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ABSTRACT

A recent approach to improving the robustness of sound localiza-
tion in reverberant environments is based on pre-selection of time-
frequency pixels that are dominated by direct sound. This approach
is equivalent to applying a binary time-frequency mask prior to the
localization stage. Although the binary mask approach was shown
to be effective, it may not exploit the information available in the
captured signal to its full extent. In an attempt to overcome this
limitation, it is hereby proposed to employ a soft mask instead of
the binary mask. The proposed weighting scheme is based directly
on a metric of the direct-to-reverberant sound ratio in each individ-
ual time-frequency pixel. Evaluation using simulated reverberant
speech recordings indicates substantial improvement in the local-
ization performance when using the proposed soft mask weighting.

Index Terms— Direction of arrival estimation, Reverberation,
Microphone-array processing

1. INTRODUCTION

Direction of Arrival (DoA) estimation is a fundamental microphone
array processing method. It is employed for sound source local-
ization with numerous applications in video-conferencing systems,
consumer electronics, humanoid robots, security systems, in-car au-
dio, and more. In many cases, the DoA estimation is carried out in
reverberant environments, such as living spaces or meeting rooms.
High reverberation has been shown to have a detrimental effect on
the performance of most DoA estimation algorithms, motivating re-
search and development of robust approaches in the presence of re-
verberation [1–3].

One relatively recent approach that effectively improves ro-
bustness to reverberation is based on an additional pre-processing
step, which is executed immediately prior to the DoA estimation.
The purpose of this step is to pre-select time-frequency pixels
(a.k.a time-frequency bins) that contain sound with high Direct-
to-Reverberant Ratio (DRR). Subsequently, a DoA estimator is
applied to the selected pixels only, which inherently reduces sensi-
tivity to reverberation [2,4–8]. The preprocessing step is equivalent
to applying a binary mask to the signal spectrogram. The binary
mask may be non optimal from a signal processing standpoint due
to the following reasons: (1) the selected pixels are weighted evenly,
although each may contain varying amounts of useful DoA infor-
mation, (2) the process completely discards pixels whose DRR is
deemed to be below a certain threshold, thereby potentially missing
useful residual DoA information.

In a recent publication, [9], the authors proposed to cluster the
pixels that have passed the selection threshold. Then, the pixels
are weighted in accordance with their distance from a correspond-
ing centroid. This approach partially overcomes the even weighting
shortcoming mentioned above, while still discarding most of the
pixels. The weighting procedure used in [9] is sometimes referred
to as the soft mask as opposed to the hard binary mask. In the cur-
rent work, we aim to address both the above shortcomings of the
binary mask by exploiting the soft mask approach and generalizing

it in the two following ways: (1) we propose to apply the soft mask
to all time-frequency pixels without a selection step, (2) we propose
to weight the different pixels based directly on their corresponding
DRR metric. This way, none of the pixels are discarded and all of
the pixels are (presumably) weighted in accordance with the amount
of useful DoA information that they contain.

The remainder of the paper is organized as follows. Section 2
introduces notation and provides additional details on selected pre-
vious work. Next, in Section 3, the proposed soft mask approach is
introduced. Section 4 summarizes the proposed algorithm. Section
5 evaluates the DoA estimation performance when using the soft
mask and compares it to the binary mask approach. Conclusions
follow.

2. BACKGROUND

The current section presents the reverberant signal model used
throughout the paper and briefly introduces some of the relevant
previous work.

2.1. Signal model and notation

Consider an arbitrary array of M microphones located either in
free-field or configured around a reflective surface. The Short Time
Fourier Transform (STFT) pixel with the time frame t and fre-
quency bin f is an M × 1 complex-valued vector; it is assumed to
include two major components:

x(t, f) = xd(t, f) + xr(t, f)

= v(f,Ω0) · s0(t, f) +

I∑
i=1

v(f,Ωi) · si(t, f), (1)

where xd(t, f) ∈ CM×1 and xr(t, f) ∈ CM×1 denote the di-
rect and the reverberant portions of the captured sound, respectively.
Vectors v(f,Ωi) stand for the Array Transfer Function (ATF) (a.k.a
array steering vector) at frequency f and arrival directions Ωi, with
i = 0 indicating the direct sound and i = 1, ..., I denoting the re-
flected waves. Finally, scalars si represent amplitudes of the waves
arriving from the corresponding directions and account for the at-
tenuation and the phase shift induced by sound propagation and re-
flection from the various surfaces. Note that when using the model
in (1), the number of the reflected components, I , may grow with in-
creased reverberation time in order to accurately represent the mea-
sured signal.

Lastly, in order to avoid potential ambiguities, we explicitly de-
fine the local DRR of a given time-frequency pixel as

DRR(t, f) =
‖xd(t, f)‖2
‖xr(t, f)‖2

. (2)

The above definition is assumed henceforth throughout this paper.
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2.2. Previous approaches

As mentioned above, several recent publications were concerned
with improving DoA estimation robustness to reverberation by ap-
plying a binary mask. The purpose of the mask was to discriminate
between time frequency pixels with high DRR and the rest of the
pixels that contain a significant amount of reverberant energy.

As the local DRR of individual pixels is not readily available,
several different methods were proposed to compute DRR-related
metrics from the array input signals [2, 4–8]. Some of these meth-
ods attempt to assess the amount of local variation of the DoA esti-
mates [4,5], while arguing that high DRR pixels are expected to dis-
play higher consistency in their immediate time-frequency vicinity.
Another recently proposed hybrid method combines signal power,
sound field diffuseness estimations, and speech presence probabil-
ity in a single selection criterion [7]. Additional highly effective
methods operate in the spherical harmonics domain by exploiting
frequency smoothing [2] or local sound field directivity [6].

An effective method operating in the element-space domain
was recently proposed for an arbitrary array geometry [8]. The
method is called the Local Space Domain Distance (LSDD) and
is based on a measure of similarity between the ATF and a given
time-frequency pixel. In particular, the method computes a spatial
spectrum for each of the pixels as follows:

St,f (Ωj) = cos−1 |vH(f,Ωj) · x(t, f)|
‖v(f,Ωj)‖2 · ‖x(t, f)‖2

, j = 1, ..., J, (3)

where {Ωj}Jj=1 is a set of DoAs that can be chosen in accordance
with the desired resolution and the available resources. It is em-
phasized that the expression in (3) is the Hermitian angle between
the two complex-valued vectors vH(f,Ωj) and x(t, f) [10]. Put
in plain words, the Hermitian angle measures the angle between the
two lines defined by the complex vectors. The angle is limited to the
range [0, 90] deg, with 0 deg denoting parallel lines and 90 deg de-
noting perpendicular lines. The most computationally demanding
term in (3), which cannot be pre-computed, is probably the inner
product vH(f,Ωj) · x(t, f). Nevertheless, the term can be com-
puted for all arrival directions {Ωj}Jj=1 in parallel using a single
matrix-vector multiplication.

Using the spectrum defined in (3), the LSDD metric for a given
time-frequency pixel, x(t, f), is defined as

LSDD(t, f) = min
j

(St,f (Ωj)) [deg], (4)

which is simply the minimal distance in degrees between the pixel
and the ATF. Hence, a small LSDD(t, f) indicates that the pixel
(t, f) is similar to the transfer function in a certain direction, imply-
ing that it is dominated by a single wave arriving from that direction.
This wave is likely to be the direct sound wave because it usually
arrives before the reflections. On the other hand, a larger value of
LSDD(t, f) indicates that the pixel is farther away from the ATF
and, therefore, is likely to contain a significant amount of reverber-
ant energy. In [8], the metric was shown to be strongly correlated
to a ground-truth local DRR; it was used to compute a binary mask
for selecting the high DRR pixels as follows:

BM(t, f) =

{
1, LSDD(t, f) < θ
0, else

, (5)

where θ is an arbitrary threshold that usually can be set by a trial
and error process to obtain desired performance in a given scenario.
Finally, the DoA can be estimated by selecting the direction that

minimizes the average spatial spectrum of the selected pixels, i.e

Ω? = argmin
Ωj

∑
t,f

BM(t, f) · St,f (Ωj). (6)

It is emphasized that a single source case is discussed here for sim-
plicity, while an extension to the multiple source case can be ob-
tained by selecting several directions corresponding to anti-peaks
(dips) of the average spectrum.

In the following section, we exploit the LSDD metric in order
to introduce the soft mask.

3. SOFT MASK

The binary mask approach divides all the time-frequency pixels into
two groups, those which contain the direct sound component only,
and those which are contaminated by reflected sound. This is a
crude approximation to reality, because the local DRR of a given
pixel is a continuous quantity [8]. This, in turn, implies that the
amount of useful DoA information contained in a given pixel may
be a continuous quantity, as well. This idea is demonstrated here
by assessing the DoA performance as a function of the LSDD met-
ric. For that purpose, 26 min of reverberant speech were generated
in three different rooms using the image method [11]. The rever-
beration time ranged from 763 ms to 1115 ms. See Section 5.1 for
additional details. Using the STFT of the reverberant speech record-
ings, a DoA estimate and the LSDD metric were computed for each
pixel individually. The DoA estimate was obtained by finding the
minimum of the pixel’s spatial spectrum in (3), while the LSDD
metric was computed directly as outlined in (4). Then, the pixels
were grouped in accordance with their LSDD value and an aver-
age DoA error was computed for each group. The result is plotted
in Fig. 1. It can be seen that, as expected, the average DoA er-
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Figure 1: Average DoA error vs. the LSDD metric. Based on simu-
lated reverberant audio recording of total length 26 min, using STFT
frame of 256 samples, 50% overlap, and sampling frequency of 16
kHz. The analysis uses frequencies in the range 1800 − 3600 Hz,
resulting in a total of over 6 million time-frequency pixels. See
Section 5.1 for additional details.

ror increases for pixels with higher LSDD values (reduced DRR).
There are two important points in relation to the DoA error behav-
ior that should be noted. First, in line with the above-mentioned
hypothesis, the DoA error appears to be a continuously-valued and
monotonic function of the LSDD metric, as opposed to the crude
binary approximation. Second, we recall that in the cases where no
DoA information is available, the average error is expected to be 90
deg and note that here, this error level is only reached for the pixels
with the highest LSDD values. This suggests that most of the pixels
contain some amount of information about the DoA, which could,
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potentially, become useful in the estimation process.
In order to exploit the potentially useful information in all the

time-frequency pixels and in order to weight the different pixels in
accordance with the amount of information contained within them,
it is hereby proposed to use soft mask weighting as a replacement
for the binary mask. Furthermore, in the light of the correlation
between the LSDD metric and the DoA performance, it seems nat-
ural to exploit the metric for establishing the soft mask weights. In
particular, we propose the following soft mask weights:

SM(t, f) = LSDD(t, f)−α. (7)
The parameter α is introduced here to serve as a selectivity fac-
tor, i.e. the higher α is, the more weight is steered towards the
low LSDD pixels. Note that the expression in (7) is undefined for
LSDD(t, f) = 0. In practice, this is a very rare case and can be
dealt with by, for example, setting the corresponding weight to the
highest weight in the mask. An example of the proposed soft mask
weight function is illustrated in Fig. 2 along with the binary mask
for comparison.
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Figure 2: An illustration of the soft mask weighting function with
three differentα values. The binary weight function is also provided
for comparison. The binary mask threshold was arbitrarily set to 15
deg.

Finally, the soft mask-based DoA estimator can be obtained by
simply swapping BM(t, f) with SM(t, f) in (6):

Ω? = argmin
Ωj

∑
t,f

SM(t, f) · St,f (Ωj). (8)

In the following section, the proposed algorithm is formally
outlined for the reader’s convenience. Then, in Section 5, the effect
of the proposed soft mask weighting scheme on the DoA estimation
performance is analyzed and compared to the performance obtained
with the previously employed binary mask.

4. ALGORITHM SUMMARY

The current section summarizes the DoA estimation algorithm that
uses the soft mask weighting scheme as proposed above. It is as-
sumed that the algorithm receives at its input a precomputed STFT
of an audio buffer, i.e. x(t, f), t = 1, ..., T , f = 1, ..., F . Then,
the algorithm proceeds as is summarized in Algorithm 1. Note that
in (3), the algorithm implicitly uses v(f,Ωj). In practice, the ATF
of a given array can be obtained in multiple ways including ana-
lytic modeling [8], numerical simulation [12], and/or direct mea-
surement [13].

5. SIMULATION STUDY

The current section summarizes a simulation study that has been
carried out in order to assess the effect of the proposed soft mask

Algorithm 1 LSDD-based DoA estimation with soft mask
1: input: x(t, f), t = 1, ..., T, f = 1, ..., F
2: init: SM(t, f) = 0, t = 1, ..., T, f = 1, ..., F
3: for all t ∈ {1, ..., T} and f ∈ {1, ..., F} do
4: compute: St,f (Ωj), j = 1, ..., J [use Eq. (3)]
5: compute: LSDD(t, f) [use Eq. (4)]
6: compute: SM(t, f) [use Eq. (7)]
7: end
8: compute: Ω? [use Eq. (8)]
9: output: Ω?

weighting scheme and to compare its performance to the previously
employed binary mask approach.

5.1. Setup
Reverberant recordings of human speech were simulated in three
different rooms. The dimensions of the rooms and their broadband
reverberation time, T60, are summarized in Table 1. The dimensions
were chosen in accordance with real dimensions of three actual ex-
isting meeting rooms.

Table 1: Physical dimensions and selected acoustic properties of the
three rooms used in the simulation study.

# x [m] y [m] z [m] T60 [ms] dcr [m]
1 3.55 3.62 5.00 786 0.52
2 5.45 3.97 2.89 763 0.52
3 6.48 9.35 3.66 1115 0.80

Reverberant impulse responses were computed for the micro-
phone array configuration illustrated in Fig. 3. The room impulse
responses were obtained using the image method [11].

5 cm

Figure 3: An illustration of the array configuration with 8 micro-
phones located at the corners of a cube with an edge length of 5cm.

In each room, 32 different source and receiver (microphone-
array center) locations were simulated. The locations were ran-
domly drawn from a uniform distribution over the entire volume of
the room with the two following constraints: (1) no receiver/source
was allowed within 0.5m of any of the walls, (2) receiver-source
distance is within an expected conversant range of 1 − 2 m, which
is greater than the critical distance in all the simulated rooms (see
Table 1). In each scenario, dry speech recordings from the TIMIT
corpus [14] with average length of approximately 16 sec, were con-
volved with the simulated room impulse responses. Total length of
the simulated recordings was 26 minutes.

The sampling rate of the simulated recordings was 16 kHz. The
recordings were transformed into the STFT domain using frames of
256 samples and 50 % overlap. In a preliminary investigation it
was found that the array configuration used here performs best in
the frequency range of 1800− 3600 Hz. Hence, the frequency bins
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outside this range were discarded. The remaining data was divided
into short buffers of duration Lbuf [sec]. The buffer length that was
used in the different experiments is detailed below. Using the bi-
nary and the soft mask approaches, the DoA was estimated for each
of the buffers separately. An average of the absolute angular error
was computed, and served as the measure of the DoA estimation
performance.

Lastly, the reader may recall that the binary mask approach has
an inherent LSDD threshold, as described in (5). Hence, when us-
ing the binary mask approach, the DoA estimation is only defined
on those buffers that contain at least one pixel that passes the thresh-
old. Therefore, the analysis and comparison between the binary and
soft masks in the following subsection is carried out only using the
buffers that have passed the appropriate LSDD threshold.

5.2. Results and discussion
First, the DoA estimation was carried out using the soft mask with
different values of the selectivity parameter, α, in order to study its
effect on the performance of the method. The results are plotted in
Fig. 4. It can be seen that the soft mask performs better than the
binary mask over most of the range of α. The DoA error is minimal
around α = 3 increasing from that point in both directions. This
behavior can be explained as follows: when α is low, the soft mask
simply uses all of the pixels and, hence, performs less well than
the binary mask; when α is high, the error increases because the
soft mask becomes too selective, effectively discarding the DoA
information contained in most of the pixels.
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Figure 4: Average absolute DoA error as a function of the selectivity
parameter, α (see Eq. (7)). The audio buffer length is Lbuf = 360
ms, the LSDD threshold used with the binary mask is θ = 12 deg.

When performing DoA estimation, it is usually desirable to
keep the audio buffer duration, Lbuf , as small as possible. This
is especially important when a fast estimation of moving sound
sources is required. Hence, the second experiment reported here
aimed to compare the DoA performance of the binary and the soft
masks as a function of the audio buffer duration. The results are
plotted in Fig. 5. It can be seen that the soft mask leads to a signifi-
cant reduction of the DoA error in all of the computed range of the
buffer duration. In particular, note that a 10 deg average error can
be obtained when applying the soft mask to buffers of as low as 50
ms. At the same time, in order to obtain similar performance when
using the binary mask, the audio buffer duration would need to be
increased all the way to 1000 ms.

Recall that the performance of the DoA estimator with the bi-
nary mask is strongly tied to the choice of the LSDD threshold,
θ. Hence, the last experiment described here compares the perfor-
mance of the binary and the soft masks for three different values
of the LSDD threshold, θ = 5, 10 and 15 deg. The binary mask
approach is only capable of producing a DoA estimate from audio
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Figure 5: Average absolute DoA error as a function of the audio
buffer duration used to obtain a single DoA estimate. The selectivity
parameter with the soft mask is α = 3, the LSDD threshold used
with the binary mask is θ = 12 deg.

buffers that contain at least one pixel satisfying the corresponding
LSDD threshold, otherwise all of the pixels are discarded. Hence,
here, three sets of the audio buffers were first identified by selecting
those which contain at least one pixel that passes the appropriate
LSDD threshold. Note that, by definition, the set of buffers for
θ = 5 deg is contained within the set corresponding to θ = 10 deg,
which, in turn, is contained in the set of θ = 15 deg. The DoA es-
timation was carried out on the three sets using both the binary and
the soft mask methods. The average DoA error obtained in the three
cases is shown in Fig. 6. First, note that in agreement with previ-
ously reported results [8], the DoA error obtained with the binary
mask approach increases for larger values of the LSDD threshold.
Second, in all three cases of the LSDD threshold, applying the soft
mask instead of the binary mask leads to a reduction in the average
DoA estimation error.
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Figure 6: Average absolute DoA error for different values of the
LSDD threshold used in the binary mask method. The audio buffer
length is Lbuf = 360 ms, the selectivity is α = 3.

6. CONCLUSION

The current work has proposed a way to further improve the
reverberation-robust LSDD algorithm for DoA estimation by intro-
ducing a soft time-frequency mask. It was pointed out that the soft
mask has the potential to exploit the available DoA information to
a greater extent, as compared to the previously employed binary
mask. Using the proposed method, a substantial improvement in
the DoA accuracy has been demonstrated. Future work may focus
on further optimization of the soft mask weighting scheme.
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