality, visual acuity.

I. INTRODUCTION

IRTURAL Reality (VR) has experienced a substantial
growth in popularity, due to recent advancements in con-
sumer head-mounted displays (HMDs) and associated com-
puting hardware technologies. While cable-tethered headsets
for personal computers such as the HTC Vive, Oculus rift,
and Microsoft Hololens remain popular, standalone, untethered

Manuscript created August 24, 2020;

Y. Jin, M. Chen, and A. C. Bovik are with the Department of Elec-
trical and Computer Engineering, The University of Texas at Austin,
Austin, TX, 78712 USA e-mail: yizejin@utexas.edu; chenmx @utexas.edu;
bovik @ece.utexas.edu

While working on this project, T. Goodall and A. Patney were with
Facebook Technologies.

headsets like the Oculus Quest are even more successful
because of the freedom of movement they allow. Owing to
greatly increasing numbers of consumer applications, virtual
and augmented reality traffic is expected to increase 12-fold by
2022, as compared to 0.33 exabytes per month in 2017 [1].
While gaming has largely driven the VR space, immersive
and 360° videos are gaining wider acceptance and in the
future are expected to drive significant increases in demand
for bandwidth consumption.

To capture omnidirectional scenes, immersive videos are
usually generated by 360° cameras containing multiple well-
synchronized and calibrated lenses. The video frames obtained
from each lens are then stitched into various formats, such as
equirectangular projection (ERP), and cubemap (CMP) [?2].
While immersive videos provide higher degrees of freedom
and richer visual information, their bandwidth consumption is
much higher than traditional videos. Moreover, efficiency of
communicating immersive videos to HMDs is limited both by
bandwidth and the need for high resolution displays. The res-
olutions of mainstream HMDs range from 1Kx 1K to 2Kx2K
per eye, and their fields of view (FOVs) range from 90° to
130°. To match the resolutions of the HMD, the resolutions
of immersive videos to be displayed expand by more than 4-
fold, from at least 4Kx2K (UHD) up to (currently) 8Kx4K.
Yet, the maximum resolution of the human eyes is about 120
pixels per degree (ppd), while the HMD screen resolution
equates to 10 ~ 20 ppd. Hence, higher screen resolutions
are desirable, but this would require even higher bandwidths.
At the same time, delivering smooth, real-time experiences
even during rapid changes in viewing direction requires low
motion-to-photon latency, further constraining optimization of
immersive video streaming.

One way to remedy the aforementioned problems is by
developing foveated processing protocols, an idea that is again
gaining traction. Similar to the way that chroma subsam-
pling takes advantage of the reduced bandwidth of visual
chrominance signals relative to luminance, foveation exploits
the reduced visual acuity in the visual periphery relative to
the foveal region. Foveated video compression first gained
attention more than two decades ago, but there was no driving
need for the technology at the time [3]]-[6]]. Foveated image
/ video quality assessment (FIQA / FVQA) models were also
integrated into foveated compression algorithms to control
their performance [[7]-[10]. Due to the availability of consumer
eyetrackers that can be easily incorporated into HMDs, there
is an increasing research interest in the potential of foveation,
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and foveated compression algorithms [11]—[14] that build on
modern video codec standards like H.264 / AVC [[15] and
H.265 / HEVC [16].

As foveated compression algorithms evolve, there is an
increasing need for foveated image / video quality assessment
(FIQA / FVQA) algorithms that can be used to assess and
control compression. Towards advancing progress in this direc-
tion, and recognizing that there are no existing foveated video
quality databases addressing compression that are publicly and
freely available, we designed and created two databases of
foveated / compressed immersive VR videos, rated by human
subjects, which we will refer to as the LIVE-FBT-FCVR
databases. One of the databases contains 2D content, while
the other contains stereoscopic 3D content. The new databases
contain diverse contents and encompass important features: 1)
To smoothly sample the space of the FOV, three levels of
foveation were applied on the content in both databases; 2)
to reduce aliasing and fully make use of the screen resolution
inside the HMD, the VR videos in the 2D database are of
spatial resolution 7680x3840, while those in the 3D VR
database are of 5376x5376; 3) we systematically combined
compression distortion with video foveation, both of which
affect foveated video quality as viewed by foveated eyes; 4)
to ensure smooth, foveated visual experiences, we designed
a foveated video player having low motion-to-photon latency
(~ 50ms). On each database, we conducted a human sub-
jective study of foveated + compressed video quality, against
which we evaluated a variety of leading IQA / VQA and FIQA
/ FVQA algorithms.

The rest of the paper is organized as follows: Section II
studies related work on foveated video quality assessment.
Section III discusses design choices made in the construction
of the databases. Section IV describes our subjective testing
methodology, and the ways we processed the collected data.
In Section V, the quality prediction performances of leading
IQA / VQA models are compared and analyzed on the new
databases. Finally Section VI concludes the paper along with
some remarks on possible future research directions.

II. RELATED WORK

A. Subjective Quality Assessment

Traditional VQA databases such as LIVE VQA [17]], LIVE
MOBILE [18], CSIQ-VQA [19] and CDVL [20] have been
used to greatly advance the development of objective VQA
algorithms. Other databases dedicated to the study of video
quality of experience (QoE), such as the LIVE NFLX [21]]
and LIVE Mobile Stall Video Databases [22], [23], have
also played an important role in the design of improved
video streaming services. Recently, a subjective database of
audio-visual signals (LIVE-SJTU A/V-QA database [24]) was
designed to study multimodal audio-video quality perception.
Towards improving VR experiences, important questions need
to be addressed: How can immersive IQA / VQA databases
be used to facilitate the development of objective VR IQA /
VQA algorithms, and, can they be used to achieve significant
bandwidth savings in immersive VR systems, especially, those
designed for video streaming?

Towards answering the questions, VR researchers have
developed several databases that include VR-specific features.
A testbed for conducting subjective studies on immersive
contents was proposed in [25]], and a pilot experiment on JPEG
compression distortions was conducted. A 4K (4096x2048)
immersive image database called CVIQD was described in
[26]. CVIQD contains 165 compression distorted images gen-
erated from 5 pristine images, including JPEG, H.264 / AVC,
and H.265 / HEVC. In [27], [28], CVIQD was expanded to
include 16 reference images and 528 distorted / compressed
images. In [29]], an omnidirectional IQA (OIQA) database
was proposed, containing 16 reference images of resolutions
ranging from 11332x5666 to 13320x 6660, and 320 distorted
images with 4 types of impairments: JPEG compression,
JPEG2000 compression, Gaussian blur, and Gaussian noise.
In [30], a stereo 3D database was proposed, containing 450
distorted 3D immersive images generated from 15 pristine
images, impaired by Gaussian noise, Gaussian blur, downsam-
pling, VP9 compression, HEVC compression, and VR-specific
stitching distortions. In [31], an immersive VQA database
comprising 48 sequences downloaded from YouTube and
VRCun was proposed, containing sequences varying from 3K
(2880 1440) to 8K (7680x3840). In [32]], another immersive
VQA database called IVQAD 2017 was described, containing
10 reference 4K videos resolution captured with an Insta360
camera, from which 225 distorted videos were generated by
applying spatial downsampling, temporal downsampling, and
compression distortions.

While these databases are valuable tools for understanding
immersive video quality, none of them address the great
potential of incorporating foveation into bandwidth-hungry
immersive VR systems.

B. Objective Quality Assessment

In practice, objective IQA / VQA algorithms serve as a
substitute for subjective quality assessment (QA). Generally,
objective QA models are classified into three categories: full
reference (FR), reduced reference (RR), and no reference
(NR). In our context, we also consider whether an algorithm
belongs to non-foveated (traditional) or foveated QA cate-
gories.

While the PSNR and MSE are notorious for their poor
correlation with subjective quality scores [33]], perceptually
based FR IQA algorithms such as SSIM [34], MS-SSIM [35]],
VIF [36], and FSIM [37] exhibit much better performance
on predicting picture quality. In scenarios when the reference
images are absent or not available, natural scene statistics
(NSS) based NR IQA models, which capture deviations of
distorted scene statistics from those of pristine images are
often quite effective [38]-[41]. Another class of NR IQA
models, BPRI and BMPRI [42]], [43] use a pseudo-reference
image (PRI) generated from the distorted image to attempt to
facilitate measurement of the severity of distortions.

Some early FR IQA models used for VR are based on
PSNR, such as WS-PSNR [44]], CPP-PSNR [45]], S-PSNR
[46]. SSIM-based 360° IQA models were also developed
to capture VR perceptual quality, such as S-SSIM [47] and
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Fig. 1: Sample frames of the reference videos in the 2D database.
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Fig. 2: Sample frames of the reference videos in the 3D database.

SSIM360 [48]]. Recently, deep learning has been applied in VR
IQA problems. A VR-specific blind IQA model, MC360IQA
[28]], used a hyper structure on a ResNet34 network
along with an image quality regressor to fuse features from
intermediate layers of the ResNet. Another deep learning
model, DeepVR-IQA IE_U[], used adverserial learning to im-
prove the performance of their blind IQA predictor, whereby
a descriminator was designed to distinguish predicted scores
from the ground-truth scores.

IQA models can also be used to predict video quality
when applied on a frame-by-frame basis, where the tem-
poral information of videos is not considered. To capture
temporal distortions as well as spatial distortions, a variety
of models have been proposed. An early VQA model called
the Video Quality Metric (VQM) calculates quality features
on local spatial-temporal (S-T) regions, including temporal
features (mean and standard deviation) extracted from frame
differences [51]]. An FR algorithm called the MOVIE index
[52] represents temporal artifacts by modeling the responses
of motion sensitive neurons in extra-cortical area MT [53].
The Video Multimethod Assessment Fusion (VMAF) [54]
combines features obtained from VIF [36], DLM [53], and
frame differences, using a Support Vector Regressor (SVR).

General-purpose NR VQA algorithms have proven difficult
to design, due to the high complexity of temporal distortions
and the absence of reference information. RR VQA algorithms
predict distorted video quality given a reduced amount of
information from the reference video. These include NSS-
based models such as RRED [57]], STRRED [58], and Speed-

QA [59].

Progress have also been made on the development of NR
VQA algorithms. V-BLIINDS employs natural video
statistics (NVS) and a model of motion coherency to character-
ize video quality. The authors of model spatial-temporal
natural video statistics in a 3D discrete cosine transform (DCT)
domain, and use them to predict video quality. The Two Level
Video Quality Model (TLVQM) utilizes low- and high-
complexity features to predict video quality, achieving high
performance on the CVD2014 [63], KoNViD-1K [64]], and
Live-Qualcomm datasets [[65].

While there has been extensive research on non-foveated
IQA / VQA models, progress on the development of FIQA
/ FVQA models has been limited. An early FR model
called the Foveated Wavelet Quality Index (FWQI) mea-
sures foveated image quality by combining an eccentricity-
dependent contrast sensitivity function (CSF) model [6] with a
visually detectable noise threshold model [67]]. The Foveated
PSNR (FPSNR) and foveated weighted signal-to-noise ratio
(FWSNR) models use curvilinear coordinate systems to
model foveation. In [70], the authors defined a Foveation-
based Content Adaptive SSIM (FA-SSIM) index, which ex-
tends the popular SSIM to account for foveated viewing. A
recently developed NR FVQA model called Space-Variant
BRISQUE (SVBRISQUE) achieves state-of-the-art (SOTA)
performance using NSS features and a neural noise model to
predict the quality of immersive videos [68].
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Fig. 3: Spatial Information (SI), Temporal Information (TI), and Colorfulness (CF) measurements on the 2D and 3D databases.

III. LIVE-FBT-FCVR DATABASES
A. Video Capture

We employed an Insta360 Pro camera to capture the immer-
sive videos. The camera supports a maximum resolution of
7680x3840@30fps on 2D scenes, and 6400x6400@30fps on
3D scenes. To reach this resolution, the videos were captured
using the six lens systems and compressed with HEVC, then
stitched into a single immersive video, on which a second
compression (HEVC) was applied. To minimize compression
artifacts, we chose high target bitrates for the compression pro-
cesses so that we could use the stitched videos as references.
Since, in practice, the FOV is affected by the interpupillary
distance (IPD) and by the amount of eye relief, 4K resolution
is not sufficient to avoid the need for antialiasing. Given
the trade-off between aliasing reduction and computational
complexity, we used 7680x3840@30fps as the resolution of
the 2D video contents, and 5376x5376@30fps for the 3D
videos.

For each database, we selected 10 high-quality, diverse
reference videos of duration 10s each, captured in Austin,
Texas, as shown in Figs. E] and E} The videos were stored
in YUV 4:2:0 8 bit ERP format. We computed three popular
content measurements on all the videos: the Spatial Informa-
tion (SI), Temporal Information (TI), and Colorfulness (CF)
of the reference videos as in Fig [3] SI measures the spatial
activity in each luminance frame using Sobel kernels, TI
measures the temporal variations of luminance frames by
frame differencing, [[71]], and CF measures the variety and
intensity of colors in the videos [72]. The plots illustrate
the diversity of scene complexity and colorfulness, but also
a limited range in temporal activity, since we did not capture
or include videos having large object or camera motions, both
to reduce stitching errors and the likelihood of induced motion
sickness in the VR environment.

B. Test Sequences

Foveated distortions are characterized by a perceptual qual-
ity falloff with increasing eccentricity. In foveated compres-
sion / streaming algorithms, this space-variant property is
usually implemented by dividing the FOV into two or three
concentric, annular regions, on which are applied different
levels of foveation, assigning greater quantization factors or
lower resolution to the outer regions [11]-[13]]. We deployed
three regions / levels of foveation to model the falloff in
quality, in a manner that could be reasonably implemented by
multiple compression quantization parameters (QPs). Seeking

TABLE I: Quantization factors and annular radii.

Quantization —cr f 51 56 60 63
radii (radian) 0.08 0.16 024 032
Quantization —cr f 51 56 60 63
radii (radian) 0.1 0.2 0.3 0.4

2D

3D

to find insights into the proper selection of QPs of both
the foveal and peripheral regions in foveated compression
algorithms, we used the globally-deployed VP9 codec to create
compression distortions. At each level of foveation, we used
the VP9 constant quantization mode (Q mode), by specifying
the same -gmin and -gmax parameters in the FFmpeg libvpx-
vp9 encoder.

The design of test VR sequences having foveation / com-
pression distortions involves some unique difficulties. Unlike
traditional VQA studies, where the distortion level of a content
is determined using a single parameter, the distortion of
foveated and compressed videos are determined both by the
inner radius of each region and by the level of compression
distortion within the region. By using three levels of foveation,
the distortions are determined by two inner radii and three
QPs. Because of the curse of dimensionality, which heavily
impacts the duration of the study, we limited the number of
distortion parameters to five.

We created test sequences in three steps. We first sampled
the space of compressed videos using 4 QP values (—crf in
VP9), yielding 5 levels of compression distortion (including
the references), which were determined to have perceptually
discriminable levels of distortion when viewed in VR. Second,
we divided the FOV into one central, three annular, and one
peripheral region, hence 4 radii overall. The selected QPs and
radii are shown in Table[ll Each foveated / distorted video was
created by choosing 3 of 5 compression levels (including the
references), and 2 of 4 radii, as shown in Fig. |4} Thus, the high-
est quality is obtained by selecting [ref, —crf 51, —cr f 56]
as the 3 compression levels in both the 2D and 3D databases,
where ref indicates the reference video, and by selecting
[0.24, 0.32] as the 2 radii for the 2D database, and [0.3, 0.4]
for the 3D database. The lowest quality, however, is ob-
tained when selecting [—crf 56, —crf 60, —crf 63] as the
compression distortions (for both databases), and [0.08, 0.16]
/10.1, 0.2] as the radii for the 2D / 3D databases, respectively.
The radii were chosen such that the quality range of the test se-
quences was perceptually broad, i.e. the test sequences having
the highest quality would have nearly the same appearance
as their corresponding reference videos, while those having
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ref —crf 51 —crf 56 —crf 60 —crf 63

Best foveated quality.

Worst foveated quality.

Fig. 4: Tlustration of methods of creating foveated / com-
pressed videos. The inner radii define concentric regions as
shown in the second row. The distorted videos are defined by
selecting inner radii separating the multiple adjacent foveation
regions. The solid arrows indicate the best foveated quality
possible, while the dashed arrows indicate the worst foveated
quality possible.

the lowest quality would present very poor quality. Finally,
given the restriction that distortion increases (quality descends)
from the foveal region to the periphery, and that the inner
radius is always smaller than the outer radius, there were
in total 60 possible combinations of QPs and radii. It was
not possible to use all of these, since it would impractically
increase the duration of the study, hence we randomly sampled
18 combinations from each content, yielding 180 distorted
videos in each database. However, to ensure that a sufficiently
wide range of quality would be sampled for each content, we
first divided the 60 combinations into 5 broad quality groups,
based on a visual comparison by the study authors: Excellent
(E), Good (G), Fair (F), Bad (B). We then randomly selected
3, 4, 4, 4, and 3 combinations from the 5 quality groups,
respectively.

C. Design Choices and Features of the database

Next we explain a number of design particulars that helped
shape the database.

1) VP9 Compression: We selected VP9 codec to apply
compression distortions to the test videos. VP9 is one of
the most widely used video codecs, and is exemplar of the
increasing popularity of royalty-free video coding standards.
While the successor AV1 has recently become available, it is
not yet deployed in HMDs, and it is reasonable to expect
that the coding artifacts produced by these deeply related
technologies are perceptually similar.

2) Quantization Parameters: Compression artifacts are of-
ten less noticeable in VR environments than when viewed on
traditional devices. This may be a result of downsampling in

HMDs, which can reduce blocking artifacts [73]. To better
represent compression distortions, an aggressive quantization
scheme was defined to produce five levels of distortions
that are generally perceptually distinguishable in VR. This
allows for less labeling ambiguity and more successful model
building, as we have discovered in many past studies.

3) Combinations of Quantization Factors and Radii: The
most significant difference between the new LIVE-FBT-FCVR
databases and traditional databases is that compression dis-
tortions were applied in a systematic foveated way, yielding
a wide variety of test sequences representative of plausible
combinations of distortion severities and foveal-to-peripheral
gradations.

IV. SUBJECTIVE STUDIES

A. Interface Design and Real-time Foveation

The design of the subject interface required careful handling
of the system latency [74], which is the time elapsed between
the change in gaze direction and the completion of foveated
rendering. In [75]], it was suggested that a total system latency
of 50 ~ 70ms could be tolerated, due to the saccadic
omission of the HVS. Since we aimed to develop a database
that would provide smooth (albeit distorted) foveated viewing
experiences, it was crucial to control the system latency to
ensure smooth playback.

In the interface, the foveated videos were rendered in real
time based on measurements of the subjects’ gaze directions.
This was made possible since, instead of compressing /
foveating the videos in real time, as would be required during
application, we pre-compressed the ERP videos using the QPs
in Table m Then to create the foveated experience, we created
a foveated video player which was able to read 3 raw / pre-
compressed YUV videos and 2 radii from disk, corresponding
to three levels of foveation, and transferred them to GPU for
foveated rendering by a fragment shader. To achieve this, we
relied on a VideoClarity ClearView system equipped with SSD
Redundant Arrays of Independent Disks (RAIDs), supporting
a sequential reading speed of 10GB/s. Then, the 3 YUV
video frames were merged / foveated using the 2 radii by the
fragment shader, and finally displayed inside the HMD. The
YUYV videos were strictly synchronized at frame level to avoid
any temporal artifacts during playout, and none were observed.
A more detailed description of the foveated video player can
be found in [[78]]. To remove perceptual edge artifacts between
the adjacent levels of foveation, linear blending of the content
across the sharp foveation boundaries was used:

Gt fe, —w<e< e,
b(z,y) =10, if e <e; —w, (D
1, if e > e;,

where ¢ € 1,2 indexes the two boundaries between the 3
levels / regions of foveation, w is the blending width, and
e = /(z—20)2+ (y —y0)? is the eccentricity of (z,y)
with respect to the gaze point (xg,yo). For both 2D and 3D
databses, we fixed w = 0.02 radians for the inner boundary,
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Change in
viewing Process Eye data Start Send to Displayed on
direction captured data | ready rendering HMD screen
8.3ms 10ms 8.3ms 11.11ms 11.11ms
8.3ms 18.3ms 26.6ms 37.71ms 48.82ms
worst case latency
=== tms > ----2 11.11ms » 1l.1lms
10ms 21.11ms 32.22ms

best case latency

Fig. 5: Best and worst case latency of the system.

and w = 0.04 radians for the outer boundary. The blended
pixels were then calculated by

Ib(xay) :b'Iout(x,y)+(17b) 'Im(iE,y), (2)

where I,,:(z,y) and I;,(z,y) denote the co-located pixels
at (z,y) from contents outside and inside the boundary,
respectively.

By estimating both the best and the worst case system
latencies, we ensured that our system satisfied the requirements
suggested in [75]. An HTC Vive HMD integrated with a
Tobii Pro VR eye tracker was employed in the study. The
refresh rate of the HMD screen is 90fps, while the sampling
frequency of the eye tracker is 120Hz. After a change in gaze
direction, the idealized best case would occur when the eye
tracker immediately captures the change, while the worst case
would occur when the change occurs immediately after the
last time sample. The latency in the two extremes would be
Oms and 8.3ms, respectively. The time expended capturing the
eye status and data processing by the eye tracker is about
10ms, after which the gaze data is available to the fragment
shader. The data could arrive 0 ~ 8.3ms before the submission
of Direct3D calls, and after that, 11.11ms is expended
rendering and another 11.11ms sending the rendered image to
the HMD panels prior to display [80]. Overall, the latency is
about 32ms in the best case and 49ms in the worst case, as
illustrated in Fig. 5}

The interface was built using Unity Game Engine, and
the foveated video player was compiled into dynamic link
libraries (DLL), and then integrated into Unity as native plug-
ins. The Tobii VR Unity SDK was employed for calibration
and processing of the gaze data [81]].

B. Subjective Testing Design

The subjective study utilized a Single stimulus protocol
[82], where the subjects recorded scores on a continuous
quality scale, ranging from O to 1, where O denotes the worst
quality.

Both of the LIVE-FBT-FCVR databases (2D and 3D) were
randomly divided into two sessions, with each session contain-
ing 90 of the 180 distorted videos and 10 “hidden” reference
videos. To balance the display of distorted videos between the
two sessions, the 90 distorted videos were created by randomly
selecting 9 of the 18 distorted versions of each content. To
avoid the effects of contextual or memory comparisons, videos
of the same contents were forced to be located at least three
videos apart in the presentations. Care was also taken to

<%

Fig. 6: Rating bar used by the human subjects.

avoid any bias owing to a specific order of the sequences,
by randomly generating a playlist for each subject. Since the
duration of each video is 10s, and the subjects, on average,
required less than 10s to assign each score, the total duration
of each session averaged less than 35 minutes.

For each subject, the two sessions were separated by at
least 24 hours apart to avoid fatigue in the second session.
During each session, subjects could terminate the experiment
at any time if they felt the need. After the playback of each
video, subjects rated the VR video quality using the continuous
rating bar shown in Fig [f] The rating bar was marked with
Likert labels ranging from “Poor” to “Excellent” to facilitate
anchoring the rating process, and subjects could use their
controllers to select and submit a score without taking off the
headset. The subjects were informed that they could assign
their ratings anywhere along the continuous scale. The rating
bar was attached to a virtual canvas in HMD local coordinates,
so that it remained on the center of the FOV regardless of head
movements.

C. Subjects Training

A total of 76 subjects were recruited to participate in the
subjective tests, all of them undergraduate students at The
University of Texas at Austin, aged between 20 to 30 years,
and unfamiliar with video quality assessment and video dis-
tortions. Among them, 38 participated in the 2D study, while
38 participated in the 3D study, and no subjects participated
in both studies. At the beginning of each study, the Snellen
test was conducted to ensure that each subject had normal
or corrected-to-normal visual acuity. Subjects were also asked
if they were prone to discomfort or nausea when exposed to
a VR environment. Prior to the 3D study, the subjects also
participated in a RanDot Stereo test of 3D perception. Surpris-
ingly, no subject was rejected as a consequence of screening.
The subjects were also asked to adjust the IPD of the HTC
Vive HMD to alleviate any discomfort. Subjects having IPDs
outside of the range of the HMD (60.3mm ~ 73.7mm) were
allowed to participate in the study, with the awareness that
they could terminate the test if they wanted to.

Before the first session of each study, each subject was
orally briefed regarding the purpose of the study and presented
with detailed instructions in written form. Then, a training
session was conducted to help familiarize the subjects with the
system. For the 2D / 3D studies, 12 / 10 training sequences
were used, which were not included in the database. The
quality range of these videos was similar to the quality range
of the test videos, giving the subjects a sense of what they
would see in the formal sessions.



JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Inter-Subject Consistency (2D) Inter-Subject Consistency (3D)

o)
o
o
o

-
70 Ny 70 ol
o X
60 - e 60 op 2US
Jogns .
Q50 ahgrd Q50 .
2 S i 2 . .
S 40 ..nﬁ"* * G 40 -1’* 3
30 SR 30 2 4
20 1 201 #7°
e P
10 10

10 20 30 40 50 60 70 80
Group 1

10 2‘0 3‘0 4‘0 5‘0 6‘0 7‘0 80
Group 1

Fig. 7: Scatter plots of MOS from two non-overlapping, equal-

size groups of subjects. Left: Inter-subject consistency of the

2D database, SROCC=0.936. Right: Inter-subject consistency

of the 3D database, SROCC=0.915.

At the beginning of each session, each subject was guided
through an eye tracker calibration process. During this process,
the subjects would stare at five red dots that were sequen-
tially displayed at regular spatial intervals. As each dot was
displayed and fixated, the gaze direction of the subject was
recorded and used to calibrate the eye tracker. During the
testing phase, the subjects were instructed to rate the videos
based on their own judgments of perceived quality, without
expressing any preference of the contents. The subjects were
also instructed to view as much as possible of the 360° envi-
ronment, by moving their eyes and head during the playback
of each video.

D. Data Processing

We calculated both subjective Mean Opinion Scores (MOS)
and Difference Mean Opinion Scores (DMOS) from the
recorded subject ratings. Within each database, denote s;;
as the subjective score given by the i'" subject, on the ;"
foveated video, during the k" session, where Jref 18 the
corresponding reference video. To compute MOS, the Z-scores
were first computed per session:

N;
MOS 1 <
ik 272 Sijk; 3)
Niy, “
j=1
1 k2
MOS __ E MOS
ik — —1
j=
. MOS
,MOs _ Sijk — Fik (5)
ijk - U%OS )
1

wherein N;;, denotes the number of distorted videos viewed
by the i*" subject in session k. Since the reference videos were
rated twice by each subject, the corresponding Z-scores from
the two sessions were averaged:

mos _ 1
7v’j'ref - 2
k=1,2

MOS
Mos. ©)

To compute DMOS, the differences between the scores of each
distorted video and the corresponding hidden reference video
was computed,

dijk = Sijk — Sijyesk- (N
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Fig. 8: MOS in the 2D (top) and 3D (bottom) LIVE-FBT-
FCVR databases. The MOS of reference videos are highlighted
in red.

Then, Z-scores were computed within each session,
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The Z-scores from the two sessions were then merged by
dropping the index k. Over 99% of the Z-scores were found
to lie within the range [-3,3]. Subject rejection was performed
following the procedure in [82]. Finally, the Z-scores were
mapped to the range [0,100]:
/ 100(z;; + 3)
Zij = 6
where z;; are Z-scores of MOS or DMOS.
Among the 38 subjects who participated in the 2D study,
2 of them did not finish both sessions, while 6 / 3 of
the remaining 36 subjects included in the MOS / DMOS
calculations were rejected, respectively. In the 3D study, 4
of the 38 the subjects did not finish both sessions, while 7 /
4 of the remaining 34 subjects included in the MOS / DMOS
calculations were rejected. The MOS were found to lie in the
ranges [18.61, 73.64] and [20.02, 72.80] in the 2D and 3D
databases, respectively. The DMOS were found to lie within
the ranges [22.76, 70.28], and [25.04, 68.24], in the 2D and
3D databases, respectively.

Y

E. Validation of Results

1) Inter-Subject Consistency: The inter-subject consistency
was explored by randomly dividing the subjects into two
disjoint and equal groups, then measuring the Spearman Rank
Correlation Coefficient (SROCC) correlation of the MOS
values computed from these two groups. We performed the
random division 1000 times, and the ranges of correlations
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TABLE II: Directions used in the evaluation framework.
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(a) Maps of Mean Ranked Opinion Scores (MROS) of test videos in
the 2D database.
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(b) Maps of Mean Ranked Opinion Scores (MROS) of test sequences
in the 3D database.

Fig. 9: Comparison of MROS observed for different compression / radii combinations. Tables of MROS from the (a) 2D and
(b) 3D databases. The trends of the subjective quality scores could be observed by comparing the column / row combinations

of compression / radii.
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Fig. 10: Example of inconsistent SROCC and PLCC on the 2D
database. (a) Scatter plot of Speed-VQA prediction vs. DMOS
of content “Coco”. (b) The scatter plots of FWQI prediction
vs. DMOS on “Coco”.
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were found to be [0.90, 0.96] / [0.88, 0.94], with median
values 0.94 / 0.92 on the 2D / 3D databases. A high degree
of subject consistency was observed between the randomly
divided groups on both databases, despite the complex viewing
conditions introduced by the VR environment, 3D stereo
vision, and foveation. The scatter plots of MOS from two
groups are shown in Fig. [7]

2) Intra-Subject Consistency: We also measured intra-
subject consistency by calculating the SROCC between the
Z-scores assigned by each individual subject against MOS
[83]]l. The median correlations on the 2D / 3D database were
found to be 0.746 / 0.706, a reasonable degree of intra-subject
agreement.

F. Analysis of Opinion Scores

The obtained MOS of the test videos are plotted in Fig [§]
The results show that a wide range of foveated / compressed
video quality was sampled. The error bars show that the
outcomes of the 3D study contain greater uncertainty than
those from the 2D study.

To explore the relationships between the scores reported
on the combinations of compression distortions and foveation

radii, we ranked the Z-scores (DMOS) assigned by each
subject on each content, averaged the ranked indices across all
subjects, and finally mapped the averaged indices referred to
as “Mean Ranked Opinion Scores” or MROS back to the table
of all combinations, as shown in Fig. 9] where “— indicates
that the combination was not sampled. By comparing the rows
/ columns in both maps, on can observe trends in the scores
reported for changing combinations of compression / radii.

The maps obtained for the 2D (Fig. Da) and the 3D (Fig.[9b)
databases reveal the expected result that higher scores were
assigned to foveated videos having less severe compression
artifacts and larger radii (upper left corner of each map), with
lowering scores towards the bottom right corners. Compare
corresponding rows in the two maps, the relative quality scores
may be observed to be in good general agreement. In a few
instances, there is disagreement, which may be due to the
introduction of 3D and the different display resolutions used
for the 2D and 3D studies.

V. OBJECTIVE QUALITY METRICS

We evaluate a wide variety of QA algorithms on the newly
created LIVE-FBT-FCVR databases. As in [76]], four crite-
ria were adopted for evaluation: Pearson’s linear correlation
coefficient(PLCC), Spearmlan’s rank order correlation coef-
ficient (SROCC), Kendall’s rank order correlation coefficient
(KROCC), and root mean square (RMSE). DMOS were used
for evaluating FR / RR algorithms, and MOS were used
for training and evaluating NR algorithms. A four-parameter
logistic non-linearity was employed before calculating PLCC
and RMSE [77]:

B — B2

L+ exp(—57)

(12)

A. Evaluation Framework

To recover the foveated experience and enable the compar-
ison of algorithms, simulating the real-time foveation scheme
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TABLE III: Performance comparison of FR / RR models on the 2D database for each content and for different quality ranges
(underlined). “High” indicates the distorted contents assigned the highest 30% DMOS, “Median” indicates the following 40%,
and “Low” indicates the remaining 30%. The best values are boldfaced.

PSNR _ SSIM__ MS-SSIM___ VIF __ S-RRED _ SpIQA  FSIM _ ST-RRED _Sp-VQA VMAF _FWQI _ FASSIM
Coco PLCCT | 0.6776 0.6638  0.6666  0.8622  0.6388  0.6465  0.6751  0.6607 03587 07241 09154  0.8317
SROCCT | 09340 09340 09319 09381 09195 09092 09195  0.9319 09257 09381 09133 0.8369
EER PLCCT | 07751 0.8236  0./858 08932  0.7563  0.7504 07597  0.7633 07649 07898 09133  0.7827
SROCCT | 09381  0.9401 09443 09401 09401 09340 09401  0.9381 09340 09422 09030  0.7585
Stadium PLCCT | 0.8560 0.8408 08466 09198  0.8312  0.8305 0.8329  0.8166 08312 0.8786 09686  0.8360
SROCCT | 09505 09505 09505 09587 09443 09340 09505  0.9505 09463 09587  0.9628  0.8349
Starbucks PLCCT | 0.8003 0.8343 08083  0.8671  0.7824  0.7802  0.7894  0.7870 07701 0.8109 09005  0.7346
SROCCT | 09174 09174 09174 09216 09133 09133 09133 09133 09133 09154 09257  0.7626
Waterfall PLCCT | 0.8066 0.8203 08165 09117  0.7958  0.7972  0.8007  0.7996 07812 0.8385 09389  0.8960
SROCCT | 09649 09794 09649 09628 09484 09505 09401  0.9567 09463 09752 0.9608  0.8803
Microsoft PLCCT | 07730 0.7915 07793 08329  0.7716  0.7725  0.7686  0.7725 07666  0.7813  0.9080  0.8239
SROCCT | 0.8824  0.8844  0.8885  0.8927 08617  0.8617  0.8555  0.8906 0.8617  0.8968 09071  0.7750
Oasis PLCCT | 0.6528 0.7240 06675 07517  0.6345  0.6284  0.6428  0.6355 06188 0.6640 09050  0.8360
SROCCT | 09257 09319 09319 09546 09112 07296  0.8989  0.9154 09174 09257 09670  0.7626
Playground | LLCCT | 08638 08727 08747 09183 08678 08682 08674 08690 08526 0.8940 09455  0.8251
SROCCT | 09711 09773 09711 09670 09670  0.9690 09670  0.9670 0.9856 09856  0.9690  0.7998
Sanjacinto | PLCCT | 03386 0364205470 07022 05073 03006 05239 03018 05085  0.6001  0.8948  0.8151
SROCCT | 07668 07853 07668  0.8142 05934 04964 07193 07152 07028  0.8184 09278  0.8204
Seulpture PLCCT | 07572 0.8014  0.7667  0.8441  0.7321  0.7306 07471  0.7327 07090 07754 09276  0.8612
SROCCT | 09133 09216 09133 09133 09133 09092 09133 0.9092 09133 09236 09133 0.8596
High PLCCT | 04461 03456 04504 05207 05680 05686 05738  0.5522 05858 05769  0.6618  0.3917
SROCCT | 04517 03813 04735 05480 05832 05878  0.6193  0.5909 06033 05763  0.6729  0.4069
Median PLCCT | 04246 05225 05121 04796 04649 04204 04125 02811 02737 04340 03172 03017
SROCCT | 03987 04938 04891 04779 04526 04085 04266  0.3090 02593 04476  0.2890  0.2776
Low PLCCT | 02645 02266 02159 04015 02847 02845 02511 03424 02331 04108 05084  0.5897
SROCCT | 03004 02776 02144 04576 02585 02815 02386  0.3569 02277 04981 05123  0.6183
Overall PLCCT | 0.6941 0.7260  0.7288  0.8102  0.7896  0.7760 07712 0.6922 0.6584  0.8047  0.7906  0.7573
SROCCT | 0.6954 07191 07243 0.8068 07885  0.7866  0.7808  0.7010 0.6238  0.8103 07848  0.7418
TABLE IV: Results of F-test performed on the residuals between model predictions and DMOS values on the 2D database.

Each entry in the table is a codeword consisting of 14 symbols, where the first 10 symbols indicate the 10 video contents,
the next 3 denote the high, median, and low content quality ranges, and the final symbol denotes the overall performance. A
symbol value of “0” indicates the model in the row is statistically superior to the one in the column, a value of “1” indicates

statistically inferior, and a value of “-” indicates equivalent.
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described in Section we adopted a viewport-based
assessment framework, as discussed in [78] to simulate the
foveated images presented inside the HMD. First, we selected
18 3D directions, and created a viewport video for each
direction. The directions are listed in geographic coordinates
in Table [lIl The FOV of each viewport was set to 90°, and
the resolution was set to 1024x1024. Finally, a foveated
viewport video was created for each viewing direction in the
2D database, and two foveated videos, associated with the left
and the right eye, were constructed for the 3D database, using
the same combinations of compression and region radii.

B. Evaluation of FR and RR Algorithms

1) Non-foveated IQA algorithms: We first tested 7 non-
foveated IQA algorithms on both databases: PSNR, SSIM [34],
MS-SSIM [35]], VIFE] [36], S-RRED [58]], Speed-IQA [59] and

'We used the pixel domain implementation of VIF: https://live.ece.utexas.
edu/research/Quality/index_algorithms.htm

FSIM [37]. To accommodate these IQA algorithms within our
evaluation framework, we computed the score of each frame
on each viewport video, then averaged (pooled) scores across
all frames and viewports into one final score. On the stereo
3D videos, the predictions from left and right viewport videos
were simply averaged.

2) Non-foveated VQA algorithms: We also included three
non-foveated VQA algorithms: ST-RRED [58]], Speed-VQA
[59], and VMAFE] [[54]]. The score on each viewport video
were also computed and averaged into one final score.

3) Foveated IQA algorithms: Finally, we implemented the
legacy foveated models FWQI [66] and FA-SSIM [70]], and
evaluated their performances. For FA-SSIM, we set the hyper-
parameters v and (3 to 30 and 1, respectively, on both the 2D
and 3D databases.

To evaluate the FR / RR algorithms, we computed the
PLCC, SROCC, KROCC, and RMSE of the predicted quality
scores against DMOS, and reported only PLCC and SROCC

2We used the pretrained VMAF model from https://github.com/Netflix/vmaf]


https://live.ece.utexas.edu/research/Quality/index_algorithms.htm
https://live.ece.utexas.edu/research/Quality/index_algorithms.htm
https://github.com/Netflix/vmaf
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TABLE V: Performance comparison of FR / RR models on the 3D database for each content and for different quality ranges
(underlined). “High” indicates the distorted contents assigned the highest 30% DMOS, “Median” indicates the following 40%,
and “Low” indicates the remaining 30%. The best values are boldfaced.

PSNR SSIM MS-SSIM VIF S-RRED  Sp-IQA FSIM ST-RRED  Sp-VQA  VMAF FWQI  FASSIM
Bar PLCCt 0.4977  0.5823 0.5059 0.7647 0.4444 0.2728 0.4731 0.4555 0.1886 0.5590  0.8704 0.9192
SROCC?T | 0.6821  0.7049 0.6821 0.7131 0.6512 0.3994 0.6801 0.6821 0.4324 0.7110  0.8287 0.8895
Bridge PLCCT 0.5201 0.7045 0.5306 0.7909 0.4387 0.5548 0.4714 0.4556 0.5894 0.6186  0.8656 0.8639
SROCC?T | 0.6140  0.6305 0.6120 0.8287 0.6120 0.5686 0.6120 0.6120 0.6326 0.6305  0.8411 0.8915
Domain PLCCT 0.6589  0.6752 0.6641 0.7964 0.6149 0.6773 0.6166 0.6221 0.5894 0.6702  0.9098 0.9352
SROCC?T | 0.7998  0.7998 0.7998 0.8225 0.7812 0.7152 0.7998 0.7812 0.7234 0.7998  0.8865 0.9008
Dunk PLCCT 0.5819  0.6510 0.5908 0.7392 0.5788 0.5168 0.5874 0.5647 0.4434 0.5927  0.8006 0.7625
SROCCt | 0.7193  0.7276 0.7193 0.7420 0.7090 0.5728 0.7193 0.7193 0.6120 0.7090  0.7626 0.8244
EER PLCCt 0.7203  0.7312 0.7263 0.8048 0.7021 0.7872 0.6921 0.7036 0.7061 0.7368  0.9080 0.9272
SROCC?T | 0.8246  0.8555 0.8246 0.8700 0.8184 0.9133 0.8225 0.8246 0.9236 0.8308  0.9257 0.8977
Maintower PLCCT 0.5920  0.6661 0.5975 0.7925 0.5749 0.4973 0.5890 0.5515 0.3344 0.6927  0.8642 0.7810
SROCC?T | 0.7069  0.7131 0.7049 0.8184 0.6471 0.5067 0.6636 0.7069 0.5170 0.7564  0.8349 0.7990
Microsoft PLCCT 0.7101  0.7671 0.7175 0.8252 0.6980 0.5678 0.7000 0.7093 0.5673 0.7354  0.8901 0.9165
SROCC?T | 0.8782  0.8782 0.8782 0.8927 0.8782 0.6739 0.8782 0.8782 0.6780 0.8782  0.8968 0.9338
Oasis PLCCT 0.5985  0.6864 0.6093 0.7228 0.5723 0.7041 0.5781 0.5672 0.5375 0.6324  0.8486 0.9153
SROCCT | 0.7668  0.7998 0.7668 0.8080 0.7482 0.7131 0.7647 0.7647 0.7007 0.7874  0.8080 0.8771
Redhouse PLCCt 0.6368  0.6295 0.6349 0.8013 0.6304 0.5019 0.6353 0.6392 0.3754 0.6745  0.8529 0.9066
SROCC?T | 0.7255  0.7564 0.7255 0.7895 0.7090 0.6409 0.7255 0.7255 0.6409 0.7564  0.8390 0.9333
Sculpture PLCCT 0.6323  0.6274 0.6293 0.7241 0.6074 0.2161 0.6160 0.6101 0.5148 0.6343  0.8275 0.8684
SROCC?T | 0.7172  0.7296 0.6904 0.7668 0.6904 0.4964 0.6904 0.6904 0.5212 0.7668  0.7895 0.8449
High PLCCT 0.1166  0.1290 0.2917 0.4556 0.3826 0.2913 0.3344 0.3135 0.2866 0.2528  0.2391 0.3695
SROCC?T | 0.0701 0.1695 0.2454 0.4113 0.3348 0.2765 0.2927 0.2852 0.3528 0.2950  0.2672 0.3235
Median PLCCT 0.1968  0.2612 0.2566 0.4011 0.3276 0.1406 0.3096 0.2920 0.2124 0.3499  0.4037 0.4306
SROCC?T | 0.2259  0.2535 0.2939 0.4185 0.2937 0.1288 0.3261 0.2780 0.1123 0.3714  0.4180 0.3903
Low PLCCt 0.2428  0.1633 0.1866 0.1590 0.2135 0.3449 0.2395 0.3132 0.2067 0.4072  0.6500 0.3692
SROCC?T | 0.2751 0.2295 0.2617 0.2604 0.2595 0.2861 0.2916 0.4123 0.2303 0.4621 0.6072 0.3805
Overall PLCCT 0.4379  0.4184 0.5337 0.6536 0.5604 0.5084 0.5904 0.5706 0.4666 0.6362  0.8041 0.7549
SROCC?T | 0.4418  0.4429 0.5531 0.6765 0.5744 0.4959 0.6237 0.5846 0.4816 0.6522  0.7841 0.7401

TABLE VI: Results of F-test performed on the residuals between model predictions and DMOS values on the 3D database.
Each entry in the table is a codeword consisting of 14 symbols, where the first 10 symbols indicate the 10 video contents,
the next 3 denote the high, median, and low content quality ranges, and the final symbol denotes the overall performance. A
symbol value of “0” indicates the model in the row is statistically superior to the one in the column, a value of “1” indicates

statistically inferior, and a value of “-” indicates equivalent.
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in Table [[II] and Table [V] for the 2D and the 3D database,
respectively, since KROCC and RMSE were observed to
follow similar trends. The scatter plots of each model against
DMOS are shown in Fig. [I1] and Fig.

In Table [l1I] and Table [V} both the overall performance, per-
content performance, and performance in high, median, and
low quality ranges are compared. We employed the logistic
non-linearity in Eq. [I2] to map the predicted scores of each
model to the range of DMOS before computing the overall
performance (PLCC), and computed per-content PLCC and
PLCC for different quality ranges without further mapping.
The “High” quality range were distorted contents labeled by
the highest 30% of DMOS, “Median” denotes the following
40%, and “Low” denotes the lowest 30%.

As shown in Table when tested on the 2D database,
the overall performance of a non-foveated model, VIF, was
better than that of other models, including the foveated models,
FWQI and FA-SSIM. Overall, VIF, FWQI, and S-RRED were
the three best performing models. However, when analyzed

on a per-content basis, VIF generally performed worse than
FWQI. It may also be observed that the SROCC and PLCC
of the non-foveated models were generally not consistent
(except VIF), while opposite is observed of the foveated
models (FWQI and FA-SSIM). This is because the non-
foveated models generally had difficulties distinguishing the
perceptual relevance of heavily foveated contents, particularly
in peripheral regions. Hence they failed to distinguish be-
tween perceptually different foveated videos, yielding stucked
columns of scatter points, as in Fig. Similar effects may be
seen in the all-model (FR and RR) plots in Fig. 1 1| among the
non-foveated models. The foveated models perform well over
the low quality ranges, since the importance of quality in the
foveal / near-foveal regions are given greater weight. It is also
interesting to observe that Speed-VQA and STRRED delivered
lower performance than their spatial-only counterparts.

As shown in Table [V] and Fig. the 3D database, FWQI,
FA-SSIM, and VIF were the three best performing models
overall. Similar misaligned SROCC and PLCC plots were
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TABLE VII: Comparison of NR VQA models on the 2D and
3D databases. The highest values are boldfaced.

Methods SROCCT KROCCT PLCCT RMSE]
BRISQUE | 0.797£022 0.639£0.18  0.708£0.18  9.6043.29

,p | SVBRISQUE | 0.900+0.11  0.736:0.12 0884010 6914253
NIQE 0.605+£032 04574024 06754031  6.474+2.27
V-BLIINDS | 0440025 03274020 04312025  11.1142.07
TLVQM 0509+036 03814026 04704036  10.3843.09
BRISQUE | 0.751£0.19 058/£0.15  0.699£0.17  9.11£2.97

sp | SVBRISQUE | 0875:+£0.12  0.695+£0.12  0.877+0.12  5.99+1.79
- NIQE 0.7324£0.19  0.570£0.15  0.781£0.17  6.5942.00
V-BLIINDS | 03914024  0.28340.18 03004022  9.33+1.50
TLVQM 0.696:£021  0.51740.17  0.6994+021  7.8242.43

observed on most of the non-foveated models.

Comparing the performances of models on the two
databases, the non-foveated models all experienced a signifi-
cant performance decrease, while the foveated models were
robust on both databases. While the reasons for this are
manifold, one of the most may be that: since the predictions
of non-foveated models are much more heavily impacted
by the heavily distorted periphery, the correlations between
peripheral quality and ground truth perceptual quality (DMOS)
largely determines the performance of non-foveated models.
As may be observed from the Tables in Fig. [9] on the 2D
database, MOS / DMOS were much more affected by the most
peripheral qualities, but much less so on the 3D database. This
suggests the possibility that the perceived depths of non-fixated
(likely background) regions were less attended to, i.e. a sort
of attentional depth masking.

C. Statistical Evaluation

As in [17], we evaluated the possible statistical superiority
of each FR / RR model over every other one based on F-tests
between objective models. By assuming that the distribution
of the residual errors between the predictions of an objective
model and the DMOS follows a Gaussian distribution, the
ratios between the variances of residual errors between two
objective models follow an F distribution. An F-test was then
conducted, the null hypothesis being that the variances of the
two models were equal. The possible statistical superiority of
one model over another was determined at the 95% signifi-
cance level. The results of the statistical significance tests on
the 2D and 3D databases can be found in Table [V] and Table
respectively.

The results on the 2D database show that the FR FWQI
model was mostly statistically superior to the other models.
On the 3D database, the results of the F-test also indicate that
FWQI is statistically superior than the other compared models
overall.

D. NR Algorithms

We compared 5 NR algorithms on both the 2D and 3D
databases: BRISQUE [39], NIQE [40], SVBRISQUE [68]], V-
BLIINDS [60], and TLVQM [62]. BRISQUE, SVBRISQUE,
V-BLIINDS, and TLVQM, were learned using a Support
Vector Regressor (SVR) with radial basis function [84]].

Among the NR algorithms, SVBRISQUE is a recent model
specific to NR FVQA, whereby space-variant NSS were de-
ployed to capture perceptual distortions occurring at different

TABLE VIII: Median and standard deviation of performances
of FR VQA models on the 2D and 3D databases over 45
random iterations of 80-20 train-test splits. The highest values
are boldfaced.

Methods SROCCT KROCC?T PLCCT RMSE]
PSNR 0.827£0.19  0.653+0.17  0.769+£0.19  6.0641.49
SSIM 0.827£0.21 0.674+0.18  0.773+0.18  6.35£1.04

MS-SSIM | 0.842+0.21  0.684+£0.16  0.801+0.18  6.09+1.10

VIF 0.877£0.17  0.7264+0.16 ~ 0.845+0.16  4.53+1.45

S-RRED 0.884+£0.08  0.7264+0.10  0.819+0.09  4.8640.96

D Sp-IQA 0.881+0.07  0.716£0.10  0.808+0.08  5.1010.86
FSIM 0.887+£0.08  0.733+0.09  0.811+£0.10  4.8341.03

ST-RRED | 0.829+0.09  0.68440.11 0.771£0.08  5.694+0.92

Sp-VQA 0.806+0.12  0.621£0.13  0.735+0.09  6.41+1.02
VMAF 0.896£0.10  0.7374+0.12  0.829+0.12  4.56+1.24
FWQI 0.884+0.09  0.726£0.11  0.877+0.08  5.0010.54

FASSIM 0.7104+0.12  0.558+0.12  0.778+0.11  5.3941.28
PSNR 0.460£0.41  0.3264+0.31  0.467+042  7.23+1.90
SSIM 0.461£0.33  0.3474+0.25  0.484+0.34  7.78%1.75

MS-SSIM | 0.597£0.23  0.432+£0.19  0.579+0.23  7.04%+1.16

VIF 0.735£0.19  0.558+0.17  0.726+£0.18  6.0741.04

S-RRED 0.541£0.19  0.42140.16  0.509+0.17  6.91%1.11

3D Sp-IQA 0.5204+0.26  0.379£0.20  0.513+0.23  8.09+1.48
FSIM 0.617£0.18  0.47440.15  0.527+£0.16  6.9240.90

ST-RRED | 0.611+0.19  0.463£0.15  0.55440.18  6.75£1.03

Sp-VQA 0.5164+0.24  0.430+£0.20  0.553+0.23  6.86+1.38
VMAF 0.668+£0.17  0.495+0.15  0.636£0.17  6.2440.90
FWQI 0.815£0.15  0.653+0.14  0.867+0.11  4.5340.59

FASSIM 0.830+0.17  0.646£0.17  0.858+0.18  4.51+1.25

eccentricities. In the model, traditional GGD and AGGD
models [39]] were extended to space-variant GGD and AGGD
models. An assumption of local smoothness was used to es-
timate local NSS parameters, thereby supplying space-variant
eccentricity-dependent quality-aware features. In addition, a
neural noise model was deployed to capture uncertainties in
visual processing, and to reduce instabilities introduced by
image saturation. Finally, an SVR was learned to predict
subjective scores (MOS).

In each case, the model features were first computed on each
viewport video. For BRISQUE, the features from each view-
port video were obtained by averaging per-frame features, then
averaged across the 18 viewports (36 viewport videos for the
3D database). We chose the hyperparameters of SVBRISQUE
exactly as in [|68]]. Each database was randomly divided into a
training set, containing 80% of the sequences, and a test set,
containing the remaining 20%, with no overlapping contents
between the two subsets. This random division was conducted
1000 times, and the median performance figures reported in
Table For NIQE, we computed the predicted scores on
each viewport frame, then averaged the scores across all 300
frames and 18 viewports (36 for the 3D database).

As may be observed in Table SVBRISQUE achieved
the best quality prediction performance by wide margins. It is
interesting that the non-foveated NR models were more robust
across databases, in contrast to the FR / RR models. This
robustness could have been provided by the SVR.

E. Comparing FR and NR Algorithms

To enable comparisons between FR and NR algorithms,
we applied the same NR evaluation procedure to the FR
algorithms. First, we randomly selected 2 of the 10 contents,
then computed the performance of each FR algorithm on all
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distorted versions of the selected contents. We repeated this
process over () = 45 unique splits. We also used 1000
random train-test splits to match the NR procedure, and the
results were essentially the same. Finally, we report the median
and the standard deviation of performance in TABLE [VIII]
It may be observed that, on both databases, the performance
of FR algorithms when adopting the NR evaluation procedure
was higher than when evaluated on all the distorted videos.
On the 2D database, the non-foveated FR algorithms generally
obtained higher performances than the NR algorithms. It may
be observed that the non-foveated FR model, VMAF, the
foveated FR model, FWQI, and the foveated NR model,
SVBRISQUE, were the top three models. On the 3D database,
it may be observed that the non-foveated NR algorithms,
however, were generally better than the FR algorithms. The
reason may be, as explained in Section [V-D] that the SVR was
able to learn attentional depth masking on the 3D database.
It may also be observed that SVBRISQUE was still the best
performing model in terms of SROCC, KROCC, and PLCC.

VI. CONCLUSION

We created a 2D and a stereo 3D VR database of foveated
/ compressed videos, each containing 10 diverse contents
and 180 distorted immersive videos derived from the 10
reference videos. A 2D / 3D subjective study including 38
/ 38 subjects was then conducted on the videos. The resulting
LIVE-FBT-FCVR databases are unique in terms of the high
resolution, foveation distortion, and VR environment. We also
presented an evaluation of the performances of a wide variety
of objective algorithms on both databases.

A distinguishing feature of our database is that the foveation
distortion was considered as a combination of different levels
of compression and foveation radii. The results of the subjec-
tive evaluations show that, in the 2D study, subjective quality
was more affected by peripheral quality, while in the 3D study,
the subjective quality was largely affected by foveal quality.

The results of the objective VQA algorithm comparisons
provide insights into future algorithm development. In par-
ticular, the shortcomings of traditional (non-foveated) VQA
algorithms were laid bare.

We believe that the new LIVE-FBT-FCVR databases will
benefit the development of future FVQA algorithms, and help
facilitate the development of protocols to reduce bandwidth
consumption by immersive video streaming services. We also
believe that the databases will help understanding of the
relationships between the space-variant vision system and the
perceptual quality of foveated videos.
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