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Abstract

Statistical inference in the presence of missing outcome data is an inevitability in almost
any application such as those in the social sciences or medical research. However,
the quality of inference in these settings rests on strong but unfortunately untestable
assumptions on the missingness mechanism. In order to ensure that inference is
reliable, Sensitivity Analysis is a necessary step to assess robustness against violations
of untestable assumptions. Using motivating examples from Facebook conversion data,
we present methodology for conducting an E-value based Sensitivity Analysis at scale
with three novel contributions. First, we develop a means for the Bayesian estimation of
sensitivity parameters from privacy focused noisy aggregates with empirically derived
and objective priors. Second, resting on the estimation of the sensitivity parameters we
develop a mechanism for posterior inference via simulation of the E-value. Finally, we
derive closed form distributions for the E-value (under a range of assumptions) to make
direct inference possible for cases where posterior simulation may be infeasible due to
computational constraints. We demonstrate gains in performance over asymptotic
inference of the E-value using a data-based simulation supplemented by a case-study
on partially missing Facebook conversion data.

Keywords: Sensitivity Analysis; E-value; Missing data; Empirical Bayes

1 Introduction

An increasing number of statistical methods have been developed to handle missing data;
an inevitability in applications such as those in the social sciences and medical research.
Some of these methods are ad hoc solutions relying on strong assumptions about the
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missingness mechanism that are implausible in practice, such as the analysis of complete
cases. Model-based approaches such as multiple imputation (MI) and inverse probability
weighting (IPW) are proposed to deal with missing data problems under less restrictive
assumptions. Both techniques leverage the Missing At Random (MAR) assumption on
the missingness mechanism which states that missingness is random conditional on the
observed features.

While it is reasonable to assume MAR, the possibility of data being Missing Not at
Random (MNAR) can never be fully excluded; When data is potentially MNAR, methods
such as IPW would yield inconsistent (and non-identified) estimates. However, since the
missingness mechanism is inherently a statement about unobserved data, direct validation
is not possible; this necessitates indirect evaluation to understand the impacts of MNAR
on conclusions. One mechanism for doing so is Sensitivity Analysis [24].

A myriad of research [13, 22] has been undertaken on Sensitivity Analysis for missing
data problems. The representative monograph [18] introduces several methods for doing
so, such as the pattern mixture model and selection model approaches as the dominant
classifications of methods. Related techniques have also been used in Causal Inference
[3, 6, 25] with some applications that may be extended to missing data mechanisms. For
example, [25] proposed to report the E-value to show how robust the causal effect estimates
are against potentially unmeasured confounding. Treating the MAR assumption as a form
of ignorability, we will discuss how the E-value is applicable to missing data problems [23].

In order to effectively utilize the E-value to understand the implications of MAR
violations, estimating its uncertainty is crucial; an area that is both underdeveloped and
necessary. In this paper we propose to cast the estimation and uncertainty quantification
of the E-value as a Bayesian Inference problem. Conceptually, these results are rooted
in the Bayesian estimation of the sensitivity parameter using a combination of noisy
benchmarks and prior information. These benchmarks are becoming increasingly common
in applications where aggregated information is used as a means of protecting privacy at
the unit-of-observation level (the objective of inference). Examples of these include but
are not limited to Google’s Privacy Sandbox [10], differentially private aggregates [20] or
Facebook’s Aggregated Event Measurement (AEM) system. Under this overarching theme,
the Bayesian estimation of the sensitivity parameter induces a posterior distribution for the
E-value that can either be approximated using simulation [9] or analytically determined
under a series of testable assumptions where simulation is infeasible.

The remainder of the paper proceeds as follows. Section 2 provides a brief overview of
conducting sensitivity analysis in missing data problems. In Section 3, a Bayesian approach
with objective and empirically elicited subjective priors for the sensitivity parameter is
proposed to conduct sensitivity analysis. Section 4.1 presents a simulation study to evaluate
the performance of the proposed method. In Section 4.2, this technique is applied to
the validation process for IPW estimates from Facebook data; an example motivated by
methodology used on the platform for tackling missing data. Finally, section 5 concludes
the paper with a discussion of our findings as motivation for future work.
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2 Background

Pattern Mixture Models and Selection Models are two widely used approaches when
assessing whether inference resting on MAR assumptions are robust against mechanisms
truly being MNAR. Both approaches are based on factorization of joint distribution of
the measurement and the missingness mechanism. Pattern Mixture Models factorize
the aforementioned joint distribution as the product of conditional distribution of the
measurement given the missingness mechanism and the marginal distribution of the
missingness mechanism [16, 17, 19]. By comparison, Selection Models express the joint
distribution as the product of conditional distribution of missingness mechanism given the
measurement and marginal distribution of the measurement [5, 11,12].

When the underlying missingness mechanism is potentially MNAR, explicit modeling
of the mechanism (parametric or nonparametric) needs to be taken into account. Selection
Models are appealing since they represent the marginal distribution of the full measurement
in the model. However, this requires assuming an explicit but untestable model for the
missingness mechanism. Pattern-mixture models by comparison place assumptions about
the missingness mechanism via restrictions on the sensitivity parameter [15], which are more
explicit than with Selection Models. One of the drawbacks of Pattern Mixture Models is
that marginal distribution of the full measurement is not explicitly represented and may
induce more complexity in derivation. It warrants mention that assumptions about the
missingness mechanism necessary for either approach are not directly verifiable from the
data; Pattern Mixture Models are uniquely suited for our motivating applications [24].

Earlier work on Sensitivity Analysis using Pattern Mixture Models relied on expert
knowledge to determine the plausible range of the sensitivity parameter values i.e. on
average how much we expect the identifying assumption to be violated. To circumvent
inappropriately selecting the range of sensitivity parameters, Bayesian methods have been
applied in sensitivity analysis. [7] proposed to incorporate Bayesian shrinkage on the mean
and dependence parameter to share information across different missing patterns. [13]
introduced Bayesian approach to analyze outcome from exponential distribution family
with missing values that are potentially MNAR. [21] proposed an Bayesian approach to
deal with missing data when estimating causal effect in randomized clinical trials. Although
there is a rich literature on using Bayesian approaches to assess missing data, inference
on the sensitivity parameter is largely limited to subjective priors. Given the scale of
our applications for Facebook data relying on expert information elicit priors or choosing
hyperparameters manually at scale is infeasible.

In this work, we propose a possible approach to conducting Sensitivity Analysis at scale
using Bayesian estimates of the sensitivity parameters from the noisy, imperfect data. We
propose applying either empirically derived subjective priors (when noisy but collectively
useful data is available) or objective priors (when high quality data with strong unit
information is available); both techniques allow automation. These Bayesian estimates
of the sensitivity parameter can be used to compute the E-value of [25], to summarize
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sensitivity to MAR violations using the induced uncertainty under the Bayesian paradigm.
Furthermore, since E-value is a function of the sensitivity parameter, we derive analytical
forms of the distribution function of E-value based on the posterior distribution of the
sensitivity parameter. These provide further possibilities for scalable sensitivity analysis
where simulation based posterior inference may not be viable.

3 Methodology

3.1 Notation and Assumptions

For units of observation i = 1, . . . , n let Yi and Xi denote the continuous outcome and
covariates respectively. Furthermore, let Ri denote the missing status with Ri = 1 if Yi
are observed and Ri = 0 otherwise. For this paper, we will assume that the objective is to
estimate the population mean i.e. E[Y ] = µ.

If the missingness mechanism is missing completely at random i.e. MCAR (Yi |= Ri) ,
one can estimate µ by µ̂ = (

∑n
i=1Ri)

−1∑n
i=1RiYi consistently; this assumption is unlikely

to hold in practice. A more relaxed condition assumes that the mechanism is missing at
random i.e. MAR (Yi |= Ri|Xi); µ can be estimated by techniques such as IPW or MI.
In this paper, we will focus on the IPW estimator i.e. µ̂ = n−1

∑n
i=1RiYi/π(Xi) where

π(x) = pr(R = 1|X = x) is the true propensity score. In practice, propensity scores
are unknown but estimable; with a consistent estimate of the propensity score µ can be
consistently estimated.

It warrants mention that any statement about the missingness mechanism is a statement
about unknown unknowns, untestable from the observed data; as a consequence missingness
not-at random i.e. MNAR can never be fully excluded from possibility. Therefore we need
to conduct sensitivity analysis to estimate the robustness of IPW estimator for µ against
potential MAR violations.

Let δ denote the sensitivity parameter in the underlying pattern mixture model (our
mode of analysis) which represents the degree to which MNAR is induced. As we noted
earlier, this parameter is usually selected based on substantive assumptions. An alternative
is to estimate it as δ̂ = ˆE(Y )−E(Y ) where E(Y ) can be observed from a variety of sources
but may be contaminated by noise. In our motivating example from Facebook data, we
focus on the scenarios where there are two distinct sources of obtaining values of E(Y ).

Furthermore, let δj = (δj1, δj2) denote the sensitivity parameter estimates for some
group j = 1, . . . ,m in the population. Across m groups, Assume that the likelihood
function f(δj) is bivariate normal with mean vector δ1 and covariance matrix Σ. Treating
this as the data, under the Bayesian paradigm, we consider both the subjective and
objective priors for (δ,Σ).
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3.2 Subjective Prior

We choose Normal-Inverse-Wishart distribution as the subjective prior over (δ,Σ),

π(δ|Σ) ∼ N(δ0, φ0), φ0 =
(
1′Σ−11

)−1

π(Σ) ∼W−1(Ψ, ν).

Then the joint density f(δ1, . . . , δm, δ,Σ) is given by

f(δ1, . . . , δm, δ,Σ) =
1

(2π)n|Σ|n/2
e−

1
2
tr(S0Σ−1) 1√

2πφ0
e

(δ−δ0)
2

2φ0
|Ψ|ν/2

2νΓ2(ν/2)
|Σ|−

ν+3
2 e−

1
2
tr(ΨΣ−1),

(1)

where S0 =
∑m

j=1(δj − δ1)(δj − δ1)′. Then the marginal likelihood of δ1, . . . , δm is given
by integrating out δ and Σ,

P (δ1, . . . , δm) =

∫∫
f(δ̂1, δ̂2, δ,Σ)dδdΣ

=

∫∫
1

(2π)m|Σ|n/2
e−

1
2
tr(S0Σ−1) 1√

2πφ0
e

(δ−δ0)
2

2φ0
|Ψ|ν/2

2νΓ2(ν/2)
|Σ|−

ν+3
2 e−

1
2
tr(ΨΣ−1)dδdΣ

We first find the posterior distribution of δ and Σ,

π(δ,Σ|δ1, . . . , δm) ∝ exp

[
−1

2
trΣ−1

{
Ψ +

n∑
i=1

(δi − δ1)(δi − δ1)′ + (δ1− δ01)(δ1− δ01)′

}]

∝ exp

[
−1

2
trΣ−1

{
Ψ + S + n(δ̄ − δ1)(δ̄ − δ1)′ + (δ1− δ01)(δ1− δ01)′

}]
Therefore, we have

π(δ,Σ|δ1, . . . , δm) ∼ NIW
(
δ̃, Ψ̃, ν̃

)
where

δ̃ =
mδ0 +mδ̄

′
1

m+ 1

Ψ̃ = Ψ + S +
m

m+ 1
(δ̄ − δ01)(δ̄ − δ01)′

ν̃ = ν +m

S =

m∑
j=1

(δj − δ̄)(δj − δ̄)′
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Then the marginal likelihood is the ratio of joint density f(δ1, . . . , δm, δ,Σ) to the posterior
distribution π(δ,Σ|δ1, . . . , δm),

m(δ1, . . . , δm) = (2π)−m
|Ψ|ν/2

2νΓ2(ν/2)

2ν̃Γ2(ν̃/2)

|Ψ̃|ν̃/2

=
1

πm
|Ψ|ν/2

|Ψ̃|ν̃/2
Γ2(ν̃/2)

Γ2(ν/2)
(2)

Take the negative logarithm of the marginal likelihood function yields the cost function
with respect to δ,Ψ and ν,

L(δ,Ψ, ν) = m log(π)− ν

2
log |Ψ|+ ν̃

2
log |Ψ̃|+ log

Γ2(ν/2)

Γ2(ν̃/2)
(3)

Proposition 3.1 Let Ψ ∈ R2×2 be a symmetric matrix. The cost function L(δ,Ψ, ν) is
convex with respect to δ0 and Ψ when ν > Cm where C is some constant.

Let (Ψ∗, ν∗, δ∗0) be the global minimizer of equation (3). Substituting (Ψ∗, ν∗, δ∗0) into
the posterior distribution of (δ,Σ) and integrating out Σ will lead to the marginal posterior
distribution of δ,

P (δ) ∝
∣∣∣∣(δ − δ∗0)211′ + Ψ∗ +

m∑
j=1

(δj − δ1)(δj − δ1)′
∣∣∣∣−(m+ν∗)/2

∝
[
1 + (j + 1)(ȳ − δ1)′U−1(ȳ − δ1)

]−(m+ν∗)/2
, (4)

where

U = Ψ∗ + S +
m

m+ 1
(δ̄ − δ∗01)(δ̄ − δ∗01)′

ȳ =
mδ̄ + δ01

m+ 1

Let u = 1′U−1ȳ, z = 1′U−11 and w = y′U−1y, the marginal posterior distribution of δ
follows a non-central student’s t-dsitrbution with m+ ν∗ − 1 degrees of freedom,

P (δ) ∝

[
1 +

(m+ 1)z
(
δ − u

z

)2
1 + (m+ 1)w − (m+ 1)u2z−1

]−(m+ν∗)/2

(5)

The relationship between the likelihood, empirically motivated subjective prior and the
posterior distributions is given in Figure 1.
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Figure 1: The likelihood function, the empirically motivated subjective prior and the
posterior distributions

3.3 Objective Priors

As for the objective Bayesian approach, we choose the independent Jeffreys prior, πIJ =
|Σ|−(p+1)/2. Since p = 2 in our motivating application, independent Jeffreys prior has the
form,

πIJ(δ,Σ) = |Σ|−3/2 (6)
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Then the joint density f(δ̂1, δ̂2, δ,Σ) is given by

f(δ̂1, δ̂2, δ,Σ) =
1

(2π)m|Σ|m/2
e−

1
2
tr{
∑m
j=1(δi−δ1)(δi−δ1)′Σ−1}|Σ|−3/2

=
1

(2π)m
e−

1
2
tr{
∑m
j=1(δj−δ1)(δj−δ1)′Σ−1}|Σ|−(m+3)/2, (7)

and the marginal posterior distribution of δ is given by integrating out Σ−1

P (δ) =

∫
f(δ̂1, δ̂2, δ,Σ)dΣ

=

∫
1

(2π)m
e−

1
2
tr{
∑m
j=1(δj−δ1)(δj−δ1)′Σ−1}|Σ|−(m+3)/2dΣ

∝

∣∣∣∣∣∣
m∑
j=1

(δj − δ1)(δj − δ1)′

∣∣∣∣∣∣
−m/2

.

Now let

δ̄ = m−1
m∑
j=1

δj and S =
m∑
j=1

(δj − δ̄)(δj − δ̄)′

so that

m∑
j=1

(δj − δ1)(δj − δ1)′ = S +m(δ̄ − δ1)(δ̄ − δ1)′.

Recall that ∣∣I +m(δ̄ − δ1)(δ̄ − δ1)′ + S−1
∣∣ = 1 +m(δ̄ − δ1)′S−1(δ̄ − δ1)

Define u = 1′S−1δ̄, z = 1′S−11 and w = δ̄
′
S−1δ̄, we have

P (δ) ∝

[
1 +

mz
(
δ − u

z

)2
1 +mw −mu2z−1

]−m/2
Therefore, the marginal posterior distribution of δ is a non-central Student’s t-distribution
with m− 1 degrees of freedom.

3.4 Bayesian Inference for E-value

[25] introduced sensitivity analysis using the E-value for the difference in continuous
measurements. This technique rests on a standardized effect size i.e. a scaled difference
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between µ̂ and µ̂δ, where µ̂δ denotes the estimate incorporating the sensitivity parameter.
This can be used to approximate the risk ratio and which in turn yields the E-value. In
applications of missing data, we ideally want the E-value to be statistically indistinguishable
from its reference value 1: this indicates that there is no difference between µ and µδ.

For inference, the posterior distribution of the E-value can then be approximated by
simulation using the following scheme [4,8].

For the purpose of Sensitivity Analysis, we first decompose µ using the Law of Iterated
Expectations,

µ = P(R = 1)E(Y |R = 1) + P(R = 0)E(Y |R = 0).

Pattern mixture model approach relates the unobserved E(Y |R = 0) with the observed
E(Y |R = 1) by introducing the sensitivity parameter and assumes that

E(Y |R = 0) = E(Y |R = 1) + δ.

Substituting this back into the decomposition of µ will give us

µδ = P(R = 1)E(Y |R = 1) + {1− P(R = 1)} {δ + E(Y |R = 1)} . (8)

Let µmissing denote the standardized effect size, then µmissing can be calculated as

µmissing =
µδ=δ − µδ=0√

Var(Y )

=
{1− P(R = 1)} δ√

Var(Y )
, (9)

and the corresponding risk ratio (RR) can be approximated by

RR = exp(0.91× µmissing),

and E-value can be obtained by

E-value = RR+
√
RR ∗ (RR− 1).

In addition to inference via posterior simulation, under certain assumptions, we can
also derive the analytic approximate distribution functions of E-value under the framework
in [25]. For brevity, let V denote the E-value; Using the formulation presented earlier, we
have the following theorems on the distribution of V i.e. fV (v).
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Theorem 3.2 Suppose that P(R = 1) = p and Var(Y ) = σY are known, and that δ follows
a normal distribution N(η, τ2). Then the density function of V is

fV (v) =


1√

2πσRR
exp

{
−
(

ln v2

2v−1
−µRR

)2
2σ2
RR

}{
1
v −

1
v

1
2v−1

}
if RR > 1,

1√
2πσRR

exp

{
−
(

ln 2v−1

v2
−µRR

)2
2σ2
RR

}{
1
v −

1
v

1
2v−1

}
if 0 < RR < 1,

(10)

where µRR = 0.91(1− p)η/σY and σRR = 0.91(1− p)τ/σY .

Theorem 3.3 Suppose that Var(Y ) = σY are known, that q = 1 − P(R = 1) follows a
normal distribution N(µq, σ

2
q ), and that δ follows a normal distribution N(η, τ2). Moreover,

let ρ1 = σq/µq, ρ2 = τ/η. Assume that ρ1 and ρ2 are arbitrarily small, then the density
function of V can be approximated by

fV (v) =


1√

2πσRR
exp

{
−
(

ln v2

2v−1
−µRR

)2
2σ2
RR

}{
1
v −

1
v

1
2v−1

}
if RR > 1,

1√
2πσRR

exp

{
−
(

ln 2v−1

v2
−µRR

)2
2σ2
RR

}{
1
v −

1
v

1
2v−1

}
if 0 < RR < 1,

(11)

where µRR = 0.91µqη/σY and σRR = 0.91(µ2
qτ

2 + η2σ2
q + σ2

qτ
2)−1/2/σY .

Theorem 3.4 Suppose that σY follows an inverse gamma distribution IG(α, β), that
q = 1 − P(R = 1) follows a normal distribution N(µq, σ

2
q ), and that δ follows a normal

distribution N(η, τ2). Let ρ1 = σq/µq, ρ2 = τ/η, and ρ3 = (µ2
qτ

2 +η2σ2
q +σ2

qτ
2)−1/2/(µqη).

Assume that ρ1, ρ2, and ρ3 are arbitrarily small, then the density function of V can be
approximated by

fV (v) =


βαV

Γ(α) exp
{
−βV ln v2

2v−1

}(
ln v2

2v−1

)α−1 {
1
v −

1
v

1
2v−1

}
if RR > 1,

βαV
Γ(α) exp

{
−βV ln 2v−1

v2

} (
ln 2v−1

v2

)α−1
{

1
v −

1
v

1
2v−1

}
if RR < 1,

(12)

where βV = µqη/(0.91β).

4 Results on Real and Simulated Data

To empirically demonstrate the advantages and limitations of ideas that we have presented
in section 3, we present results on simulated data to study its properties in section 4.1. The
results on our motivating application are provided in section 4.2. For both sets of results
comparisons are made against asymptotic estimators that rely on large sample theory to
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demonstrate gains in inference quality using the proposed techniques. E-value variance
is estimated using (1) a Taylor Series estimate of variance (see chapter 5 of [18]) and (2)
Poisson Sampling Theory [14] using guidance from [25] to construct uncertainty intervals.
On the other hand, the two Bayesian approaches calculate the credible intervals for E-value
based on its posterior distribution.

4.1 Simulation

In order to evaluate our methodology, we present a simulation study to evaluate its
performance. Each simulated dataset contains i = 1, . . . , 2500 independent units of
observation. The missing status for each subject i was generated as Ri ∼ Bernoulli(0.05).
The outcomes Yi and covariates Xi and estimated propensity scores are simulated via
subsampling from Facebook data so that the simulated data mimics the properties of
motivating application. The sensitivity parameter estimates δj(j = 1, . . . , 15) are generated

from a bivariate normal distribution δj ∼ N2

((
0
0

)
,

(
0.0025 0.0004
0.0004 0.0025

))
. Therefore in this

simulation study, the true sensitivity parameter is on average zero but observed with some
noise. By simulating T = 10000 datasets in this scheme we estimate the coverage rate of
95% uncertainty intervals from the aforementioned four types of methods.

The coverage rates of the 95% uncertainty intervals from the four types of methods
are given in Table 1. These results indicate that as the sample size of observed data
increases, the coverage rates of confidence intervals from frequentist approaches come to
attain expected coverage. On the other hand, although the coverage rate for the subjective
Bayesian approach is marginally lower than the desired level, it is robust against different
observed data sample sizes, indicating that subjective Bayesian approach is also applicable
when the observed data size is relatively small, a concern often encountered in real data
applications. The objective Bayesian approach is also robust against different observed
datas sizes, but it may be too conservative particularly when large samples are available;
at small sample sizes it also out-performs the asymptotic approaches.

Table 1: Coverage rate of 95% uncertainty interval for E-value with different sample sizes
of missing data

m Taylor Series Poisson Sampling Subjective Bayesian Objective Bayesian

1× 1.0000 1.0000 0.9448 0.9810
3× 1.0000 1.0000 0.9448 0.9810
6× 0.9996 0.9999 0.9448 0.9810
9× 0.9973 0.9988 0.9448 0.9810
12× 0.9910 0.9943 0.9448 0.9810
15× 0.9811 0.9865 0.9448 0.9810
18× 0.9656 0.9742 0.9448 0.9810
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We compare the average width of uncertainty intervals from the four types of methods
with respect to different sample sizes of observed data in Table 2. The average width of
the uncertainty intervals from the two asymptotic approaches are extremely large when
the sample size of observed data is relatively small (close to what we observe in the real
observed data). The average width from these two methods decrease rapidly when the
sample size of observed data increases. By comparison the average widths of the credible
intervals from the two Bayesian approaches are stable against the sample size of observed
data, making them more reliable than their asymptotic counterparts when the sample size
of observed data is relatively small.

Table 2: Average width of 95% uncertainty interval for E-value with different sample sizes
of missing data

m Taylor Series Poisson Sampling Subjective Bayesian Objective Bayesian

1× 7.8255× 105 2.1685× 109 0.1380 0.1504
3× 88.4024 1.3056× 103 0.1469 0.1601
6× 2.0216 3.8857 0.1513 0.1649
9× 1.0315 1.2356 0.1531 0.1670
12× 0.7996 0.8909 0.1542 0.1682
15× 0.6824 0.7407 0.1548 0.1689
18× 0.6078 0.6506 0.1553 0.1694

4.2 Motivating Application: Facebook

Facebook relies on handling missing outcome data for conversion information (e.g. whether
an item was purchased or not). In these settings, IPW methods may be utilized to ensure
that bias from self-selection can be eliminated in the estimation of population averages.

We apply the proposed methods to study the robustness of these IPW estimators of
population averages against the mechanism being MNAR due to misspecified weighting
models being used in construction. For each observation in the data we collect the following
information:

• conversions: Number of a certain type of events from a single user after accessing
the advertisement (e.g. Purchases).

• event name: Type of the event, taking 14 levels including Start Trial, Submit
Application, Contact, Add To Cart, Add Payment Information, Search, View
Content, Complete Registration, Initiate Checkout, Purchase, Schedule, Lead, Add
To Wishlist.

• propensity scores: Estimated propensity score of being missing.
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The outcome of interest here is the conversions. Out of consideration for user data
privacy and compliance with regulatory reform, Facebook utilizes aggregated conversions
from advertisements as the approximate ground truth values for the population mean. In
this work, we take the differences between average conversions from IPW estimators and
approximate ground truth average values as the estimated sensitivity parameters. The
sensitivity parameter estimates are then calculated for different types of events.

To apply the proposed Bayesian approaches, we obtain the marginal posterior
distribution of the sensitivity parameter based on the data. We then apply Gibbs sampling
[8] method to draw a sample of sensitivity parameters from its posterior distribution
and calculate corresponding E-values. For reference, the distributions of the sensitivity
parameters under both prior choices are presented in Figure 2.
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Figure 2: Estimated sensitivity parameters and posterior distributions of the sensitivity
parameters under both subjective and objective priors
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The 95% credible intervals for E-value are obtained by taking the 95% percentiles from
the samples drawn. The 95% confidence intervals from the frequentist approaches and the
95% credible intervals from the two Bayesian approaches are summarized in Table 3 and
4.

Table 3: 95% uncertainty interval for E-value for different types of events from in-
application data

Event Name Taylor Series Poisson Sampling Subjective Bayesian Objective Bayesian

Start Trial (1.9825, 2.8795) (1.9816, 2.8616) (1, 1.6215) (1, 1.7806)
Submit Application (1.6015, 2.5573) (1.5893, 2.5514) (1, 1.6029) (1, 1.7557)

Contact (1.2941, 2.1228) (1.2890, 2.1112) (1, 1.5976) (1, 1.7487)
Add To Cart (1.9844, 2.2117) (1.9836, 2.2081) (1, 1.6023) (1, 1.7549)

Add Payment Info (2.0237, 3.0502) (2.0124, 3.0424) (1, 1.6076) (1, 1.7620)
Search (2.4783, 2.8783) (2.4739, 2.8751) (1, 1.5951) (1, 1.7453)

View Content (2.1910, 2.2559) (2.1902, 2.2554) (1, 1.5961) (1, 1.7467)
Complete Registration (1.5749, 1.8631) (1.5726, 1.8599) (1, 1.6059) (1, 1.7597)

Initiate Checkout (1.4163, 1.8987) (1.4135, 1.8921) (1, 1.6032) (1, 1.7561)
Purchase (1.9800, 2.1216) (1.9788, 2.1201) (1, 1.6074) (1, 1.7618)
Schedule (1.5842, 2.5758) (1.5844, 2.5547) (1, 1.6083) (1, 1.7629)
Subscribe (1.3760, 2.6290) (1.3524, 2.6275) (1, 1.6128) (1, 1.7690)

Lead (1.9731, 2.1028) (1.9722, 2.1012) (1, 1.6057) (1, 1.7594)
Add To Wishlist (1.3687, 2.2694) (1.3522, 2.2675) (1, 1.6018) (1, 1.7543)

We find that the credible intervals from Bayesian approaches are more stabilized
across different types of events when compared with their counterparts from frequentist
approaches. This is consistent with what we observed in the simulation study where
Bayesian credible intervals are not affected by the sample size of the observed data.
Moreover, there exist inconsistencies between the results from frequentist and Bayesian
approaches. For example, for events Search and Purchase as in Table 4. For Search, the
confidence intervals from the two frequentist approaches do not include one while their
Bayesian variants result in conservative conclusions. For Purchase, the confidence interval
from the Taylor series approximation approach is solely significant while the others are
more conservative. We prefer the Bayesian approach since they remain stable across event
types and that they have better performance when the sample size of observed data is
relatively small (which is the case for Search and Purchase).
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Table 4: 95% uncertainty interval for E-value for different types of events from advertiser
server data

Event Name Taylor Series Poisson Sampling Subjective Bayesian Objective Bayesian

Start Trial (1, 1.5646) (1, 1.2293) (1, 1.1064) (1, 1.1254)
Submit Application (1, 1.7366) (1, 1.2706) (1, 1.0995) (1, 1.1171)

Add To Cart (1, 1.2657) (1, 1.5144) (1, 1.1412) (1, 1.1672)
Add Payment Info (1, 1.7273) (1, 1.3366) (1, 1.1425) (1, 1.1688)

Search (1.2284, 1.4240) (1.0532, 1.5202) (1, 1.1496) (1, 1.1773)
View Content (1, 1.1658) (1, 1.2253) (1, 1.1420) (1, 1.1681)

Complete Registration (1, 1.3306) (1, 1.0898) (1, 1.1282) (1, 1.1515)
Initiate Checkout (1, 1.3566) (1, 1.5983) (1, 1.1372) (1, 1.1624)

Purchase (1.0479, 1.1843) (1, 1.2697) (1, 1.1297) (1, 1.1532)
Subscribe (1, 1.4992) (1, 1.1472) (1, 1.1156) (1, 1.1363)

Lead (1, 1.1922) (1, 1.3087) (1, 1.1304) (1, 1.1541)
Add To Wishlist (1, 1.3619) (1, 1.4663) (1, 1.1423) (1, 1.1685)

5 Discussion

This paper introduces methodology for conducting Sensitivity Analysis for missing data
problems using the approach of E-values under the Bayesian paradigm. The crucial
sensitivity parameters are estimated as differences between multiple population level
benchmarks (e.g. differentially private aggregates or meta-analyses) and their counterparts
estimated from partially missing unit level outcomes. Treating these estimates of the
sensitivity parameters as data and leveraging prior information over an assumed true
sensitivity helps determine the robustness against violations of MAR while holistically
representing uncertainty. We present results on real and simulated data motivated by
applications at Facebook where missing unit level outcome data is commonplace.

This paper makes several novel contributions to the field of sensitivity analysis for
missing data. To the best of our knowledge, we are the first to study the first to study
the distribution function of the E-value in Sensitivity Analysis. Since that E-value can
be presented as a function of the sensitivity parameter, we propose two novel Bayesian
approaches to derive the posterior distribution of the sensitivity parameter and thus the
distribution function of the E-value. Our theoretical findings are undergirded by empirical
evidence of the benefits of this approach, demonstrating that we can draw higher quality
inference on sensitivity to MAR violations under the proposed approach rather than relying
on asymptotic guarantees.

With that said, we have also encountered challenges in this effort that warrant further
study. First, the proposed methods rely on pooling together sensitivity parameter estimates
that are likely to be similar due to representing, for instance, similar type of outcomes such
as related conversions (e.g. adding an item to your cart and purchasing it). Stronger
assumptions are needed if we want to pool together sensitivity parameters that are very
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likely to be dissimilar. In addition, our current analysis is restricted to cross-sectional
analyses of data; longitudinal analyses will require careful understanding of how sensitivity
parameters can be estimated and pooled. Hierarchical Bayesian modeling [2, 26] methods
might be applicable when dissimilarity is significant among subgroups of sensitivity
parameter estimates or there exists time series patterns among sensitivity parameter
estimates. We intend to explore these ideas in our future work.

6 Appendix

6.1 Proof of Proposition 3.1

Take the negative logarithm of it and we get the cost function with respect to δ,Ψ and ν,

L(δ,Ψ, ν) = m log(π)− ν

2
log |Ψ|+ ν̃

2
log |Ψ̃|+ log

Γ2(ν/2)

Γ2(ν̃/2)

We first optimize over Ψ,

∂L(δ,Ψ, ν)

∂Ψ
= −ν

2
Ψ−1 +

ν̃

2
Ψ̃−1 set

= 0,

and we get

Ψ∗ =
ν

m

(
S +

m

m+ 1
(δ̄ − δ01)(δ̄ − δ01)′

)
.

To make it more rigorously, we need to check the convexity for the cost function to make
sure that Ψ∗ is the global minimum. To do that, we show that f(Ψ) = −ν

2 log |Ψ|+ ν̃
2 log |Ψ̃|

is convex for certain fixed values of ν by considering an arbitrary line given by Ψ + tV,
where Ψ and V are positive definite matrices. We then define g(t) = −ν

2 log |Ψ + tV| +
ν̃
2 log |Ψ̃ + tV| such that both Ψ + tV and Ψ̃ + tV are positive definite matrices. Since

Ψ and Ψ̃ are positive definite, there exist Ψ1/2 and Ψ̃1/2 such that Ψ = Ψ1/2Ψ1/2 and
Ψ̃ = Ψ̃1/2Ψ̃1/2. We then have
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g(t) = −ν
2

log |Ψ + tV|+ ν̃

2
log |Ψ̃ + tV|

= −ν
2

log |Ψ1/2Ψ1/2 + tΨ1/2Ψ−1/2VΨ−1/2Ψ1/2|

+
ν +m

2
log |Ψ̃1/2Ψ̃1/2 + tΨ̃1/2Ψ̃−1/2VΨ̃−1/2Ψ̃1/2|

= −ν
2

log |Ψ1/2(I + tΨ−1/2VΨ−1/2)Ψ1/2|

+
ν +m

2
log |Ψ̃1/2(I + tΨ̃−1/2VΨ̃−1/2)Ψ̃1/2|

= −ν
2

(
log |Ψ|+ log |I + tΨ−1/2VΨ−1/2|

)
+
ν +m

2

(
log |Ψ̃|+ log |I + tΨ̃−1/2VΨ̃−1/2|

)
= −ν

2
{log |Ψ|+ log(1 + tλ1) + log(1 + tλ2)}

+
ν +m

2

{
log |Ψ̃|+ log(1 + tη1) + log(1 + tη2)

}
Where λ1, λ2 are eigenvalues of I + tΨ−1/2VΨ−1/2 and η1, η2 are eigenvalues of I +
tΨ̃−1/2VΨ̃−1/2. Notice that since I + tΨ−1/2VΨ−1/2 and I + tΨ̃−1/2VΨ̃−1/2 are also
positive definite matrices. Then

g′′(t) =
ν

2

{
λ2

1

(1 + tλ1)2
+

λ2
2

(1 + tλ2)2

}
− ν +m

2

{
η2

1

(1 + tη1)2
+

η2
2

(1 + tη2)2

}
=
ν

2

[{
1

(t+ λ−1
1 )2

+
1

(t+ λ−1
2 )2

}
−
{

1

(t+ η−1
1 )2

+
1

(t+ η−1
2 )2

}]
− m

2

{
1

(t+ η−1
1 )2

+
1

(t+ η−1
2 )2

}
Notice that Ψ̃ = Ψ + S + m

m+1(δ̄ − δ01)(δ̄ − δ01)′, it is easy to verify that λ1 > η1 and
λ2 > η2, so we find the range of values of ν over which the cost function is convex as

ν > m

[{
1

(t+ λ−1
1 )2

+
1

(t+ λ−1
2 )2

}
−
{

1

(t+ η−1
1 )2

+
1

(t+ η−1
2 )2

}]−1{ 1

(t+ η−1
1 )2

+
1

(t+ η−1
2 )2

}
Then we substitute Ψ∗ to the cost function and optimize over ν,

L(δ,Ψ∗, ν) = ν log
m+ ν

ν
+m log

m+ ν

m
+ log

Γ2(ν/2)

Γ2(ν̃/2)
+ const
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and

∂L(δ,Ψ∗, ν)

∂ν
= log

m+ ν

ν
+

∂

∂ν
log

Γ2(ν/2)

Γ2(ν̃/2)

∂2L(δ,Ψ∗, ν)

∂ν2
= − m

mν + ν2
+

∂2

∂ν2
log

Γ2(ν/2)

Γ2(ν̃/2)
> 0

There is no closed form solution for ν but we know the objective function is convex since
the second order derivative is positive.

Then we substitute Ψ∗ and ν∗ back in the cost function and optimize over δ0,

L(δ0,Ψ
∗, ν∗) =

m

2
log

∣∣∣∣S +
m

m+ 1
(δ̄ − δ01)(δ̄ − δ01)′

∣∣∣∣ .
And this objective function is convex since the matrix S+ m

m+1(δ̄−δ01)(δ̄−δ01)′ is positive
definite. The plot of the values objective function versus δ0 for certain given values of Ψ∗

and ν∗ is shown in Figure 3.
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Figure 3: Plot of objective function for certain given values of Ψ∗ and ν∗
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6.2 Proof of Theorem 3.2

Let µmissing = (1 − p)δ/σY where δ ∼ N(η, τ2), then µmissing ∼
N
(
(1− p)η/σY , (1− p)2τ2/σ2

Y

)
. Then the risk ratio (RR) satisfies RR =

exp(0.91 × µmissing) and RR ∼ Lognormal(µRR, σ
2
RR) where µRR = 0.91(1 − p)η/σY and

σRR = 0.91(1− p)τ/σY . Let V denote the E-value, we have

V =


RR+

√
RR(RR− 1) if RR > 1,

1 if RR = 1,

1/RR+
√

1/RR(1/RR− 1) if 0 < RR < 1.

(13)

Since P(RR = 1) = 0, we will only consider the cases where RR > 1 or 0 < RR < 1. If
RR > 1, then we have RR = V 2/(2V − 1) and then the density function of V is given by

fV (v) = fRR(v2/(2v − 1))|RR′|

=
1√

2πσRR
exp

−
(

ln v2

2v−1 − µRR
)2

2σ2
RR


{

1

v
− 1

v

1

2v − 1

}
.

Similarly, when 0 < RR < 1 we have RR = (2V − 1)/V 2 and the corresponding density
function of V is

fV (v) = fRR((2v − 1)/v2)|RR′|

=
1√

2πσRR
exp

{
−
(
ln 2v−1

v2
− µRR

)2
2σ2

RR

}{
1

v
− 1

v

1

2v − 1

}

6.3 Proof of Theorem 3.3

Let µmissing = qδ/σY where q ∼ N(µq, σ
2
q ) and δ ∼ N(η, τ2). By Theorem 2.5, 2.6 and 2.7

in [1], under the assumption that ρ1 = σq/µq and ρ2 = τ/η are arbitrarily small, we can
approximate the distribution of qδ by a normal distribution with mean µqη and variance
µ2
qτ

2 + η2σ2
q + σ2

qτ
2. Then we are able to derive the distribution of E-value via a similar

approach as in proof of Theorem 3.2.

6.4 Proof of Theorem 3.4

To prove Theorem reftheorem: evalue3, we apply the normal approximation for the product
distribution of q = 1− p and δ as in the proof of Theorem 3.3 under the assumption that
ρ1 = σq/µq and ρ2 = τ/η are arbitrarily small. Thus the characteristic function of qδ after
normal approximation is exp(iµqηt + (µ2

qτ
2 + η2σ2

q + σ2
qτ

2)t2/2). Then the characteristic
function of µmissing is
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φµmissing(t) = EσY

[
E
{
eit/σY qδ

∣∣∣∣σY}]
=

∫ ∞
0

βα

Γ(α)
exp(−βy + iµqηy + (µ2

qτ
2 + η2σ2

q + σ2
qτ

2)y2/2)yα−1 dy

(14)

We additional assume that ρ3 = (µ2
qτ

2 + η2σ2
q + σ2

qτ
2)−1/2/(µqη) is arbitrarily small, then

φµmissing(t) =

∫ ∞
0

βα

Γ(α)
exp(−βy + iµqηy)yα−1 dy

=
1

(1− iµqηt/β)α
. (15)

Therefore, the distribution of µmissing is approximated by a gamma distribution
G(α, µqη/β). Then similarly as in proof of Theorem 3.2, we can derive the approximation
of the distribution function of E-value by applying change of variable twice. Specifically,
when RR > 1, we have RR = V 2/(2V − 1) and then the density function of V is given by

fV (v) = fRR

(
v2

2v − 1

)
|RR′|

=
βαV

Γ(α)
exp

{
−βV ln

v2

2v − 1

}(
ln

v2

2v − 1

)α−1{
1

v
− 1

v

1

2v − 1

}
. (16)

Similarly, when 0 < RR < 1 we have RR = (2V − 1)/V 2 and the density function of V is
given by

fV (v) = fRR

(
2v − 1

v2

)
|RR′|

=
βαV

Γ(α)
exp

{
−βV ln

2v − 1

v2

}(
ln

2v − 1

v2

)α−1{1

v
− 1

v

1

2v − 1

}
. (17)
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