
Neural Query Expansion for Code Search
Jason Liu

Facebook, Inc.
U.S.A

jasonliu@fb.com

Seohyun Kim
Facebook, Inc.

U.S.A
skim131@fb.com

Vijayaraghavan Murali
Facebook, Inc.

U.S.A
vijaymurali@fb.com

Swarat Chaudhuri
Rice University

U.S.A
swarat@rice.edu

Satish Chandra
Facebook, Inc.

U.S.A
satch@fb.com

Abstract
Searching repositories of existing source code for code snip-
pets is a key task in software engineering. Over the years,
many approaches to this problem have been proposed. One
recent tool called NCS, takes in a natural language query
and outputs relevant code snippets, often being able to cor-
rectly answer Stack Overflow questions. But what happens
when the developer doesn’t provide a query with a clear
intent? What if shorter queries are used to demonstrate a
more vague intent?

We find that the performance ofNCS regresseswith shorter
queries. Furthermore, data from developers’ code search his-
tory logs shows that shorter queries have a less successful
code search session: there are more query reformulations
and more time is spent browsing the results. These obser-
vations lead us to believe that using NCS alone with short
queries may not be productive enough.

In this paper, we explore an additional way of using neural
networks in code search: the automatic expansion of queries.
We present NQE, a neural model that takes in a set of key-
words and predicts a set of keywords to expand the query
to NCS. NQE learns to predict keywords that co-occur with
the query keywords in the underlying corpus, which helps
expand the query in a productive way. Our results show that
with query expansion, NQE + NCS is able to perform better
than using NCS alone.

CCS Concepts • Software and its engineering → Soft-
ware development techniques.

Keywords code search, word-embedding, deep learning

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
MAPL ’19, June 22, 2019, Phoenix, AZ, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6719-6/19/06. . . $15.00
https://doi.org/10.1145/3315508.3329975

ACM Reference Format:
Jason Liu, Seohyun Kim, VijayaraghavanMurali, Swarat Chaudhuri,
and Satish Chandra. 2019. Neural Query Expansion for Code Search.
In Proceedings of the 3rd ACM SIGPLAN International Workshop on
Machine Learning and Programming Languages (MAPL ’19), June
22, 2019, Phoenix, AZ, USA. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3315508.3329975

1 Introduction
Searching repositories of existing source code for relevant
code snippets is a key task in software engineering. Over
the years, many approaches to this problem have been pro-
posed (see Section 2). Recent work in this area has begun to
use neural techniques to get powerful code search perfor-
mance. For example, Facebook has developed an approach
to the problem, called Neural Code Search (NCS) [31]. NCS
computes a continuous vector embedding of programs at
a method-level granularity. Queries (sets of keywords) are
mapped to the same vector space, and vector distance is used
to simulate relevance of code fragments to a given query.
The appeal of such embedding-based techniques is that they
automatically learn semantic and structural features of pro-
grams and reduce the burden of feature engineering, which
was sometimes needed in earlier work.

Sachdev et al. showed that NCS is able to correctly an-
swer a subset of Android Java questions obtained from Stack
Overflow. In most of the Stack Overflow questions, the in-
tent is quite clear and provides enough representative words
for NCS to compute a meaningful vector. However, in the
context of code search, this may not always be the case. A
developer may not know the full method name to search for,
or related words to add to the query. In these scenarios, the
developer may use a shorter query to express a more vague
intent, in hope that code search will be able offer matches
with multiple intents. With shorter queries, are developers
still able to achieve an equally successful search experience?
To answer this question, we investigated code search be-

havior for a week at our company. A code search session
includes all events that occurred between opening and clos-
ing the code search website. An event is defined to be an
action taken by the developer that indicates interest in a

https://doi.org/10.1145/3315508.3329975
https://doi.org/10.1145/3315508.3329975

MAPL ’19, June 22, 2019, Phoenix, AZ, USA Liu, Kim, Murali, Chaudhuri, and Chandra

Figure 1. Data trends based on code search behavior. Blue line indicates
there were more code search sessions with longer queries that only had
one event compared to those with shorter queries. Red line indicates code
search sessions with shorter queries had more events than those with longer
queries.

particular search result (e.g. opening the result in a separate
browser, copying or selecting text, actively hovering over
the result, etc). From the logs, we made two observations.

First, longer queries did not need asmuch query reformula-
tion as did shorter queries. Query reformulation is defined as
the occurrence of a query being altered within the same ses-
sion, often indicating that a satisfactory result was not found
using the initial query. 9.53% of search sessions contained
one ore more query reformulations. The average character
length of the queries without any change was 23.8, while the
average length of the queries with reformulation increased
from 20.4 to 23.1. This shows that developers tend to add
more characters to the shorter queries to bring them to a
length comparable to the length of queries that did not have
to be reformulated. Among the queries with reformulation,
33.0% were a subset of the respective final queries, indicating
that query expansion was quite common.
Second, there was a negative correlation between the

length of the query and the number of events for that session.
The red line in Figure 1 indicates that for shorter queries,
the developer spent more time browsing through the results
until ending the search session. On the other hand, the blue
line in Figure 1 shows a positive correlation between the
length of the query and the percentage of sessions that con-
tained only one event. Sessions with only one event indicate
that the developer had a clearer sense of what to look for,
rather than spend time exploring the results.

These observations demonstrate a correlation between the
lengths of queries and the success of code search. If a tool is
able to automatically provide these expanded query words
during the search session, a developer could have a more
efficient search session, needing less query reformulation.
However, these observations were made with a tool that
offers a grep-like search, instead of a tool that accepts more

Figure 2. Evaluation results on the Stack Overflow dataset. Solid lines are
results when using NCS by itself, and dashed lines indicate using NCS and
NQE.

Table 1. Examples of NQE improving the NCS ranking by expanding the
original query with relevant keywords. Queries were manually labeled.

Original Query NQE Expansion NCS Rank NCS + NQE
Rank

get manager package info 5 1
image get loading cancel set 23 4
sql exec on create 18 3
decks get current 30 2
edit commit clear 5 1

free-form search, such as NCS. With the availability of such
a tool, does having shorter queries regress the performance?
To answer this question, we evaluated NCS on the evalu-

ation dataset used in Sachdev et al.[31], varying the length
of the queries for this experiment. The evaluation dataset
consists of 518 Android-specific queries obtained from Stack
Overflow. These questions were chosen using a script that
passed several criteria, including having “Android” and “Java”
tags, and the accepted code snippet answer having at least
one match in a corpus of GitHub Android repositories. For
this experiment, we constructed six variations of each query
in the following way: after tokenizing the query (splitting
words by snake and camel case, removing stop words, remov-
ing non-alphanumerical characters), we chose top n TF-IDF
valued words, where n ranges from 1 to 6, inclusive. TF-IDF
serves to extract the most representative words from each
query [32]. Out of the 518 questions, 209 questions contained
at least six words. For a fair comparison across the differ-
ent lengths, only these 209 questions were considered - we
call this the Stack Overflow dataset. We conducted the same
automated evaluation pipeline as [18, 31], with the same
threshold number.
We report the number of questions that NCS answered

correctly in the top 1, 10 results in Figure 2. Looking at the
trends for the solid lines (NCS), the number of questions
answered correctly decreases as the length of the query de-
creases. With these observations, there is a clear need for

Neural Query Expansion for Code Search MAPL ’19, June 22, 2019, Phoenix, AZ, USA

a code search tool that is able to expand the query to help
narrow down the intent.
Automatic query expansion is a natural approach to this

problem. On a high level, a query expansion model would
accept some keyword setXquery and output another keyword
setXexp. IfXquery andXexp occur in similar contexts, then the
combined query Xquery ∪ Xexp would have better retrieval
performance.

We have implemented our query expansion technique in
a system called NQE. In this paper, we present an empirical
evaluation of the method using a large corpus of Android
applications. Our experiments clearly indicate the advan-
tage of a query expansion approach over the existing NCS
approach, as well as traditional feature-based code search,
on “short” queries. The dashed lines in Figure 2 show the
results for the same experiment using NQE. For all of the
top-k results, performance across all query lengths increases.
Table 1 shows concrete examples of where NQE improved
the NCS rank on manually labeled queries.

Contributions Our contributions are the following:

• We define the problem of query expansion in code
search, in a way that is driven by the corpus being
searched, rather than being driven by past queries.

• We present a neural model, NQE that predicts the most
promising keywords with which to expand a code
search query. Experiments show that NQE can signif-
icantly improve the effectiveness of code search; in
fact, we show this holds for two different code search
methods: NCS and BM25.

• We show that NQE outperforms a baseline model for
query expansion based on frequent itemset mining.

Outline The paper is organized as follows. Section 2 dis-
cusses related work. Sections 3 presents the main contribu-
tion of this paper, NQE. Section 4 describes the technical
details for the existing models that were used for the pa-
per. Section 5 presents the evaluations performed for the
models. Section 6 provides discussion and results for the
research questions. Finally, section 7 concludes the paper
with possible future explorations.

2 Related Work
In this section, we discuss some related work in this area.

Code Search. There has been growing interest in the soft-
ware engineering community [19, 20, 25] in going beyond
grep-based tools. These methods utilize information about
the code beyond lexical matching in order to retrieve and
rank more relevant results. For instance, RCAS [16] uses
graphs of relationships between JavaScript methods (e.g.,
sequencing, conditional, callbacks) to provide more relevant
results to a natural language query fromwhich a relationship
graph is also inferred.

More recently, machine learning techniques have shown
promise in addressing the inherent noise associated with
searching in a code corpus. NCS [31] uses cosine distance
between the neural embeddings of code snippets and the
input query to compute relevance. Aroma [18] uses a nearest
neighbor search but also supports searching based on richer
features such as code structure, allowing it to be a “code
recommender”. CODEnn [8] jointly embeds code snippets
and NL descriptions into a unified vector space such that a
code and its description have similar vectors. In general, our
work is applicable to most code search methods that take
NL keywords as input. In our experiments, we evaluate it on
NCS.

Query Reformulation. The fact that the results of a re-
trieval task depend largely on the quality of the query [13,
24] has prompted research into improving the latter. Con-
quer [13, 30] is a query reformulation tool that uses NL tech-
niques to find co-occurring sets of keywords among query
results to help a programmer refine the subsequent query.
In our experiments, we compare with an implementation of
this basic idea, but since our goal is query expansion rather
than refinement (i.e., we do not have a notion of subsequent
query), we extract co-occurring words in the corpus rather
than query results. Lu et al. [17] use WordNet, a public the-
saurus of English words, to lookup synonyms of query words
and suggest them for expansion. Query reformulation has
also been studied outside the context of code search, for
example in bug localization [26].
In exploring machine learning methods for query refor-

mulation, Refoqus [9] trains a classifier on a data set of past
queries and relevant results in order to recommend a refor-
mulation strategy that could improve results. Our work is
fundamentally different from this, as we work with only the
corpus of code for query expansion, rather than past searches.
Imani et. al [14] also operate in the domain of neural query
expansion, but train/evaluate on news-based datasets and
address a slightly different problem of determining whether
two expansions are from the same class, which they solve
using Siamese networks. To the best of our knowledge, we
are the first to explore machine learning based methods for
query expansion in the context of code search.

Deep Learning for Code. The general area of using ma-
chine learning techniques to address problems in program-
ming languages has seen a recent surge of interest. Deep-
Coder [4], PHOG [5], and Bayou [23] use deep learning
models to synthesize programs from input specifications
in the form of I/O examples or NL keywords. There is also
significant work in using deep learning for predicting code
properties and types [11, 27, 28], detecting bugs [22, 34], and
representing programs in a vector space for various applica-
tions [1, 2, 12].

MAPL ’19, June 22, 2019, Phoenix, AZ, USA Liu, Kim, Murali, Chaudhuri, and Chandra

3 Neural Query Expansion
We now present the main contribution of this paper. First,
we establish some definitions that we will use in presenting
our models.

Preliminaries. Let D be a corpus of programs, where
each program is considered as a “document” d . LetVm be the
vocabulary of all method names inD. Further, let us assume a
function split that, given a method name, splits it into tokens
based on CamelCase and snake_case. We can define Vk , a
vocabulary of keywords, to be the set union of the result of
splitting each method name in Vm , i.e., Vk =

⋃
v ∈Vm split(v).

A query used for search is a set of keywordsX = {x1, . . . ,xn}
where each xi ∈ Vk . The result of a query is a ranked list
of documents, represented as a sequence R = ⟨d1, . . . ,dk ⟩
where each di ∈ D. Each query X is associated with a par-
ticular expected document dX ∈ D that the user of a code
search tool would expect it to retrieve. Given a search result
R, the rank of the expected document is the index i at which
it appears in R, defined as rank(dX ,R). For ease of definition,
R is always assumed to contain all documents in D, and so
a better search result is simply indicated by a numerically
lower rank for dX .

A search tool can be interpreted as a functionM : P(Vk) →
S(D)1 that takes in a query X and performs a retrieval oper-
ation to return a search result R. A query expansion model
Q : P(Vk) → P(Vk) is a function that takes as input a query
X and produces another set of keywords Xexp, such that the
expanded query including the keywords inXexp would result
in a better search result. In other words, the goal of a query
expansion model is to attempt to ensure:

rank(dX ,M(X ∪ Xexp)) < rank(dX ,M(X))

Model. NQE is a query expansion model where the func-
tion Q is realized as neural network, as shown in Figure 3. It
is an encoder-decoder model that, given a query X as input,
first produces a sequence of method names Y = ⟨y1, . . . ,ym⟩
where each yi ∈ Vm , from which the final output Xexp is
obtained using the split function. The reason for using this
two step process instead of directly generating the set of
keywords Xexp is explored further in Section 7.
First, given an input query X = {x1, . . . ,xn}, each xi is

converted into an embedding e(xi) ∈ Rд , where e is the
embedding function learned during training and д is the
embedding dimension. The encoding of the entire query X
is then computed as the sum of the embeddings of each xi ,
represented as eX =

∑
i e(xi).

The encoding is then fed as the initial state to a Recurrent
Neural Network (RNN) decoder that uses Gated Recurrent
Units (GRU). The decoder’s recurrent step function computes
the probability distribution over the next output method
name conditioned on previously generated names and the

1 P refers to the power set and S refers to the set of all permutations

Figure 3. NQE Pipeline.

encoding of the input query2, i.e., P(yt+1 |y1, . . . ,yt , eX) at
time step t . The decoder repeatedly applies the step function
and samples an output from the resulting distribution, until
a special “end-of-sequence” token is sampled.
The final sequence of method names Y = ⟨y1, . . . ,ym⟩ is

obtained by collecting the output at each time step. Finally,
the output set of expanded keywords is obtained by splitting
each method name in Y , i.e., Xexp =

⋃m
i split(yi).

The crux of why NQE is able to find co-occurring key-
words is that the conditional distribution P(yt+1 |y1, . . . ,yt , eX)
learns to predict method names that contain the query key-
words and co-occur with each other in the underlying corpus.

On top of this core model, there are several enhancements
we apply which we will cover only in brief. First, instead
of obtaining a single sequence Y from the decoder, we use
beam search to obtain the top-k most likely sequences of
method names. Essentially, with beam search the decoder
represents a distribution P(Y |X) from which we can obtain
the most likely sets of expanded keywords using the process
described above.

Second, the decoder also contains a learned attentionmech-
anism that combines the GRU’s hidden state with the em-
bedding set when determining what token to produce. The
purpose of attention is to dynamically identify instances
where certain parts of the input query are “relevant” to the
next token that should be produced. Our model uses the
attention algorithm proposed in [3].

For our experiments, we set both the embedding size and
the hidden dimension of the GRU to 256. We set the learning
rate to 3e−5 and the dropout to 0.4. Finally, we use the Adam
optimizer [15] for training.

4 Background for Evaluation
We now setup a framework on which we evaluate NQE. The
goal is to compute rank(dX ,M(X∪Xexp)) and rank(dX ,M(X))

for some benchmark queries X , and assess whether the for-
mer is lower than the latter. For this, we evaluateNQE on two
instantiations ofM , the search tool: NCS and BM25. We also
evaluate an alternate query expansion model for producing

2 Internally, an RNN decoder would also utilize a hidden state but we
omit it here for brevity, as it is fairly standard.

Neural Query Expansion for Code Search MAPL ’19, June 22, 2019, Phoenix, AZ, USA

Xexp, using frequent itemsets. Here we provide an overview
of these methods.

4.1 Search Tools
As defined before, a search tool is a function that accepts
a query X and returns a search result R. Here, we explore
two possible instantiations of search tools: one based on
neural embeddings (NCS) and another based on traditional
information retrieval (BM25).3

4.1.1 NCS
NCS is a novel code search tool introduced in [31]. The model
exploits the concept of embeddings to represent both the
query and documents (code snippets) as vector representa-
tions. NCS is an unsupervised model, as the embeddings are
trained directly on the code corpus, such that words that
appear in similar contexts within the corpus are close to-
gether in the vector space. This is based on the distributional
hypothesis from NLP [10].

For each method body in the code corpus, certain tokens
(e.g. method calls, comments, class names, etc.) are extracted
and tokenized. Using fastText [6], NCS learns an embedding
matrix T ∈ R |Vk |×д , where Vk is the token vocabulary, д is
the embedding dimension, and the ith row in T is the vector
representation for the ith word in Vk .
With the embedding matrix, NCS creates document em-

beddings for the code corpus by taking the weighted average
of embeddings for the set of tokens in the document, where
the weights are derived using TF-IDF [32]. With this step,
we have an index matrix S ∈ R |D |×д .

Given a query, NCS creates the query embedding by tak-
ing the average of the set of tokens in the query. Then, the
documents are ranked by cosine similarity.

4.1.2 BM25
We also evaluate with an alternate search tool that is similar
to NCS, but instead of embeddings, it uses BM25 [21] to rank
the documents. BM25 is a well-known information retrieval
technique, similar to the computation for TF-IDF. It uses the
following formula to give score for a given document d and
a query word x .

BM25(d,x) = IDF(x) ·
TF(x ,d) · (k + 1)

TF(x ,d) + k · (1 − b + b ·
|d |

avgdl)
(1)

TF is the term frequency, IDF is the inverse document fre-
quency, |d | is the length of the document d , and avдdl is the
average document length of all d ∈ D. k and b are tunable
parameters.

3 There exist other code search tools that may perform better. Our goal,
however, was to not to find the best code search tool; rather, we wanted to
explore the effect of a tool given varying query lengths, and whether query
expansion could improve the tool.

In a search tool that uses BM25, the words are tokenized
from each document in the same manner as NCS. The docu-
ment vector, however, is calculated differently. It is a sparse
vector of size |Vk |, the size of the vocabulary corpus. For
each document vector, the ith entry is the BM25 value for
the word xi if that word is present in the document and 0
otherwise.
When a query comes in, the tool creates a multi-hot en-

coding query vector of size |Vk |, where the ith entry is 1 if xi
is present in the query and 0 otherwise. Then, the documents
are ranked by a simple dot product between the query vector
and each of the document vectors.

4.2 Query Expansion Models
In addition to NQE, we evaluate a non-neural method for
query expansion, namely Frequent Itemset Mining.

4.2.1 Frequent Itemset Mining
We compare NQE with a non-neural model that captures the
notions of co-occurring methods. To achieve this, we used
Frequent Itemset Mining (FIM), a well-known technique for
finding frequently appearing items in a dataset. In particular,
we deployed the Apriori algorithm [33].

The underlying idea of FIM is that if a certain set of items
appears frequently together, they are more associated with
each other. Given a set sb of k items, the Apriori algorithm
attempts to find an extension se that makes the set sb ∪ se
(size k + 1) most likely to appear in the dataset. This metric
is calculated by the confidence of a particular expansion se
given a set sb , where support is the number of times a set
appears together in a dataset.

confidence(sb → se) =
support(sb ∪ se)

support(sb)
(2)

For our model, we set the minimum support to be 3, the
minimum confidence score to be 0.5, and calculate frequent
itemsets up to 4 items. 4 Given a query, for each combination
set of three keywords, sb , and for each possible expansion
se ∈ Vk , we rank by the confidence(sb → se). If there are no
expansions, then the same process occurs using two key-
words, and then one. We return only one possible expansion,
for a conservative expansion. 5

5 Evaluation
5.1 Data Collection
The models are trained on a corpus of 737 public Android
repositories cloned from GitHub. There are a total of 105,747
files, from which we are able to scrape 308,309 valid method
bodies (|D|).

4 Although the maximum length of input queries is 6, the potential
performance increase of calculating frequent itemsets for more than 4 items
did not outweigh the computation and memory consumption.

5 We tried varying number of expansions from 1-4, and found that one
expansion yielded the best results.

MAPL ’19, June 22, 2019, Phoenix, AZ, USA Liu, Kim, Murali, Chaudhuri, and Chandra

The word embeddings for NCS are trained on this entire
dataset. For NQE, we divide the dataset into 95%, 3%, and 2%
for training, testing, and validation, respectively. Evaluation
for all the models is carried out on the testing dataset. To
address the problem of a large vocabulary size, we limit
the the vocabulary corpus by filtering method names that
appear in fewer than 3 method bodies and replacing them
with an <unk> token. After this filtering, the vocabulary size
of keywords |Vk | is 6,896, and the vocabulary size of method
names |Vm | is 44,279.

5.2 Generating Xquery from Y (TF-IDF dataset)
From the dataset, we extract Xquery (keyword set) and Y
(method sequence) from each method body d such that the
tokens ofXquery representY . To explore the effects of varying
query length on the performance of the models, several sam-
ples of Xquery are chosen from Y . First, from d , the method
calls are extracted to form Y . Then we take the top 50% TF-
IDF methods from Y to keep the most representative method
calls. From here, keywords are extracted by tokenizing the
method calls in the same manner as NCS (split by snake and
camel case, filter out stop words, etc). There are two ways to
form candidate tokens (Xcand) from Y : 1) Take the top 75%
TF-IDF keywords from all of the keywords combined from
Y , and 2) Get the top 1 IDF keyword from each Y . Since the
first method chooses keywords from all of the combined key-
words from Y , there is a possibility of localizing the intent to
a particular subset ofY . The secondmethod serves to provide
a more broader intent for the entire Y . From Xcand, Xquery is
sampled where |Xquery | ∼ Uniform(1, 6). After sampling, we
have approximately 1.8 million (Xquery,y,d) datapoints.

5.3 Manually creating Xquery (Manual Dataset)
We apply TF-IDF in Section 5.2 because we believe that TF-
IDF serves to extract the most representative and human-like
queries. To validate this, we also asked developers to perform
the following task: given Y , create an Xquery from lengths 1
to 6. Our expectation is that if TF-IDF provides human-like
queries, then the results between the two datasets should be
similar. We obtained queries for 140 method bodies.

5.4 Evaluation Pipeline
In this paper, we use three different evaluation datasets:

• TF-IDF dataset: described in Section 5.2
• Manual dataset: described in Section 5.3
• Stack Overflow dataset: described in Section 1

We then compare three evaluation pipelines for code search.
Given X , d , SearchTool ∈ {NCS, BM25}, and Expansion ∈

{NQE, FIM}, the model pipeline is as follows:
• SearchTool: X is used as input to SearchTool .
• Expansion + SearchTool: X is used as input to
Expansion, which predicts Xexp. X ∪ Xexp is used as
input to SearchTool .

5.5 Evaluation Metrics
We use this dataset of X and d to compare our models with
two experiments.

First, we use the TF-IDF and Manual datasets to evaluate
whether the model can retrieve the correct d in the top 1, 10
results, along with the Mean Reciprocal Rank (MRR).
The second experiment uses the Stack Overflow dataset.

Given a subset of a Stack Overflow question, an automated
evaluation pipeline [18] determines whether the model re-
trieves a code snippet d that is similar to the accepted Stack
Overflow answer. Using an automated evaluation pipeline
is crucial because manually assessing each result is difficult
to scale. This pipeline uses the same similarity threshold as
used in [31]. We report whether the model can retrieve a
correct code snippet in the top 1, 5, 10 results.

6 Results
RQ1: Does NQE improve performance for shorter
queries? Our experiments demonstrate that NQE improves
the performance on shorter queries in all three datasets using
NCS SearchTool.
Stack Overflow: From the top half of Table 2, we observe

that NCS +NQE generally outperforms NCS across shorter
query lengths. For example, in Top 5 retrieval results for
queries of length 1, NCS retrieves a relevant result for 15
questions, whereas NCS +NQE retrieves a relevant result for
22 questions. When all of the query words are used as the
initial input, NCS +NQE matches NCS, as shown in the last
three columns. NCS +NQE also outperforms NCS+FIM across
all query lengths, as shown in the bottom half of Table 2.
TF-IDF & Manual: The left halves of Table 3 and Table 4

show that NQE improves the NCS MRR score for 1 word
and 2 word queries in both the TF-IDF and Manual datasets.
The reason for this can be explained by the left halves of
Figure 4 and Figure 5. In both datasets, NQE improves Top 1
accuracy for 1 and 2 word queries, and it also increases the
Top 10 accuracy for 1 word queries. Conversely, for 3 word
queries and longer, NQE worsens the NCS MRR, which is
also explained by the decreased Top 1 and Top 10 accuracies.
Figure 6 provides a deeper dive into this, where we measure
the rank change on a per-sample basis. The figure shows that
for Top 1 results,NQE improves (green lines) theNCS ranking
more often than making it worse (red line) for queries of
length 1 and 2. As the query length increases, both NCS and
NCS+NQE tend to find the result in the first result (cyan line
in the left plot).
Table 4 and Figure 5 show that NQE+NCS outperforms

FIM + NCS on the Manual dataset, and the same generally
holds true for the TF-IDF dataset with the exception of the
bottom left plot of Figure 4. The similar trends between the
two datasets corroborate our previous claim that the TF-IDF
dataset is fairly representative of how a developer would
search given a limited query length.

Neural Query Expansion for Code Search MAPL ’19, June 22, 2019, Phoenix, AZ, USA

Table 2. The number of Stack Overflow questions answered in the top 1, 5,
10 results with varying lengths of the queries. Search performance increases
when NCS is aided by NQE, especially for shorter queries.

Top K
Query Length

1 4 All

NCS NCS+
FIM

NCS+
NQE NCS NCS+

FIM
NCS+
NQE NCS NCS+

FIM
NCS+
NQE

1 10 10 14 12 12 16 20 18 22
5 15 15 22 20 21 29 33 28 34
10 18 18 25 23 25 33 40 40 40

BM25 BM25+
FIM

BM25+
NQE BM25 BM25+

FIM
BM25+
NQE BM25 BM25+

FIM
BM25+
NQE

1 11 11 17 13 14 16 16 16 18
5 17 15 20 21 20 22 26 22 24
10 19 17 24 22 21 22 30 27 28

Table 3.MRR results on TF-IDF dataset. Note that NCS + NQE outperforms
NCS on short queries of length 1 and 2.

Query
Length

Mean Reciprocal Rank

NCS NCS +
FIM

NCS +
NQE BM25 BM25 +

FIM
BM25 +
NQE

1 0.092 0.109 0.284 0.060 0.045 0.219
2 0.416 0.428 0.543 0.276 0.193 0.390
3 0.672 0.547 0.574 0.528 0.356 0.424
4 0.807 0.706 0.650 0.657 0.494 0.542
5 0.852 0.727 0.679 0.649 0.491 0.531
6 0.951 0.839 0.812 0.729 0.574 0.605

Table 4. MRR results on Manual dataset. Note similar trends to Table 3.

Query
Length

Mean Reciprocal Rank

NCS NCS +
FIM

NCS +
NQE BM25 BM25 +

FIM
BM25 +
NQE

1 0.040 0.080 0.178 0.035 0.049 0.139
2 0.319 0.292 0.352 0.272 0.258 0.310
3 0.545 0.381 0.456 0.440 0.310 0.396
4 0.706 0.438 0.560 0.573 0.364 0.492
5 0.782 0.430 0.609 0.690 0.378 0.547
6 0.814 0.481 0.626 0.721 0.452 0.589

RQ2: How does the quality of NQE sequence predic-
tion affect the end-result? Our experiments demonstrate
that the sequence prediction quality impacts the NCS+NQE
performance. On the TF-IDF dataset, NQE predicted the cor-
rect sequence in 30.3% of cases. Further, we observe that in
93% of the cases, at least 50% of the query appears within
the keywords of the tokenized prediction, which supports
our claim that NQE learns to predict methods relevant to the
query. We also observe that in 100% of the test dataset, at
least 50% of the predicted methods co-occurred in the under-
lying dataset, which suggests NQE understands the notion
of co-occurring methods.
Figure 7 provides a breakdown across three different sit-

uations: a correct prediction, an incorrect prediction, and
a "close" prediction. The first two are self-explanatory. A
"close" prediction is defined as the Jaccard similarity between
the method-set of the incorrect prediction and the method-
set of the expected sequence being equal or greater than 0.5.

Note that it is possible for an incorrect prediction to have
a Jaccard similarity of 1 if, for example, it is a permutation
of the sequence. The effect of a correct prediction is as ex-
pected; at low query lengths, it is more likely to improve the
NCS rank, and as the query length increases, this scenario
gradually becomes such that the NCS retrieval is already
perfect and NQE cannot improve it. This is depicted by the
inverse relationship between the green and cyan lines. For
an incorrect prediction, NQE is more likely to worsen the
rank than improve it, as shown by the red line consistently
above the green line. When the prediction is "close", we see
an interpolation between the two previous plots. NQE clearly
improves theNCS rank more often than worsening it at short
query lengths, but for lengths ≥ 3, there are no clear differ-
ences in the two outcomes, as shown by the green and red
lines closely following each other.

RQ3: Do these findings generalize to other search tech-
niques? Our findings indicate that the results generalize to
BM25 in all three datasets.
From the bottom half of Table 2, we observe that NQE +

BM25 retrieves more successful results than BM25 alone on
the StackOverflow dataset. The right halves of Table 3 and
Table 4 show that NQE improves the BM25 MRR score for
1-word and 2-word queries in both the TF-IDF and Manual
datasets. The right halves of Figure 4 and Figure 5 show that
in both datasets, NQE improves Top 1 accuracy for 1 and 2
word queries, and it also increases the Top 10 accuracy for 1
word queries.

7 Future Work
One modification to NQE we hope to explore is sequence
prediction at the sub-token level. This would afford us two ad-
vantages: a smaller decoder vocabulary size and the ability to
handle rare method names that contain common sub-tokens.
However, there is a trade-off between the expressiveness of
the decoder and the accuracy of the sequence prediction that
we would then need to consider. This is because if the inter-
nal RNN trains over sub-token sequences, it would generally
train over sequences of longer and more varied lengths. Vari-
ance in length typically causes RNN performance to regress.
NQE internally predicts a sequence for the end goal of

set expansion. Our rationale for using a sequence is that
there currently do not appear to be any widely accepted
neural models for set expansion. Our results show success
for the reasons discussed in Section 3; NQE predicts method
names that contain the query keywords and has a notion of
co-occurring methods. Even then, an avenue of exploration
for us would be to compare NQE with the proposed set ex-
pansion methods in [35] or [7]. Classifier chain methods
exist [29], but on a high level the training data required for
a set expansion task is exponential in size compared to the
data needed for RNN-based models. Another possibility for
us would be to explore methods that leverage the sequential

MAPL ’19, June 22, 2019, Phoenix, AZ, USA Liu, Kim, Murali, Chaudhuri, and Chandra

Figure 4. Top K accuracy on the TF-IDF dataset between NCS and BM25
with and without NQE and FIM .

Figure 5. Top K accuracy on the Manual dataset between NCS and BM25
with and without NQE and FIM .

Figure 6. Top 1 ranking changes between NCS+NQE vs NCS.

Figure 7. Top 10 ranking changes between NQE + NCS vs NCS when the
prediction is correct, wrong, or close on the TF-IDF dataset.

information of the NQE output. Beyond method sequences,
we may also look into producing syntactic information that
could also be used in the search query.

8 Conclusion
In this paper we explored the performance of code search
on varying query lengths. We found that NCS has a more
difficult time retrieving the correct code snippet with shorter
queries. Furthermore, developers’ code search history logs
show that shorter queries have more query reformulation
and browsing time spent compared to longer queries. These
observations lead us to believe that a model to expand the
original query will be helpful to the developers.
We present NQE, an neural model that takes in a set of

keywords and predicts a set of keywords, which then can
be used to expand the query to NCS. Our results show that
with query expansion, NQE + NCS is able to perform better
than simply using NCS.

References
[1] Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi.

Learning to represent programs with graphs. In International Confer-
ence on Learning Representations, 2018.

[2] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. code2vec:
Learning distributed representations of code. Proceedings of the ACM

Neural Query Expansion for Code Search MAPL ’19, June 22, 2019, Phoenix, AZ, USA

on Programming Languages, 3(POPL):40, 2019.
[3] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural

machine translation by jointly learning to align and translate. arXiv
preprint arXiv:1409.0473, 2014.

[4] Matej Balog, Alexander L Gaunt, Marc Brockschmidt, Sebastian
Nowozin, and Daniel Tarlow. Deepcoder: Learning to write programs.
In International Conference on Learning Representations, 2017.

[5] Pavol Bielik, Veselin Raychev, and Martin Vechev. Phog: probabilistic
model for code. In International Conference on Machine Learning, pages
2933–2942, 2016.

[6] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov.
Enriching word vectors with subword information. Transactions of
the Association for Computational Linguistics, 5:135–146, 2017.

[7] Tian Gao, Jie Chen, Vijil Chenthamarakshan, and Michael Witbrock.
A sequential set generation method for predicting set-valued outputs.
arXiv preprint arXiv:1903.05153, 2019.

[8] Xiaodong Gu, Hongyu Zhang, and Sunghun Kim. Deep code search. In
2018 IEEE/ACM 40th International Conference on Software Engineering
(ICSE), pages 933–944. IEEE, 2018.

[9] Sonia Haiduc, Gabriele Bavota, Andrian Marcus, Rocco Oliveto, An-
drea De Lucia, and Tim Menzies. Automatic query reformulations
for text retrieval in software engineering. In Proceedings of the 2013
International Conference on Software Engineering, pages 842–851. IEEE
Press, 2013.

[10] Zellig S. Harris. Distributional structure. WORD, 10(2-3):146–162,
1954.

[11] Vincent J Hellendoorn, Christian Bird, Earl T Barr, and Miltiadis Alla-
manis. Deep learning type inference. In Proceedings of the 2018 26th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, pages 152–162.
ACM, 2018.

[12] Jordan Henkel, Shuvendu K Lahiri, Ben Liblit, and Thomas Reps. Code
vectors: understanding programs through embedded abstracted sym-
bolic traces. In Proceedings of the 2018 26th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foun-
dations of Software Engineering, pages 163–174. ACM, 2018.

[13] Emily Hill, Manuel Roldan-Vega, Jerry Alan Fails, and Greg Mallet. Nl-
based query refinement and contextualized code search results: A user
study. In 2014 Software Evolution Week-IEEE Conference on Software
Maintenance, Reengineering, and Reverse Engineering (CSMR-WCRE),
pages 34–43. IEEE, 2014.

[14] Ayyoob Imani, Amir Vakili, Ali Montazer, and Azadeh Shakery. Deep
neural networks for query expansion using word embeddings. In
European Conference on Information Retrieval, pages 203–210. Springer,
2019.

[15] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

[16] Xuan Li, Zerui Wang, Qianxiang Wang, Shoumeng Yan, Tao Xie, and
Hong Mei. Relationship-aware code search for javascript frameworks.
In Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, pages 690–701. ACM, 2016.

[17] Meili Lu, Xiaobing Sun, Shaowei Wang, David Lo, and Yucong Duan.
Query expansion via wordnet for effective code search. In 2015 IEEE
22nd International Conference on Software Analysis, Evolution, and
Reengineering (SANER), pages 545–549. IEEE, 2015.

[18] Sifei Luan, Di Yang, Celeste Barnaby, Koushik Sen, and Satish Chan-
dra. Aroma: Code recommendation via structural code search. CoRR,
abs/1812.01158, 2018.

[19] Fei Lv, Hongyu Zhang, Jian-guang Lou, Shaowei Wang, Dongmei
Zhang, and Jianjun Zhao. Codehow: Effective code search based
on api understanding and extended boolean model (e). In 2015 30th

IEEE/ACM International Conference on Automated Software Engineering
(ASE), pages 260–270. IEEE, 2015.

[20] Collin McMillan, Mark Grechanik, Denys Poshyvanyk, Qing Xie, and
Chen Fu. Portfolio: finding relevant functions and their usage. In
Proceedings of the 33rd International Conference on Software Engineering,
pages 111–120. ACM, 2011.

[21] Bhaskar Mitra and Nick Craswell. Neural models for information
retrieval. CoRR, abs/1705.01509, 2017.

[22] Vijayaraghavan Murali, Swarat Chaudhuri, and Chris Jermaine.
Bayesian specification learning for finding api usage errors. In Pro-
ceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, pages 151–162. ACM, 2017.

[23] Vijayaraghavan Murali, Letao Qi, Swarat Chaudhuri, and Chris Jer-
maine. Neural sketch learning for conditional program generation. In
International Conference on Learning Representations, 2018.

[24] Nina Phan, Peter Bailey, and Ross Wilkinson. Understanding the
relationship of information need specificity to search query length.
In Proceedings of the 30th annual international ACM SIGIR conference
on Research and development in information retrieval, pages 709–710.
ACM, 2007.

[25] Luca Ponzanelli, Gabriele Bavota, Massimiliano Di Penta, Rocco
Oliveto, and Michele Lanza. Mining stackoverflow to turn the ide
into a self-confident programming prompter. In Proceedings of the 11th
Working Conference on Mining Software Repositories, pages 102–111.
ACM, 2014.

[26] Mohammad Masudur Rahman and Chanchal K Roy. Improving ir-
based bug localization with context-aware query reformulation. In
Proceedings of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, pages 621–632. ACM, 2018.

[27] Veselin Raychev, Martin Vechev, and Andreas Krause. Predicting
program properties from big code. InACMSIGPLANNotices, volume 50,
pages 111–124. ACM, 2015.

[28] Veselin Raychev, Martin Vechev, and Eran Yahav. Code completion
with statistical language models. In Acm Sigplan Notices, volume 49,
pages 419–428. ACM, 2014.

[29] Jesse Read, Bernhard Pfahringer, Geoff Holmes, and Eibe Frank. Clas-
sifier chains for multi-label classification. In Joint European Conference
on Machine Learning and Knowledge Discovery in Databases, pages
254–269. Springer, 2009.

[30] M. Roldan-Vega, G. Mallet, E. Hill, and J. A. Fails. Conquer: A tool
for nl-based query refinement and contextualizing code search results.
In 2013 IEEE International Conference on Software Maintenance, pages
512–515, Sep. 2013.

[31] Saksham Sachdev, Hongyu Li, Sifei Luan, Seohyun Kim, Koushik Sen,
and Satish Chandra. Retrieval on source code: a neural code search.
In Proceedings of the 2nd ACM SIGPLAN International Workshop on
Machine Learning and Programming Languages, pages 31–41. ACM,
2018.

[32] Gerard Salton and Christopher Buckley. Term-weighting approaches
in automatic text retrieval. Information processing & management,
24(5):513–523, 1988.

[33] Hannu Toivonen. Apriori Algorithm, pages 39–40. Springer US, Boston,
MA, 2010.

[34] Song Wang, Devin Chollak, Dana Movshovitz-Attias, and Lin Tan.
Bugram: bug detection with n-gram language models. In Proceedings
of the 31st IEEE/ACM International Conference on Automated Software
Engineering, pages 708–719. ACM, 2016.

[35] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos,
Ruslan R Salakhutdinov, and Alexander J Smola. Deep sets. InAdvances
in neural information processing systems, pages 3391–3401, 2017.

	Abstract
	1 Introduction
	2 Related Work
	3 Neural Query Expansion
	4 Background for Evaluation
	4.1 Search Tools
	4.2 Query Expansion Models

	5 Evaluation
	5.1 Data Collection
	5.2 Generating Xquery from Y (TF-IDF dataset)
	5.3 Manually creating Xquery (Manual Dataset)
	5.4 Evaluation Pipeline
	5.5 Evaluation Metrics

	6 Results
	7 Future Work
	8 Conclusion
	References

