
144

VESPA: Static Profiling for Binary Optimization

ANGÉLICA APARECIDA MOREIRA, UFMG, Brazil

GUILHERME OTTONI, Facebook, Inc., USA
FERNANDO MAGNO QUINTÃO PEREIRA, UFMG, Brazil

Over the past few years, there has been a surge in the popularity of binary optimizers such as BOLT, Propeller,
Janus and HALO. These tools use dynamic profiling information to make optimization decisions. Although
effective, gathering runtime data presents developers with inconveniences such as unrepresentative inputs,
the need to accommodate software modifications, and longer build times. In this paper, we revisit the static
profiling technique proposed by Calder et al. in the late 90’s, and investigate its application to drive binary
optimizations, in the context of the BOLT binary optimizer, as a replacement for dynamic profiling. A few core
modifications to Calder et al.’s original proposal, consisting of new program features and a new regression
model, are sufficient to enable some of the gains obtained through runtime profiling. An evaluation of BOLT
powered by our static profiler on four large benchmarks (clang, GCC, MySQL and PostgreSQL) yields binaries
that are 5.47% faster than the executables produced by clang -O3.

CCS Concepts: • Software and its engineering→Compilers; •Computingmethodologies→Machine

learning.

Additional Key Words and Phrases: Compiler, Optimization, Profiling, Prediction

ACM Reference Format:

Angélica Aparecida Moreira, Guilherme Ottoni, and Fernando Magno Quintão Pereira. 2021. VESPA: Static
Profiling for Binary Optimization. Proc. ACM Program. Lang. 5, OOPSLA, Article 144 (October 2021), 28 pages.
https://doi.org/10.1145/3485521

1 INTRODUCTION

Feedback-driven optimization (FDO) has proven to be a valuable approach to improve the perfor-
mance of programs beyond what static compilers can typically achieve [Chen et al. 2016; Hölzle and
Ungar 1994; Li et al. 2010; Ottoni 2018; Panchenko et al. 2019, 2021]. In this scenario, the compiler
uses information acquired from previous executions of the target program to perform more aggres-
sive code transformations. FDO has been a key component of binary optimization tools, which
rely on profiling information to carry out transformations like basic-block and function reordering.
These tools achieve impressive results on top of highly optimized code: BOLT [Panchenko et al.
2019] claims speedups of up to 30%, and Propeller [Tallam 2019] reports 9%.
These results, however, come at a cost. Binary optimization relies on high-quality dynamic

profiling information, collected during previous executions of the program. Gathering such data
might represent a cumbersome step in the development cycle. It may require recompilation to
add instrumentation in the target code. It might also require intermediate deployments in the
production environment to collect data. Recompilation and early deployment can be prohibitively

Authors’ addresses: Angélica Aparecida Moreira, Computer Science, UFMG, Belo Horizonte, Minas Gerais, Brazil, angelica.
moreira@dcc.ufmg.br; Guilherme Ottoni, Facebook, Inc., Menlo Park, California, USA, ottoni@fb.com; Fernando Magno
Quintão Pereira, Computer Science, UFMG, Belo Horizonte, Minas Gerais, Brazil, fernando@dcc.ufmg.br.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

© 2021 Copyright held by the owner/author(s).
2475-1421/2021/10-ART144
https://doi.org/10.1145/3485521

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 144. Publication date: October 2021.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3485521
https://doi.org/10.1145/3485521

144:2 Angélica Aparecida Moreira, Guilherme Ottoni, and Fernando Magno Quintão Pereira

inconvenient for large-scale applications. Moreover, there are scenarios in which the acquisition of
execution traces from representative inputs is impractical, such as for end-user mobile applications,
for instance. In the absence of profile information, binary optimizers are likely to be of little benefit,
as their guided optimizations have been shown to be quite sensitive to the quality of the data
available [Panchenko et al. 2019, 2021; Wade et al. 2017].

Paper Contributions. In this paper, we argue that the aforementioned drawbacks of binary op-
timizers can be mitigated by coupling them with static profilers. A static profiler [Wu and Larus
1994] aims to approximate the data produced by its dynamic counterpart. To accomplish this
goal, the static profiler relies on static program characteristics to infer said program’s run-time
behavior. To support our thesis, we use, as a starting point, the static profiler proposed by Calder et
al. [Calder et al. 1997]Ða technique called Evidence-Based Static Prediction (ESP). Although elegant
and effective, Calder et al.’s static analyses cannot be directly applied to binary optimizers. As
originally conceived, ESP only predicts the direction of two-way conditional branches. However,
modern binary optimizers need the execution probabilities (or frequencies) of these branches.
To overcome this limitation, we adapt ESP to estimate how frequently each branch will be

executed. We call this adaptation VESPA Ð short for Vintage ESP Amended. VESPA consists of
training and prediction phases. During training, we collect an assortment of static features from
programs. By observing the execution of a corpus of representative benchmarks, we associate
these features with the probability that a branch is taken. During prediction, we build a static
profile for an unknown program. To this end, the model predicts the outcome of this program’s
branches based on the features that characterize them. These probabilities are then passed to a
binary optimizer to guide its optimization decisions. The gains that we have observed in this paper
stem from three contributions, which we summarize as follows:

Features: we show that the original program features adopted by Calder et al. [1997] would
not be sufficiently informative to be used in the context of binary optimization, because
they were designed to be collected from a compiler’s intermediate representation. From this
observation, we have modified ESP’s feature set, removing some of them, adapting others
to be applicable at the binary level, and adding new program characteristics. Section 3.2
discusses these adaptations.

Model: similarly to the program features, we show that Calder et al. [1997]’s original decision
tree and neural network models are still amenable to improvements. In particular, the neural
network greatly benefits from changes to its architecture. Additionally, modeling the problem
as a regression task rather than a classification one also improves results. This contribution
is the subject of Section 3.5.

Engineering: the implementation of a static profiler in the context of a binary optimizer
requires a number of non-trivial engineering decisions which we summarize in Section 3.
Although not a scientific contribution, we believe that such decisions deserve mention, at
least to prevent others from facing some of the dead-ends that we have encountered. Thus, we
explain how we map probabilities to branch frequencies, how we deal with partially available
control flow graphs, and how we have extracted program features from binary code.

Summary of Results. We have implemented our static profiler on top of the BOLT binary op-
timizer [Panchenko et al. 2019]. This new version of BOLT has been evaluated on four large
executables: clang, GCC, MySQL and PostgreSQL. Experiments reported in Section 5 show that the
binaries generated by BOLT fed with the static profiles inferred by VESPA are on average around
6% faster than the same program compiled with clang -O3. This number is still far from what can
be accomplished with dynamic profiling information (a performance improvement of almost 35.0%

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 144. Publication date: October 2021.

VESPA: Static Profiling for Binary Optimization 144:3

on average). However, three observations are in order: first, VESPA does not require any form of
dynamic profiling, thus simplifying the use of binary optimizers. Second, a performance improve-
ment of 6% on top of clang (version 12.0) -O3 is not to be overlookedÐat that optimization level,
clang applies 281 passes to the input program. Furthermore, clang already uses, by default, Ball and
Larus [1993]’s heuristics to lay out basic blocksÐa well-established static profiling technique. Third,
our static profiler outperforms previous well-established branch prediction heuristics, including
Wu and Larus’s, by considerable margins.

2 CODE PLACEMENT

We call spatial locality a measure of the distance between the virtual memory addresses of two
consecutively executed instructions of a program. Instructions that are located at close memory
addresses are said to have high spatial locality. If instructions tend to be executed together in
time (for instance, if the execution of an instruction succeeds the execution of another), then it is
desirable that they have high spatial locality. In this way, they are likely to be fetched in the same
cache line, via one single memory access. There are different ways to fulfill this desire. For instance,
the code of functions that form a caller-callee relation can be laid out next to each other [Ottoni
and Maher 2017]. Yet, the most common technique to optimize spatial locality is to place basic
blocks that tend to be executed in sequence on successive memory addresses.
A program is formed by basic blocks, which are arranged in a control flow graph (CFG). A

basic block is a sequence of non-branch instructions, except for the last one; thus, if we disregard
preemption at the OS level, these instructions will be executed in sequence. The instructions in a
basic block are naturally placed together in memory. A CFG is a directed graph where each vertex
is a basic block. An edge between two blocks, e.g. BB𝑖 to BB 𝑗 , indicates that control may flow from
BB𝑖 to BB 𝑗 . In this case, we say that BB 𝑗 is a successor of BB𝑖 . The need to place instructions likely to
be executed together in close memory addresses leads to a problem that we shall call the Basic-Block
Placement Problem, which we define as follows:

Definition 2.1 (The Basic Block Placement Problem (BBPP)). Input: a Control Flow Graph 𝐺 =

(𝑉𝑏, 𝐸𝑏), whose vertices𝑉𝑏 are basic blocks, and whose edges 𝐸𝑏 determine possible program flows;
plus a map 𝐹 that associate edges in 𝐸𝑏 with execution frequencies. The execution frequency of a
CFG edge is a positive integer that estimates how often that edge will be traversed during program
execution. Output: an ordering (also called a Linearization) 𝐿 of 𝑉𝑏 that minimizes the execution
cost of 𝐺 . The cost of traversing an edge BB𝑖 → BB 𝑗 is zero if BB 𝑗 immediately follows BB𝑖 in 𝐿;
otherwise, it is 𝐹 (BB𝑖 → BB 𝑗).

Definition 2.1 is a rather simplistic description of basic block placement. It disregards the relative
distance between basic blocks by adopting a null-or-full cost model. The ultimate measure of
efficiency of any solution to BBPP is execution speed, and that is the success criterion that we
shall adopt in Section 5. Nevertheless, the simplification adopted in Definition 2.1 still allows us to
provide the reader with a clear overview of basic block placement, as Example 2.2 illustrates.

Example 2.2. Figure 1 shows an instance of the basic block placement problem. Estimates of
execution frequency are given as numbers in black boxes. Section 2.1 explains different techniques
to calculate such estimates. Figures 1(b) and 1(c) show two different linearizations of the program in
Figure 1 (a). The first yields a cost of 1 + 2 + 98 + 100 = 201; the latter, a cost of 1 + 2 + 2 + 100 = 105.
Therefore, the second is preferable over the first. However, that is not even the best linearization for
the program in Figure 1. We leave it for the interested reader the task of finding the best solution.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 144. Publication date: October 2021.

144:4 Angélica Aparecida Moreira, Guilherme Ottoni, and Fernando Magno Quintão Pereira

r0 = read()

i0 = 0

i1 = ϕ(i0, i2)

r1 = ϕ(r0, r2)

p0 = (i1 < 64)?

branch p0 lc

p1 = r1 & 1

branch p1 le

a0 = t1 + i1

*a0 = 1

a1 = t2 + i1

*a1 = 1

r2 = r1 >> 1

i2 = i1 + 1

jump lb

la

lb

lc

ld le

lf

r0 = read()

i0 = 0

la

i1 = ϕ(i0, i2)

r1 = ϕ(r0, r2)

p0 = (i1 < 64)?

branch p0 lc

lb

p1 = r1 & 1

branch p1 le

lc

a0 = t1 + i1

*a0 = 1

jump lf

ld

a1 = t2 + i1

*a1 = 1

le

r2 = r1 >> 1

i2 = i1 + 1

jump lb

lf

lexit

1

100

98 2

2

100

1

98

r0 = read()

i0 = 0

la

i1 = ϕ(i0, i2)

r1 = ϕ(r0, r2)

p0 = (i1 < 64)?

branch p0 lc

lb

p1 = r1 & 1

branch p1 le

lc

a0 = t1 + i1

*a0 = 1

ld

a1 = t2 + i1

*a1 = 1

jump lf

le

r2 = r1 >> 1

i2 = i1 + 1

jump lb

lf

(a) (b) (c)lexit lexit

1

100

2

98

100

1

2

2

Fig. 1. (a) An instance of the basic block placement problem. (b) A solution with cost 201. (c) A solution with
cost 105. The lower the cost of the linearization, the more efficient it is, according to that cost model.

2.1 Program Profiling

Different authors might use the word łprofilingž with the most diverse semantics. Because this
notion plays a fundamental role in our presentation, we shall restrict its meaning. Therefore, to
avoid confusion, throughout this paper, whenever we use the term profiling, we shall be referring
to the sense introduced in Definition 2.3. Notice that this understanding amounts to finding the
estimate 𝐹 of execution frequencies, previously mentioned in Definition 2.1.

Definition 2.3 (Program Profiling). A program profiler is any technique that associates the edges
of a program’s CFG with execution frequencies. The notion of execution frequency is introduced in
Definition 2.1. The map 𝐹 of CFG edges to frequencies is called a profile.

There are two ways to build program profilers: dynamically or statically. We discuss former in
Section 2.1.1, and the latter in Section 2.1.2. Notice that both methodologies lead to approximate
solutions to BBPP. Dynamic profilers determine the most-likely successor of a basic block based on
known program inputs, which might not be representative of other inputs. Static techniques, in
turn, stumble on Rice’s Theorem [Rice 1953]. It follows as a corollary of said theorem that, given a
basic block with multiple successors, it is undecidable to determine, statically, which of them will
be executed.

2.1.1 Dynamic Profiling. A dynamic profiler is a tool that observes the execution of a program,
and retrieves useful information from these observations. In the context of this paper, we assume
that a dynamic profiler builds a table mapping each of the program’s control flow branches to
information regarding its runtime behavior. This information can be, for instance, the number of

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 144. Publication date: October 2021.

VESPA: Static Profiling for Binary Optimization 144:5

times the branch runs, or the likelihood that the branch is taken. There exist different techniques
to create such a record, based on either code instrumentation or sampling.

Instrumentation consists in recompiling the target program, augmenting it with additional code
to maintain a log of branch executions, usually by associating a counter to each branch. While it
provides extremely precise data, instrumentation has two major drawbacks. First, it complicates the
build process of the target application, because it requires an additional step to inject instrumentation
code. Second, instrumentation tends to significantly impact the program’s memory and runtime
performance. Overheads depend on the type of profiling information that is acquired, but can be as
high as 100x [Rimsa et al. 2021, 2019]. Due to these limitations, instrumentation-based techniques
are usually not chosen for use in industry-quality tools, such as gprof or BOLT.

The second dynamic profiling technique is sample-based. In this case, the program’s execution is
monitored selectively. Selective observation means that only a subset of the program’s instructions
are inspected. This approach minimizes regressions in the execution time of programs. Sampling
is usually performed at the hardware level, via performance counters. While less precise than
instrumentation-based profilers, sampling techniques still provide reasonably accurate results at
much lower cost, with the added benefit of not requiring recompilation. Therefore, mainstream
profilers tend to be sampling-based.

2.1.2 Static Program Profiling. A static profiler, like its dynamic counterpart, builds a map that
associates control flow edges with their execution frequencies. The vast majority of static techniques
depart from branch probabilities. In other words, they seek to estimate the chance that a conditional
branch can be taken. Standard algorithms are then used to map such estimates into frequencies [Wu
and Larus 1994]. The input of a static profiler is only a program’s code; thus, contrary to a dynamic
technique, it has no access to that program’s inputs. Therefore, a static profiler must calculate the
chance that a given branch is taken based only on the syntaxÐand its implied semanticsÐof the
program where that branch exists.
The simplest static profiling heuristic that we are aware was introduced in the 1980’s. This ap-

proach is called the Backward-Taken/Forward-Not-Taken (BTFNT) guess [Smith 1981]. The BTFNT
heuristic is based on the observation that branches that continue loop execution (backward edges)
tend to be taken. This heuristic is quite effective, considering how simple it is, as we shall demon-
strate in Section 5. Still in the 1980’s, further improvements have been proposed on top of BTFNT,
like considering the branch’s opcode [Smith 1981], or more cases that might cause the termination
of loops [Bandyopadhyay et al. 1987].
Nevertheless, in spite of the progress made in the 1980’s, the golden decade of static branch

prediction was the 1990’s. Ball and Larus [1993] have introduced a set of tests that are appliedÐin
orderÐonto a branch to predict its outcome. This approach is still used today, for instance, in the
LLVM compiler, to solve the Basic Block Placement Problem. Although simple and elegant, Ball
and Larus’s first match approach suffers from an obvious shortcoming: sometimes more than one
heuristic applies to the same branch. However, only the first matching candidate is used in this case.
To circumvent this limitation, Wu and Larus [1994] introduced the concept of evidence combination.
To this effect, they use Dempster-Shafer Theory [Dempster 1967] to blend multiple heuristics.

Still in the 1990’s, Calder et al. [1997] showed how to use machine-learning techniques to predict
the outcome of branches statically. Calder et al. used decision trees and neural networks to predict
the direction of two-way conditional branches. In other words, they were answering a binary
question about the direction of a branch. Calder et al. observed that neural networks and decision
trees had similar performance, at least in their experimental setup. Therefore, one might favour
the use of decision trees given their relative simplicity when compared to neural networks. A few
years later, Desmet et al. [2005] extended Calder et al.’s work with additional syntactic features.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 144. Publication date: October 2021.

144:6 Angélica Aparecida Moreira, Guilherme Ottoni, and Fernando Magno Quintão Pereira

They have further reiterated that decision trees are good models for branch prediction. Our work
departs from that point; hence, porting Calder et al.’s and Desmet et al. [2005]’s contributions to
the context of a binary optimizer.

3 THE VESPA STATIC PROFILER

VESPA is a form of static profiling designed to guide binary optimizations. VESPA removes the
need for dynamic profiling to enable binary optimizations, thus simplifying and broadening the
applicability of binary-optimization tools. Although VESPA is a general static profiler that can be
used with different binary optimizers, in this work we study and evaluate VESPA’s use along with
the BOLT binary optimizer [Panchenko et al. 2019].
For the sake of completeness, Figure 2 provides an overview of how BOLT is typically used.

BOLT takes as input a linked binary program, which has been produced by a standard compiler
toolchain. Notice that BOLT does not require access to the input program’s source code. In addition
to the input binary, BOLT also takes a file containing profile data as input. This profile data is
typically obtained through sampling-based hardware performance counters (e.g. using the Linux
perf tool). This profile data is then transformed into BOLT’s input format through an adaptation
phase (using the perf2bolt tool). With both the input binary and the properly formatted profile
data, BOLT then performs a series of optimizations to the binary. In practice, the most effective
optimizations applied by BOLT are basic-block and function reordering, which greatly reduce CPU
front-end stalls [Panchenko et al. 2019].

Adaptation PhasePrediction Phase

Target Program

(Binary Code)

Optimized

Binary Codeperf2bolt
Profile

(perf)

1 2

Optimization

Phase

BOLT

3

Fig. 2. The typical BOLT pipeline.

3.1 VESPA in a Nutshell

Our static profiler eliminates stage 1 in Figure 2. VESPA replaces this step with an approximation
of the input program’s runtime behavior created based on observing the execution of a collection
of training programs. Figure 3 illustrates VESPA’s approach. VESPA’s usage can be divided into
two parts. The first, łTrainingž, consists in building the model that approximates the behavior of
programs. The second, łPredictionž consists in applying the knowledge acquired in the training
stage onto unseen programs, emulating, via a static profile, the dynamic profile that BOLT would
use. The rest of this section provides more details about each of these phases, and their internal
steps. But, before diving into that, we present Example 3.1 to give a quick overview of VESPA’s
operation, with focus on the prediction phase.

Example 3.1. Figure 4 illustrates how prediction works for a given branch in the target program.
Prediction starts with feature extraction. Features are mined from the target program syntax. In this
example, we assume a set of four features (whose descriptions appear in Table 1). Three of them
assume binary values; the otherÐCMP_OPCODEÐranges over a category of values. Once features are
extracted, they are arranged into a feature vector, which Figure 4(c) shows. Said vector is passed to a
łpredictionž function. The value that results from applying this function onto the feature vector
is the probability that a branch is taken. Figure 4(d) shows a very simple linear predictor. The goal
of the training phase is to build an accurate prediction function. The models that we explore in
Section 3.5 are non-linear.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 144. Publication date: October 2021.

VESPA: Static Profiling for Binary Optimization 144:7

Adaptation PhasePrediction Phase

Training Phase

1 2 3

Model
Test collection
(Profiles of known

programs)

Target Program

(Binary Code) Extract Preprocess

Optimized

Binary Code

4 5 6

Encode Prob→ Freq

7

Extract Preprocess Train

Sec-3.2 Sec-3.3 Sec-3.4 Sec-3.6

6

Predict

Sec-3.5

Optimization

Phase

BOLT

Fig. 3. VESPA’s pipeline.

…

p0 = (i1 < 64)?

branch p0 lc

…

CMP_OPCODE

DIRECTION

LOOP_HEADER

TS_EXIT T

T

F

<lb

lc
lexit

1.0

1.0

0

0.21 predict(0.21, 0.0, 1.0, 1.0) = 0.88

def	sig(x):

		return	1.0/(1.0	+	exp(-x))

def	predict(f0,	f1,	f2,	f3):

				d	=	f0*0.88	+	f1*0.31	\

										+	f2*0.94	+	f3*0.85	

				return	sig(d)

E
x
am

p
le

…

p0 = (i1 < 64)?

branch p0 lc

lb

lc lexit

0.88 0.12

(a) (b) (c) (d) (e)

Fig. 4. (a) Code snippet from the program seen in Figure 1. (b) Feature extraction. (c) The feature vector. (d) A
very simple mock-up predictor. (e) Branching probabilities.

3.2 Feature Extraction

In the context of this paper, predictions are carried out by matching out static program features with
expected behaviors. In our case, the łexpected behaviorž of a conditional branch is determined by
profiling a known set of programs. Following Pereira et al. [2018], we use Definition 3.2 to delimit
the notion of program feature that is relevant to this presentation.

Definition 3.2 (Static Program Feature). Given a program 𝐼 , and a branch instruction 𝜄, a static
program feature 𝑓 (𝐼 , 𝜄) is any characteristic of 𝐼 , related to 𝜄, with the following properties:

• [Finite]: 𝑓 (𝐼 , 𝜄) ∈ 𝑆 , where 𝑆 is a finite set;
• [Static]: 𝑓 (𝐼 , 𝜄) depends only on the syntax of 𝐼 ;
• [Consistent]: if 𝑓 (𝐼 , 𝜄) = 𝑥 , then 𝑥 is unique;
• [Polynomial]: 𝑓 (𝐼 , 𝜄) can be computed in polynomial time.

Example 3.3 (Static Program Feature). Consider the instruction łbranch 𝑝0 ℓ𝑒𝑥𝑖𝑡 ž in Figure 1(a).
Several program features are associated with this instruction. A first feature is the opcode used
to implement this instruction, e.g., in x86’s machine code: jne, je, jg, jle, jl, and jge. A
second feature is the opcode used to produce the value 𝑝0. This opcode could be any arithmetic or
logic operation. A third feature is the direction of the branch: forward or backward. In this example,
we have a forward branch.

On The Choice of Program Features. The original work of Calder et al. defined 30 static program
features. We could reuse 21 of them, which are listed in Table 1. The remaining features were left
out for two reasons. First, the feature called Language refers to the programming languages used
by Calder, namely C or Fortran. This information is innocuous in our domain: the low-level binary

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 144. Publication date: October 2021.

144:8 Angélica Aparecida Moreira, Guilherme Ottoni, and Fernando Magno Quintão Pereira

Table 1. Categorical branch features proposed by Calder et al., and reused in this work.

ID Feature Description
1 OPCODE the opcode of the branch instruction
2 CMP_OPCODE the opcode of the predicate operation
3 FS_END_OPCODE the opcode of the terminal instruction in the fallthrough successor basic

block
4 TS_END_OPCODE the opcode of the terminal instruction in the taken successor basic block
5 DIRECTION whether the branch is backward or forward (i.e. if it flows to an earlier

or later address in the program’s layout)
6 LOOP_HEADER whether the basic block containing the branch is a loop header
7 PROCEDURE_TYPE whether the procedure containing the basic block encompassing the

branch is leaf, non-leaf or recursive
8 OPERAND_RA_TYPE the opcode of the left hand side operand
9 OPERAND_RB_TYPE the opcode of the right hand side operand
10 TS_DOMINATES whether the taken successor basic block is dominated by the basic block

containing the branch
11 TS_POSTDOMINATES whether the taken successor basic block post-dominates the basic block

containing the branch
12 TS_LOOP_HEADER whether the taken successor basic block is a loop header
13 TS_BACKEDGE whether the taken successor basic block is a back edge
14 TS_EXIT whether the taken successor basic block contains a call to exit the

program
15 TS_CALL whether the taken successor basic block contains a procedure call
16 FS_DOMINATES whether the fallthrough successor basic block is dominated by the basic

block containing the branch
17 FS_POSTDOMINATES whether the fallthrough successor basic block post-dominates the basic

block containing the branch
18 FS_LOOP_HEADER whether the fallthrough successor basic block is a loop header
19 FS_BACKEDGE whether the fallthrough successor basic block is a back edge
20 FS_EXIT whether the fallthrough successor basic block contains a call to exit the

program
21 FS_CALL whether the fallthrough successor basic block contains a procedure call

code of x86. Second, eight features were left out because BOLT’s intermediate representation did
not provide the necessary information to implement them.

While we have dropped some features proposed by Calder et al., we have also included a few new
features in VESPA. Tables 2, 3 and 4 show the new set of features that we use to extend Calder et al.’s
work. The motivation for these inclusions is empirical, meaning that we have evaluated several
different features, which were, in the end, not chosen to compose the final feature set. Features like
the proportion or the absolute number of instructions of different kinds (shifts, multiplications,
stores, comparisons, etc) in the ‘then’ or ‘else’ target of a branch did not reduce the prediction error
observed in training and in testing, for instance. Rather, they were leading to overfitting. We have
evaluated features based on the following factors:

(1) The feature was originally proposed by Calder et al. [1997].
(2) The feature was proposed by Namolaru et al. [2010]. This work includes, for instance, the

number of load and store instructions in the targets of branches.
(3) The feature emerged during discussions with the original engineers that worked in the BOLT

project. The DELTA_TAKEN feature, for instance, came out of these discussions.
(4) The feature was thought out by the authors of this paper.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 144. Publication date: October 2021.

VESPA: Static Profiling for Binary Optimization 144:9

Table 2. First set of additional numeric branch features proposed by this work.

ID Feature Description
22 NUM_STORES number of store instructions in the basic block containing the

branch
23 NUM_LOADS number of load instructions in the basic block containing the

branch
24 NUM_CALLS number of call instructions in the basic block containing the

branch
25 NUM_CALLS_INVOKE number of invocation instructions in the basic block containing

the branch
26 BASIC_BLOCK_SIZE number of instructions in the basic block containing the branch
27 NUM_BASIC_BLOCKS number of basic blocks in the function containing the branch
28 DELTA_TAKEN the absolute difference between the address of the branch and

its taken basic block address
29 NUM_OUTER_LOOPS number of outer loops in the function containing the branch
30 TOTAL_LOOPS number of loops in the function containing the branch
31 LOOP_NUM_EXIT_EDGES number of loop exit edges in the function containing the branch
32 LOOP_NUM_EXIT_BLOCKS number of basic blocks which are the destination of an edge

leaving a loop in the function containing the branch
33 LOOP_NUM_EXITING_BLOCKS number of basic blocks which exit a loop in the function con-

taining the branch
34 LOOP_NUM_LATCHES number of loop latch basic blocks in the function containing

the branch
35 LOOP_NUM_BLOCKS number of basic blocks in the innermost loop within the func-

tion containing the branch
36 LOOP_NUM_BACKEDGES number of backedges in the innermost loop within the function

containing the branch
37 NUM_INDIRECT_CALLS number of indirect call instructions in the function containing

the branch
38 NUM_SELF_CALLS number of recursive calls in the function containing the branch

The criteria used to keep a feature were:

(1) It was easy to extract from the program’s binary representation.
(2) It could reduce prediction error in at least one of the benchmarks available in the test set.
(3) We could explain, at least intuitively, why the feature would lead to certain branch results.

Some of our new features try to measure the łsemantic weightž of the destination of a branch.
This metric measures how heavy on different types of instructions is the basic block that is the
target of a branch. Features 22-26, 52, 39-50, in Tables 2 and 3, estimate this weight. A second
category of new features refers to the function that contains the branch. These features include
characteristics of the function, such as the number of outermost loops that it contains (29), or the
maximum depth of any loop nest (51). Finally, features 53-55 encode structural characteristics of
the basic block that contains the branch. For instance, Feature 53 determines if the basic block that
contains the branch is the exit point of some loop. Section 5 analyzes the effects of our new set of
features compared to the assortment originally proposed by Calder et al.. That said, our feature set
is not definitive: we still believe that it is possible to refine it further.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 144. Publication date: October 2021.

144:10 Angélica Aparecida Moreira, Guilherme Ottoni, and Fernando Magno Quintão Pereira

Table 3. Second set of additional numeric branch features proposed by this work.

ID Feature Description
39 TS_NUM_LOADS number of memory load instructions inside the taken successor

basic block
40 TS_NUM_STORES number of memory store instructions inside the taken successor

basic block
41 TS_BASIC_BLOCK_SIZE number of instructions in the taken successor basic block
42 TS_NUM_CALLS number of call instructions in the taken successor basic block
43 TS_NUM_INDIRECT_CALL number of indirect procedure calls in the taken successor basic

block
44 TS_NUM_CALLS_INVOKE number of invoke instructions in the taken successor basic block
45 FS_NUM_LOADS number of memory load instructions inside the fallthrough succes-

sor basic block
46 FS_NUM_STORES number of memory store instructions inside the fallthrough succes-

sor basic block
47 FS_BASIC_BLOCK_SIZE number of instructions in the fallthrough successor basic block
48 FS_NUM_CALLS number of call instructions in the fallthrough successor basic block
49 FS_NUM_INDIRECT_CALL number of indirect procedure calls in the fallthrough successor basic

block
50 FS_NUM_CALLS_INVOKE number of invoke instructions in the fallthrough successor basic

block

Table 4. Third set of additional branch features proposed by this work. These features are all categorical.

ID Feature Description
51 MAXIMUM_LOOP_DEPTH maximum loop depth in the function containing the branch
52 LOOP_DEPTH depth of the innermost loop encompassing the branch
53 LOCAL_EXITING_BLOCK whether the basic block containing the branch is a loop exiting

block
54 LOCAL_LATCH_BLOCK whether the basic block containing the branch is a loop latch block
55 LOCAL_LOOP_HEADER whether the basic block containing the branch is a header for an

innermost loop in the function
56 FUN_TYPE whether the function containing the branch is classified as simple

or not by BOLT

3.3 Feature Preprocessing

Once the features have been collected, it is necessary to clean the training/prediction data, and
make it suitable to be fed to a Machine Learning model. This preprocessing happens in several steps.
The first step consists of dealing with incomplete data. There may be branches for which there is
insufficient data available in the disassembled binary to determine their static properties. Usual
culprits for incompleteness are indirect jumps. If the disassembler fails to determine successors for
indirect jumps, then VESPA will be unable to compute features such as those related to dominance
and post-dominance, for instance. Similarly, due to the layout of the disassembled binary, in some
cases it may be difficult to track which instruction computes the predicate that controls a branch.
We perform a best effort to identify as many patterns as possible to find predicates, but these do
not cover all of them. Therefore, some branches features related to instruction operands (such as
OPERAND_RA_TYPE and OPERAND_RB_TYPE) or predicates (CMP_OPCODE) may be missing.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 144. Publication date: October 2021.

VESPA: Static Profiling for Binary Optimization 144:11

Incompleteness occurs for a small amount of branches. In other words, our current implementa-
tion of a feature miner computes features for about 95% of all the instructions in our dataset. In
face of incomplete information, the missing values are replaced by default values. These defaults
are the values most likely to occur in practice. However, a few missing features cause us to remove
the branch altogether. Examples of these properties include features related to dominance and
post-dominance data.

3.4 Feature Encoding

Encoding is the process of mapping the features related to a given branch into a numeric feature
vector. This process is non-trivial because features, although finite (see Definition 3.2), do not all
share the same type. Depending on these types, features can be classified according to Definition 3.4.

Definition 3.4 (Feature Classification). Given a program 𝐼 and a branch 𝜄 ∈ 𝐼 , a static program
feature 𝑓 (𝐼 , 𝜄) = 𝑠, 𝑠 ∈ 𝑆 is either numerical or categorical. 𝑓 (𝐼 , 𝜄) is numerical if 𝑆 is a totally ordered
set. In this paper, every numerical feature ranges over 𝑆 = N. The feature is categorical if 𝑆 is any
finite, countable, albeit unordered set.

Example 3.5. Features NUM_STORES and NUM_LOADS in Table 2 are numerical. Features like
TS_DOMINATES and TS_EXIT are categorical. These features are booleans. Indeed, most of the
categorical features range on 𝑆 = {true, false}. However, there are categorical features that range
over larger sets, like OPCODE and CMP_OPCODE, in Table 1.

Encoding Numerical Features. To encode numerical features we apply standardization, or mean
removal and variance scaling; hence, ensuring that the numeric values have a mean of 0 and a
standard deviation of 1.0. Thus, for each numerical feature we subtract the mean of its distribution
from its value and divide the resulting number by the feature’s standard deviation. Standardization
ensures that all features are treated equally, in regards to its range of values. We also apply batch
normalization for the DNN model, to accelerate its learning during the training phase [Laurent
et al. 2016].

Handling Categorical Features. To handle categorical data, we use two different encoding ap-
proaches: for values with few categories, we use one-hot encoding. In one-hot encoding, the original
feature is removed, and replaced by one binary feature for each of its possible values. The PRO-
CEDURE_TYPE feature, for example, can take one of three values (‘leaf’, ‘non-leaf’ or ‘call-self’).
Once encoded, it is replaced by three binary features, such as IS_LEAF ∈ [0, 1]. One-hot encoding
is limited to features with up to three categories to keep feature vectors short. For features ranging
over more than three categories (OPCODE, CMP_OPCODE, TS_END_OPCODE,FS_END_OPCODE,
LOOP_DEPTH and MAXIMUM_LOOP_DEPTH), we use either ordinal label encoding (when the
features are to be used in the Decision Tree model) or embedding (when using a Neural Network).
Ordinal encoding maps each category to a unique integer. Embeddings are similar to one-hot
encoding, in that they map a single categorical feature to a numerical vector. However, while
one-hot encoding maps a feature of 𝑛 possible categories to a vector of 𝑛 binary values, embeddings
map categories to vectors of continuous values. The specific values assigned to each vector to
represent a category are then learned during the training process of the neural network itself.

3.5 The Machine Learning Models

This work is heavily based on Calder et al.’s static branch predictor. However, this paper uses a
very different machine-learning apparatus. Such departure from Calder et al.’s work is motivated
for two reasons. First, that model would classify branches as either taken or not-taken, whereas we
need a regression model. In other words, we need a model that associates a branch with a probability

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 144. Publication date: October 2021.

144:12 Angélica Aparecida Moreira, Guilherme Ottoni, and Fernando Magno Quintão Pereira

that it will be taken. From this probability, we can use previous work [Wu and Larus 1994] to
compute the static profiler, i.e., an estimate of how often the branch will be traversed. More about
this conversion will be discussed in Section 3.6. Second, Calder et al. have experimented with two
different machine-learning models: neural networks and decision trees. Our attempt to use the
latter did not lead to effective results, as we will explain soon, and our implementation of the former
follows a very different architecture than the model initially proposed by Calder et al..

The Neural Network Model. Figure 5 describes the architecture of the neural network adopted in
this work. A neural network contains a sequence of layers: an initial input layer, a final output layer,
and one or more intermediate layers, called hidden layers. When a neural network has more than
one hidden layer, it is typically called a deep neural network (DNN)Ðsuch is the case of the model
seen in Figure 5. We use a fully connected DNN with five dense layers. The dense layer computes a
linear function of its inputs, then applies a non-linear activation function on the result of this linear
combination. For the non-linear operator, we use Rectified Linear Unit (ReLU) [Apicella et al. 2021].
ReLU is employed in every intermediate hidden layer, with a dropout strategy with probability 0.5.
However, for the last hidden layer, we use a sigmoid activation function, and a dropout probability
of 0.2. The sigmoid function is necessary at this stage, for its application maps whichever results
are produced by the neural network into a probability, i.e., a number between 0 and 1.0.

001

002

512

CMP_OPCODE

DIRECTION

LOOP_HEADER

TS_EXIT T

T

F

<

1.00

1.00

0.00

0.21

.

H1 H2 H6

branch p0 lc

001

002

512

. . .

001

002

512

. . .

. . .

. . .

. . .

Hidden Layers

Input

Layer

SUM !

Output

Layer

(sigmoid)

0.88

Fig. 5. VESPA’s Deep Neural Network architecture.

Each node of the network has a weight and bias associated with it, which are its learnable
parameters. The goal of the training phase of the network is to learn these parameters. The more
accurate is this learning phase, the more effective are the predictions produced by the neural
network. Thus, the combination of those learnable parameters and the activation function will
determine the success of the probability predictor.

Dealing with Low-Frequency Branches. The data used to tune the learnable parameters of the
neural network are the profiles of known programs. This data is very irregular: some branches are
exercised billions of times, while others are executed only once. Due to this imbalance, some form
of normalization is in order. Calder et al. dealt with this issue by replicating static branch samples
so their frequencies would reflect their normalized dynamic weight in the program. Additionally,
we have used the normalized branch weight of each static branch as a sample weight when fitting
to the training set.

Experience with Other Models. In addition to using a neural network, Calder et al. also proposes
to use a decision tree to predict branches. We tried to adapt this model; however, we met with
two problems. First, the straightforward use of the decision tree with all our additional features

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 144. Publication date: October 2021.

VESPA: Static Profiling for Binary Optimization 144:13

was not practical: the model ends up consuming an excessively large amount of memory. Our
attempts to use a random forest required more than 4GB to build the regressor. Second, pruning
techniques resulted in models that were not producing statistically significant results. We evaluate
these results in Section 5.1. Nevertheless, we speculate that it is still possible to use decision trees
as a means to generate a static profiler; however, the engineering of such a model is not a trivial
endeavor, and we leave it as future work.

Feature Selection. While having a large feature set may allow a model to better learn branch
patterns, having a feature space of high dimensionality can significantly impact its training time.
Thus, we perform feature selection to reduce the number of features we use for training. To this
end, we first leverage the feature ranking from the decision tree building algorithm. When building
a decision tree, the algorithm ranks features by importance, and splits nodes based on the most
important features. We initially reduced our feature set to the 30 most relevant features in this
ranking. We then further reduce this set by performing recursive feature elimination, by fitting a
model and then eliminating the feature which least affects the model’s performance. We eventually
settled on a subset of 26 features, 17 of which come from Calder et al.’s original set, while the
remaining 9 are amongst our new proposed features.

3.6 From Probabilities To Execution Frequencies

Following Definition 2.3, the goal of a static profiler is to infer a map 𝐹 that associates edges of
the program’s control flow graph with estimates of execution frequencies. Good estimates tend to
approximate, at least in terms of proportions, the average runtime behavior of the program when
fed with actual inputs. However, although execution frequencies are the end goal of a static profiler
in the context of this paper, not every previous implementation of such technique delivers this
mapping. For instance, Calder et al. [1997] and Ball and Larus [1993]’s techniques produce Branch
Predictions, whereas the first phase of Wu and Larus [1994]’s analysis produces Branch Probabilities.
These two notions are relevant to this presentation. The formerÐpredictionsÐbecause that will be
our starting point, given that we reuse much of Calder et al.’s techniques. The latterÐprobabilitiesÐ
because, like Wu and Larus’s, our inference algorithm also requires them as intermediate results,
before arriving at frequencies. For the sake of completeness, we define these two concepts below:

Definition 3.6 (Branch Predictions and Probabilities). A Branch Prediction is an answer to the
following question: given a conditional branch, which of its paths is the most likely to execute? A
Branch Probability is an estimate of how likely a given path will be taken.

Example 3.7. Figure 6(a) shows branch predictions produced by an oracle for the program in
Figure 1(a). An oracle is an optimal predictor. In other words, given an execution of the program,
it predicts as taken the most traversed paths of a program. Although an oracle cannot be used in
practice as a mechanism of static inference (for it requires running the program), it lets us compare
the accuracy of different predictors: the closer to the oracle a predictor is, the more accurateÐfor
that particular execution of the programÐit is. Figure 6(b) shows the execution probabilities that
our static profiler would infer for the program in Figure 1(a). The way such inference is performed
is the subject of Section 3.5. Finally, Figure 6(c) shows the execution frequencies produced for that
program, using the techniques originally proposed by Wu and Larus [1994].

Mapping Probabilities into Frequencies. The regression models discussed in Section 3.5 produce
probabilities. However, BOLT performs optimizations based on absolute branch counts (execution
frequencies), which is the information provided by perf. To map probabilities to frequencies, we
resort toWu and Larus [1994]’s method.Wu and Larus describe intraprocedural and interprocedural
algorithms to perform this conversion. We have reimplemented these two algorithms within BOLT.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 144. Publication date: October 2021.

144:14 Angélica Aparecida Moreira, Guilherme Ottoni, and Fernando Magno Quintão Pereira

r0 = read()

i0 = 0

i1 = ϕ(i0, i2)

r1 = ϕ(r0, r2)

p0 = (i1 < 64)?

branch p0 lexit

p1 = r1 & 1

branch p1 le

a0 = t1 + i1

*a0 = 1

a1 = t2 + i1

*a1 = 1

r2 = r1 >> 1

i2 = i1 + 1

jump lb

la

lb

lc

ld le

lf

lexit

1

1

1 0

0

1

0

1

(a)

r0 = read()

i0 = 0

i1 = ϕ(i0, i2)

r1 = ϕ(r0, r2)

p0 = (i1 < 64)?

branch p0 lexit

p1 = r1 & 1

branch p1 le

a0 = t1 + i1

*a0 = 1

a1 = t2 + i1

*a1 = 1

r2 = r1 >> 1

i2 = i1 + 1

jump lb

la

lb

lc

ld le

lf

lexit

1

9.0

4.5 4.5

4.5

9.0

1.0

4.5

(c)

r0 = read()

i0 = 0

i1 = ϕ(i0, i2)

r1 = ϕ(r0, r2)

p0 = (i1 < 64)?

branch p0 lexit

p1 = r1 & 1

branch p1 le

a0 = t1 + i1

*a0 = 1

a1 = t2 + i1

*a1 = 1

r2 = r1 >> 1

i2 = i1 + 1

jump lb

la

lb

lc

ld le

lf

lexit

1.0

0.9

0.5 0.5

1.0

1.0

0.1

1.0

(b)

Fig. 6. (a) Branch prediction for the program in Figure 1(a). (b) Estimate of execution probabilities for the
same program. (c) Estimate of execution frequencies.

Porting Wu and Larus’s techniques to BOLT required a few engineering expedients. First, those
algorithms cannot handle irreducible control flow graphs. Yet, such CFGs occur in practice. When
such is the case, the Law of Flows cannot be met (the frequencies of incoming edges must equal the
frequencies of outgoing edges). Thus, for the sake of practicality, given these inherent imprecisions,
validation allows for a deviation of up to 20% between incoming and outgoing frequencies. Indirect
branches poses another problem. We use static analysis to reconstruct CFGs from binary code. Due
to indirect branches, the CFG thus produced might contain false positives: edges that will never be
traversed in practice. Typical examples are switches implemented with jump tables. In this case, we
split frequencies equally among all the edges. Finally, because Wu and Larus’s inference produces
floating point numbers, but BOLT requires integers, we decided to simply multiply every result by
1,000,000. The choice for this value is empirical: it is large enough to convert into discrete numbers
almost every edge frequency, and is small enough to not cause integer overflows. If overflows
happen, then the frequency of an edge is set to the maximum integer in the target machine.

Engineering. For implementing VESPA’s step to convert probabilities into execution frequencies,
we basically had two options: either implement it as an external adaptation tool, or implement it
directly within BOLT. We opted for the latter because Wu and Larus’s techniques require building
the CFGs of the input program, a capability that BOLT already had. Therefore, we implemented
this step as an alternative execution mode in BOLT, which can be enabled by a command-line
option. When this option is used, BOLT attempts to read the input profile data from a .pdata

probabilities file, rather than the usual .fdata file produced by perf2bolt. Moreover, we also
added two extra flags to BOLT to control whether to convert probabilities into absolute counts
using the interprocedural or intraprocedural algorithms proposed by Wu and Larus.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 144. Publication date: October 2021.

VESPA: Static Profiling for Binary Optimization 144:15

4 INCORPORATING PREVIOUS WORK INTO BOLT

In addition to the evidence-based static profiler that constitutes the main contribution of this paper,
we have augmented BOLT with classic static profiling heuristics. Such additions were natural,
because all the necessary equipment to read branch frequencies computed statically were in place to
support our machine-learning model. Table 5 enumerates the other static profiling heuristics added
to BOLT. These techniques run independently. In other words, their results cannot be combined:
users of our version of BOLT must choose which static profiler they will employ.

Trivial Branch Predictors. We call a trivial predictor any technique that guesses the outcome of
a branch without the support of any kind of evidence and runs in constant time per branch. We
have added five such predictors to our implementation of BOLT. Table 5 list them. They have been
originally evaluated by Smith [1981]. These techniques assume that a branch is taken with certain
probability. Probabilities considered in this work are 0% (Never taken), 20%, 50% (Unbiased),
80% and 100% (Always taken). Section 5 evaluates three predictors: never taken, unbiased and
always taken. We omit the other two, as they have not brought any improvement upon these
three trivial predictors. We do not intend that any of these five static profilers be used in practice.
Rather, we employ them as a mechanism to test a null-hypothesis, namely: trivial prediction cannot
outperform the more elaborate heuristics proposed in the literature.

Table 5. Choice of heuristics for static profiles in BOLT.

Flag Description
-heuristics-based=always trivially predicts 100% probability for the taken successor
-heuristics-based=never trivially predicts 100% probability for the fallthrough successor
-heuristics-based=weakly-taken trivially predicts a 20%/80% probability split for the

taken/fallthrough successors, respectively
-heuristics-based=weakly-not-taken trivially predicts an 80%/20% probability split for the

taken/fallthrough successors, respectively
-heuristics-based=unbiased trivially predicts a 50% probability for all edges
-heuristics-based=wularus uses the heuristics described in Ball and Larus’ work [Ball and Larus

1993] in combination with Dempster-Shafer theory as described by
Wu and Larus [Wu and Larus 1994]

Classic Predictors. The other branch prediction heuristic that we have added to BOLT is the static
profiler proposed by Wu and Larus [1994]. As mentioned in Section 1, Wu and Larus use Dempster-
Shafer Theory [Dempster 1967] to combine nine branch-characterization features proposed by Ball
and Larus [1993]. Table 6 lists these features. This table also shows the probability that a branch
with the given feature is taken. We have computed such probabilities over a training corpus yet to
be described in Section 5. In that section, we shall refer to this heuristic as Wu-Larus.

Notice that, by using LLVM to generate the baseline executable programs, we are already testing
the original work of Ball and Larus [1993]. LLVM uses a variation of that paper to layout the basic
blocks that compose a program. The original implementation of Ball and Larus has suffered small
modifications to be incorporated into LLVM due to undocumented observations made by compiler
engineers over the years. As a consequence, two features proposed by Ball and Larus have been
dropped, and the relative importance between them has been modified1.

1The interested reader can find more about LLVM path profiler through the work of Preuss [2010]. The heuristics that
LLVM 12.0 uses to compute the probabilities that branches are taken are implemented in https://github.com/llvm-mirror/
llvm/blob/master/lib/Analysis/BranchProbabilityInfo.cpp.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 144. Publication date: October 2021.

https://github.com/llvm-mirror/llvm/blob/master/lib/Analysis/BranchProbabilityInfo.cpp
https://github.com/llvm-mirror/llvm/blob/master/lib/Analysis/BranchProbabilityInfo.cpp

144:16 Angélica Aparecida Moreira, Guilherme Ottoni, and Fernando Magno Quintão Pereira

Table 6. List of heuristics as described by Wu and Larus [1994].

Heuristic Description Taken Prob
Loop branch heuristic (LBH) Predict edges back to a loop’s head as taken. Predict edges

exiting a loop as not taken.
88%

Pointer heuristic (PH) Predict that a pointer comparison against null or against
another pointer will fail.

60%

Opcode heuristic (OH) Predict that comparisons of an integer for less than zero,
less than or equal to zero, or to a constant will fail.

78%

Guard heuristic (GH) If a comparison where a register is an operand is used be-
fore being defined in a successor block, where the successor
block does not post-dominate the comparison’s block, pre-
dict that the comparison branch to the successor block.

84%

Loop exit heuristic (LEH) Predict that a comparison in a loop in which no successor
is a loop head will not exit the loop.

80%

Loop header heuristic (LHH) Predict that a successor block which is a loop header or
pre-header, and does not post-dominate the branch’s basic
block, will be taken.

72%

Call heuristic (CH) Predict that a successor basic block which contains a func-
tion call and does not post-dominate the branch’s basic
block will not be reached.

55%

Store heuristic (SH) Predict that a successor basic block which contains a store
instruction and does not post-dominate the branch’s basic
block will not be reached.

75%

Return heuristic (RH) Predict that a successor containing a return instruction will
not be reached.

62%

5 EVALUATION

In this paper, we explore five research questions, namely:

• RQ1śAccuracy: What is the accuracy of the model we propose in this paper, compared to
the model proposed by Calder et al.?

• RQ2śPerformance: What are the performance gains of our approach when compared to
other ways to add (static or dynamic) profiling information to binary optimizers?

• RQ3śCorrelation: How do the different profiling approaches impact the locality of instruc-
tions in the ICache, and how does this impact influence program performance?

• RQ4śTraining: How long does it take for VESPA to generate a trained predictive model?
• RQ5śApplication: What is the optimization time that VESPA requires, and how does it
compare to the time taken by other versions of BOLT?

Experimental Setup: Experiments were executed on a dedicated server featuring an Intel Xeon
E5-2620 CPU at 2.00GHz, with 16GB RAM, running Linux Ubuntu 18.04, with kernel version
4.15.0-123. All binaries used for training and as baseline were compiled using clang 12 (at -O3). Our
profiler was built on top of BOLT’s publicly available implementation2. Execution statistics were
reported with Linux’s perf, version 4.15.18.
Benchmarks Used in the Development of the Model: To train our model, we used the eleven
programs in SPEC CINT2006 plus 226 programs from the LLVM test-suite, for which we collected
execution profiles using instrumentation. We have used 80% of the branches from these programs
to train the prediction model. Of the remaining branches, half were used to test the model and the

2Specifically, commit 8028b7b.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 144. Publication date: October 2021.

VESPA: Static Profiling for Binary Optimization 144:17

other half to validate it (for tuning purposes). Therefore, we have employed 243 programs in the
development of the branch prediction model. This corpus gave us 2,093,873 two-way conditional
branches. However, only 513,316 branches were associated with profile information. Thus, this is
the corpus used to train the prediction model.
Benchmarks Used in the Validation of the Model: For validation, we used the four largest
open-source programs that were available to us. Size, in this case, is ordered based on the length of
the text segment of the final executable program. The chosen benchmarks are:

• The clang compiler, version 7, as used in BOLT’s reference tutorial [Panchenko 2018],
compiling its own source code as input;

• The GCC compiler, version 7, compiling clang 7’s source code as input.
• TheMySQL database management system, version 8.0, with the oltp_point_select bench-
mark from the SysBench3 suite as input.

• The PostgreSQL database management system, version 13.2, with the select-only bench-
mark from the PgBench4 suite as input.

The requirement of a large binary with a large portion of hot code is of capital importance
for validation, because BOLT’s optimization effects can only be perceived once the hot parts of a
program are too large to fit into the instruction cache. If the program has a large binary footprint,
but its hot part is small, then it will fit into the instruction cache. And, in this case, the benefits of
the extra locality achieved by BOLT cannot be noticed. That is the reason why we have not used
benchmarks from neither the LLVM test suite, nor from SPEC CPU for validation. As mentioned in
BOLT’s reference tutorial [Panchenko 2018], a good rule of thumb is that if an application has over
10 misses per thousand instructions, then it is a good indication that it will be improved by BOLT.
On Dynamically Linked Libraries: The benchmarks use dynamic shared libraries; however,
BOLT does not optimize dynamically linked code sections. Therefore, libc and other shared
libraries cannot be the source of any performance variation that we shall report in this section.
Alvares et al. [2021] classifies as visible the portion of the program that the compiler can optimize,
i.e., its source code, and invisible the ensemble of instructions coming from external libraries. They
have shown that most of the instructions processed when the programs in SPEC CPU2017 run with
reference inputs are visible. Following this classification, once we run our benchmarks with the
available inputs, we also notice that most of the instructions processed are visible. As an example,
76.21% of the instructions in GCC, when optimized with BOLT’s dynamic profiler, are visible. Once
we use VESPA’s static profiler, this number increases to 78.42%. This growth reflects the fact that
the dynamic profiler is more efficient in optimizing the visible part of the program.
Experimental Methodology: Running time numbers reported in this section are the average of
ten executions. All of our runtime experiments had P-values under 0.05 with confidence level of
95% when testing for the null hypothesis via Student’s T-Test. The null hypothesis would indicate
lack of performance variation due to binary optimization with either static or dynamic profiling.
The Competing Approaches: Results that we report in this section are relative to clang -O3. We
use this baseline to compare nine different versions of BOLT, which we enumerate below:

(1) Dynamic profile: This is the official distribution of BOLT, which uses dynamic profiling
information to lay basic blocks out.

(2) Limited dynamic profile: This approach is similar to the previous one, except that it does
not include profiling data for indirect branches. The purpose of this limited version of BOLT
is to show how much of its optimization potential is hindered by the lack of indirect branch

3Available at https://github.com/akopytov/sysbench.
4See https://www.postgresql.org/docs/10/pgbench.html for further information about PgBench.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 144. Publication date: October 2021.

https://github.com/akopytov/sysbench
https://www.postgresql.org/docs/10/pgbench.html

144:18 Angélica Aparecida Moreira, Guilherme Ottoni, and Fernando Magno Quintão Pereira

data. Thus, this approach provides a better estimate of VESPA’s potential, which currently
does not add profiling information to indirect branches.

(3) VESPA: The contribution of this paperÐa static profiler to guide code placement decisions.
(4) Calder: This version is and approximation of Calder et al.’s original work, which produces

branch frequencies instead of binary predictions. Some features originally proposed by Calder
et al. [1997] are only meaningful in a high-level programming language like C; hence, they
could not be extracted from the binary representation used by BOLT.

(5) Wu-Larus: This is the approach proposed by Wu and Larus [1994], which combines multiple
prediction heuristics via Dempster-Shafer’s formulae [Dempster 1967].

(6) Unbiased: This approach assigns, for every branch, a 50% chance of being taken.
(7) No profile: In this case, BOLT does not use any profiling information. In the absence of

profiling information, BOLT maintains the initial basic block placement. However, due to
three optimizations: stripping no-ops, tail call removal and branch reversal, BOLT can still
speedup programs.

(8) Never taken: This version of BOLT assumes that every conditional branch always evaluates
to false; hence, it is never taken.

(9) Always taken: This is another trivial prediction heuristic, that assumes that every branch
evaluates to true; hence, it is always taken.

5.1 RQ1–Accuracy

VESPA builds on previous work on static profiling due to Calder et al.. Our approach, however, adds
significant changes to the modeling of the problem and the techniques used to perform predictions.
In this section, we explore how our additions improve the performance of the static profiler.
Methodology: We set out to compare the prediction performance of VESPA against the ESP
technique proposed by Calder et al.. As mentioned in Section 3, however, we decided to use
regression models rather than the original classifiers, which makes the performance of the models
hard to compare conceptually. Nevertheless, we felt the additional program features we propose
could already provide significant benefits when compared to the original ESP technique. Therefore,
we trained two versions of the Decision Tree classifier proposed in the original paper: one using
Calder et al.’s static features, and another using our extended set of program features. We then
compared their branch prediction performance on the test set of programs. Since VESPA uses
regression, we also trained two versions of a Decision Tree regressor with the same sets of features.
We then compare the predictive performance of these predictor pairs. Finally, we evaluated the
accuracy of the Deep Neural Network regressor which VESPA ultimately uses as its predictor.
Discussion: Figure 7 summarizes the result of this experiment with Decision Tree classifiers.
Each graph shows the Precision-Recall curve of its respective model, with metrics shown for a
varying threshold probability to separate branches between the taken/not taken classes. These
curves are used to evaluate the overall quality of a given classification model, considering the
trade-off between true positives and its positive predictive value, over a large variety of values for
its threshold parameter. A łperfectž classifier would have a curve formed by two straight lines at
the top and right of the graph, indicating 100% Precision and 100% Recall for every threshold. The
closer a classifier’s curve comes to that, the better. The performance of a classifier can be quantified
via its Average Precision (AP), a metric that indicates the classifier’s average precision across all
thresholds. As shown in the figure, the original ESP model achieves an average precision of 0.71,
while the VESPA Decision Tree has a 0.80 average. This result indicates that our extended feature
set significantly improves the model’s prediction performance, even when using only the original
model proposed by Calder et al. [1997].

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 144. Publication date: October 2021.

VESPA: Static Profiling for Binary Optimization 144:19

Fig. 7. Comparison of predictive performance between Calder et al.’s ESP and VESPA.

On the Choice of Regression Model. The results shown in the rest of this section have been obtained
through a neural network. However, we have also experimented with other models. In particular,
following Calder et al.’s recommendation, we have tested the accuracy and effectiveness of decision
trees. Yet, contrary to Calder et al.’s work, we had to adapt the decision tree to perform regression,
instead of classification. Therefore, the output of these models must be branch probabilities rather
than the binary taken/not taken answer.
We trained two versions of a Decision-Tree based regressor: one using Calder et al.’s original

features, and another using our proposed feature set. Their performances have been evaluated on
the four binaries that we use for validation. A metric typically used in the evaluation of regression
models is the distance (error) between the observed and the predicted values. One such metric is
the Root-Mean-Square Error (RMSE), which is the square root of the average of squared errors.
The values used to compute this metric is the error measured in comparison with the probability
of each branch being taken during dynamic execution. The lower is the error, the more accurate
is the static predictor, as compared to a dynamic profiler. Table 7 summarizes the performance of
these regressors. The regressor trained with VESPA’s feature set achieves lower prediction errors
for all binaries in our evaluation set. This result shows that improvements due to our selection of
features remain positive in decision trees.

Table 7. Root-Mean-Squared error of Decision Tree regression models.

ESP VESPA (Decision Tree)
clang 0.24 0.22
GCC 0.23 0.21
MySQL 0.28 0.26
PostgreSQL 0.25 0.22

Experiments performed with Decision Trees are useful to show that our extended feature set
improves prediction. However, as mentioned in Section 3, we found neural networks more accurate,
while also being easier to implement. Therefore, we settled on a Deep Neural Network regressor as
our final predictor, trained with our proposed feature set. Table 8 summarizes the performance of
this regressor. For every single binary, the DNN regressor has a lower error than the aforementioned
Decision Trees.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 144. Publication date: October 2021.

144:20 Angélica Aparecida Moreira, Guilherme Ottoni, and Fernando Magno Quintão Pereira

Table 8. Root-Mean-Squared error of VESPA’s DNN regressor.

VESPA (DNN)
clang 0.18
GCC 0.18
MySQL 0.23
PostgreSQL 0.21

5.2 RQ2–Performance Improvements

In this section, we evaluate the performance improvements of the different binaries produced by
either the baseline compiler or by BOLT when fed with different kinds of profiling information
(either static or dynamic).
Methodology: The procedure used to collect dynamic profile information to be used by BOLT for
each binary varied. In the case of clang and GCC, we used the steps described in BOLT’s documenta-
tion, i.e. each compiler bootstraps itself. For these benchmarks, the performance improvements are
in regards to execution time speedup. For MySQL, we used a combined profile containing merged
information from running several of the benchmarks in the SysBench suite. We follow a similar
procedure for PostgreSQL, merging profiles from several benchmarks of the PgBench suite. For
these benchmarks, the performance improvements metrics are in regards to throughput, in other
words, the number of Transactions Per Seconds (TPS) that each Database Management System
(DBMS) is capable of processing.
Discussion: Figure 8 shows the relative performance improvements between different versions of
each binary versus its baseline version. As expected, the binary optimized by BOLT with a fully
dynamic profile provides by far the best results, with an overall performance improvement of
34.46% (geometric mean) over clang -O3. However, once dynamic profiling information for indirect
jumps are removed, this benefit falls to 19.13%. Because none of the static profiles that we use
in this section deals with indirect branches, we believe that this is a better point of comparison.
The binary optimized using the VESPA-generated profile yields the best results among the static
profiling heuristics. VESPA achieves approximately 9% of performance improvements on clang
and MySQL. For GCC and PostgreSQL, the gains are more modest, albeit noticeable. When used
without any profiling information, BOLT delivers performance improvements of about 2% onto the
majority of the benchmarks tested. This performance improvement is due to a series of automatic
code optimizations that BOLT performs by default, which include removing no-ops, reversing
branches and replacing recursive calls with loops whenever possible. Our approximation of Calder
et al.’s implementation does not fare well on the benchmarks used in Figure 8. It achieves less than
1% of performance improvement on GCC, being worse than Wu and Larus’s static profiler.

The execution frequencies inferred statically enhance BOLT’s ability to generate efficient code
by a statistically significant margin. In every case, VESPA’s p-values were less than 0.01. In this
experimental setup, optimizations enabled by Wu and Larus’s heuristics, while profitable, fare no
better than a trivial profile that attributes a 50/50 probability to every branch. We believe that this
disappointing result is due to the fact that clang already employs a simplified version of Wu and
Larus’s heuristics to layout basic blocks. Finally, trivial profiles that attribute a single direction to
every branch impact negatively the quality of the code produced by BOLT in all benchmarks.

5.3 RQ3–Correlation

Panchenko et al. explain that most of the performance improvements delivered by BOLT comes
out of its ability to increase locality in the instruction cache (I-cache). This section evaluates how

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 144. Publication date: October 2021.

VESPA: Static Profiling for Binary Optimization 144:21

Fig. 8. Performance improvements of different versions of the benchmarks’ binary vs. its baseline built with
clang -O3.

the different profiling techniques impact locality in the I-cache. A strong correlation between
performance and locality will provide further indication that our gains are due to actual changes in
BOLT’s code alignment algorithm.
Methodology: We followed the same procedures described in Section 5.2 to generate and execute
optimized binaries. The I-cache miss rate of each benchmark is gauged via Linux’s perf. As
already explained in Section 5.2, we adopt two different metrics to measure performance variation,
depending on the benchmark. For clang and GCC, performance is runtime speedup. However, for
MySQL and PostgreSQL, performance is throughput measured in transactions per second. This
difference is due to the implementation of the publicly available harnesses distributed with each
benchmark.
Discussion: Figure 9 shows the improvement in I-cache misses for each binary. BOLT equipped
with a fully dynamic profiler delivers the most significant results, achieving a reduction of 36.48%

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 144. Publication date: October 2021.

144:22 Angélica Aparecida Moreira, Guilherme Ottoni, and Fernando Magno Quintão Pereira

Fig. 9. Reduction in L1 instruction cache misses for different versions of the benchmarks’ binaries.

in I-cache misses on average (geomean). VESPA, in turn, outperforms the other static approaches,
obtaining a 9.96% geomean reduction in cache misses across the benchmarks.

Table 9. Correlation coefficients between reductions in L1 I-cache misses and performance improvements.

clang GCC MySQL PostgreSQL
CC P-Value CC P-Value CC P-Value CC P-Value

Pearson 0.995 0.000 0.993 0.000 0.982 0.000 0.991 0.000
Spearman 0.983 0.000 1.000 0.000 0.950 0.000 0.952 0.000
Kendall 0.943 0.001 1.000 0.000 0.886 0.001 0.923 0.001

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 144. Publication date: October 2021.

VESPA: Static Profiling for Binary Optimization 144:23

Table 9 shows how performance variation correlates with variations in cache misses. We compute
Pearson, Spearman and Kendall correlations for each benchmark. All of the correlation tests
had P-values lower than 0.001. If a P-value is lower than 2e-8, then we report it as zero. For
clang and GCC, correlations are very strong, with nearly all coefficients scoring above 0.95. For
MySQL and PostgreSQL, the correlation coefficients are slightly lower, yet still significant. These
results strengthen earlier observations by Panchenko et al., namely, that BOLT improves program
performance because it can reduce I-cache misses. Figure 10 provides visual indication of the
strong linear correlations reported in this section. Lines represents a theoretical one-to-one relation
between improvement in performance and reduction in I-cache misses.

Dynamic Profile Limited Dynamic Profile VESPA Calder

Wu-Larus Unbiased No Profile Never Always

0.1

0.0

0.15

0.20

0.25

-0.05

0.05

0.30

-0.05 0.0 0.05 0.1 0.15 0.20

0.1

0.0

0.15

0.20

0.25

-0.05

0.05

0.30

-0.1 0.0 0.1 0.2 0.3

R
e

d
u

c
ti
o

n
 i
n

 L
1

 I
-c

a
c
h

e
 m

is
s
e

s
 (

p
e

rc
e

n
ta

g
e

s
)

Performance improvement (percentages)

0.1

0.0

0.2

0.3

0.4

-0.1

-0.1 0.0 0.1-0.05 0.05 0.15 0.20

0.1

0.0

0.2

0.3

0.4

0.10.0 0.2 0.3

Fig. 10. Performance Improvements vs reduction in L1 I-cache misses for each benchmark compiled with
different versions of BOLT.

5.4 RQ4–Training Time

While VESPA is able to create static profiles that approximate profiles created dynamically, its
ability to do so relies on a preceding training stage performed on a large dataset of programs. This
section reports how long this process takes in practice.
Methodology: We performed the training process described in Section 3, measuring the running
time of each phase separately. This includes: instrumenting the binaries in the LLVM test suite and
SPEC; running all the binaries, collecting dynamic profiles, and converting the profiles to BOLT’s
input format; extracting program features for branches in all programs; preprocessing and merging
the static feature data; and finally encoding and training the deep neural network.
Discussion: The execution time of each of the phases in the training process were:

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 144. Publication date: October 2021.

144:24 Angélica Aparecida Moreira, Guilherme Ottoni, and Fernando Magno Quintão Pereira

• Instrumentation: Using BOLT to generate instrumented version of each of the 237 programs
in our training set takes 35.21 seconds.

• Profiled execution: Executing each instrumented binary and collecting dynamic profiles takes
1,036 minutes.

• Feature extraction: Running BOLT with the feature miner to collect static features for all the
binaries takes 29.75 seconds.

• Preprocessing and merging: Preprocessing all the static feature files and merging them takes
179.84 seconds.

• Encoding and training: Encoding features and training the Deep Neural Network with the
entire branch dataset takes 45.5 minutes.

Therefore, the entire process to build a static branch dataset and to train a model capable of
making predictions took, in our experimental setup 1,085 minutesÐapproximately 18 hours. The
bulk of this time was spent running the binaries to collect dynamic profiles and training the neural
network. These phases took 95.4% and 4.1% of the total execution time, respectively.

5.5 RQ5–Application Time

One of the benefits of static over dynamic profiling is the possibility of optimizing binaries without
having to run them. This benefit translates into a shorter time to produce executable programs.
To gauge the extent of this advantage, this section compares the time taken to optimize a binary
following each version of BOLT that we use in this paper.
Methodology: We build an optimized binary for each of the evaluated programs, using all our
seven versions of BOLT. When timing BOLT with the dynamic profiler, we count the time to run
the target application to collect samples, plus the time to run BOLT to disassemble and optimize
the binary. In the case of VESPA, we measured: (i) the time to run BOLT to disassemble and collect
static features; (ii) the time to run the predictor to generate a static profile; and (iii) the time to
run BOLT again, this time fed with the static profile information. Notice that we omit training
time, because this process only happens once, after which the model can be reused as-is. For each
other version of BOLT, we replace the time mentioned in step (ii), above, with the time to apply the
particular heuristics that characterizes that version.
Discussion: Figure 11 shows the total time taken to generate binaries for each optimization process.
As expected, using a dynamic profile tends to be the more expensive than using a VESPA-generated
static profile, with clang taking roughly 3.3x longer to optimize. GCC takes around 1.5x as long.
However, for the MySQL binary, BOLT with a dynamic profile is actually faster, by a factor of about
30%. This is due to the relatively short running time of MySQL’s profiling inputs, which allows for
fast sampling. In contrast, VESPA spends time not only running the predictor, but also importing
them and embedding them onto the program’s binary representation. Nevertheless, we emphasize
that in cases where VESPA takes longer to generate a binary, this overhead is constant. Using a
dynamic profile, however, can take an arbitrarily long amount of time, due to the application’s
dynamic behavior. In other words, the duration of VESPA’s optimization process is more consistent.
The other static profiles evaluated in this section are much faster than either BOLT + VESPA

or BOLT + dynamic profiling. That is to be expected, as these approaches only involve a single
execution of BOLT, with little or no other program analyses included. Nevertheless, these results
provide a good baseline to measure the overhead introduced by VESPA. When compared to a
trivially generated static profiler, VESPA takes roughly 4.5x as long to generate an optimized binary.
We emphasize again that this overhead is constant, as opposed to a dynamic profile, whose overhead
depends on the running time of the target application.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 144. Publication date: October 2021.

VESPA: Static Profiling for Binary Optimization 144:25

BOLT + Dynamic Profile
(Baseline)

BOLT + VESPA

BOLT + Heuristics

BOLT + Unbiased

BOLT + No Profile

BOLT + Never Taken

BOLT + Always Taken

0 500 1000 1500 2000 2500

Clang GCC MySQL PostgreSQL

Fig. 11. Time used to generate binaries (in seconds). We omit the time used by our implementation of Calder
et al. work, because it uses the same infrastructure as VESPA; hence, is similar.

6 RELATED WORK

The use of static profiling as an alternative to dynamic approaches in branch prediction has been
proposed in several forms before. To the best of our knowledge, the first work to introduce the
idea is due to Fisher and Freudenberger [1992]. Fisher and Freudenberger’s contribution relies on
the observation that branches vary little in direction, regardless of the program’s input. Thus they
propose that previous runs of a program can efficiently predict the direction of branches in future
runs. Ball and Larus [1993] have introduced an alternative technique, which relies on a number of
syntactic-based heuristics to predict the direction that branches will take. Wu and Larus [1994]
further builds on this idea by determining a way to combine the evidence provided by multiple
heuristics. This combination is performed via Dempster-Shafer’s theory [Dempster 1967]. The
technology discussed in this paper is similar to Wu and Larus’s, in that we also combine multiple
static aspects of a branch to predict its outcome. However, whereas Wu and Larus use nine features,
we use 56, and whereas they combine heuristics via Dempster-Shafer formula, we use a regression
model powered by a neural network.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 144. Publication date: October 2021.

144:26 Angélica Aparecida Moreira, Guilherme Ottoni, and Fernando Magno Quintão Pereira

6.1 Evidence Based Static Profiling

The work that most closely resembles ours, and on which we base our technique, is Calder et al.
[1997]’s. Calder et al. argue that previous heuristic-based approaches are highly-specific to partic-
ular hardware architectures and programming languagesÐa fact that hinders their applicability.
To mitigate this shortcoming, they introduce a learning-based method which relies only on static
features of each branch, which they name Evidence-based Static branch Prediction (ESP). Never-
theless, the use of machine-learning techniques as an alternative to simpler heuristics in compiler
optimization is also not a novel concept. Wang and O’Boyle [2018] provide a comprehensive survey
on the application of different statistical models to guide compiler optimizations.
As mentioned in Section 1, VESPA is based on ESP’s infrastructure, and it follows the typical

workflow of a learning-based approach, with an initial training process preceding predictions.
However, our approach differs and improves upon the original ESP in several aspects. Many of
these differences emerged because we are revisiting Calder et al.’s work in the context of binary
optimization. In this sense, this paper is the first to evaluate the impact of static profiling in this
domain. The key differences to Calder et al.’s work are listed below. We claim them are original
contributions of this paper:

Model: The original implementation of Calder et al. modeled the problem of predicting branches
as a classification task, in which each branch’s direction was determined as taken or not
taken. Our implementation models the problem as a regression task, assigning to each branch
a probability of being taken.

Features: We use a subset consisting of 17 of the 30 features originally proposed by Calder
et al., which we have empirically found to be the most significant. Additionally, we use 9 new
program features.

Architecture: As opposed to the Neural Network and Decision Tree models used by Calder
et al., we have found that a Deep Neural Network architecture provides better prediction
performance.

Frequency: While the machine-learning model outputs probabilities for each branch, BOLT
relies on execution counts to carry out its optimizations. Therefore, we have extended BOLT
with the capability to convert the branch probabilities into execution frequencies.

6.2 Hardware-Based Branch Prediction

There exists a vast literature concerning the prediction of branches at the hardware level. Indeed,
branch prediction is one of the cornerstones of the fast execution of binary instructions in contem-
porary processors [Hennessy and Patterson 2011, Ch.3.3]. We emphasize that the techniques used
in that domainÐdynamic branch predictionÐare fundamentally different from the approaches that
we discuss in this paper. The key difference is the moment when predictions are performed. All
the approaches mentioned in this paper, including BOLT guided by dynamic profiling, perform
predictions offline; that is, before the program runs. Hardware-based methods, in turn, do it online,
i.e., while the program is running.

Online techniques use dynamic information to carry out branch prediction. This information is
stored in hardware-based tables such as the Local History Register (LHR), the Global History Register
(GHR), and the Global Addresses Map (GA). This dynamic data can be used to feed regression and
classification models. Such possibilities have been demonstrated by previous work [Kalla et al.
2017; Mao et al. 2018; Tarsa et al. 2019]. Nevertheless, due to being used at different moments;
thus relying on different data, the online methodologies cannot be compared with our approach
empirically.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 144. Publication date: October 2021.

VESPA: Static Profiling for Binary Optimization 144:27

7 CONCLUSION

This paper has discussed the application of a static profiler in the context of a binary optimizer. To
this effect, we have revisited Calder et al.’s original work, and have modified it in several ways, so
to achieve an implementation that could consistently outperform clang at its highest optimization
level when applied onto large executables. Thus, the experiments discussed in Section 5 reveal
that, although our static profiler still performs significantly worse than a dynamic profiler, it does
deliver considerable performance improvements on top of highly optimized code. This claim is
evidenced by a speedup of nearly 6% and a reduction of misses in the I-cache of nearly 10% on four
benchmarks compiled with clang -O3.
Although our machine-learning model provides predictions that allow a certain degree of op-

timization, we believe that the model could be improved to better approximate dynamic profiles.
One promising area for improvement is to have a more representative set of training programs,
with a larger number of real-world applications rather than benchmarks. Another encouraging
approach could be mitigating the inaccuracies introduced by the procedure of converting output
probabilities to branch frequencies. For instance, implementing a block placement/code layout
algorithm that relies on branch probabilities directly could possibly provide better performance, as
it would not rely on assumptions implied in the probability-to-frequency conversion process.

Software. Our implementation is publicly available at https://github.com/angelica-moreira/
BOLT. An artifact with scripts to reproduce our experiments is available in Docker Hub (docker
pull angelicamoreira/oopsla21artifact) and in Zenodo (https://zenodo.org/record/5502310#
.YT7Cty1h1QI, DOI 10.5281/zenodo.5502310).

ACKNOWLEDGMENTS

The bulk of this work was developed by Angélica while visiting Facebook. During part of her PhD,
Angélica was supported by scholarships from Facebook and CAPES. Fernando Pereira has been
supported by CNPq (Grant 406377/2018-9); FAPEMIG (Grant PPM-00333-18) and CAPES (Edital
CAPES PrInt). We thank Antony Courtney, Maksim Panchenko, Rafael Auler, Shaunak Kishore and
other Facebook engineers for fruitful discussions. We thank José Wesley Magalhães, Luigi Soares,
Vinícius Pacheco, Victor Campos and Andrei Álvares for reading a draft of this paper. Finally, we
thank the OOPSLA reviewers for many comments and suggestions that greatly improved the final
version of this work.

REFERENCES

Andrei Rimsa Alvares, Jose Nelson Amaral, and Fernando Magno Quintao Pereira. 2021. Instruction Visibility in SPEC
CPU2017. Journal of Computer Languages 66 (2021), 1ś10. https://doi.org/10.1016/j.cola.2021.101062

Andrea Apicella, Francesco Donnarumma, Francesco Isgrò, and Roberto Prevete. 2021. A survey on modern trainable
activation functions. Neural Networks 138 (Jun 2021), 14ś32. https://doi.org/10.1016/j.neunet.2021.01.026

Thomas Ball and James R. Larus. 1993. Branch Prediction for Free. SIGPLAN Not. 28, 6 (1993), 300ś313. https://doi.org/10.
1145/173262.155119

Sumit Bandyopadhyay, Vimal S. Begwani, and Robert B. Murray. 1987. Compiling for the CRISP Microprocessor. In
COMPCON. IEEE Computer Society, San Francisco, California, USA, 96ś101.

Brad Calder, Dirk Grunwald, Michael Jones, Donald Lindsay, James Martin, Michael Mozer, and Benjamin Zorn. 1997.
Evidence-Based Static Branch Prediction Using Machine Learning. ACM Trans. Program. Lang. Syst. 19, 1 (1997), 188ś222.
https://doi.org/10.1145/239912.239923

Dehao Chen, David Xinliang Li, and Tipp Moseley. 2016. AutoFDO: Automatic Feedback-Directed Optimization for
Warehouse-Scale Applications. In CGO. Association for Computing Machinery, New York, NY, USA, 12ś23. https:
//doi.org/10.1145/2854038.2854044

A. P. Dempster. 1967. Upper and Lower Probabilities Induced by a Multivalued Mapping. Ann. Math. Statist. 38, 2 (04 1967),
325ś339. https://doi.org/10.1214/aoms/1177698950

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 144. Publication date: October 2021.

https://github.com/angelica-moreira/BOLT
https://github.com/angelica-moreira/BOLT
https://zenodo.org/record/5502310#.YT7Cty1h1QI
https://zenodo.org/record/5502310#.YT7Cty1h1QI
https://doi.org/10.1016/j.cola.2021.101062
https://doi.org/10.1016/j.neunet.2021.01.026
https://doi.org/10.1145/173262.155119
https://doi.org/10.1145/173262.155119
https://doi.org/10.1145/239912.239923
https://doi.org/10.1145/2854038.2854044
https://doi.org/10.1145/2854038.2854044
https://doi.org/10.1214/aoms/1177698950

144:28 Angélica Aparecida Moreira, Guilherme Ottoni, and Fernando Magno Quintão Pereira

Veerle Desmet, Lieven Eeckhout, and Koen De Bosschere. 2005. Using Decision Trees to Improve Program-Based and
Profile-Based Static Branch Prediction. In ACSAC. Springer-Verlag, Berlin, Heidelberg, 336ś352. https://doi.org/10.1007/
11572961_27

Joseph A. Fisher and Stefan M. Freudenberger. 1992. Predicting Conditional Branch Directions from Previous Runs of a
Program. In ASPLOS (Boston, Massachusetts, USA). ACM, New York, NY, USA, 85ś95. https://doi.org/10.1145/143365.
143493

John L. Hennessy and David A. Patterson. 2011. Computer Architecture, Fifth Edition: A Quantitative Approach (5th ed.).
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

Urs Hölzle and David Ungar. 1994. Optimizing Dynamically-Dispatched Calls with Run-Time Type Feedback. In PLDI. ACM,
New York, NY, USA, 326ś336. https://doi.org/10.1145/178243.178478

Bhargava Kalla, Nandakishore Santhi, Abdel-Hameed A. Badawy, Gopinath Chennupati, and Stephan J. Eidenbenz. 2017. A
Probabilistic Monte Carlo Framework for Branch Prediction. In CLUSTER. IEEE Computer Society, New York, NY, USA,
651ś652. https://doi.org/10.1109/CLUSTER.2017.29

C. Laurent, G. Pereyra, P. Brakel, Y. Zhang, and Y. Bengio. 2016. Batch normalized recurrent neural networks. In ICASSP.
IEEE, Shanghai, China, 2657ś2661. https://doi.org/10.1109/ICASSP.2016.7472159

David Xinliang Li, Raksit Ashok, and Robert Hundt. 2010. Lightweight Feedback-Directed Cross-Module Optimization. In
CGO. ACM, New York, NY, USA, 53ś61. https://doi.org/10.1145/1772954.1772964

Yonghua Mao, Junjie Shen, and Xiaolin Gui. 2018. A Study on Deep Belief Net for Branch Prediction. Access 6 (2018),
10779ś10786. https://doi.org/10.1109/ACCESS.2017.2772334

Mircea Namolaru, Albert Cohen, Grigori Fursin, Ayal Zaks, and Ari Freund. 2010. Practical Aggregation of Semantical
Program Properties for Machine Learning Based Optimization. In CASES. Association for Computing Machinery, New
York, NY, USA, 197ś206. https://doi.org/10.1145/1878921.1878951

Guilherme Ottoni. 2018. HHVM JIT: A Profile-Guided, Region-Based Compiler for PHP and Hack. In PLDI. ACM, New York,
NY, USA, 151ś165. https://doi.org/10.1145/3192366.3192374

Guilherme Ottoni and Bertrand Maher. 2017. Optimizing Function Placement for Large-Scale Data-Center Applications. In
CGO. IEEE Press, United States, 233ś244. https://doi.org/10.1109/CGO.2017.7863743

Maksim Panchenko. 2018. Optimizing Clang : A Practical Example of Applying BOLT. https://github.com/facebookincubator/
BOLT/blob/master/docs/OptimizingClang.md, accessed on 2020-12-11.

Maksim Panchenko, Rafael Auler, Bill Nell, and Guilherme Ottoni. 2019. BOLT: A Practical Binary Optimizer for Data
Centers and Beyond. In CGO. IEEE Press, Washington, DC, USA, 2ś14. https://doi.org/10.5555/3314872.3314876

Maksim Panchenko, Rafael Auler, Laith Sakka, and Guilherme Ottoni. 2021. Lightning BOLT: Powerful, Fast, and Scalable
Binary Optimization. In CC. Association for Computing Machinery, New York, NY, USA, 119ś130. https://doi.org/10.
1145/3446804.3446843

Fernando Magno Quintão Pereira, Guilherme Vieira Leobas, and Abdoulaye Gamatié. 2018. Static Prediction of Silent Stores.
ACM Trans. Archit. Code Optim. 15, 4, Article 44 (Nov. 2018), 26 pages. https://doi.org/10.1145/3280848

Adam Preuss. 2010. Implementation of Path Profiling in the Low-Level Virtual-Machine (LLVM) Compiler Infrastructure.
Technical Report. University of Alberta. https://doi.org/10.7939/R3GF0MX64

Henry Gordon Rice. 1953. Classes of recursively enumerable sets and their decision problems. Trans. Amer. Math. Soc. 74, 2
(1953), 358ś366. https://doi.org/10.1090/s0002-9947-1953-0053041-6

Andrei Rimsa, Jose Nelson Amaral, and Fernando Magno Quintao Pereira. 2021. Practical dynamic reconstruction of control
flow graphs. Softw. Pract. Exp. 51, 2 (2021), 353ś384. https://doi.org/10.1002/spe.2907

Andrei Rimsa, Jose Nelson Amaral, and Fernando Magno Quintao Pereira. 2019. Efficient and Precise Dynamic Construction
of Control Flow Graphs. In SBLP. Association for Computing Machinery, New York, NY, USA, 19ś26. https://doi.org/10.
1145/3355378.3355383

James E. Smith. 1981. A Study of Branch Prediction Strategies. In ISCA (Minneapolis, Minnesota, USA). IEEE Computer
Society Press, Washington, DC, USA, 135ś148. https://doi.org/10.5555/800052.801871

Sriraman Tallam. 2019. Profile Guided Optimizing Large Scale LLVM-based Relinker. RFC. Google. https://github.com/
google/llvm-propeller/blob/plo-dev/Propeller_RFC.pdf

Stephen J. Tarsa, Chit-Kwan Lin, Gokce Keskin, Gautham N. Chinya, and Hong Wang. 2019. Improving Branch Prediction
By Modeling Global History with Convolutional Neural Networks. CoRR abs/1906.09889 (2019), 1ś6. arXiv:1906.09889
http://arxiv.org/abs/1906.09889

April W. Wade, Prasad A. Kulkarni, and Michael R. Jantz. 2017. AOT vs. JIT: Impact of Profile Data on Code Quality. In
LCTES. Association for Computing Machinery, New York, NY, USA, 1ś10. https://doi.org/10.1145/3078633.3081037

Zheng Wang and Michael O’Boyle. 2018. Machine Learning in Compiler Optimization. Proc. IEEE PP (05 2018), 1ś23.
https://doi.org/10.1109/JPROC.2018.2817118

YoufengWu and James R. Larus. 1994. Static Branch Frequency and Program Profile Analysis. InMICRO (San Jose, California,
USA). Association for Computing Machinery, New York, NY, USA, 1ś11. https://doi.org/10.1145/192724.192725

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 144. Publication date: October 2021.

https://doi.org/10.1007/11572961_27
https://doi.org/10.1007/11572961_27
https://doi.org/10.1145/143365.143493
https://doi.org/10.1145/143365.143493
https://doi.org/10.1145/178243.178478
https://doi.org/10.1109/CLUSTER.2017.29
https://doi.org/10.1109/ICASSP.2016.7472159
https://doi.org/10.1145/1772954.1772964
https://doi.org/10.1109/ACCESS.2017.2772334
https://doi.org/10.1145/1878921.1878951
https://doi.org/10.1145/3192366.3192374
https://doi.org/10.1109/CGO.2017.7863743
https://github.com/facebookincubator/BOLT/blob/master/docs/OptimizingClang.md
https://github.com/facebookincubator/BOLT/blob/master/docs/OptimizingClang.md
https://doi.org/10.5555/3314872.3314876
https://doi.org/10.1145/3446804.3446843
https://doi.org/10.1145/3446804.3446843
https://doi.org/10.1145/3280848
https://doi.org/10.7939/R3GF0MX64
https://doi.org/10.1090/s0002-9947-1953-0053041-6
https://doi.org/10.1002/spe.2907
https://doi.org/10.1145/3355378.3355383
https://doi.org/10.1145/3355378.3355383
https://doi.org/10.5555/800052.801871
https://github.com/google/llvm-propeller/blob/plo-dev/Propeller_RFC.pdf
https://github.com/google/llvm-propeller/blob/plo-dev/Propeller_RFC.pdf
https://arxiv.org/abs/1906.09889
http://arxiv.org/abs/1906.09889
https://doi.org/10.1145/3078633.3081037
https://doi.org/10.1109/JPROC.2018.2817118
https://doi.org/10.1145/192724.192725

	Abstract
	1 Introduction
	2 Code Placement
	2.1 Program Profiling

	3 The VESPA Static Profiler
	3.1 VESPA in a Nutshell
	3.2 Feature Extraction
	3.3 Feature Preprocessing
	3.4 Feature Encoding
	3.5 The Machine Learning Models
	3.6 From Probabilities To Execution Frequencies

	4 Incorporating Previous Work into BOLT
	5 Evaluation
	5.1 RQ1–Accuracy
	5.2 RQ2–Performance Improvements
	5.3 RQ3–Correlation
	5.4 RQ4–Training Time
	5.5 RQ5–Application Time

	6 Related Work
	6.1 Evidence Based Static Profiling
	6.2 Hardware-Based Branch Prediction

	7 Conclusion
	Acknowledgments
	References

