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Abstract

Reinforcement learning algorithms are widely used in domains where it is desirable
to provide a personalized service. In these domains it is common that user data
contains sensitive information that needs to be protected from third parties. Moti-
vated by this, we study privacy in the context of finite-horizon Markov Decision
Processes (MDPs) by requiring information to be obfuscated on the user side.
We formulate this notion of privacy for RL by leveraging the local differential
privacy (LDP) framework. We establish a lower bound for regret minimization in
finite-horizon MDPs with LDP guarantees which shows that guaranteeing privacy
has a multiplicative effect on the regret. This result shows that while LDP is
an appealing notion of privacy, it makes the learning problem significantly more
complex. Finally, we present an optimistic algorithm that simultaneously satisfies
ε-LDP requirements, and achieves

√
K/ε regret in any finite-horizon MDP after

K episodes, matching the lower bound dependency on the number of episodes K.

1 Introduction

The practical successes of Reinforcement Learning (RL) algorithms have led to them becoming
ubiquitous in many settings such as digital marketing, healthcare and finance, where it is desirable to
provide a personalized service [e.g., 1, 2]. However, users are becoming increasingly wary of the
amount of personal information that these services require. This is particularly pertinent in many
of the aforementioned domains where the data obtained by the RL algorithm are highly sensitive.
For example, in healthcare, the state encodes personal information such as gender, age, vital signs,
etc. In advertising, it is normal for states to include browser history, geolocalized information,
etc. Unfortunately, [3] has shown that, unless sufficient precautions are taken, the RL agent leaks
information about the environment (i.e., states containing sensitive information). That is to say,
observing the policy computed by the RL algorithm is sufficient to infer information about the data
(e.g., states and rewards) used to compute the policy (scenario ¬). This puts users’ privacy at jeopardy.
Users therefore want to keep their sensitive information private, not only to an observer but also to
the service provider itself (i.e., the RL agent). In response, many services are adapting to provide
stronger protection of user privacy and personal data, for example by guaranteeing privacy directly
on the user side (scenario ). This often means that user data (i.e., trajectories of states, actions,
rewards) are privatized before being observed by the RL agent. In this paper, we study the effect that
this has on the learning problem in RL.
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Differential privacy (DP) [4] is a standard mechanism for preserving data privacy, both on the al-
gorithm and the user side. The (ε, δ)-DP definition guarantees that it is statistically hard to infer
information about the data used to train a model by observing its predictions, thus addressing scenario
¬. In online learning, (ε, δ)-DP has been studied in the multi-armed bandit framework [e.g., 5, 6].
However, [7] showed that DP is incompatible with regret minimization in the contextual bandit
problems. This led to considering weaker or different notions of privacy [e.g., 7, 8]. Recently, [9]
transferred some of these techniques to RL, presenting the first private algorithm for regret mini-
mization in finite-horizon problems. In [9], they considered a relaxed definition of DP called joint
differential privacy (JDP) and showed that, under JDP constraints, the regret only increases by an
additive term which is logarithmic in the number of episodes. Similarly to DP, in the JDP setting the
privacy burden lies with the learning algorithm which directly observes user states and trajectories
containing sensitive data. In particular, this means that the data itself is not private and could poten-
tially be used –for example by the owner of the application– to train other algorithms with no privacy
guarantees. An alternative and stronger definition of privacy is Local Differential Privacy (LDP) [10].
This requires that the user’s data is protected at collection time before the learning agent has access
to it. This covers scenario  and implies that the learner is DP. Intuitively, in RL, LDP ensures
that each sample (states and rewards associated to an user) is already private when observed by the
learning agent, while JDP requires computation on the entire set of samples to be DP. Recently, [11]
showed that, in contrast to DP, LDP is compatible with regret minimization in contextual bandits.1
LDP is thus a stronger definition of privacy, simpler to understand and more user friendly. These
characteristics make LDP more suited for real-world applications. However, as we show in this paper,
guaranteeing LDP in RL makes the learning problem more challenging.

Contributions. In this paper, we study LDP for regret minimization in finite horizon reinforcement
learning problems with S states, A actions, and a horizon of H .2 Our contributions are as follows. 1)
We provide a regret lower bound for (ε, δ)-LDP of Ω

(
H
√
SAK/min{eε − 1, 1}

)
, showing LDP is

inherently harder than JDP, where the lower-bound is only Ω
(
H
√
SAK + SAH log(KH)/ε

)
[9].

2) We propose the first LDP algorithm for regret minimization in RL. We use a general privacy-
preserving mechanism to perturb information associated to each trajectory and derive LDP-OBI,
an optimistic model-based (ε, δ)-LDP algorithm with regret guarantees. 3) We present multiple
privacy-preserving mechanisms that are compatible with LDP-OBI and show that their regret is
Õ(
√
K/ε) up to some mechanism dependent terms depending on S,A,H . 4) We perform numerical

simulations to evaluate the impact of LDP on the learning process. For comparison, we build a
Thompson sampling algorithm [e.g., 12] for which we provide LDP guarantees but no regret bound.

Related Work. The notion of differential privacy was introduced in [4] and is now a standard
in machine learning [e.g., 13, 14, 15]. Several notions of DP have been studied in the literature,
including the standard DP and LDP notions. While LDP is a stronger definition of privacy compared
to DP, recent works have highlighted that it possible to achieve a trade-off between the two settings
in terms of privacy and utility. The shuffling model of privacy [16, 17, 18, 19, 20] allows to build
(ε, δ)-DP algorithm with an additional (ε′, δ′)-LDP guarantee (for ε′ ≈ ε+ ln(n), any δ′ > 0 where
n is the number of samples), hence it is possible to trade-off between DP, LDP, and utility in this
setting. However, the scope of this paper is ensuring (ε, δ)-LDP guarantees for a fixed ε. In this
case, shuffling will not provide an improvement in utility (error) (see Thm 5.2 in Sec. 5.1 of [17] and
App. I).

The bandit literature has investigated different privacy notions, including DP, JDP and LDP [5, 6,
21, 7, 22, 23, 11, 24]. In contextual bandits, [7] derived an impossibility result for learning under
DP by showing a regret lower-bound Ω(T ) for any (ε, δ)-DP algorithm. Since the contextual bandit
problem is a finite-horizon RL problem with horizon H = 1, this implies that DP is incompatible
with regret minimization in RL as well. Regret minimization in RL with privacy guarantees has only
been considered in [9], where the authors extended the JDP approach from bandit to finite-horizon

1This shows that there are peculiarities in the DP definitions that are unique to sequential decision-making
problems such as RL. The discrepancy between DP and LDP in RL is due to the fact that, when guaranteeing
DP, actions taken by the learner cannot depend on the current state (this would break the privacy guarantee). On
the other hand, in the LDP setting, the user executes a policy prescribed by the learner on its end (i.e., directly on
non-private states) and send a privatized result (sequence of states and rewards observed by executing the policy)
to the learner. Hence the user can execute actions based on its current state leading to a sublinear regret.

2We do not explicitly focus on preventing malicious attacks or securing the communication between the RL
algorithm and the users. This is outside the scope of the paper.
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RL problems. They proposed a variation of UBEV [25] using a randomized response mechanism
to guarantee ε-JDP with an additive cost to the regret bound. While local differential privacy [10]
has attracted increasing interest in the bandit literature [e.g., 21, 23, 11, 24], it remains unexplored
in the RL literature, and we provide the first contribution in that direction. Finally, outside regret
minimization, DP has been studied in off-policy evaluation [26], in control with DP guarantees on
only the reward function [27], and in distributional RL [28].

2 Preliminaries

We consider a finite-horizon time-homogeneous Markov Decision Process (MDP) [29, Chp. 4]
M = (S,A, p, r,H) with state space S, action space A, and horizon H ∈ N+. Every state-action
pair is characterized by a reward distribution with mean r(s, a) supported in [0, 1] and a transition
distribution p(·|s, a) over next state.3 We denote by S = |S| and A = |A| the number of states
and actions. A non-stationary Markovian deterministic (MD) policy is defined as a collection
π = (π1, . . . , πH) of MD policies πh : S → A. For any h ∈ [H] := {1, . . . ,H} and state s ∈ S,
the value functions of a policy π are defined as Qπh(s, a) = r(s, a) + Eπ

[∑H
i=h+1 r(si, ai)

]
and

V πh (s) = Qπ(s, πh(s)). There exists an optimal Markovian and deterministic policy π? [29, Sec. 4.4]
such that V ?h (s) = V π

?

h (s) = maxπ V
π
h (s). The Bellman equations at stage h ∈ [H] are defined as

Q?h(s, a) = rh(s, a)+maxa′ Es′∼ph(s,a′)

[
V ?h+1(s′)

]
. The value iteration algorithm (a.k.a. backward

induction) computes Q? by applying the Bellman equations starting from stage H down to 1, with
V ?H+1(s) = 0 for any s. The optimal policy is simply the greedy policy: π?h(s) = arg maxaQ

?
h(s, a).

By boundness of the reward, all value functions V πh (s) are bounded in [0, H − h+ 1] for any h and s.

The general interaction protocol. The learning agent (e.g., a personalization service) interacts
with an unknown MDP with multiple users in a sequence of episodes k ∈ [K] of fixed length
H . At each episode k, an user uk arrives and their personal information (e.g., location, gender,
health status, etc.) is encoded by the state s1,k. The learner selects a policy πk that is sent to
the user uk for local execution on “clear” states. The outcome of the execution, i.e., a trajectory,
Xk = (skh, akh, rkh, sk,h+1)h∈[H] is sent to the learner to update the policy. Note that we have not
yet explicitly taken into consideration privacy in here. We evaluate the performance of a learning
algorithm A which plays policies π1, . . . , πK by its cumulative regret after K episodes

∆(K) =

K∑

k=1

(V ?1 (s1,k)− V πk1 (s1,k)). (1)

2.1 Local Differential Privacy in RL

In many application settings, when modelling a decision problem as a finite horizon MDP, it is natural
to view each episode k ∈ [K] as a trajectory associated to a specific user. In this paper, we assume
that the sensitive information is contained in the states and rewards of the trajectory. Those quantities
need to be kept private. This is reasonable in many settings such as healthcare, advertising, and
finance, where states encode personal information, such as location, health, income etc. For example,
an investment service may aim to provide each user with investment suggestions tailored to their
income, deposit amount, age, risk level, properties owned, etc. This information is encoded in the
user state and evolves over time as a consequence of investment decisions. The service provides
guidances in the form of a policy (e.g., where, when and how much to invest) and the user follows
the strategy for a certain amount of time. After that and based on the newly acquired information
the provider may decide to change the policy. However, the user may want to keep their personal
and sensitive information private to the company, while still receiving a personalised and meaningful
service. This poses a fundamental challenge since in many cases, this information about actions
taken in each state is essential for learning and creating a personalized experience for the user. The
goal of a private RL algorithm is thus to ensure that the sensitive information remains private, while
preserving the learnability of the problem.

Privacy in RL has been tackled in [9] through the lens of joint differential privacy (JDP). Intuitively,
JDP requires that when a user changes, the actions observed by the other K − 1 users will not

3We can simply modify the algorithm to handle step dependent transitions and rewards. The regret is then
multiplied by a factor H

√
H .
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change much [9]. The privacy burden thus lies with the RL algorithm. The algorithm has access
to all the information about the users (i.e., trajectories) containing sensitive data. It then has to
provide guarantees about the privacy of the data and carefully select the policies to execute in order
to guarantee JDP. This approach to privacy requires the user to trust the RL algorithm to privately
handle the data and not to expose or share sensitive information, and does not cover the examples
mentioned above.

In contrast to prior work, in this paper, we consider local differential privacy (LDP) in RL. This
removes the requirement that the RL algorithm observes the true sensitive data, achieving stronger
privacy guarantees. LDP requires that an algorithm has access to user information (trajectories in RL)
only through samples that have been privatized before being passed to the learning agent. This is
different to JDP or DP where the trajectories are directly fed to the RL agent. In LDP, information is
secured locally by the user using a private randomizerM, before being sent to the RL agent. The
appeal of this local model is that privatization can be done locally on the user-side. Since nobody
other than the user has ever access to any piece of non private data, this local setting is far more
private. There are several variations of LDP available in the literature. In this paper, we focus on
the non-interactive setting. We argue that this is more appropriate for RL. Indeed, due to the RL
interaction framework, the data generated by user k is a function of the data of all users l < k,
therefore the data are not i.i.d. and the standard definition of sequential interactivity for LDP (Eq. 1
in [10]) is not applicable. It is therefore more natural to study the non-interactive setting (Eq. 2 in
[10]) in RL. We formally define this below.

Following the definition in [9], a user u is characterized by a starting state distribution ρ0,u (i.e., for
user u, s1 ∼ ρ0,u) and a tree of depth H , describing all the possible sequence of states and rewards
corresponding to all possible sequences of actions. Alg. 1 describes the LDP private interaction
protocol between K unique users {u1, . . . , uK} ⊂ UK , with U the set of all users, and an RL
algorithm A. For any k ∈ [K], let s1,k ∼ ρ0,uk be the initial state for user uk and denote by
Xuk = {(sk,h, ak,h, rk,h) | h ∈ [H]} ∈ Xuk the trajectory corresponding to user uk executing a
policy πk. We writeM(Xuk) to denote the privatized data generated by the randomizer for user uk.
The goal of mechanismM is to privatize sensitive informations while encoding sufficient information
for learning. With these notions in mind, LDP in RL can be defined as follows:
Definition 1. For any ε ≥ 0 and δ ≥ 0, a privacy preserving mechanismM is said to be (ε, δ)-
Locally Differential Private (LDP) if and only if for all users u, u′ ∈ U , trajectories (Xu, Xu′) ∈
Xu ×Xu′ and all O ⊂ {M(Xu) | u ∈ U}:

P (M(Xu) ∈ O) ≤ eε P (M(Xu′) ∈ O) + δ (2)

where Xu is the space of trajectories associated to user u.

Def. 1 ensures that if the RL algorithm observes the output of the privacy mechanismM for two
different input trajectories, then it is statistically difficult to guess which output is from which input
trajectory. As a consequence, the users’ privacy is preserved.

3 Lower Bound

We provide a lower bound on the regret that any LDP RL algorithm must incur. For this, as is standard
when proving lower bounds on the regret in RL [e.g., 30, 31], we construct a hard instance of the
problem. The proof (see App. B) relies on the fact that LDP acts as Lipschitz function, with respect
to the KL-divergence, in the space of probability distribution.
Theorem 2 (Lower-Bound). For any algorithm A associated to a ε-LDP mechanism, any number of
states S ≥ 3, actions A ≥ 2 and H ≥ 2 logA(S − 2) + 2, there exists an MDP M with S states and

A actions such that: EM (∆(K)) ≥ Ω
(

H
√
SAK

min{exp(ε)−1,1}

)
.

The lower bound of Thm. 2 shows that the price to pay for LDP in the RL setting is a factor
1/(exp(ε) − 1) compared to the non-private lower bound of H

√
SAK. The regret lower bound

scales multiplicatively with the privacy parameter ε. The recent work of [9] shows that for JDP, the
regret in finite-horizon MDPs is lower-bounded by Ω

(
H
√
SAK + 1

ε

)
. Thm. 2 shows that the local

differential privacy setting is inherently harder than the joint differential privacy one for small ε, as
our lower-bound scales with

√
K/ε when ε u 0. Both bounds scale with

√
K when ε→ +∞.
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Algorithm 1 Locally Private Episodic RL
Input: Agent: A, Local Randomizer: M, Users:
u1, . . . , uK
for k = 1 to K do

Agent A computes πk using {M(Xul)}l∈[K−1]

User uk receives πk from agent A and observes
s1,k ∼ ρ0,uk
User uk executes policy πk on “non-private”
states and observes a trajectory Xuk =
{(sh,k, ah,k, rh,k)}h∈[H]

User uk sends back private dataM(Xuk ) to A
end for

Algorithm 2 LDP-OBI (M)

Input: δ ∈ (0, 1), α > 1, randomizer M with
parameters (ε0, δ0)
for k = 1 to K do

Compute p̃k and r̃k as in Eq. (4) using
{M(Xul)}l∈[K−1], βrk and βpk as in Prop. 4 us-
ing {ck,i(ε0, δ0, 3δ

2k2π2 )}i, and bh,k
Compute πk as in Eq. (5) and send it to user uk
User uk executes policy πk, collects trajectory
Xk and sends back privatized valueM(Xk)

end for

4 Exploration with Local Differential Privacy

A standard approach to the design of the private randomizerM is to inject noise into the data to be
preserved [14]. A key challenge in RL is that we cannot simply inject noise to each component of the
trajectory since this will break the temporal consistency of the trajectory and possibly prevent learning.
In fact, a trajectory is not an arbitrary sequence of states, actions, and rewards but obeys the Markov
reward process induced by a policy. Fortunately, Def. 1 shows that the output of the randomizer
need not necessarily be a trajectory but could be any private information built from it. In the next
section, we show how to leverage this key feature to output succinct information that preserves the
information encoded in a trajectory while satisfying the privacy constraints. We show that the output
of such a randomizer can be used by an RL algorithm to build estimates of the unknown rewards
and transitions. While these estimates are biased, we show that they carry enough information to
derive optimistic policies for exploration. We leverage these tools to design LDP-OBI, an optimistic
model-based algorithm for exploration with LDP guarantees.

4.1 Privacy-Preserving Mechanism

Consider the locally-private episodic RL protocol described in Alg. 1. At the end of each episode
k ∈ [K], user uk uses a private randomizerM to generate a private statisticM(Xuk) to pass to the
RL algorithm A. This statistic should encode sufficient information for the RL algorithm to improve
the policy while maintaining the user’s privacy. In model-based settings, a sufficient statistic is a
local estimate of the rewards and transitions. Since this cannot be reliably obtained from a single
trajectory, we resort to counters of visits and rewards that can be aggregated by the RL algorithm.

For a given trajectory X = {(sh, ah, rh)}h∈[H], let RX(s, a) =
∑H
h=1 rh1{sh=s,ah=a},

Nr
X(s, a) =

∑H
h=1 1{sh=s,ah=a} and Np

X(s, a, s′) =
∑H−1
h=1 1{sh=s,ah=a,sh+1=s′} be the true

non-private statistics, which the agent will never observe. We design the mechanism M so that
for a given trajectory X ,M returns private versionsM(X) = (R̃X , Ñ

r
X , Ñ

p
X) of these statistics.

Here, R̃X(s, a) is a noisy version of the cumulative reward RX(s, a), and Ñr
X and Ñp

X are perturbed
counters of visits to state-action and state-action-next state tuples, respectively. At the beginning of
episode k, the algorithm has access to the aggregated private statistics:

R̃k(s, a) =
∑

l<k

R̃Xul (s, a), Ñr
k (s, a) =

∑

l<k

Ñr
Xul

(s, a), Ñp
k (s, a, s′) =

∑

l<k

Ñp
Xul

(s, a, s′) (3)

We denote the non-private counterparts of these aggregated statistics asRk(s, a) =
∑
l<k RXul (s, a),

Nr
k (s, a) =

∑
l<kN

r
Xul

(s, a) and Np
k (s, a, s′) =

∑
l<kN

p
Xul

(s, a, s′), these are also unknown to
the RL agent. Using these private statistics, we can define conditions that a private randomizer must
satisfy in order for our RL agent, LDP-OBI, to be able to learn the reward and dynamics of the MDP.

Assumption 3. The private randomizer M satisfies (ε0, δ0)-LDP, Def. 1, with ε0, δ0 ≥ 0.
Moreover, for any δ > 0 and k ≥ 0, there exist four finite strictly positive function,
ck,1(ε0, δ0, δ), ck,2(ε0, δ0, δ), ck,3(ε0, δ0, δ), ck,4(ε0, δ0, δ) ∈ R?+ such that with probabilty at least
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1− δ for all (s, a, s′) ∈ S ×A× S:∣∣∣R̃k(s, a)−Rk(s, a)
∣∣∣ ≤ ck,1(ε0, δ0, δ),

∣∣∣Ñr
k (s, a)−Nr

k (s, a)
∣∣∣ ≤ ck,2(ε0, δ0, δ)

∣∣∣∣∣
∑

s′

Np
k (s, a, s′)− Ñp

k (s, a, s′)

∣∣∣∣∣ ≤ ck,3(ε0, δ0, δ),
∣∣∣Np

k (s, a, s′)− Ñp
k (s, a, s′)

∣∣∣ ≤ ck,4(ε0, δ0, δ)

The functions ck,1(ε0, δ0, δ), ck,2(ε0, δ0, δ), ck,3(ε0, δ0, δ) and ck,4(ε0, δ0, δ) must be increasing
functions of k and decreasing functions of δ. We also write ck,1(ε0, δ), ck,2(ε0, δ), ck,3(ε0, δ) and
ck,4(ε0, δ) when δ0 = 0.

In Sec. 5, we will present schemas satisfying Asm. 3 and discuss their impacts on privacy and regret.

4.2 Our LDP Algorithm For Exploration

In this section, we introduce LDP-OBI (Local Differentially Private Optimistic Backward Induction),
a flexible optimistic model-based algorithm for exploration that can be paired with any privacy
mechanism satisfying Asm. 3. When developing optimistic algorithms it is necessary to define
confidence intervals using an estimated model that are broad enough to capture the true model with
high probability, but narrow enough to ensure low regret. This is made more complicated in the
LDP setting, since the estimated model is defined using randomized counters. In particular, this
means we cannot use standard concentration inequalities such as those used in [32, 33]. Moreover,
when working with randomized counters, classical estimators like the empirical mean can even be
ill-defined as the number of visits to a state-action pair, for example, can be negative.

Nevertheless, we show that by exploiting the properties of the mechanismM in Asm. 3, it is still
possible to define an empirical model which can be shown to be close to the true model with high
probability. To construct this empirical estimator, we rely on the fact that for each state-action
pair (s, a), Ñr

k (s, a) + ck,2(ε0, δ0, δ) ≥ Nr
k (s, a) ≥ 0 with high probability where the precision

ck,2(ε0, δ0, δ) ensures the positivity of the noisy number of visits to a state action-pair. A similar
argument holds for the transitions. Formally, the estimated private rewards and transitions before
episode k are defined as follows:

r̃k(s, a) =
R̃k(s, a)

Ñr
k (s, a) + αck,2(ε0, δ0, δ)

, p̃k(s′ | s, a) =
Ñp
k (s, a, s′)

Ñp
k (s, a) + αck,3(ε0, δ0, δ)

(4)

Note that unlike in classic optimistic algorithms, p̃k is not a probability measure but a signed sub-
probability measure. However, this does not preclude good performance. By leveraging properties of
Asm. 3 we are able to build confidence intervals using these private quantities (see App. E).
Proposition 4. For any ε0 > 0, δ0 ≥ 0, δ > 0, α > 1 and episode k, using mechanismM satisfying
Asm. 3, then with probability at least 1− 2δ, for any (s, a) ∈ S ×A

|r(s, a)− r̃k(s, a)| ≤ βrk(s, a) =

√√√√ 2 ln
(

4π2SAHk3

3δ

)
Ñr
k (s, a) + αck,2(ε0, δ0, δ)

+
(α+ 1)ck,2(ε0, δ0, δ) + ck,1(ε0, δ0, δ)

Ñr
k (s, a) + αck,2(ε0, δ0, δ)

‖p(·|s, a)− p̃k(·|s, a)‖1 ≤ βpk(s, a) =

√√√√ 14S ln
(

4π2SAHk3

3δ

)
Ñp
k (s, a) + αck,3(ε0, δ0, δ)

+
Sck,4(ε0, δ0, δ)

Ñp
k (s, a) + αck,3(ε0, δ0, δ)

+

(α+ 1)ck,3(ε0, δ0, δ)

Ñp
k (s, a) + αck,3(ε0, δ0, δ)

The shape of the bonuses in Prop. 4 highlights two terms. The first term is reminiscent of Hoeffding

bonuses as it scales with O
(

1/
√
Ñp
k

)
. The other term is of order O

(
1/Ñp

k

)
and accounts for the

variance (and potentially bias) of the noise added by the privacy-preserving mechanism.

As commonly done in the literature [e.g., 32, 34, 35], we use these concentration results to define a
bonus function bh,k(s, a) := (H − h+ 1) · βpk(s, a) + βrk(s, a) which is used to define an optimistic
value function and policy by running the following backward induction procedure:

Qh,k(s, a)s = r̃k(s, a) + bh,k(s, a) + p̃k(·|s, a)TVh+1,k, πh,k(s) = arg max
a

Qh,k(s, a) (5)

where Vh,k(s) = min{H − h+ 1,maxaQh,k(s, a)} and VH+1,k(s) = 0.

6



M Noise (ε, δ)-LDP level Regret ∆(T )

Laplace Lap(6H/ε) (ε, 0) Õ(H3S2A
√
K/ε)

Gaussian N (0, (H/ε)2) (ε, δ0) Õ(H3S2A
√
K ln(1/δ0)/ε)

Randomized
Response Ber((eε/H − 1)−1) (ε, 0) Õ(H7/2S2A

√
K/ε)

Bounded
Noise See [37] and App. F.3 (ε, δ0) Õ(H2S3A3/2

√
K ln(1/δ0)/ε)

Table 1: Summary of the guarantees of LDP-OBI with different randomizers for ε > 0 and δ0 > 0.
For the mechanism in this table, we have approximately ck,i = Õ(

√
kH/ε) for i ∈ {1, 2, 4} (ignoring

log terms) and ck,3 = Õ(
√
SkH/ε)

4.3 Regret Guarantees

We get the following general guarantees for any LDP mechanism satisfying Asm. 3 in LDP-OBI.
Theorem 5. For any privacy mechanismM satisfying Asm. 3 with ε > 0, δ0 ≥ 0, and for any δ > 0
the regret of LDP-OBI is bounded with probability at least 1− δ by:

∆(K) ≤ Õ
(
HS
√
AT︸ ︷︷ ︸

¶

+SAH2cK,3

(
ε, δ0,

3δ

2π2K2

)
+H2S2AcK,4

(
ε, δ0,

3δ

2π2K2

)

+SAHcK,2

(
ε, δ0,

3δ

2π2K2

)
+ SAHcK,1

(
ε, δ0,

3δ

2π2K2

)) (6)

The combination ofM and LDP-OBI is also (ε, δ0)-LDP.

Thm. 5 shows that the regret of LDP-OBI 1) is lower bounded by the regret in non-private settings;
and 2) depends directly on the precision of the privacy mechanism used though cK,1, . . . , cK,4. Thus
improving the precision, that is to say reducing the amount of noise that needs to be added to the data
to guarantee LDP of the privacy mechanism, directly improves the regret bounds of LDP-OBI. The
first term in the regret bound (¶) is of the order expected in the non-private setting (see e.g., [36]).
Classical results in DP suggest that the {cK,i}i≤4 terms should be approximately of order

√
K/ε

(this is indeed the case for many natural choices of randomizer). In such a case, the dominant term in
(38), is no longer ¶ but rather a term of order H2S2A

√
K/ε (from e.g. cK,4). The dependency on

S,A,H is larger than in the non-private setting. This is because the cost of LDP is multiplicative,
so it also impacts the lower order terms in the concentration results (see e.g. the second term in 4),
which are typically ignored in the non-private setting. In addition, this implies that variance reduction
techniques for RL (e.g., based on Bernstein) classically used to decrease the dependence on S,H
will not lead to any improvement here. This is to be contrasted with the JDP setting where [9] shows
that the cost of privacy is additive so using variance reduction techniques can reduce the dependency
of the regret on S,A,H .

5 Choice of Randomizer

There are several randomizers that satisfy Asm. 3, for example Laplace [14], randomized response [13,
38], Gaussian [39] and bounded noise [40] mechanisms. Since one method can be preferred to another
depending on the application, we believe it is important to understand the regret and privacy guarantees
achieved by LDP-OBI with these randomizers. Tab. 1 provides a global overview of the properties
of LDP-OBI with different randomized mechanism. The detailed derivations are deferred to App. F.

Privacy. All the mechanisms satisfy Asm. 3 but only the Laplace and Randomized Response
mechanisms guarantees (ε, 0)-LDP. Note that in all cases, in order to guarantee a ε level of privacy
(or (ε, δ) for the Gaussian and bounded noise mechanisms), it is necessary to scale the parameter ε
proportional to 1/H . This is because the statistics computed by the privacy-preserving mechanism are
the sum of H observations which are bounded in [0, 1], the sensitivity4 of those statistics is bounded

4For a function f : X → R the sensitivity is defined as S(f) = maxx,y∈X |f(x)− f(y)|
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by H . Directly applying the composition theorem for DP [14, Thm 3.14] over the different counters,
would lead to an upper-bound on the privacy of the mechanism of S2AHε and corresponding regret
bound of Õ

(
(H4S4A2

√
K)/ε

)
. For the randomizers that we use, the impact on ε is lower thanks

to fact that they are designed to exploit the structure of the input data (a trajectory).

Regret Bound. From looking at Table 1, we see that while all the mechanisms achieve a regret bound
of order Õ(

√
K) the dependence on the privacy level ε varies as well as the privacy guarantees. The

regret of Laplace, Gaussian and bounded noise mechanisms scale with ε−1, whereas the randomized
response has an exponential dependence in ε similar to the lower bound. However, this improvement
comes at the price of worse dependency in H when ε is small, and a worse multiplicative constant in
the regret. This is due to the randomized response mechanism perturbing the counters for each stage
h ∈ [H], leading to up to HS2A obfuscated elements. This worse dependence is also observed in
our numerical simulations.

For many of the randomizers, our regret bounds scale as Õ(H3S2A
√
K/ε). Aside from the

√
K/ε

rate which is expected, our bounds exhibit worse dependence on the MDP characteristics when
compared to the non-private setting. We believe that this is unavoidable due to the fact that we have
to make S2A terms private, while the extra dependence on H comes from dividing ε by H to ensure
privacy over the whole trajectory. Moreover, the DP literature [e.g., 41, 42, 43] suggests that the extra
dependency on S,A,H may be inherent to model-based algorithms due to the explicit estimation
of private rewards and transitions. Indeed, [43] shows that the minimax error rate in `1 norm for
estimating a distribution over S states is Ω

(
S√

n(exp(ε)−1)

)
with n samples in the high privacy regime

(ε < 1), while there is no change in the low privacy regime. This means that in the high privacy
regime the concentration scales with a multiplicative

√
S term which would translate directly into

the regret bound. Furthermore, this results assumes that the number n of samples is known to the
learner. In our setting, n maps to Nk(s, a) which is unknown to the algorithm. Since we only
observe a perturbed estimate of n, estimating p(·|s, a) here is strictly harder than the aforementioned
setting.5 This suggests that it is impossible for any model-based algorithm which directly estimates
the transition probabilities to match the lower bound. However, this does not rule out the possibility of
a model-free algorithm being able to match the lower bound. Designing such a model-free algorithm
which is able to work with LDP trajectories is non-trivial and we leave it to future work.

Another direction for future work is to investigate whether the recently developed shuffling model [45]
may be used to improve our regret bounds in the LDP setting. Preliminary investigations of the
shuffling model (see App. I) show that it is not possible while preserving a fixed ε-LDP constraint,
which is the focus of this paper. Nonetheless, if we were to relax the privacy constraint to only
guarantee ε-JDP then the shuffling model could be used to retrieve the regret bound in [9] while
guaranteeing some level of local differential privacy, although the level of LDP would be much
weaker than the one considered in this paper. We believe the study of this model sitting in-between
the joint and local DP settings for RL is a promising direction for future work and that the tools
developed in this paper will be helpful for tackling this problem.

6 Numerical Evaluation

In this section, we evaluate the empirical performance of LDP-OBI on a toy MDP. We compare
LDP-OBI with the non-private algorithm UCB-VI [32]. To the best of our knowledge there is no
other LDP algorithm for regret minimization in MDPs in the literature. To increase the comparators,
we introduce a novel LDP algorithm based on Thompson sampling [e.g., 12].

LDP-PSRL. Thompson sampling algorithms [e.g., PSRL, 12] have proved to be effective in several
applications [46]. Due to their inherent randomization, one may imagine that they are also well

5We are not aware of any lower-bound in the literature that applies to this setting but we believe that the
S2A
√
KH/ε dependence may be unavoidable for model-based algorithms. This is because Nk(s, a) and

Ñk(s, a) differ by at most
√
kH log(SA) (which is a well-known lower bound for the counting elements

problem see [44]). Intuitively this difference creates a bias when estimating each component p(·|s, a), a bias
that would scale with the size of the support p(·|s, a) and the relative difference between Nk(s, a) and Ñk(s, a).
Hence, the bias would scale with S

√
kH/Nk(s, a). Summing over all episodes and SA counters gives the

conjectured result.
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Figure 1: Evaluation of LDP-OBI with
the Laplace mechanism and LDP-PSRL.
Left) Cumulative regret. Right) per-step
regret (k 7→ Rk/k).
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Figure 2: Regret for LDP-OBI coupled with different
mechanisms. For all ε, δ = 0.1 for the Gaussian and
Bounded Noise mechanism.

suited to LDP regret minimization. Here, we introduce and evaluate LDP-PSRL, an LDP variant of
PSRL and provide a first empirical evaluation. Informally, by defining byWk = {(S,A, p, r,H) :
‖p − p̃‖1 ≤ βpk , |r − r̃| ≤ βrk} the private set of plausible MDPs constructed using the definition
in Prop. 4, we can see posterior sampling as drawing an MDP from this set at each episode k and
running the associated optimal policy:

i) Mk ∼ P(Wk), ii) πk = max
π
{V π1 (Mk)}.

More formally, we consider Gaussian and Dirichlet prior for rewards and transition which lead to
Normal-Gamma and Dirichlet distributions as posteriors. We use the private counters defined in
Asm. 3 to update the parameters of the posterior distribution and thus the distribution over plausible
models. We provide full details of this schema in App. G and show that it is LDP. However, we were
not able to provide a regret bound for this algorithm.

Simulations. We consider the RandomMDP environment described in [25] where for each state-
action pair transition probabilities are sampled from a Dirichlet(α) distribution (with αs,a,s′ =
0.1 for all (s, a, s′)) and rewards are deterministic in {0, 1} with r(s, a) = 1{Us,a≤0.5} for
(Us,a)(s,a)∈S×A ∼ U([0, 1]) sampled once when generating the MDP. We set the number of states
S = 2, number of actions A = 2 and horizon H = 2. We evaluate the regret of our algorithm for
ε ∈ {0.2, 2, 20} and K = 1× 108 episodes. For each ε, we run 20 simulations. Confidence intervals
are the minimum and maximum runs. Fig. 1 shows that the learning speed of the optimistic algorithm
LDP-OBI is severely impacted by the LDP constraint. This is consistent with our theoretical results.
The reason for this is the very large confidence intervals that are needed to deal with the noise from
the privacy preserving mechanism that is necessary to guarantee privacy. While the regret looks
almost linear for ε = 0.2, the decreasing trend of the per-step regret shows that LDP-OBI-L is
learning. Although these experimental results only consider a small MDP, we expect that many of the
observations will carry across to larger, more practical settings. However, further experiments are
needed to conclusively assess the impact of LDP in large MDPs. Fig. 1 also shows that LDP-PSRL
performs slightly better than LDP-OBI. This is to be expected, since even in the non-private case
PSRL usually outperforms optimistic algorithm empirically. Finally, Fig. 2 compares the mechanisms
with different privacy levels and illustrates the empirical impact of the privacy-preserving mechanism
on the performance of LDP-OBI. We observe empirically that the bounded noise mechanism is the
most effective approach, followed by the Laplace mechanism. However, the former suffers from a
higher variance in its performance.

7 Conclusion
We have introduced the definition of local differential privacy in RL and designed the first LDP
algorithm, LDP-OBI, for regret minimization in finite-horizon MDPs. We provided an intuition why
model-based approaches may suffer a higher dependence in the MDP characteristics. Designing a
model-free algorithm able to reduce or close the gap with the lower-bound is an interesting technical
question for future works. As mentioned in the paper, the shuffling privacy model does not provide
any privacy/regret improvement in the strong LDP setting. An interesting direction is to investigate the
trade-off between JDP and LDP that can be obtained in RL using shuffling. In particular, we believe
that, sacrificing LDP guarantees, it is possible to achieve better regret leveraging variance reduction
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techniques (that are not helpful in strong LDP settings). Finally, there are other privacy definition
that can be interesting for RL. For example, profile-based privacy [47, 48] allows to privatize only
specific information or geo-privacy [49] focuses on privacy between elements that are “similar”.
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A Extended Related Work

The notion of differential privacy was introduced in [4] and is now a standard in machine learning [e.g.,
13, 14, 15]. In stochastic multi-armed bandits, ε-DP algorithms have been extensively studied [see
e.g., 5, 6]. Recently, [22] proposed an ε-DP algorithm for stochastic multi-armed bandits that achieves
the private lower-bound presented in [7]. In contextual bandits, [7] derived an impossibility result
for learning under DP by showing a regret lower-bound Ω(T ) for any (ε, δ)-DP algorithm. Instead,
they considered the relaxed JDP setting and proposed an optimistic algorithm with sublinear regret
and ε-JDP guarantees. Since the contextual bandit problem is an episodic RL problem with horizon
H = 1, this suggests that DP is incompatible with regret minimization in RL as well.

Recently, local differential privacy [10] has attracted increasing interest in the bandit literature. [21]
were the first to study LDP in stochastic MABs. [23] extended LDP to combinatorial bandits, and
[11, 24] focused on LDP for MAB and contextual bandit. Private algorithms for regret minimization
have also been investigated in multi-agent bandits (a.k.a. federated learning) in centralized and
decentralized settings [e.g., 50, 51, 52], and empirical approaches have been considered in [53, 54].

In RL, [26] proposed the first private algorithm for policy evaluation with linear function approxima-
tion that ensures privacy with respect to the change of trajectories collected off-policy. [27] considered
the RL problem in continuous space, where reward information is protected. They designed a private
version of Q-learning with function approximation where privacy with respect to different reward func-
tions is achieved by injecting noise in the value function. [28] recently studied LDP for actor-critic
methods in the context of distributed RL. None of these works considered regret minimization under
privacy constraints. Regret minimization with privacy guarantees has only been considered in RL
recently. [9] designed a private optimistic algorithm for regret minimization with JDP. They proposed
a variation of UBEV [25] using a randomized response mechanism with parameter ε/H to guarantee
privacy. Their algorithm PUCB achieves a regret bound Õ(

√
H4SAK + SAH3(S +H)/ε) while

enjoying ε-JDP. Compared to the worst case regret of UBEV, the penalty for JDP privacy is only
additive, as shown by their lower-bound of Ω̃

(
H
√
SAK + SAH/ε

)
.
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B Regret Lower Bound (Proof of Thm. 2)

Let’s consider the following MDP for a given number of states S and actions A. The initial state 0
has A actions which deterministically lead the next state. The MDP is a tree with A children for each
node and exactly S − 2 states.

We denote by x1, . . . , xL the leaves of this tree. Each leaf can transition to one of the two terminal
states denoted by + and −, where the agent will receive reward of 1 or 0 respectively, and the agent
will stay there until the end of the episode. There exists a unique action a? and leaf xi? such that:
P(+ | xi? , a?) = 1/2 + ∆ for a chosen ∆. Each other leaf transitions with equal probability to two
states + and − where each has a reward of 1 and 0. All other states have a reward of 0 and every
other transition is deterministic.

0

1

4 5 6

2

7 8 9

3

10 11 12

+ −

Figure 3: Example of an MDP described in this section with S = 15 and A = 3

Once the agent arrives at + or −, it stay there until the end of the episode. In addition, we assume
that H ≥ 2 ln(S − 2)/ ln(A) + 2. Let d > 0 be the depth of the tree, i.e., the depth of the tree with
S − 2 nodes is d− 1 and nodes +,− are at depth d. Then leaves x1, . . . , xL are at depth either d− 1
or d− 2. Without loss of generality we assume that all x1, . . . , xL are at depth d− 1, i.e., the number
of leaves is L = Ad−1 ≥ (S− 2)/2, stated otherwise, the tree without the nodes + and− is a perfect
A-ary tree. In the general case we have that L ≥ (S − 2)/2.

For a policy π, the value function can be written:

V π(0) = (H − d)P(sd = +) = (H − d)(1/2 + ∆P (sd−1 = xi? , ad−1 = a?)) (7)

Thus the regret can be written as:

R(K, I) = (H − d)∆
(
K −

K∑

k=1

P (sk,d−1 = xi? , ak,d−1 = a?)

︸ ︷︷ ︸
:=E(T (K,I))

)
(8)

where I = (xi? , a
?) is the optimal state action pair and we define T (K, I) as:

T (K, I) =

K∑

k=1

1{sk,d−1=xi? ,ak,d−1=a?}. (9)

T (K, I) is a function of the history observed by the algorithm. Since we consider the LDP setting,
this history can be written as:

M(HK) = {M(Xl) | l ≤ K} (10)

where Xl = {(sl,h, al,h, rl,h) | h ≤ H} is the trajectory observed by the user for episode l andM is
a privacy mechanism which maintains ε-LDP. Thus T (K, I) is a function ofM(HK). By Lem. A.1
in [30]:

E(T (K, I)) ≤ E0(T (K, I)) +K

√
KL
(
P0(M(HK)) || P(M(HK))

)
(11)

where E0 is the expectation when ∆ = 0. However, because T (K, I) can be seen as a function
on the history only, we can use Exercise 14.4 in [31] which states that for any random variable
Y : Ω→ [a, b] with (Ω,F) a measurable space, a < b and two distributions P and Q on F , then:

∣∣∣∣
∫

w∈Ω

Y (w)dP (w)−
∫

w∈Ω

Y (w)dQ(w)

∣∣∣∣ ≤ (b− a)

√
KL(P ||Q)

2
(12)
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In our case the random variable Y is the combination of T (K, I) and the privacy mechanismM so
we have:

E(T (K, I)) ≤ E0(T (K, I)) +K

√
KL
(
P0(HK) || P(HK)

)
(13)

Putting together Eq. (11) and (13), we get:

E(T (K, I)) ≤ E0(T (K, I)) +K min

{√
KL
(
P0(M(HK)) || P(M(HK))

)

︸ ︷︷ ︸
1©

,

√
KL
(
P0(HK) || P(HK)

)

︸ ︷︷ ︸
2©

} (14)

Bounding 1©. Now we bound the KL-divergence between the two measures for the history. Using
the chain rule we have:

KL (P0(M(HK)) || P(M(HK))) =

K∑
k=1

EHk−1∼P0 (KL (P0(·|M(Hk−1)) || P(·|M(Hk−1)))) (15)

But becauseM is an ε-LDP mechanism, Thm. 1 in [10] ensures that:

KL (P0(·|M(Hk−1)) || P(·|M(Hk−1))) ≤ 4(exp(ε)− 1)2KL (P0(·|Hk−1) || P(·|Hk−1)) (16)

Additionally, the KL-divergence can be written as:

KL (P0(·|Hk−1) || P(·|Hk−1)) =

H∑
h=1

EXk∼P0

(
ln

(
P0(sk,h, ak,h, rk,h | Hk−1, (sk,j , ak,j , rk,j)j≤h−1)

P(sk,h, ak,h, rk,h | Hk−1, (sk,j , ak,j , rk,j)j≤h−1)

))
(17)

where Xk = {(sk,h, ak,h, rk,h) | h ≤ H} is a trajectory sampled from the MDP with the transitions
distributed according to P0 and for each step h, sk,h is a state, ak,h an action and rk,h the reward
associated with (sk,h, ak,h).

Therefore for a step h ≥ 1,

ln (P0(sk,h, ak,h, rk,h | Hk−1, (sk,j , ak,j , rk,j)j≤h−1)) = ln (P0(sk,h | Hk−1, (sk,j , ak,j , rk,j)j≤h−1))

+ ln (P0(ak,h | Hk−1, (sk,j , ak,j , rk,j)j≤h−1, sk,h))

+ ln (P0(rk,h | Hk−1, (sk,j , ak,j , rk,j)j≤h−1, sk,h, ak,h))

By the Markov property of the environment:

ln (P0(sk,h | Hk−1, (sk,j , ak,j , rk,j)j≤h−1)) = ln (P0(sk,h | sk,h−1, ak,h−1)) (18)

Also, since the reward only depends on the current state-action pair:

ln (P0(rk,h | Hk−1, (sk,j , ak,j , rk,j)j≤h−1, sk,h, ak,h)) = ln (P0(rk,h | sk,h, ak,h)) . (19)

The same results holds for P, thus:

KL (P0(·|Hk−1) || P(·|Hk−1)) =

H∑

h=1

EXk∼P0

(
ln

(
P0(sk,h | sk,h−1, ak,h−1)

P(sk,h | sk,h−1, ak,h−1)

)

+ ln

(
P0(ak,h | Hk−1, (sk,j , ak,j , rk,j)j≤h−1, sk,h)

P(ak,h | Hk−1, (sk,j , ak,j , rk,j)j≤h−1, sk,h)

)
+ ln

(
P0(rk,h | sk,h, ak,h)

P(rk,h | sk,h, ak,h)

)) (20)

But for P and P0 the rewards are distributed accordingly to the same distribution hence
ln
(

P0(rk,h|sk,h,ak,h)
P(rk,h|sk,h,ak,h)

)
= 0 for each h ≤ H . Also, the action taken at each step depends only

the history of data and the current state, thus ln
(

P0(ak,h|Hk−1,(sk,j ,ak,j ,rk,j)j≤h−1)

P(ak,h|Hk−1,(sk,j ,ak,j ,rk,j)j≤h−1)

)
= 0. Lastly,

17



transition dynamics between P and P0 only differ when at step d − 1 thus for all h 6= d − 1 ,
ln
(

P0(sk,h|sk,h−1,ak,h−1)
P0(sk,h|sk,h−1,ak,h−1)

)
= 0. Overall, we get:

KL (P0(·|Hk−1) || P(·|Hk−1)) =

L∑
l=1

A∑
a=1

∑
j∈{−,+}

EXk∼P0

(
ln

(
P0(j | xl, a)

P(j | xl, a)

)
1{sk,d−1=xl,

ak,d−1=a,
sk,d=j

})

Finally, for j ∈ {−,+}, xl 6= xi? and a 6= a?, P(j | xl, a) = P0(j | xl, a). Hence,

KL (P0(·|Hk−1) || P(·|Hk−1)) =
1

2
ln

(
1

1− 4∆2

)
EXk∼P0

(
1{sk,d−1=xi? ,ak,d−1=a?}

)
(21)

where we have used P(+ | xi? , a?) = 1
2 + ∆, P0(+ | xi? , a?) = 1

2 , P(− | xi? , a?) = 1
2 −∆ and

P0(− | xi? , a?) = 1
2 .

Therefore combining (16) and (21) and summing over the episodes, we get:

KL
(
P0(M(HK)) || P(M(HK))

)
≤ 2(eε − 1)2 ln

(
1

1− 4∆2

) K∑
k=1

P0 (sk,d−1 = xi? , ak,d−1 = a?)

= 2(eε − 1)2 ln

(
1

1− 4∆2

)
E0(T (K, I))

(22)

Bounding 2©. Using again the chain rule of the KL-divergence, we have that:

KL (P0(HK) || P(HK)) =

K∑

k=1

EHk−1∼P0
(KL (P0(·|Hk−1) || P(·|Hk−1))) (23)

Therefore, using Eq. (21), we have:

KL (P0(HK) || P(HK)) =

K∑
k=1

EHk−1∼P0

1

2
ln

(
1

1− 4∆2

)
EXk∼P0

1{sk,d−1=xi? ,

ak,d−1=a
?

}
=

1

2
ln

(
1

1− 4∆2

)
E0(T (K, I))

(24)

Finishing the proof. Hence using Eq. (22) and Eq. (24) in Eq. (14):

E(T (K, I)) ≤ E0(T (K, I)) +K min

{√
2(eε − 1),

1√
2

}√
E0(T (K, I)) ln

(
1

1− 4∆2

)
(25)

Now, let’s assume that I = (xi? , a
?) is distributed uniformly over {x1, . . . , xL}× [A]. That is to say,

that the leaf i? ∼ U([L]) and given the realization of i?, a? is drawn uniformly in the action set of
node xi? i.e., a? ∼ U([A]). We denote the expectation over the random variable (xi? , a

?) by EI . It
then holds that:

EIE0(T (K, I)) = E0

K∑

k=1

L∑

l=1

A∑

a=1

1

LA
1{sk,d−1=s,ak,d−1=a} =

K

LA
(26)

Therefore thanks to Jensen’s inequality the regret is lower-bounded by:

EIR(K, I) ≥ (H − d)∆K

(
1− 1

LA
−min

{√
2(eε − 1),

1√
2

}√
K

LA
ln

(
1 +

4∆2

1− 4∆2

))
(27)

Therefore for LA ≥ 2, K ≥ LA
min{8(eε−1),4}2 and choosing ∆ =

√
LA
K × 1

16
√

2 min{(eε−1), 12} we

get that:

min

{√
2(exp(ε)− 1),

1√
2

}√
K

LA
ln

(
1 +

4∆2

1− 4∆2

)
≤ 1

4
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Hence:

max
I∈{x1,...,xL}×[A]

R(K, I) ≥ EIR(K, I) ≥ (H − d)
√
KLA

64 min
{

(exp(ε)− 1), 1
2

} (28)

And because I is a finite random variable there exist I? such that maxI∈{x1,...,xL}×[A]R(K, I) =
R(K, I?).

R(K, I?) ≥ (H − d)
√
KLA

64 min
{

(exp(ε)− 1), 1
2

} (29)

Thus we have that there exists an MDP such that its frequentist regret is Ω
(

H
√
SAK

min{1,exp(ε)−1}

)
.

C Concentration under Local Differential Privacy (Proof of Prop. 4):

In this subsection, we proceed with the proof of Prop. 4 (recalled below).
Proposition. For any ε0 > 0, δ0 ≥ 0, δ > 0, α > 1 and episode k, using mechanismM satisfying
Asm. 3, then with probability at least 1− 2δ, for any (s, a) ∈ S ×A

|r(s, a)− r̃k(s, a)| ≤ βrk(s, a) =

√√√√ 2 ln
(

4π2SAHk3

3δ

)
Ñr
k (s, a) + αck,2(ε0, δ0, δ)

+
(α+ 1)ck,2(ε0, δ0, δ) + ck,1(ε0, δ0, δ)

Ñr
k (s, a) + αck,2(ε0, δ0, δ)

‖p(·|s, a)− p̃k(·|s, a)‖1 ≤ βpk(s, a) =

√√√√ 14S ln
(

4π2SAHk3

3δ

)
Ñp
k (s, a) + αck,3(ε0, δ0, δ)

+
Sck,4(ε0, δ0, δ)

Ñp
k (s, a) + αck,3(ε0, δ0, δ)

+

(α+ 1)ck,3(ε0, δ0, δ)

Ñp
k (s, a) + αck,3(ε0, δ0, δ)

Proof. On the event that all inequalities of Def. 3 holds, we have:∣∣∣∣∣
R̃k(s, a)

Ñr
k (s, a) + αck,2(ε0, δ0, δ)

− Rk(s, a)

Ñr
k (s, a) + αck,2(ε0, δ0, δ)

∣∣∣∣∣ ≤
ck,1(ε0, δ0, δ)

Ñr
k (s, a) + αck,2(ε0, δ0, δ)

(30)

since Ñr
k (s, a)+αck,2(ε0, δ0, δ) > Nk

k (s, a) ≥ 0 with α > 1. But, we also have that with probability
1− δ:∣∣∣∣∣ Rk(s, a)

Ñr
k (s, a) + αck,2(ε0, δ0, δ)

− r(s, a)

∣∣∣∣∣ ≤
∣∣∣∣∣r(s, a)

(
Nr
k (s, a)

Ñr
k (s, a) + αck,2(ε0, δ0, δ)

− 1

)∣∣∣∣∣ (31)

+

∣∣∣∣∣ Nr
k (s, a)

Ñr
k (s, a) + αck,2(ε0, δ0, δ)

×
(
Rk(s, a)

Nr
k (s, a)

− r(s, a)

)
︸ ︷︷ ︸

:=rk(s,a)−r(s,a)

∣∣∣∣∣
≤ Nr

k (s, a)

Ñr
k (s, a) + αck,2(ε0, δ0, δ)

L(δ)√
Nr
k (s, a)

+ r(s, a)

∣∣∣∣∣1− Nr
k (s, a)

Ñr
k (s, a) + αck,2(ε0, δ0, δ)

∣∣∣∣∣ (32)

≤ L(δ)
√
Nr
k (s, a)

Ñr
k (s, a) + αck,2(ε0, δ0, δ)

+
(α+ 1)ck,2(ε0, δ0, δ)

Ñr
k (s, a) + αck,2(ε0, δ0, δ)

(33)

where the second inequality follows from Chernoff-Hoeffding bound on the empirical non-private
rewards with L(δ) =

√
2 ln(4π2SAHk3/3δ), and we use Def. 3 for the last. Furthermore:

L(δ)
√
Nr
k (s, a)

Ñr
k (s, a) + αck,2(ε0, δ0, δ)

≤
L(δ)

√
Ñr
k (s, a) + ck,2(ε0, δ0, δ)

Ñr
k (s, a) + αck,2(ε0, δ0, δ)

≤ L(δ)√
Ñr
k (s, a) + αck,2(ε0, δ0, δ)

(34)

Therefore combining Eq. (30), (33) and (34), we have:∣∣∣∣∣ R̃k(s, a)

Ñr
k (s, a) + αck,2(ε0, δ0, δ)

− r(s, a)

∣∣∣∣∣ ≤ ck,1(ε0, δ0, δ) + (α+ 1)ck,2(ε0, δ0, δ)

Ñr
k (s, a) + αck,2(ε0, δ0, δ)

+
L(δ)√

Ñr
k (s, a) + αck,2(ε0, δ0, δ)
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thus proving the first statement of the proposition. Now, we bound the deviation between the private
estimate p̃k and the true transition dynamics p. First, because α > 1, we have that

∑
s′ Ñ

p
k (s, a, s′) +

αck,3(ε0, δ0, δ) ≥
∑
s′ N

p
k (s, a, s′) + (α− 1)ck,3(ε0, δ0, δ) > 0. We start by decomposing the error

as∑
s′∈S

∣∣p̃(s′|s, a)− p(s′|s, a)
∣∣ =

∑
s′∈S

∣∣∣∣∣ Ñp
k (s, a, s′)∑

s′ Ñ
p
k (s, a, s′) + αck,3(ε0, δ0, δ)

− p(s′|s, a)

∣∣∣∣∣
≤
∑
s′∈S

∣∣∣∣∣ Np
k (s, a, s′)∑

s′ Ñ
p
k (s, a, s′) + αck,3(ε0, δ0, δ)

− p(s′ | s, a)

∣∣∣∣∣︸ ︷︷ ︸
1©

+
∑
s′∈S

∣∣∣∣∣ Ñp
k (s, a, s′)−Np

k (s, a, s′)∑
s′ Ñ

p
k (s, a, s′) + αck,3(ε0, δ0, δ)

∣∣∣∣∣︸ ︷︷ ︸
2©

(35)
Recall that

∑
s′ Ñ

p
k (s, a, s′) = Ñp

k (s, a) and
∑
s′ N

p
k (s, a, s′) = Np

k (s, a) and define pk(·|s, a) =
Npk (s,a,·)
Npk (s,a)

. Therefore:

1© =
∑
s′∈S

∣∣∣∣∣Np
k (s, a, s′)

Np
k (s, a)

Np
k (s, a)

Ñp
k (s, a) + αck,3(ε0, δ0, δ)

− p(s′ | s, a)

∣∣∣∣∣
=
∑
s′

∣∣∣∣∣
(
N
p
k
(s,a,s′)

N
p
k
(s,a)

− p(s′|s, a)
)
Np
k (s, a)

Ñp
k (s, a) + αck,3(ε0, δ0, δ)︸ ︷︷ ︸

>0

+p(s′|s, a)

(
Np
k (s, a)

Ñp
k (s, a) + αck,3(ε0, δ0, δ)

− 1

)∣∣∣∣∣
≤
∑
s′

(
p(s′|s, a)

(α+ 1)ck,3(ε0, δ0, δ)

Ñp
k (s, a) + αck,3(ε0, δ0, δ)

)
+
Np
k (s, a)‖pk(·|s, a)− p(·|s, a)‖1
Ñp
k (s, a) + αck,3(ε0, δ0, δ)

(a)

≤ (α+ 1)ck,3(ε0, δ0, δ)

Ñp
k (s, a) + αck,3(ε0, δ0, δ)

+
Np
k (s, a)

Ñp
k (s, a) + αck,3(ε0, δ0, δ)

L(δ)√
Np
k (s, a)

≤ (α+ 1)ck,3(ε0, δ0, δ)

Ñp
k (s, a) + αck,3(ε0, δ0, δ)

+
L(δ)√

Ñp
k (s, a) + αck,3(ε0, δ0, δ)

where L(δ) =
√

14S ln(4π2SAHk3/3δ) and inequality (a) follows from the Weissman inequality
[55], and we have again used the fact that the inequalities in Def. 3 hold.

In addition,we have:

2© ≤
∑

s′∈S

|ck,4(ε0, δ0, δ)|
Ñp
k (s, a) + αck,3(ε0, δ0, δ)

=
Sck,4(ε0, δ0, δ)

Ñp
k (s, a) + αck,3(ε0, δ0, δ)

(36)

Hence putting together Eq. (36) and Eq. (36), we have:∑
s′∈S

∣∣∣∣∣ Ñp
k (s, a, s′)

Ñp
k (s, a) + αck,3(ε0, δ0, δ)

− p(s′ | s, a)

∣∣∣∣∣ ≤ Sck,4(ε0, δ0, δ) + (α+ 1)ck,3(ε0, δ0, δ)

Ñp
k (s, a) + αck,3(ε0, δ0, δ)

+
L(δ)√

Ñp
k (s, a) + αck,3(ε0, δ0, δ)

(37)

D Regret Upper Bound (Proof of Thm. 5)

In this section, we prove Thm 5, which we recall below.
Theorem. For any privacy mechanismM satisfying Asm. 3 with ε > 0, δ0 ≥ 0, and for any δ > 0
the regret of LDP-OBI is bounded with probability at least 1− δ by:

∆(K) ≤ Õ
(
HS
√
AT︸ ︷︷ ︸

¶

+SAH2cK,3

(
ε, δ0,

3δ

2π2K2

)
+H2S2AcK,4

(
ε, δ0,

3δ

2π2K2

)

+SAHcK,2

(
ε, δ0,

3δ

2π2K2

)
+ SAHcK,1

(
ε, δ0,

3δ

2π2K2

)) (38)

The combination ofM and LDP-OBI is also (ε, δ0)-LDP.
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Good Event: Before proceeding the proof of the regret we define a good event under which all
concentration inequalities holds with probability at least 1 − δ. First, we define the event that all
inequalities from Def. 3 holds. Let:

L1,k =
⋂

s,a

{∣∣∣R̃k(s, a)−Rk(s, a)
∣∣∣ ≤ ck,1(ε0, δ0, 3δ/2k

2π2)
}

L2,k =
⋂

s,a

{∣∣∣Ñr
k (s, a)−Nr

k (s, a)
∣∣∣ ≤ ck,2(ε0, δ0, 3δ/2k

2π2)
}

L3,k =
⋂

s,a

{∣∣∣∣∣
∑

s′

Np
k (s, a, s′)−

∑

s‘

Ñp
k (s, a, s′)

∣∣∣∣∣ ≤ ck,3(ε0, δ0, 3δ/2k
2π2)

}

L4,k =
⋂

s,a,s′

{∣∣∣Np
k (s, a, s′)− Ñp

k (s, a, s′)
∣∣∣ ≤ ck,4(ε0, δ0, 3δ/2k

2π2)
}

then thanks to Def. 3 we have :

P

(
+∞⋃

k=1

Lc1,k ∪ Lc2,k ∪ Lc3,k ∪ Lc4,k

)
≤

+∞∑

k=1

3δ

π2k2
=
δ

4
(39)

In addition, for all k ∈ N?, we can define rk(s, a) = Rk(s, a)/Nr
k (s, a) and pk =

Np
k (s, a, s′)/

∑
s′ N

p
k (s, a, s′) as the empirical reward and transition probability computed with

the non-private counters. Note that in this case Nk(s, a) := Nr
k (s, a) =

∑
s′ N

p
k (s, a, s′). We

also define β
r

k(δ, s, a) =
√

2 ln(1/δ)
Nk(s,a) and β

p

k(δ, s, a) =
√

14S log(1/δ)
Nk(s,a) . as the size of the confidence

intervals using Hoeffding and Weissman inequalities. Thus, we get:

P

(
+∞⋃
k=1

⋃
s,a

|rk(s, a)− r(s, a)| ≥ βrk(3δ/4π2SAHk3, s, a)

)

≤
+∞∑
k=1

∑
s,a

P

(
|rk(s, a)− r(s, a)| ≥

√
2 ln(4π3SAHk3/3δ)

Nk(s, a)

)

≤
+∞∑
k=1

∑
s,a

kH∑
n=0

P

(
|rk(s, a)− r(s, a)| ≥

√
2 ln(4π2SAHk3/3δ)

n

)
≤

+∞∑
k=1

∑
s,a

kH∑
n=0

3δ

4π2SHAk3
≤ δ

8

A similar result holds for the transition dynamics, i.e.,:

P

(
+∞⋃

k=1

⋃

s,a

||pk(·|s, a)− p(·|s, a)||1 ≥ β
p

k(3δ/4π2SAHk3, s, a)

)
≤ δ

8
(40)

Thus we can define the good event Gk by:

Gk =

k−1⋂

l=1

4⋂

i=1

Li,l ∩
⋂

s,a

{
|rl(s, a)− r(s, a)| ≤ βrl (3δ/(4π2SAHl3), s, a)

}

∩
{
||pk(·|s, a)− p(·|s, a)||1 ≤ β

p

k(3δ/(4π2SAHl3), s, a)
}

Then P
(⋂+∞

k=1 Gk
)
≥ 1− δ/2 and Gk ⊂ σ(Hk) (i.e., the history before episode k).

Optimism: For each episode k, the value function Vk,1 computed by LDP-OBI is optimistic, that
is to say: Vk,h(s) ≥ V ?h (s) for any h and state s. We sum up this with the following lemma:
Lemma 6. For any episode k ∈ [k], the value function Vk,1 computed by running Alg. 2 is such that
with probability 1− δ:

∀s ∈ S, h ∈ [1, H] Vk,h(s) ≥ V ?h (s) (41)

Proof. Fix an episode k then we proceed by backward induction conditioned on the event Gk:
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• For h = H , we have for any state s and action a:

Vk,H(s) ≥ Qk,H(s, a) ≥ r̃k(s, a) + βrk(s, a) ≥ r(s, a) thanks to Prop. 4 (42)

• For h < H when the property is true for h+ 1, we get for any state-action (s, a):

Vk,h(s) ≥ Qk,h(s, a) = r̃k(s, a) + βrk(s, a) + p̃k(·|s, a)ᵀVk,h+1 +Hβpk(s, a) (43)
≥ r(s, a) + p(·|s, a)ᵀVk,h+1 ≥ Q?h(s, a) (44)

where we used the fact that ‖(p̃k(·|s, a) − p(·|s, a))ᵀVk,h+1‖ ≤ ‖p̂k(·|s, a) −
p(·|s, a)‖1‖Vk,h+1‖∞ ≤ Hβpk(s, a) and the inductive hypothesis.

Regret Decomposition: We are now ready to analyze the regret of LDP-OBI. Consider an episode
k, then, conditioned on Gk:

V ?1 (sk,1)− V πk1 (sk,1) ≤ Vk,1(sk,1)− V πk1 (sk,1) ≤ r̃k(sk,1, ak,1) + βrk(sk,1, ak,1)− r(sk,1, ak,1)

+p̃k(·|s, a)ᵀVk,2 − p(·|s, a)ᵀV πk2 +Hβpk(sk,1, ak,1)

where the last inequality follows from recursively applying the same technique. Then, observe that
(ηk,h)k,h is a Martingale Difference Sequence with respect to the history before episode k and thanks
to Azuma-Hoeffding inequality we have that with probability at least 1− δ/2,

∑K
k=1

∑H−1
h=1 ηk,h ≤

2H
√
KH ln(2/δ). Therefore, we have with probability at least 1− δ:

R(LDP-OBI,K) ≤ 2

K∑

k=1

H∑

h=1

βrk(sk,h, ak,h) +Hβpk(sk,h, ak,h) + 2H
√
T ln(2/δ)︸ ︷︷ ︸

MDS error term

(45)

Let νk(s, a) =
∑H
h=1 1{sk,h=s,ak,h=a}. Then summing over the reward bonus and using the fact that

α > 1, we get:
K∑
k=1

H∑
h=1

βrk(sk,h, ak,h) =
∑
s,a,k

νk(s, a)Lk,r√
Ñr
k (s, a) + αck,2

(
ε0, δ0,

3δ
2π2k2

)
+
∑
s,a,k

νk(s, a)(α+ 1)ck,2
(
ε0, δ0,

3δ
2π2k2

)
αck,2

(
ε0, δ0,

3δ
2π2k2

)
+ Ñr

k (s, a)

+
∑
s,a,k

νk(s, a)ck,1
(
ε0, δ0,

3δ
2π2k2

)
αck,2

(
ε0, δ0,

3δ
2π2k2

)
+ Ñr

k (s, a)

(46)

where Lk,r =
√

2 ln
(

4π2SAHk3

3δ

)
. Then, using that Ñr

k (s, a) + ck,2
(
ε0, δ0,

3δ
2π2k2

)
≥ Nk(s, a) on

the good event from Gk:

(46) ≤
∑
s,a,k

νk(s, a)Lk,r√
Nk(s, a) + (α− 1)ck,2

(
ε0, δ0,

3δ
2π2k2

) +
νk(s, a)(α+ 1)ck,2

(
ε0, δ0,

3δ
2π2k2

)
(α− 1)ck,2

(
ε0, δ0,

3δ
2π2k2

)
+Nk(s, a)

+
∑
s,a,k

νk(s, a)ck,1
(
ε0, δ0,

3δ
2π2k2

)
(α− 1)ck,2

(
ε0, δ0,

3δ
2π2k2

)
+Nk(s, a)

(47)

But because ck,2 is non-decreasing in k, we have that,

(47) ≤
(

(α+ 1)cK,2

(
ε0, δ0,

3δ

2π2K2

)
+ cK,1

(
ε0, δ0,

3δ

2π2K2

))∑

k,s,a

νk(s, a)

Nk(s, a)

+
∑

s,a,k

νk(s, a)LK,r√
Nk(s, a)

(48)
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Which can be rewritten as:

(48) ≤ 2

(
(α+ 1)cK,2

(
ε0, δ0,

3δ

2π2K2

)
+ cK,1

(
ε0, δ0,

3δ

2π2K2

))
SA(ln(2TSA) +H)

+
√

6 ln (14SAT/δ)
(√

2SAT +HSA
) (49)

where the last inequality comes from Lem. 19 in [36]. For the sum of the bonus on the transition
dynamics we have that:

K∑
k=1

H∑
h=1

Hβpk(sk,h, ak,h) =
∑
s,a,k

Hνk(s, a)Lk,p√
Ñp
k (s, a) + αck,3

(
ε0, δ0,

3δ
2π2k2

)
+
∑
s,a,k

HSνk(s, a)ck,4
(
ε0, δ0,

3δ
2π2k2

)
αck,3

(
ε0, δ0,

3δ
2π2k2

)
+ Ñp

k (s, a)

+
∑
s,a,k

Hνk(s, a)(α+ 1)ck,3
(
ε0, δ0,

3δ
2π2k2

)
αck,3

(
ε0, δ0,

3δ
2π2k2

)
+ Ñp

k (s, a)

(50)

where Lk,p =
√

14S ln
(

4π2SAHk3

3δ

)
. Then similarly to the reasonning used to bound Eq. (46), we

have:

(50) ≤
∑
s,a,k

Hνk(s, a)Lk,p√
Nk(s, a) + (α− 1)ck,3

(
ε0, δ0,

3δ
2π2k2

) +
∑
s,a,k

Hνk(s, a)(α+ 1)ck,3
(
ε0, δ0,

3δ
2π2k2

)
(α− 1)ck,3

(
ε0, δ0,

3δ
2π2k2

)
+Nk(s, a)

+
∑
k,s,a

HSck,4
(
ε0, δ0,

3δ
2π2k2

)
(α− 1)ck,3

(
ε0, δ0,

3δ
2π2k2

)
+Nk(s, a)

≤ +

(
(α+ 1)cK,3

(
ε0, δ0,

3δ

2π2K2

)
+ ScK,4

(
ε0, δ0,

3δ

2π2K2

))∑
k,s,a

Hνk(s, a)

Nk(s, a)∑
s,a,k

Hνk(s, a)LK,p√
Nk(s, a)

≤ 2SAH

(
(α+ 1)cK,3

(
ε0, δ0,

3δ

2π2K2

)
+ ScK,4

(
ε0, δ0,

3δ

2π2K2

))
(ln(2TSA) +H)

+H
√

46S ln (14SAT/δ)
(√

2SAT +HSA
)

where the last inequality comes from [36, Lem. 19] and [56, Lem. 8]. Hence putting everything
together, we get that with probability 1− δ:

R(LDP-OBI,K) ≤ H
√

46S ln(14SAT/δ)(
√

2SAT +HSA) +
√

6 ln(14SAT/δ)(
√

2SAT +HSA)

+2SAH

(
(α+ 1)cK,3

(
ε0, δ0,

3δ

2π2K2

)
+ ScK,4

(
ε0, δ0,

3δ

2π2K2

))
(ln(2TSA) +H)

+2

(
(α+ 1)cK,2

(
ε0, δ0,

3δ

2π2K2

)
+ cK,1

(
ε0, δ0,

3δ

2π2K2

))
SA(ln(2TSA) +H) + 2H

√
T ln(2/δ)

In addition, because LDP-OBI has only access to the privatized data, that is to say it only uses the
output ofM({(sk,h, ak,h, rk,h)h≤H}) for each episode k, the LDP constraint is satsified as long as
the privacy mechanismM satisfies Def. 1.

Note: the proof of this regret upper-bound relies on concentration inequalities more generally used
in the average reward regret minimization setting. Stated otherwise, we directly study the error
between the estimated model and the true model, i.e., |r̃k − r| and ||p̃k(. | s, a)− p(. | s, a)||1 for
each s, a. In the non-private setting, it is possible to get a more refined regret using more precise
concentration inequalities, mainly Bernstein inequality and other tools introduced in [32]. However, in
the private setting, using such results only leads to a gain in lower order terms and terms independent
of ε while the technical derivations are much more intricate.

23



E The Laplace Mechanism for Local Differential Privacy

In this appendix, we show how the well-known Laplace mechanism [4] can be used with LDP-OBI
to ensure LDP and a sublinear regret.

Algorithm 3 Laplace mechanism for LDP

Input: Trajectory: X = {(sh, ah, rh) | h ≤ H}, Privacy Parameter: ε0
Draw (Yi,X(s, a))(s,a)∈S×A,i≤2 i.i.d Lap(1/ε0) and (ZX(s, a, s′))(s,a,s′)∈S×A×S i.i.d Lap(1/ε0) and in-
dependent from Yi,X for i ∈ {1, 2}
for (s, a) ∈ S ×A do
R̃X(s, a) =

∑H
h=1 rh1{sh,ah=s,a} + Y1,X(s, a)

Ñr
X(s, a) =

∑H
h=1 1{sh,ah=s,a} + Y2,X(s, a)

for s′ ∈ S do

Ñp
X(s, a, s′) =

H−1∑
h=1

1{sh,ah,sh+1=s,a,s
′} + ZX(s, a, s′)

end for
end for
Return: (R̃X , Ñ

r
X , Ñ

p
X) ∈ RS×A × RS×A × RS×A×S

E.1 The Laplace mechanism (Alg. 3) satisfies local differential privacy (Asm. 3)

We first prove Thm. 7 which states that using Alg. 3 with parameter ε0 = ε/6H guarantees (ε, δ)-
LDP.

Theorem 7. For any ε > 0, the Laplace mechanism described by Alg. 3 with parameter ε0 = ε/6H
is (ε, 0)-LDP (and thus (ε, δ0)-LDP for every δ0 ≥ 0).

Formally, we need to show that, for any two trajectories X and X ′ and tuple (r, n, n′), the following
inequality holds

P
(
M(X) = (r, n, n′)

)
≤ eεP

(
M(X ′) = (r, n, n′)

)
+ δ (51)

where r, n, n′ are vectors of dimension SA, SA and S2A, respectively. See the LDP definition in
Def. 1.

Proof of Thm. 7. Let’s consider two trajectories X = {(sh, ah, rh) | h ≤ H} and X ′ =
{(s′h, a′h, r′h) | h ≤ H}. We denote the output of the private randomizer M by M(X) =

(R̃X , Ñ
r
X , Ñ

p
X) andM(X ′) = (R̃X′ , Ñ

r
X′ , Ñ

p
X′). Recall that R̃X(s, a) :=

∑H
h=1 rh1{sh=s,ah=a}+

Y1,X(s, a) where (Y1,X(s, a))(s,a)∈S×A are independent Laplace variables with parameter ε/(6H).
Consider a vector r ∈ RS×A, then:

P
(
∀(s, a), R̃X(s, a) = rs,a | X

)
P
(
∀(s, a), R̃X′(s, a) = rs,a | X ′

) =
∏
s,a

P
(
Y1,X(s, a) =

∑H
h=1 rh1{sh=s,ah=a} − rs,a | X

)
P
(
Y1,X′(s, a) =

∑H
h=1 r

′
h1{s′h=s,a

′
h
=a} − rs,a | X ′

) (52)
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since the Laplace distribution is symmetric. But Y1,X(s, a) and Y1,X′(s, a) are independent random
variables for any state-action pair. Thus:

∏
s,a

P

Y1,X(s, a) =
∑H
h=1 rh1

{
sh=s,
ah=a

} − rs,a | X


P

Y1,X′(s, a) =
∑H
h=1 r

′
h1
{
s′h=s,
a′h=a

} − rs,a | X ′
 =

∏
s,a

e

ε0
∣∣∣∣∣∣∣∣
∑H
h=1(rh1

{
sh=s,
ah=a

}−rs,a
∣∣∣∣∣∣∣∣


e

ε0
∣∣∣∣∣∣∣∣∣
∑H
h=1

(r′
h
1{

s′h=s,
a′h=a

}−rs,a
∣∣∣∣∣∣∣∣∣



≤ exp

(
ε0
∑
s,a

∣∣∣∣∣
H∑
h=1

(rh1{sh=s,ah=a} − r
′
h1{s′

h
=s,a′

h
=a})

∣∣∣∣∣
)

≤ exp

ε0 ∑
s,a,h

(|rh|1{sh=s,ah=a} + |r′h|1{s′
h
=s,a′

h
=a})


= exp

(
ε0
∑
h

(|rh|+ |r′h|)
)
≤ exp (2Hε0) = exp

( ε
3

)

(53)

where we used the definition of the Laplace distribution, x 7→ 1
2b exp(|x|/b). Let n ∈ RS×A and

n′ ∈ RS×A×S . Similarly, since Ñr
X(s, a) =

∑H
h=1 1{sh=s,ah=a} + Y2,X(s, a) and Ñp

X(s, a, s′) =∑H−1
h=1 1{sh=s,ah=a,sh+1=s′} + ZX(s, a, s′), we have:

P
(
∀(s, a), Ñr

X(s, a) = ns,a | X
)

P
(
∀(s, a), Ñr

X′(s, a) = ns,a | X ′
) ≤ exp

(ε
3

)
(54)

and:

P
(
∀(s, a, s′), Ñp

X(s, a, s′) = n′s,a,s′ | X
)

P
(
∀(s, a, s′), Ñp

X′(s, a, s
′) = n′s,a,s′ | X ′

) ≤ exp
(ε

3

)
(55)

Then because (Yi,X(s, a))i≤2,(s,a)∈S×A, (ZX(s, a, s′))(s,a,s′)∈S×A×S are independent it holds that:

P
(
R̃X = r, Ñr

X = n, Ñp
X = n′ | X

)
= P

(
R̃X = r | X

)
P
(
Ñr
X = n | X

)
P
(
Ñp
X = n′ | X

)

Thus for any (r, n, n′) ∈ RS×A × RS×A × RS×A×S and any two trajectories X and X ′:

P
(
M(X) = (r, n, n′) | X

)
= P

(
R̃X = r, Ñr

X = n, Ñp
X = n′ | X

)

= P
(
R̃X = r | X

)
P
(
Ñr
X = n | X

)
P
(
Ñp
X = n′ | X

)

where we use the convention that R̃X = r implies that R̃X(s, a) = rx,a, and similarly for Ñr
X =

n, Ñp
X = n′. Therefore using inequalities (53), (54) and (55) in (??), we have:

P
(
M(X) = (r, n, n′) | X

)
= P

(
R̃X = r | X

)
P
(
Ñr
X = n | X

)
P
(
Ñp
X = n′ | X

)

≤ exp(ε)P
(
R̃X′ = r | X ′

)
P
(
Ñr
X′ = n | X ′

)
P
(
Ñp
X′ = n′ | X ′

)

= exp(ε)P
(
R̃X′ = r, Ñr

X′ = n, Ñp
X′ = n′ | X ′

)

= exp(ε)P (M(X ′) = (r, n, n′) | X ′)
This concludes the proof.

Now that we shown the Laplace mechanism ensures LDP with the reight parameter, let’s show that
the latter satisfies Asm. 3 by showing the following proposition:
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Proposition 8. For any ε > 0, the Laplace mechnism, Alg. 3, with parameter ε0 = ε/(6H) satisfies
Def. 3 for any δ > 0 and k ∈ N with ck,1(ε, δ) = ck,2(ε, δ), ck,3(ε, δ) =

√
Sck,4(ε, δ) and:

ck,1(ε, δ) = max

{√
k, ln

(
6SA

δ

)} √8 ln
(

6SA
δ

)

ε/6H
,

ck,3(ε, δ) = max

{√
kS, ln

(
6S2A

δ

)} √8 ln
(

6S2A
δ

)

ε/6H

Before proving Prop. 8 we state the following concentration inequality for the sum of Laplace
variables.
Proposition 9. [14, Cor. 12.3] Let Y1, . . . , Yk be independent Lap(b) random variables with b > 0

and δ ∈ (0, 1) then for any ν > bmax
{√

k,
√

ln(2/δ)
}

,

P

(∣∣∣∣∣
k∑

l=1

Yl

∣∣∣∣∣ > ν
√

8 ln(2/δ)

)
≤ δ

We can now prove Prop. 8 that shows that Alg. 3 satisfies Def. 3.

Proof of Prop. 8. Let X1, . . . , Xk−1 be the k − 1 trajectories generated before episode k ≥ 1.
Consider the private statistic R̃k(s, a) generated by the private randomizer before episode k. Then
for any state-action pair (s, a) ∈ S ×A:

∣∣∣R̃k(s, a)−Rk(s, a)
∣∣∣ =

∣∣∣∣∣
∑

l<k

(R̃Xl(s, a)−RXl(s, a))

∣∣∣∣∣

=

∣∣∣∣∣
∑

l<k


Y1,Xl(s, a) +

H∑

h=1

rh1{sl,h=s,
al,h=a

}

−

∑

l<k

H∑

h=1

rh1{sl,h=s,
al,h=a

}
∣∣∣∣∣

=

∣∣∣∣∣
k−1∑

l=1

Y1,Xl(s, a)

∣∣∣∣∣

which is the sum of independent Laplace variables. Let δ > 0. By Prop. 9 we have that with
probability at least 1− δ/(3SA)

∣∣∣∣∣
k−1∑

l=1

Y1,Xl(s, a)

∣∣∣∣∣ ≤
1

ε0
max

{√
k − 1, ln

(
6SA

δ

)}√
8 ln

(
6SA

δ

)
(56)

The same property holds for Ñr
k and Ñp

k and we again apply Prop. 9. Properties in Def. 3 follow
from union bounds.

F Other Privacy Preserving Mechanisms

We have shown in App. E.1 that the Laplace mechanism, Alg. 3, satisfies Def. 3. However it is not
the only mechanism to do so. In this appendix we present the Gaussian, Randomized Response and
bounded noise mechanisms and show that these also satisfy Def. 3.

F.1 Gaussian Mechanism:

The Gaussian mechanism is a fundamental mechanism in the differential privacy literature [see e.g.,
14]. However, contrary to the Laplace mechanism the Gaussian mechanism can only guarantees
(ε, δ)-LDP for δ > 0. The mechanism is based on the same idea as the Laplace mechanism, that is
to say it adds Gaussian noise to the result of a given computation on the input data. This noise is
centered and the standard deviation σ(ε, δ) is cH

ε0
.
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Algorithm 4 Gaussian mechanism for LDP

Input: Trajectory: X = {(sh, ah, rh) | h ≤ H}, Privacy Parameter: ε0, c
Draw (Yi,X(s, a))(s,a)∈S×A,i≤2 i.i.d N

(
0, σ2

)
and (ZX(s, a, s′))(s,a,s′)∈S×A×S i.i.d N

(
0, σ2

)

and independent from Yi,X for i ∈ {1, 2} with σ = cH/ε0

for (s, a) ∈ S ×A do
R̃X(s, a) =

∑H
h=1 rh1{sh=s,ah=a} + Y1,X(s, a)

Ñr
X(s, a) =

∑H
h=1 1{sh=s,ah=a} + Y2,X(s, a)

for s′ ∈ S do
Ñp
X(s, a, s′) =

∑H−1
h=1 1{sh=s,ah=a,sh+1=s′} + ZX(s, a, s′)

end for
end for
Return: (R̃X , Ñ

r
X , Ñ

p
X) ∈ RS×A × RS×A × RS×A×S

In the following, we show that the Gaussian mechanism almost satisfies Def. 3. The Gaussian
mechanism can not guarantee (ε0, 0)-LDP for any ε0 > 0, however we show that it satisfies the
other necessary conditions, including (ε0, δ)-LDP for any δ > 0. First, we show that the mechanism
guarantees Local Differential Privacy for high enough noise.

Proposition 10. For any 1 ≥ ε0 > 0 and δ0 > 0 and parameter c > 4 ln
(

24
δ0

)
, the Gaussian

mechanism, Alg. 4, is (ε0, δ0)-LDP.

Proof of Prop. 10: The proof is based on the proof presented in [14]. Similarly to the proof of Prop. 8
let’s consider two trajectories X = {(sh, ah, rh) | h ≤ H} and X ′ = {(s′h, a′h, r′h) | h ≤ H} and
also denote the output of the private randomizerM byM(X) = (R̃X , Ñ

r
X , Ñ

p
X) andM(X ′) =

(R̃X′ , Ñ
r
X′ , Ñ

p
X′).

For a given vector r ∈ RS×A,

P
(
∀(s, a), R̃X(s, a) = rs,a | X

)
P
(
∀(s, a), R̃X′(s, a) = rs,a | X ′

) =
∏
s,a

P
(
Y1,X(s, a) =

∑H
h=1 rh1{sh=s,ah=a} − rs,a | X

)
P
(
Y1,X′(s, a) =

∑H
h=1 r

′
h1{s′h=s,a

′
h
=a} − rs,a | X ′

) (57)

since the Gaussian distribution is symmetric. Then,

∏

s,a

P
(
Y1,X(s, a) =

∑H
h=1 rh1{sh=s,ah=a} − rs,a | X

)

P
(
Y1,X′(s, a) =

∑H
h=1 r

′
h1{s′h=s,a′h=a} − rs,a | X ′

)

=
∏

s,a

exp




(∑H
h=1 rh1{sh=s,ah=a} − rs,a

)2

−
(∑H

h=1 r
′
h1{s′h=s,a′h=a} − rs,a

)2

2σ2




(58)

But, considering the squared term, we get H∑
h=1

rh1{sh=s,
ah=a

} − rs,a
2

=

 H∑
h=1

rh1{sh=s,
ah=a

} − H∑
h=1

r′h1{s′h=s,
a′h=a

} +

H∑
h=1

r′h1{s′h=s,
a′h=a

} − rs,a
2

=

 H∑
h=1

rh1{sh=s,
ah=a

} − H∑
h=1

r′h1{s′h=s,
a′h=a

}2

+

 H∑
h=1

r′h1{s′h=s,
a′h=a

} − rs,a
2

+ 2

 H∑
h=1

rh1{sh=s,
ah=a

} − H∑
h=1

r′h1{s′h=s,
a′h=a

} H∑
h=1

r′h1{s′h=s,
a′h=a

} − rs,a
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Hence we get that

(58) =
∏

s,a

exp

(
1

2σ2

((
H∑

h=1

rh1{sh=s,
ah=a

} −
H∑

h=1

r′h1
{
s′h=s,

a′h=a

}
)2

− 2

(
H∑

h=1

rh1{sh=s,
ah=a

} − r′h1{s′h=s,

a′h=a

}
)(

H∑

h=1

r′h1
{
s′h=s,

a′h=a

} − rs,a
)))

.

(59)

But,
∑
s,a

(∑H
h=1 rh1{sh=s,ah=a} − ∑H

h=1 r
′
h1{s′h=s,a′h=a}

)2

≤ 2H2 be-
cause for each step h, rh ∈ [0, 1]. By the same reasonning, we have∑
s,a

∣∣∣
(∑H

h=1 rh1{sh=s,ah=a} − r′h1{s′h=s,a′h=a}
)∑H

h=1 r
′
h1{s′h=s,a′h=a}

∣∣∣ ≤ H2. Therefore, we
have:

(58) ≤ exp

(
1

2σ2

(
2
∑

s,a

(
H∑

h=1

rh1{sh=s,ah=a} − r′h1{s′h=s,a′h=a}

)
rs,a + 3H2

))

≤ exp

(
1

2σ2

(
2
√

2H

√∑

s,a

r2
s,a + 3H2

)) (60)

where the last inequality follows from Cauchy-Schwartz. Note that if ||r||2 ≤ σ2ε0
3
√

2H
− 3H

2
√

2
, Eq.

(60) is bounded by exp(ε0/3). Therefore, to finish, we partition RS×A in two subspaces R1 ={
x ∈ RS×A | ||x||2 ≤ c2H

3
√

2ε0
− 3H

2
√

2

}
and R2 =

{
x ∈ RS×A | ||x||2 > c2H

3
√

2ε0
− 3H

2
√

2

}
where we

used the fact that σ = cH/ε0 with c a constant to be chosen later. Then for c2 ≥ 4 ln
(

3
δ1

)
, for δ1 to

be chosen later, P (Y1,X ∈ R2) ≤ δ1 and P (Y1,X′ ∈ R2) ≤ δ1. Thus for Eq. (57):

P
(
∀(s, a), R̃X(s, a) = rs,a | X

)
= P

(
∀(s, a), R̃X(s, a) = rs,a | X

)
1{r−(

∑H
h=1

rh1
{
sh=s,
ah=a

})s,a∈R1}

(61)

+ P
(
∀(s, a), R̃X(s, a) = rs,a | X

)
1{r−(

∑H
h=1

rh1
{
sh=s,
ah=a

})s,a∈R2}

≤ e
ε0
3 P
(
∀(s, a), R̃X′(s, a) = rs,a | X ′

)
1{r−(

∑H
h=1

rh1{sh=s,ah=a
}
)s,a∈R1} (62)

+ P (Y1,X ∈ R2)

≤ exp(ε0/3)P
(
∀(s, a), R̃X′(s, a) = rs,a | X ′

)
+ δ1 (63)

We get the same results for Ñr and Ñp. Then, because (Yi,X(s, a))i≤2,(s,a)∈S×A,
(ZX(s, a, s′))(s,a,s′)∈S×A×S are independent, see Alg. 4 it holds that:

P
(
R̃X = r, Ñr

X = n, Ñp
X = n′ | X

)
= P

(
R̃X = r | X

)
P
(
Ñr
X = n | X

)
P
(
Ñp
X = n′ | X

)

and so,

P
(
M(X) = (r, n, n′) | X

)
= P

(
R̃X = r, Ñr

X = n, Ñp
X = n′ | X

)

= P
(
R̃X = r | X

)
P
(
Ñr
X = n | X

)
P
(
Ñp
X = n′ | X

)

Then for any two trajectories X and X ′, we have:

P
(
R̃X = r | X

)
P
(
Ñr
X = n | X

)
P
(
Ñp
X = n′ | X

)
≤
(
e
ε0
3 P
(
R̃X′ = r | X ′

)
+ δ1

)

×
(
e
ε0
3 P
(
Ñr
X′ = n | X ′

)
+ δ1

)

×
(
e
ε0
3 P
(
Ñp
X′ = n′ | X ′

)
+ δ1

)

≤ eε0P
(
R̃X′ = r | X ′

)
P
(
Ñr
X′ = n | X ′

)
P
(
Ñp
X′ = n′ | X ′

)
+ 2δ1 exp (2ε0/3)

+2δ2
1 exp (ε0/3) + δ3

1
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Thus by choosing δ1 = δ0/8, it holds that 2δ1 exp (2ε0/3) + 2δ2
1 exp (ε0/3) + δ3

1 ≤ δ0 for ε0 ≤ 1,
and so we can conclude that the Gaussian mechanism is (ε0, δ0)-LDP.

In addition, the precision of the Gaussian mechanism is of the same order as the Laplace mechanism,
that is to say:

Proposition 11. The Gaussian mechanism, Alg. 4, with parameter ε0 > 0 and c2 ≥ 4 ln
(

24
δ0

)
for

any δ0 > 0 satisfies Def. 3 for any δ > 0 and k ∈ N? with:

ck,1(ε0, δ0, δ) = ck,2(ε0, δ0, δ) = ck,4(ε0, δ0, δ) = max

{
cH

ε0

√
(k − 1) ln

(
6SA

δ

)
, 1

}

ck,3(ε0, δ0, δ) = max

{
cH

ε0

√
(k − 1)S ln

(
6SA

δ

)
, 1

}

This result shows that using the Gaussian mechanism rather than the Laplace mechanism would not
lead to improved regret rate as the utilities ck,1, ck,2, ck,3, ck,4 have the same depency of S,A,H, ε0

and k . Moreover, the Gaussian mechanism only guarantees LDP for δ > 0 whereas using the Laplace
mechanism ensures that we can guarantee LDP for δ = 0 as well.

Proof of Prop. 11: Following the same steps as in the proof of Prop 8, we have that at the beginning
of episode k with probability at least 1− δ

3SA :
∣∣∣R̃k(s, a)−Rk(s, a)

∣∣∣ =

∣∣∣∣∣
∑

l<k

(R̃Xl(s, a)−RXl(s, a))

∣∣∣∣∣ (64)

=

∣∣∣∣∣
∑

l<k

(
Y1,Xl(s, a) +

H∑

h=1

rh1{sl,h=s,
al,h=a

}
)
−
∑

l<k

H∑

h=1

rh1{sl,h=s,
al,h=a

}
∣∣∣∣∣ (65)

=

∣∣∣∣∣
k−1∑

l=1

Y1,Xl(s, a)

∣∣∣∣∣ ≤ σ
√

2(k − 1) ln

(
6SA

δ

)
(66)

for σ = cH/ε0 thanks to Chernoff bounds. The same result follows for Ñr and Ñp. Therefore, the
Gaussian mechanism satisfies Def. 3 with ck,1(ε0, δ0, δ) = ck,2(ε0, δ0, δ) = ck,4(ε0, δ0, δ) with:

ck,1(ε0, δ0, δ) = max

{
cH

ε0

√
(k − 1) ln

(
6SA

δ

)
, 1

}
(67)

with c > 0 and:

ck,3(ε0, δ0, δ) = max

{
cH

ε0

√
(k − 1)S ln

(
6SA

δ

)
, 1

}
(68)

where ck,3(ε0, δ0, δ) is defined such that
∣∣∣
∑
s′ N

p
k (s, a, s′)−∑s‘ Ñ

p
k (s, a, s′)

∣∣∣ ≤ ck,3(ε0, δ0, δ).

F.2 Randomized Response Mechanism:

The second alternative mechanism we consider is the Randomized Response mechanism. In general,
it is used for discrete data like indicator functions (1{sh=s,ah=a})h,s,a. We therefore use it to privatize
the number of visits of a state-action pair and state-action-next-state tuple for each trajectory. With
the assumption that reward are supported in [0, 1], we can also use this mechanism for privatizing the
cumulative reward of a given trajectory. Contrary to previous ones, the output of the Randomized
Response mechanism is three vectors, two of size H × S × A, and the last one of size (H − 1)×
S ×A× S. We slightly modify the requirements of Def. 3 by changing the size of the output of the
privacy preserving mechanism. We summarize the mechanism in Alg. 5.

Just as for the Gaussian mechanism, we show that Alg. 5 satisfies Def. 3. We begin by showing that
this mechanism satisfies (ε0, 0)-LDP for any ε0 > 0.
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Algorithm 5 Randomized Response mechanism for LDP

Input: Trajectory: X = {(sh, ah, rh) | h ≤ H}, Privacy Parameter: ε0

Draw (Yi,X(s, a))(s,a)∈S×A,i≤2 i.i.d N
(
0, σ2

)
and (ZX(s, a, s′))(s,a,s′)∈S×A×S i.i.d N

(
0, σ2

)

and independent from Yi,X for i ∈ {1, 2} with σ = cH/ε0

for (s, a) ∈ S ×A do
for h = 1, . . . ,H do

Sample Y1,X(h, s, a) ∼ Ber
(
eε0−1
eε0+1rh1{sh=s,ah=a} + 1

eε0+1

)

R̃X(h, s, a) = eε0+1
eε0−1

(
Y1,X(h, s, a)− 1

eε0+1

)

Sample ñrX(h, s, a) ∼ Ber
(
eε0−1
eε0+11{sh=s,ah=a} + 1

eε0+1

)

if h < H then
for s′ ∈ S do

Sample ñpX(h, s, a, s′) ∼ Ber
(
eε0−1
eε0+11{sh=s,ah=a,sh+1=s′} + 1

eε0+1

)

Ñp
X(h, s, a, s′) = eε0+1

eε0−1

(
ñpX(h, s, a, s′)− 1

eε0+1

)

end for
end if

end for
end for
Return: (R̃X , Ñ

r
X , Ñ

p
X) ∈

{
−1

eε0−1 ,
eε0

eε0−1

}HSA
×

{
−1

eε0−1 ,
eε0

eε0−1

}HSA
×

{
−1

eε0−1 ,
eε0

eε0−1

}(H−1)SAS

Proposition 12. For any ε > 0, the Randomized Response mechanism, Alg. 5, with parameter
ε0 = ε/6H is (ε, 0)-LDP.

Proof of Prop. 12: Just as in the proof of Prop. 10 and Prop. 8, let’s consider two trajectories
X = {(sh, ah, rh) | h ≤ H} and X ′ = {(s′h, a′h, r′h) | h ≤ H} and also denote the output of the
private randomizerM byM(X) = (R̃X , Ñ

r
X , Ñ

p
X) andM(X ′) = (R̃X′ , Ñ

r
X′ , Ñ

p
X′).

For a given r ∈
{
−1

eε0−1 ,
eε0

eε0−1

}HSA
(note that by definition of r in Alg. 5, these are the only values

it can take), we have that:

P
(
∀(h, s, a), R̃X(h, s, a) = rh,s,a | X

)
P
(
∀(h, s, a), R̃X′(h, s, a) = rh,s,a | X ′

) =
∏
h,s,a

(
eε0−1
eε0+1

rh1{sh=s,ah=a} + 1
eε0+1

eε0−1
eε0+1

r′h1{s′h=s,a
′
h
=a} + 1

eε0+1

)yrh,s,a
×

×

1−
(
eε0−1
eε0+1

rh1{sh=s,ah=a} + 1
eε0+1

)
1−

(
eε0−1
eε0+1

r′h1{s′h=s,a
′
h
=a} + 1

eε0+1

)
1−yrh,s,a

(69)

where for every (h, s, a) ∈ H × S × A, we define yrh,s,a = eε0−1
eε0+1r + 1

eε0+1 belongs to {0, 1}
because r ∈

{
−1

eε0−1 ,
eε0

eε0−1

}HSA
. Eq. (69) can be rewritten as:

(69) =
∏
h,s,a

(
(eε0 − 1)rh1{sh=s,ah=a} + 1

(eε0 − 1)r′h1{s′h=s,a
′
h
=a} + 1

)yrh,s,a (
eε0 − (eε0 − 1)rh1{sh=s,ah=a}
eε0 − (eε0 − 1)r′h1{s′h=s,a

′
h
=a}

)1−yrh,s,a

(70)
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Then for a given (h, s, a), because rh ∈ [0, 1] we have:

(eε0 − 1)rh1{sh=s,ah=a} + 1

(eε0 − 1)r′h1{s′h=s,a′h=a} + 1
≤





eε0 if 1{sh=s,ah=a} = 1{s′h=s,a′h=a} = 1
1 if 1{sh=s,ah=a} = 1{s′h=s,a′h=a} = 0
eε0 if 1{sh=s,ah=a} = 1 and 1{s′h=s,a′h=a} = 0
1 if 1{sh=s,ah=a} = 0 and 1{s′h=s,a′h=a} = 1

(71)

eε0 − (eε0 − 1)rh1{sh=s,ah=a}
eε0 − (eε0 − 1)r′h1{s′h=s,a′h=a}

≤





eε0 if 1{sh=s,ah=a} = 1{s′h=s,a′h=a} = 1
1 if 1{sh=s,ah=a} = 1{s′h=s,a′h=a} = 0
1 if 1{sh=s,ah=a} = 1 and 1{s′h=s,a′h=a} = 0
eε0 if 1{sh=s,ah=a} = 0 and 1{s′h=s,a′h=a} = 1

(72)

Therefore, we can simplify each term in (70) by:

(eε0 − 1)rh1{sh=s,ah=a} + 1

(eε0 − 1)r′h1{s′h=s,a′h=a} + 1
≤ exp

(
ε0

(
1{sh=s,ah=a} + 1{s′h=s,a′h=a}

))

eε0 − (eε0 − 1)rh1{sh=s,ah=a}
eε0 − (eε0 − 1)r′h1{s′h=s,a′h=a}

≤ exp
(
ε0

(
1{sh=s,ah=a} + 1{s′h=s,a′h=a}

))

Hence, using the two inequalities above:

(70) ≤
∏
h,s,a

exp

yrh,s,aε0
1{

sh=s,
ah=a

} + 1{
s′h=s,
a′h=a

}+ (1− yrh,s,a)ε0

1{
s′h=s,
a′h=a

} + 1{
sh=s,
ah=a

}
=
∏
h,s,a

exp

ε0
1{

sh=s,
ah=a

} + 1{
s′h=s,
a′h=a

}
= exp (2ε0H)

In addition, let’s consider m ∈
{
−1

eε0−1 ,
eε0

eε0−1

}H×S×A
and y = eε0−1

eε0+1m+ 1
eε0+1 ∈ {0, 1}, we then

have that:

P
(
∀(h, s, a), Ñr

X(h, s, a) = mh,s,a | X
)

P
(
∀(h, s, a), Ñr

X′(h, s, a) = mh,s,a | X ′
) =

∏
h,s,a

(
eε0−1
eε0+1

1{sh=s,ah=a} + 1
eε0+1

eε0−1
eε0+1

1{s′
h
=s,a′

h
=a} + 1

eε0+1

)yh,s,a
×

×

1−
(
eε0−1
eε0+1

1{sh=s,ah=a} + 1
eε0+1

)
1−

(
eε0−1
eε0+1

1{s′
h
=s,a′

h
=a} + 1

eε0+1

)
1−yh,s,a

(73)

Which can be rewritten as:

P
(
∀(h, s, a), Ñr

X(h, s, a) = mh,s,a | X
)

P
(
∀(h, s, a), Ñr

X′(h, s, a) = mh,s,a | X ′
) =

∏
h,s,a

(
(eε0 − 1)1{sh=s,ah=a} + 1

(eε0 − 1)1{s′
h
=s,a′

h
=a} + 1

)yh,s,a
×

×
(
eε0 − (eε0 − 1)1{sh=s,ah=a}
eε0 − (eε0 − 1)1{s′

h
=s,a′

h
=a}

)1−yh,s,a
(74)

Thus for a given (h, s, a):

(eε0 − 1)1{sh=s,ah=a} + 1

(eε0 − 1)1{s′h=s,a′h=a} + 1
=





1 if 1{sh=s,ah=a} = 1{s′h=s,a′h=a}
eε0 if 1{sh=s,ah=a} = 1 and 1{s′h=s,a′h=a} = 0
e−ε0 if 1{sh=s,ah=a} = 0 and 1{s′h=s,a′h=a} = 1

(75)

eε0 − (eε0 − 1)1{sh=s,ah=a}
eε0 − (eε0 − 1)1{s′h=s,a′h=a}

=





1 if 1{sh=s,ah=a} = 1{s′h=s,a′h=a}
e−ε0 if 1{sh=s,ah=a} = 1 and 1{s′h=s,a′h=a} = 0
eε0 if 1{sh=s,ah=a} = 0 and 1{s′h=s,a′h=a} = 1

(76)
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Therefore, here again we can simplify each term in (74) by:

(eε0 − 1)1{sh=s,ah=a} + 1

(eε0 − 1)1{s′h=s,a′h=a} + 1
≤ exp

(
ε0

(
1{sh=s,ah=a} − 1{s′h=s,a′h=a}

))

eε0 − (eε0 − 1)1{sh=s,ah=a}
eε0 − (eε0 − 1)1{s′h=s,a′h=a}

≤ exp
(
ε0

(
1{sh=s,ah=a} − 1{s′h=s,a′h=a}

))

Therefore:

(74) =
∏
h,s,a

exp

yh,s,aε0
1{

sh=s,
ah=a

} − 1{
s′h=s,
a′h=a

}+ (1− yh,s,a)ε0

1{
s′h=s,
a′h=a

} − 1{
sh=s,
ah=a

}
=
∏
h,s,a

exp
(

(2yh,s,a − 1)ε0
(
1{sh=s,ah=a} − 1{s′h=s,a′h=a}

))
≤ exp (2ε0H)

Using the same reasonning we have that for any m′ ∈
{
− 1
eε0−1 ,

eε0

eε0−1

}(H−1)×S×A×S
:

P
(
∀(h, s, a, s′), Ñp

X(h, s, a, s′) = m′h,s,a,s′ | X
)

P
(
∀(h, s, a, s′), Ñp

X′(h, s, a, s
′) = m′h,s,a,s′ | X ′

) ≤ exp(2ε0H) (77)

We conclude the proof the same way as the proof of Prop. 7.

In addition, the precision ck,1, ck,2, ck,3 and ck,4 of the Randomized Response mechanism are still of
order

√
k just as the Gaussian and Laplace mechanisms. Contrary to any of those two, the dependence

is exponential on ε0 which is closer to the lower bound of Sec. 3. Indeed, we have an additional
factor S for ck,3 compared to the other mechanisms but those terms scale with 1/(eε0 − 1) instead of
the worse dependency 1/ε.
Proposition 13. The Randomized Response mechanism, Alg. 5, with parameter ε0 > 0 satisfies
Def. 3 for any δ > 0 and k ∈ N? with:

ck,1(ε0, δ) = ck,2(ε0, δ) = max

{
1,

2eε0 − 1

eε0 − 1

√
(k − 1)H

2
ln

(
4SA

δ

)}

ck,3(ε0, δ) = max

{
1,
S(2eε0 − 1)

eε0 − 1

√
(k − 1)H

2
ln

(
4SA

δ

)}

ck,4(ε0, δ) = max

{
1,

2eε0 − 1

eε0 − 1

√
(k − 1)H

2
ln

(
4S2A

δ

)}

Proof of Prop. 13: Let’s consider a given state-action-next state tuple, (s, a, s′), then when summing
over h:
∣∣∣∣∣
H∑

h=1

Ñr
k (h, s, a)−

∑

l<k

H∑

h=1

1{sl,h=s,al,h=a}

∣∣∣∣∣ =

∣∣∣∣∣
H∑

h=1

∑

l<k

Ñr
Xl

(h, s, a)− 1{sl,h=s,al,h=a}

∣∣∣∣∣ (78)

We now construct a filtration (Fk,h)k,h such that (Ñr
Xl

(h, s, a) − 1{sl,h=s,al,h=a})l,h is
a Martingale Difference Sequence. For an episode k and step h, define Fk,h =
σ({(sl,j , al,j , rl,j)j≤H ,M((sl,j , al,j , rl,j)j≤H)} | l < k} ∪ {(sk,j , ak,j , rk,j)j≤h}) to be the fil-
tration that contains the history before episode k. Then 1{sk,h=s,ak,h=a} is Fk,h-measurable and
thus we have:

E
(
Ñr
Xk

(h, s, a)− 1{sk,h=s,ak,h=a} | Fk,h
)

=
eε0 + 1

eε0 − 1

(
E (ñXk(h, s, a) | Fk,h)− 1

eε0 + 1

)

−1{sk,h=s,ak,h=a} = 0
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where ñXk(h, s, a) is a Randomized Response random variable generated by Alg. 5 for each step h,
state s, action a and trajectory Xk. And

∣∣∣Ñr
Xk

(h, s, a)− 1{sk,h=s,ak,h=a}
∣∣∣ ≤ 2eε0−1

eε0−1 . Then thanks
to Azuma-Hoeffding inequality we have that with probability at least 1− δ/(4SA):

∣∣∣∣∣
H∑

h=1

Ñr
k (h, s, a)−

∑

l<k

H∑

h=1

1{sl,h=s,al,h=a}

∣∣∣∣∣ ≤
2eε0 − 1

eε0 − 1

√
(k − 1)H

2
ln

(
4SA

δ

)
(79)

With the same reasonning, we have with probability at least 1− δ/4S2A:∣∣∣∣∣
H∑
h=1

Ñp
k (h, s, a, s′)−

∑
l<k

H−1∑
h=1

1{sl,h=s,al,h=a,sl,h+1=s
′}

∣∣∣∣∣ ≤ 2eε0 − 1

eε0 − 1

√
(k − 1)H

2
ln

(
4S2A

δ

)
(80)

Also, we have:
∣∣∣∣∣
H∑

h=1

R̃rk(h, s, a)−
∑

l<k

H∑

h=1

rh1{sl,h=s,al,h=a}

∣∣∣∣∣ ≤
2eε0 − 1

eε0 − 1

√
(k − 1)H

2
ln

(
4SA

δ

)
(81)

with R̃rk(h, s, a) =
∑
l<k R̃Xl . Finally, with probability at least 1− δ/4SA:∣∣∣∣∣∣∣

H∑
h=1

∑
s′

Ñp
k (h, s, a, s′)−

∑
s′

∑
l<k

H−1∑
h=1

1{sl,h=s,
al,h=a,

sl,h+1=s
′

}
∣∣∣∣∣∣∣ ≤

S(2eε0 − 1)

eε0 − 1

√
(k − 1)H

2
ln

(
4SA

δ

)
(82)

Compared to the bounds we derived for previous mechanisms there is an additional factor
√
S. This

comes from using a triangular inequality instead of using concentration inequalities like in previous
mechanisms. Then thanks to a union bound over the state-action pair and the state-action-next state
tuple we have that the Randomized Response mechanism satisfies Def. 3 with:

ck,1(ε0, δ) = ck,2(ε0, δ) = max

{
1,

2eε0 − 1

eε0 − 1

√
(k − 1)H

2
ln

(
4SA

δ

)}
(83)

ck,3(ε0, δ) = max

{
1,
S(2eε0 − 1)

eε0 − 1

√
(k − 1)H

2
ln

(
4SA

δ

)}
, (84)

ck,4(ε0, δ) = max

{
1,

2eε0 − 1

eε0 − 1

√
(k − 1)H

2
ln

(
4S2A

δ

)}
(85)

F.3 Bounded Noise Mechanism for DP:

Recently, [40] showed how to construct a differential privacy with an almost surely bounded noise
mechanism. This mechanism,M, computes an (ε, δ)-DP approximation of the average of a dataset
D = {x1, . . . , xn} ⊂ Rn×k, for any ε > 0 and δ ∈ [exp(−k/ log(k)8), 1/2] (see Theorem 1.1 in
[40]). In the local differentially private setting in RL, we apply this bounded noise mechanism to
each user k in order to compute the cumulative reward for each state-action (s, a), the number of
visits to (s, a) and the number of visits to state-action-next state tuple (s, a, s′).

This noise mechanism is similar to the Laplace or Gaussian mechanism and add a noise drawn from a
well-chosen distribution, µDE,R supported on (−R,R) for any R, whose density at η ∈ (−R,R) is:

exp(−fDE,R(η))

ZDE,R
with fDE,R(η) = exp

(
R2

R2 − η2

)
and ZDE,R =

∫ R

−R
e−fDE,R(η)dη (86)

[40] shows that when taking δ ≥ exp(−k/ log(k)8) and ε ∈ (0, 1) there exists a universal constant

C > 0 such that when taking R = C
εn

√
k log

(
1
δ

)
adding noise from µDE,R ensures (ε, δ)-DP to the

average of n data of dimension k.

Similarly to the previous mechanisms we studied we can show the following proposition, which
states the parameter we need to use to ensure (ε, δ)-DP.
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Algorithm 6 Bounded Noise Mechanism for LDP

Input: Trajectory: X = {(sh, ah, rh) | h ≤ H}, Privacy Parameter: ε, δ, Constant: C
Set R1 = C

ε

√
SA ln(1/δ) and R2 = CS

ε

√
A ln(1/δ)

for (s, a) ∈ S ×A do
Sample Y1,X(s, a) ∼ µDE,R1

R̃X(s, a) = Y1,X(s, a) +
∑H
h=1 rh1{sh=s,ah=a}

Sample ñrX(s, a) ∼ µDE,R1

Ñr
X(s, a) = ñrX(s, a) +

∑H
h=1 1{sh=s,ah=a}

for s′ ∈ S do
Sample ñpX(s, a, s′) ∼ µDE,R2

Ñp
X(s, a, s′) = ñrX(s, a, s′) +

∑H−1
h=1 1{sh=s,ah=a,sh+1=s′}

end for
end for
Return: (R̃X , Ñ

r
X , Ñ

p
X) ∈ RS×A × RS×A × RS×A×S

Proposition 14. For any ε ∈ (0, 1), δ0 ≥ exp(−SA/ log(SA)8) and δ1 ≥ exp(−S2A/ log(S2A)8)

then the bounded noise mechanism, Alg. 6, is (3Hε, δ′)-LDP with δ′0 = δ0
eHε−1
eε−1 , δ′1 = δ1

eHε−1
eε−1 and

δ′ = δ′1e
2Hε + 2δ′0e

2Hε + 2δ′0δ
′
1e
Hε + (δ′0)2eHε + (δ′0)2δ′1.

Proof. of Prop. 14

For any ε ∈ (0, 1) and δ0 ≥ exp(−SA/ log(SA)8), for any r ∈ RS×A and two trajectories X =

{(sh, ah, rh)h≤H} and X ′ = {(s′h, a′h, r′h)h≤H} let’s define RX(s, a) =
∑H
h=1 rh1{sh=s,ah=a}

the cumulative reward in state-action (s, a) associated to trajectory X . Finally, let’s define for a set
of indexes I ⊂ [H]K the new trajectory XI where for h ∈ I , (XI)h = (sh, ah, rh) and for h 6∈ I ,
(XI)h = (s′h, a

′
h, r
′
h). Therefore, using Theorem 3.2 from [40], we have that for I = [H − 1]K and

R̃X defined as in Alg. 6,

P
(
R̃X = r

)
≤ exp(ε)P

(
R̃XI = r

)
+ δ0 (87)

≤ exp(ε)
(

exp(ε)P
(
R̃X[H−2]

= r
)

+ δ0

)
+ δ0 (88)

Therefore repeating the same argument H times, we have that:

P
(
R̃X = r

)
≤ exp(Hε)P

(
R̃X′ = r

)
+ δ0

H−1∑

h=0

exp(hε) (89)

= exp(Hε)P
(
R̃X′ = r

)
+ δ0

exp(Hε)− 1

exp(ε)− 1
(90)

In addition, we have with the same reasoning that for any n ∈ RS×A and np ∈ RS×A×S that:

P
(
Ñr
X = n

)
≤ exp(Hε)P

(
ÑX′ = n

)
+ δ0

exp(Hε)− 1

exp(ε)− 1
(91)

and for any δ1 ≥ exp(−S2A/ log(S2A)8):

P
(
Ñp
X = np

)
≤ exp(Hε)P

(
Ñp
X′ = np

)
+ δ1

exp(Hε)− 1

exp(ε)− 1
(92)
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Therefore we have that:

P
(
R̃X = r, Ñr

X = n, Ñp
X = np | X

)
= P

(
R̃X = r | X

)
P
(
Ñr
X = n | X

)
P
(
Ñp
X = np | X

)
≤
(
eHεP

(
R̃X′ = r

)
+ δ0

eHε − 1

eε − 1

)(
eHεP

(
ÑX′ = n

)
+ δ0

eHε − 1

eε − 1

)
×

×
(
eHεP

(
Ñp
X′ = np

)
+ δ1

eHε − 1

eε − 1

)
≤ e3HεP

(
R̃X′ = r, Ñr

X′ = n, Ñp
X′ = np

)
+ δ′1e

2HεP
(
R̃X′ = r

)
P
(
Ñr
X′ = n

)
+ δ′0e

2HεP
(
Ñp
X′ = np

)(
P
(
Ñr
X′ = n

)
+ P

(
R̃X′ = r

))
+ δ′0δ

′
1e
Hε
(
P
(
Ñr
X′ = n

)
+ P

(
R̃X′ = r

))
+ (δ′0)2eHεP

(
Ñp
X′ = np

)
+ (δ′0)2δ′1

with δ′0 = δ0
eHε−1
eε−1 and δ′1 = δ1

eHε−1
eε−1 . Therefore, we have that the mechanism is (3Hε, δ′)-LDP

that is to say:

P
(
R̃X = r, Ñr

X = n, Ñp
X = np | X

)
≤ e3HεP

(
R̃X′ = r, Ñr

X′ = n, Ñp
X′ = np

)
+ δ′1e

2Hε

+ 2δ′0e
2Hε + 2δ′0δ

′
1e
Hε + (δ′0)2eHε + (δ′0)2δ′1

with δ′0 = δ0
eHε−1
eε−1 , δ′1 = δ1

eHε−1
eε−1 and δ′ = δ′1e

2Hε + 2δ′0e
2Hε + 2δ′0δ

′
1e
Hε + (δ′0)2eHε +

(δ′0)2δ′1.

In addition, because the noise is bounded we can apply standard sub-gaussian concentration inequali-
ties to show that Alg. 6 satisfies Def. 1.
Proposition 15. The bounded noise mechanism, Alg. 6, with parameter ε0 > 0 satisfies Def. 3 for
any δ > 0 and k ∈ N? with:

ck,1(ε0, δ) = ck,2(ε0, δ) = R

√
2(k − 1) ln

(
6SA

δ

)

ck,3(ε0, δ) = R2

√
2S(k − 1) ln

(
6S2A

δ

)

ck,4(ε0, δ) = R2

√
2(k − 1) ln

(
6S2A

δ

)

with R = 1
ε

√
SA ln(1/δ0) and R2 = S

ε

√
A ln(1/δ0)

Proof. of Prop. 15 For any δ > 0 and at the beginning of episode k, we have thanks to Hoeffding
inequality that with probability at least 1− δ

3SA for any state-action (s, a) ∈ S ×A:

∣∣∣R̃k(s, a)−Rk(s, a)
∣∣∣ =

∣∣∣∣∣
k−1∑

l=1

Y1,Xl(s, a)

∣∣∣∣∣ ≤ R
√

2(k − 1) ln

(
6SA

δ

)
(93)

with (Y1,Xl(s, a))l≤k−1 are i.i.d distributed according to µDE,R1 . With the same reasonning, we have
that with probability at least 1− δ

3SA :

∣∣∣Ñr
k (s, a)−Nr

k (s, a)
∣∣∣ =

∣∣∣∣∣
k−1∑

l=1

ñrXl(s, a)

∣∣∣∣∣ ≤ R
√

2(k − 1) ln

(
6SA

δ

)
(94)

Finally, still using Hoeffding inequality, and definning R2 = CS
ε

√
A ln(1/δ), we have that with

probability at least 1− δ
3S2A :

∣∣∣∣∣Ñ
p
k (s, a, s′)−

∑

l<k

H−1∑

h=1

1{sl,h=s,al,h=a,sl,h+1=s′}

∣∣∣∣∣ ≤ R2

√
2(k − 1) ln

(
6S2A

δ

)
(95)
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And finally with probability at least 1− δ
3SA :∣∣∣∣∣∑

s′∈S

Ñp
k (s, a, s′)−

∑
s′∈S

∑
l<k

H−1∑
h=1

1{sl,h=s,al,h=a,sl,h+1=s
′}

∣∣∣∣∣ ≤ R2

√
2S(k − 1) ln

(
6S2A

δ

)
(96)

F.4 Experimental Results:

We show empirical results for three mechanisms discussed in the RandomMDP environment in
Figures 4, 5 and 6.
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Figure 4: ε = 0.2 and δ = 0.1 (only for the
Gaussian and bounded noise mechanism)
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Figure 5: ε = 2 and δ = 0.1 (only for the
Gaussian and bounded noise mechanism)
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Figure 6: ε = 20 and δ = 0.1 (only for the Gaussian and bounded noise mechanism)

As we have seen in Fig. 1, the LDP constraint has a significant impact on the regret especially as ε
decreases. In particular for ε = 0.2, LDP-OBI-L, LDP-OBI-G, LDP-OBI-RR, LDP-OBI-BND
have not reached the usual square root growth phase of the regret usually seen in UCB-VI or other
regret minimizing algorithm.

From figures 4, 5 and 6, we can observe that the bounded noise mechanism has a lower impact on
the regret compared to the Laplace, Gaussian and Randomized Response mechanisms. However,
this benefit does not appear in the regret bound of Table 1. This suggests that the regret analysis of
Sec. 4.3 may be improved to show this empirically observed advantage.

G Posterior Sampling for Local Differential Privacy

The Posterior Sampling for Reinforcement Learning algorithm [PSRL, 12] is a Thompson Sampling
based algorithm for Reinforcement Learning. It works by maintaining a Bayesian posterior distribu-
tion over MDPs. We focus on a particular instantiation of PSRL where for each state-action pair
(s, a) we have an independent Gaussian prior for the reward distribution and a Dirichlet prior for the
transition dynamics. With those priors, the posterior distributions are Normal-Gamma and Dirichlet
distributions.

Let α0(s, a) denote the parameters of the prior distribution over the transition dynamics, so the
prior is given by Dir(α0(s, a)). In addition, let µ0(s, a) ∈ R, λ0(s, a) ∈ R?+, ν0(s, a) ∈ R?+
and β0(s, a) ∈ R?+ be the parameters of the Normal-Gamma prior distribution that we place on the
rewards. Then, at the beginning of episode k and for a given pair (s, a) ∈ S×A, let αk(s, a) ∈ (R?+)S

be such that the posterior distribution over the transition dynamics is Dir(αk(s, a)). We then define
µk(s, a) ∈ R, λk(s, a) ∈ R?+, νk(s, a) ∈ R?+ and βk(s, a) ∈ R?+ to the parameters of the Normal-
Gamma posterior distributions. Using standard results from Bayesian Learning we have that, for all
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Figure 7: Evaluation of LDP-PSRL in the RandomMDP environment. Left) Cumulative regret.
Right) per-step regret (k 7→ Rk/k). Results are averaged over 20 runs and the the confidence intervals
are the minimum and maximum runs. While the regret looks almost linear for ε = 0.2, the decreasing
trend of the per-step regret shows that the algorithms are learning.

state s′ ∈ S:

αk(s, a) = α0(s, a) +Nk(s, a, s′) (97)
λk(s, a) = λ0(s, a) +Nk(s, a) (98)

νk(s, a) = ν0(s, a) +
Nk(s, a)

2
(99)

µk(s, a) =
λ0(s, a)µ0(s, a) +Nk(s, a)R̂k(s, a)

λ0(s, a) +Nk(s, a)
(100)

βk(s, a) = β0(s, a) +
1

2
V̂ar(R(s, a)) +

Nk(s, a)λ0(s, a)

2(λ0(s, a) +Nk(s, a))

(
R̂k(s, a)− µ0(s, a)

)2
(101)

where α0, µ0, λ0, ν0, β0 are prior parameters provided at the beginning of the algorithm. We denote
by Nk(s, a), the number of visits to the state-action pair (s, a), Nk(s, a, s′) the number visits to
(s, a, s′), R̂k(s, a) the average reward observed for (s, a) and V̂ar(R(s, a)) the empirical variance for
(s, a).

At each episode k, PSRL samples an MDP from the posterior distributions, then computes the
optimal policy and executes it in the true MDP. [12] showed that the Bayesian regret of this algorithm
is bounded by Õ

(
HS
√
AT
)

.

Locally Differentially Private Posterior Sampling for Reinforcement Learning: We now dis-
cuss how to adapt PSRL to ensure it is locally differentially private. Def. 1 states that LDP is ensured
at the collection time of trajectories therefore it is enough for us to design a LDP posterior sampling
algorithm which takes as input the trajectories outputted by a mechanism similar to Alg. 3. Here,
we use the LDP mechanism to pertub the statistics used to define the parameters of the posterior
distribution in PSRL. More precisely, we replace the aggregate counts in Eqs. 97-101 by noisy counts
provided by an LDP mechanism. In order to do this, we need to modify the initial values of those
parameters to guarantee they are non-negative.

In this appendix, we assume that the privacy-preserving mechanism M is such that for a given
trajectory X ,M(X) = (R̃X , R̃2,X , Ñ

r
X , Ñ

p
X) where R̃X , R̃2,X , Ñ

r
X and Ñp

X are noisy version of
the following aggregate statistics:

RX(s, a) =

H∑

h=1

rh1{sh=s,ah=a}, R2,X(s, a) =

H∑

h=1

r2
h1{sh=s,ah=a}

Nr
X(s, a) =

H∑

h=1

1{sh=s,ah=a}, Np
X(s, a, s′) =

H−1∑

h=1

1{sh=s,ah=a,sh+1=s′}

In particular, R̃X , Ñr
X and Ñp

X are defined as for the optimistic algorithm in Section 4.1 and R̃2,X is
a privatized version of R2,X(s, a) =

∑H
h=1 r

2
h1{sh=s,ah=a} for a trajectory X .s
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Algorithm 7 LDP-PSRL

Input: Initial values: α0, µ0, λ0, ν0 and β0

for episodes k = 1, . . . ,K do
Draw empirical MDP, θk from the posterior and compute πk as the optimal policy for MDP θk
User uk executes policy πk, collect trajectory Xk = {(sk,h, ak,h, rk,h) | h ≤ H}
Update noisy counts with (R̃Xk(s, a), R̃Xk,2(s, a), Ñr

Xk
(s, a), Ñp

Xk
(s, a)) and posterior distri-

bution
end for

The posterior updates we use in LDP-PSRL are then for all s′ ∈ S:

α̃k(s, a) = α0(s, a) + Ñp
k (s, a, s′)

µ̃k(s, a) =
λ0(s, a)µ0(s, a) + R̃k(s, a)

λ0(s, a) + Ñr
k (s, a)

λ̃k(s, a) = λ0(s, a) + Ñr
k (s, a)

ν̃k(s, a) = ν̃0(s, a) +
Ñr
k (s, a)

2

β̃k(s, a) = β0(s, a) +
λ0(s, a)Ñr

k (s, a)µ2
0(s, a)− R̃2

k(s, a)

2(λ0(s, a) + Ñr
k (s, a))

+
1

2

∑
l≤k−1

R̃2,l − µ0(s, a)R̃k(s, a)

λ0(s, a) + Ñr
k (s, a)

(102)

In the following, we choose the Laplace mechanism as our privacy-preserving mechanism
for LDP-PSRL, although we believe that it should be possible to use one of the other
mechanisms we discussed. For each trajectory X , we add independent Laplace variables to
(RX(s, a), RX,2(s, a), Nr

X(s, a), Np
X(s, a)) with parameter 8H/ε. Following the same argument

outlined in the proof of Thm. 7, we can show that this privacy-preserving mechanism is (ε, 0)-LDP.

To ensure positivity, by concentration of Laplace variables we set the initial values of the parameters
of the posterior distributions to:

α0(s, a, s′) = max{
√
KS, ln(6S2A/δ)}

√
8 ln (6S2A/δ)

ε0
(103)

µ0(s, a) = 0 (104)

λ0(s, a) = max{
√
K, ln(6SA/δ)}

√
8 ln (6SA/δ)

ε0
(105)

ν0(s, a) = max{
√
K, ln(6SA/δ)}

√
8 ln (6SA/δ)

ε0
(106)

β0(s, a) = 5 max{
√
K, ln(6SA/δ)}

√
8 ln (6SA/δ)

ε0
(107)

where K is the total number of episodes. The pseudocode of LDP-PSRL is reported in Alg. 7.

Empirical results We show empirical results for the LDP-PSRL algorithm in the RandomMDP
environment in Figure 7. While we have shown that this algorithm is ε-LDP and empirically
outperforms optimistic approaches, we leave the regret analysis to future work.

H Additional Experiment

In this section, we explore a second experiment, in which we use the same the RandomMDP
environment with the same parameters as in Sec. 6 in order to investigate the effect of differ-
ential privacy on the learning process. For this, we run the UCB-VI algorithm for K = 103

episodes and collect the aggregate noisy statistics, (R̃K(s, a))(s,a)∈S×A, (Ñr
K(s, a))(s,a)∈S×A and
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(Ñp
K(s, a, s′))(s,a,s′)∈S×A×S that have been generated by using the Laplace mechanism for each

episode. We collect those statistics, 103 times. We compare the histogram of those noisy statistics to
that of the noiseless statistics used by UCB-VI in Fig. 8. This demonstrates that, as expected, there
is much more variation in the statistics provided by the private mechanism. In Fig. 9, we applied the
Laplace mechanism to two different random trajectories, X and X ′. We can see that, after applying
the Laplace mechanism, the two distinct trajectories become almost indistinguishable. These two
figures combined demonstrate the difficulty of learning from locally differentially private data.

I Privacy Amplification by Shuffling in RL

In recent years, the shuffle model for privacy [16, 17, 18, 19, 20, 45] has attracted a lot of attention
thanks its amplification property tof the differential privacy guarantees of locally differential data.

In this model of privacy, we consider n users equipped with a local differential privacy mechanism,
each user submits a locally private report to a random shuffler which computes a random permutation
of the users’ reports. Those randomly shuffled reports are then sent to a analyzer which computes
functions of interests based on them. This setting was first introduced in [57] and was named the
ESA model (Encode-Shuffle-Analyze) and motivated by need for anonymous data collection. [45]
later provided an analysis of the amplification of privacy thanks to the combined use of shuffling and
local differential privacy showing that the shuffling model of privacy is able to strike a middle ground
between the totally decentralized but somewhat sample inefficient local model and the centralized
but more sample efficient central model of privacy.

The shuffling model has then been refined to study the impact on the size of the reports sent by
users, i.e., how the accuracy of a shuffling protocol can be improved when user are allowed to have
higher communication threshold [16, 58]. It has also been studied for different analyzer function,
for instance histograms [59] or summation [16, 19], obtaining optimal protocol with better accuracy
and lesser communication costs (i.e., the number of messages or the size of those messages sent
by a user). Finally, the shuffle model has inspired a privacy amplification algorithm for learning in
distributed setting without server-initiated communication [19].

Overall, the most attractive feature of this privacy model is that it offers a smooth transition in terms
of privacy/utility tradeoff between stringent LDP requirements and differential privacy requirements
(see [17] for an example of this transition in the problem of estimating a distribution).

Formally, in our RL setting each episode k represents a user uk which completes a trajectory Xuk in
the MDP. The user computes a locally private version of its trajectory thanks to a privacy-preserving
mechanismM. The resultM(Xuk) is passed to a shufflerR. This shuffler stores all the previous
privatized trajectories before the current episode k, (M(Xul))l<k, computes a random permutation
σ : [k − 1]→ [k − 1] and sends the permuted set of privatized trajectories, (M(Xuσ(l)))l≤k−1 to an
RL algorithm like LDP-OBI. This interaction protocol is detailed in Alg. 8.
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Algorithm 8 Shuffling Protocol

Input: number of episodes K, horizon H , failure probability δ ∈ (0, 1), bias α > 1, private
randomizerMsh with LDP parameters (ε0, δ0)
for k = 1 to K do

ShufflerR sends (Msh(Xuσk(l)
))l≤k−1 with σk a random permutatioon at each episode

LDP-OBI computes policy πk based on (Msh(Xuσk(l)
))l≤k−1

User uk executes policy πk in the environment, collects trajectory Xk =
{(sk,h, ak,h, rk,h)h≤H} and sends the privatized trajectoryMsh(Xk) toR

end for

Algorithm 9 Local randomizer R0/1
p

Input: randomization probability: p ∈ [0, 1], x ∈ {0, 1}
Let b ∼ Ber(p)
if b = 0 then

Return x
else

Return Ber(1/2)
end if

In the specific case of RL, thanks to [9] we know that any regret minimizing algorithm using (ε, δ)-DP
counters, like (Np

k )k≤K is (ε, δ)-joint differentially private.

I.1 Privacy-preserving mechanismMsh

A trajectory Xu := {(sh, ah, rh) | h ≤ H} is a sequence of H states, actions and rewards. In order
to build a model of the MDP, LDP-OBI uses counters of the numbers of occurrences of each tuple of
state-action (s, a) and state, actions and next-state (s, a, s′). We adapt to the RL setting, the algorithm
for bit-sum protocol presented in [16]. The first step of the processMsh is to apply a one-hot encoding
the trajectory for each state-action. Let x ∈ {0, 1}H×S×A and y ∈ {0, 1}(H−1)×S×A×S such that
for each (s, a, s′) ∈ S ×A× S

∀h ∈ J1, HK, xh,s,a = 1{sh=s,ah=a}, and yh,s,a,s′ = 1{sh=s,ah=a,sh+1=s′} (108)

To encode the reward, we first compute the reward for each state-action pair,(
rh1{sh=s,ah=a}

)
(h,s,a)∈J1,HK×S×A then given a parameter m ∈ N? for each state-action

pair (s, a), we compute bh,s,a ∈ {0, 1}m such that for j ∈ J1,mK:

(bh,s,a)j =

{
1 if j < µh,s,a

Ber (ph,s,a) if j = µh,s,a
0 if j > µh,s,a

(109)

with µh,s,a =
⌈
mrh1{sh=s,ah=a}

⌉
and ph,s,a = mrh1{sh=s,ah=a} − µh,s,a + 1.

It is a well known result, [16] that Alg. 9 with parameter p guarantees ln(2/p− 1) differential privacy.
Finally, the privacy-preserving mechanismMsh is described by Alg. 10.

Using standard analysis, we can show that this local mechanism R
0/1
p is roughly Hε-LDP for any

ε > 0.Upon receiving the shuffled privatized, the algorithm LDP-OBI computes the different counts
(Ñp

k (s, a, s′))(s,a,s′), (Ñr
k (s, a))(s,a) and (R̃k(s, a))(s,a). For any (s, a, s′) ∈ S ×A× S , we define

Algorithm 10 Privacy-preserving mechanismMsh

Input: trajectory τ = {(sh, ah, rh)h≤H}, privacy parameter ε > 0, parameter m ∈ N?
Compute x and y as in Eq. (108) and (bh,s,a)(s,a)∈S×A as in Eq. (109)
Set p = 2

exp(ε)+1

Return (R
0/1
p (xh,s,a))(h,s,a), (R

0/1
p (yh,s,a,s′))(h,s,a,s′) and ((R

0/1
p ((bh,s,a)j)j≤m)(h,s,a)
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the counters as:

Ñr
k (s, a) =

1

1− p

(
k−1∑

l=1

H∑

h=1

[
R0/1
p (xh,s,a)− p

2

])
(110)

Ñp
k (s, a, s′) =

1

1− p

(
k−1∑

l=1

H∑

h=1

[
R0/1
p (yh,s,a,s′)−

p

2

])
(111)

R̃rk(s, a) =
1

m(1− p)




m∑

j=1

k−1∑

l=1

H∑

h=1

[
R0/1
p ((bh,s,a)j)−

p

2

]

 (112)

Therefore, thanks to Claim 4.6 of [16], we have at the beginning of episode k,(Ñr
k (s, a))(s,a) and

(Ñp
k (s, a, s′))(s,a,s′) are (εk,c, δ0)-DP with any δ0 > 0 and:

εk,c =
32 log(4/δ0)/

√
(k − 1)H√

p−
√

2p log(2/δ0)
(k−1)H

(
1−

(
p−

√
2p log(2/δ0)

(k − 1)H

))
(113)

with p ∈
[

14
(k−1)H log(4/δ0), 1

]
. But we have that with probability at least 1− δ, for any δ > 0, that:∣∣∣∣∣

k−1∑
l=1

H∑
h=1

1{sl,h=s,al,h=a} − Ñ
r
k (s, a)

∣∣∣∣∣ ≤ 1

1− p

(√
(k − 1)Hp(1− p/2) ln(1/δ) +

2 ln(1/δ)

3

)
∣∣∣∣∣∣∣
k−1∑
l=1

H−1∑
h=1

1{sk,h=s,
ak,h=a

,sk,h+1=s
′

} − Ñp
k (s, a, s′)

∣∣∣∣∣∣∣ ≤
1

1− p

(√
(k − 1)Hp(1− p/2) ln(1/δ) +

2 ln(1/δ)

3

)

The same type of result of result holds for the cumulative reward in each state-action pair (s, a),
albeit some small technical difficulties due the estimated sum being in R and not an integer contrary
to the counters for the number of visits.

I.2 Impact on the Regret

We have mentioned that thanks to the shuffling mechanism the counters (R̃k(s, a))(s,a),
(Ñr

k (s, a))(s,a), (Ñp
k (s, a, s′))(s,a,s′) enjoy a (εc, δ)-DP guarantee, in addition to the ε0-LDP guaran-

tee. But the utility bound in the last subsection highlights that for a strict constraint on the level of
local differential privacy the utility of each counters is of order

√
kH

exp(ε0)−1 therefore using Thm. 5, the

regret of LDP-OBI coupled withMsh is bounded with high probability by H2S2A
√
KH

exp(ε0/H)−1 . This result
is similar to the result of [17] of Sec. 5.1 about density estimation where the shuffle model recovers
the known rate of convergence of O(1/ε

√
n) under an ε-LDP constraint with n samples.

However, in the reinforcement learning setting the shuffle model might allow to interpolate between
LDP setting presented in this paper and the joint differential privacy setting of [7, 9]. One difficulty
here being that because each user interacts only once with the RL algorithm the probability used
by the local randomizer R0/1

p ha to be dependent on the number of previous episode to ensure a
good (ε, δ)-JDP guarantee. In other words, for the very first episodes the privacy amplification of the
shuffle model is negligible therefore the privacy parameter for those early users has to be stronger
than for the latter ones which are somewhat hidden by the crowd. Albeit this minor issue, a good
choice of the probabilities (pi)k≤K may be able to guarantee (ε, δ)-JDP (for any ε > 0 and δ > 0)
and a regret of order O(

√
K + log(K)

ε ).
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