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Abstract

Recent work on audio-visual navigation assumes a
constantly-sounding target and restricts the role of audio
to signaling the target’s position. We introduce semantic
audio-visual navigation, where objects in the environment
make sounds consistent with their semantic meaning (e.g.,
toilet flushing, door creaking) and acoustic events are spo-
radic or short in duration. We propose a transformer-based
model to tackle this new semantic AudioGoal task, incorpo-
rating an inferred goal descriptor that captures both spatial
and semantic properties of the target. Our model’s persis-
tent multimodal memory enables it to reach the goal even
long after the acoustic event stops. In support of the new
task, we also expand the SoundSpaces audio simulations
to provide semantically grounded sounds for an array of
objects in Matterport3D. Our method strongly outperforms
existing audio-visual navigation methods by learning to as-
sociate semantic, acoustic, and visual cues.1

1. Introduction
An autonomous agent interacts with its environment in a

continuous loop of action and perception. The agent needs
to reason intelligently about all the senses available to it
(sight, hearing, proprioception, touch) to select the proper
sequence of actions in order to achieve its task. For exam-
ple, a service robot of the future may need to locate and
fetch an object for a user, go empty the dishwasher when
it stops running, or travel to the front hall upon hearing a
guest begin speaking there.

Towards such applications, recent progress in visual nav-
igation builds agents that use egocentric vision to travel to a
designated point in an unfamiliar environment [23, 38, 42,
10], search for a specified object [44, 9, 37, 8], or explore
and map a new space [35, 34, 13, 10, 15, 10, 36]. Lim-
ited new work further explores expanding the sensory suite
of the navigating agent to include hearing as well. In par-
ticular, the AudioGoal challenge [11] requires an agent to
navigate to a sounding target (e.g., a ringing phone) using
audio for key directional and distance cues [11, 19, 12].

1Project page: http://vision.cs.utexas.edu/projects/
semantic-audio-visual-navigation
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Figure 1: Semantic audio-visual navigation in 3D environ-
ments: an agent must navigate to a sounding object. Since
the sound may stop while the agent searches for the object,
the agent is incentivized to learn the association between
how objects look and sound, and to build contextual mod-
els for where different semantic sounds are more likely to
occur (e.g., water dripping in the bathroom).

While exciting first steps, existing audio-visual naviga-
tion work has two key limitations. First, prior work assumes
the target object constantly makes a steady repeating sound
(e.g., alarm chirping, phone ringing). While important, this
corresponds to a narrow set of targets; in real-world sce-
narios, an object may emit a sound only briefly or start and
stop dynamically. Second, in current models explored in re-
alistic 3D environment simulators, the sound emitting target
has neither a visual embodiment nor any semantic context.
Rather, target sound sources are placed arbitrarily in the en-
vironment and without relation to the semantics of the scene
and objects. As a result, the role of audio is limited to pro-
viding a beacon of sound announcing where the object is.

In light of these limitations, we introduce a novel task:
semantic audio-visual navigation. In this task, the agent
must navigate to an object situated contextually in an envi-
ronment that only makes sound for a certain period of time.
Semantic audio-visual navigation widens the set of real-
world scenarios to include acoustic events of short temporal
duration that are semantically grounded in the environment.
It offers new learning challenges. The agent must learn not
only how to associate sounds with visual objects, but also
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how to leverage the semantic priors of objects (along with
any acoustic cues) to reason about where the object is likely
located in the scene. For example, hearing the dishwasher
stop running and issue its end of cycle chime should sug-
gest both what visual object to search for as well as the
likely paths for finding it, i.e., towards the kitchen rather
than the bedroom. Notably, in the proposed task, the agent
is not given any external information about the goal (such as
a displacement vector or name of the object to search for).
Hence the agent must learn to leverage sporadic acoustic
cues that may stop at any time as it searches for the source,
inferring what visual object likely emitted the sound even
after it is silent. See Figure 1.

To tackle semantic AudioGoal, we introduce a deep re-
inforcement learning model that learns the association be-
tween how objects look and how they sound. We develop
a goal descriptor module that allows the agent to hypoth-
esize the goal properties (i.e., location and object cate-
gory) from the received acoustic cues before seeing the
target object. Coupled with a transformer, it learns to at-
tend to the previous visual and acoustic observations in its
memory—conditioned on the predicted goal descriptor—to
navigate to the audio source. Furthermore, to support this
line of research, we instrument audio-visual simulations for
real scanned environments such that semantically relevant
sounds are attached to semantically relevant objects.

We evaluate our model on 85 large-scale real-world en-
vironments with a variety of semantic objects and their
sounds. Our approach outperforms state-of-the-art models
in audio-visual navigation with up to an absolute 8.9% im-
provement in SPL. Furthermore, our model is robust in han-
dling short acoustic signals emitted by the goal with vary-
ing temporal duration, and compared to the competitors, it
more often reaches the goal after the acoustic observations
end. In addition, our model maintains good performance in
the presence of environment noise (distractor sounds) com-
pared to baseline models. Overall, this work shows the po-
tential for embodied agents to learn about how objects look
and sound through interactions with a 3D environment.

2. Related work
Visual navigation. To navigate autonomously, tradition-
ally a robot builds a map via 3D reconstruction (i.e., SLAM)
and then plans a path using the map [17]. Recent work
instead learns navigation policies directly from egocen-
tric observations [23, 37, 29]. A popular task is Point-
Goal navigation, where the goal position is given to the
agent [23, 29, 38, 42]. Alternatively, in the ObjectGoal set-
ting, the agent is given an object label rather than the goal
location, and must navigate to the nearest instance of that
category (e.g., go to a table) [44, 4, 9]. In contrast to both
PointGoal and ObjectGoal, in the proposed setting the agent
is not given specific goal information. Instead, it needs to

react to an acoustic event to determine what kind of object
is sounding and navigate to it. Furthermore, unlike Object-
Goal, the agent needs to navigate to the specific object in-
stance that emitted the sound rather than any instance of that
category. Our task represents real-world scenarios where
dynamic objects draw the attention of an agent and call it to
action (e.g., the sound of a heavy object falling upstairs).

Audio-visual navigation. Recent work leverages audio
for the AudioGoal navigation task [11, 19]. In that setup,
the agent navigates to a sound-emitting goal using both vi-
sual and acoustic observations [11, 19, 12]. As discussed
above, prior methods assume the goal is sounding contin-
uously through the episode and that it does not have a vi-
sual embodiment. While suitable for certain events like fire
alarm, many acoustic events are short and infrequent (e.g.,
glass breaking, door slamming, a person calling for help).
We consider a generalized setting where the audio signal is
only available for a limited period of time and the agent
must find the sounding object using both initial acoustic
cues and the goal semantics. In addition, we augment the
SoundSpaces audio simulations [11] for Matterport3D [6]
to portray semantically relevant object-level sounds, an ad-
vance over the simulations used in prior work [11, 19, 12],
which inserted a small set of sounds randomly in the envi-
ronments without any visual embodiment.

Memory models for 3D environments. While it is com-
mon to use an implicit memory representation in navigation
to aggregate observations, e.g., a recurrent network [28, 38,
11, 27, 3, 30], other methods leverage explicit map-based
memories to record occupancy [23, 13, 34, 10, 12, 33] or
object locations [9, 5]. To capture long-term dependencies
another promising direction is to use a transformer architec-
ture [41] to record observations and poses [15]. We build
in this direction and introduce a scene memory transformer
that, unlike prior work, 1) is multimodal and 2) leverages
an explicit learned goal descriptor to attend to the mem-
ory. Our memory model learns audio-visual associations
between the goal and the observations from the scene, a cru-
cial functionality as we demonstrate in experiments.

Audio-visual learning in video. Work in passive (non-
embodied) video analysis also explores the link between
object appearance and sound. This includes audio source
separation methods that disentangle sounds based on ob-
ject appearance [20, 14, 31, 1, 43, 21, 22] as well as self-
supervised video representation learning methods [26, 32,
16, 18]. Our approach also learns how to associate ob-
jects with their sounds. However, in contrast to previous
video approaches, our approach learns in the context of an
agent’s interaction with a 3D environment. Namely, our
agent learns to associate an object category inferred from
audio with its visual representation and contextual scene
cues at the same time it learns to navigate efficiently.
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3. Semantic Audio-Visual Navigation
We introduce the novel task of semantic audio-visual

navigation. In this task, the agent is required to navigate in a
complex, unmapped environment to find a semantic sound-
ing object—semantic AudioGoal for short. Different from
AudioGoal [11, 19], the goal sound need not be periodic,
has variable duration, and is associated with a meaningful
semantic object (e.g., the door creaking is associated with
the apartment’s door). This setting represents common real
world events, and as discussed above, poses new challenges
for embodied learning. Relying on audio perception solely
to produce step-by-step actions is not sufficient, since the
audio event is relatively short. Instead, the agent needs to
reason about the category of the sounding object and use
both visual and audio perception to predict its location.

3D environments and simulator. Consistent with the ac-
tive body of computer vision work on embodied AI done
in simulation, and to facilitate reproducibility of our work,
we rely on a visually and acoustically realistic simulation
platform to model an agent moving in complex 3D environ-
ments. We use SoundSpaces [11], which enables realistic
audio rendering of arbitrary sounds for the real-world en-
vironment scans in Replica [40] and Matterport3D [6]. We
use the Matterport environments due to their greater scale
and complexity. SoundSpaces is Habitat-compatible [38]
and allows rendering arbitrary sounds at any pair of source
and receiver (agent) locations on a uniform grid of nodes
spaced by 1 m. Next we explain how we extend this audio
data to provide semantically meaningful sounds.

Semantic sounds data collection. We use the 21 ob-
ject categories defined in the ObjectGoal navigation chal-
lenge [4] for Matterport3D environments: chair, table, pic-
ture, cabinet, cushion, sofa, bed, chest of drawers, plant,
sink, toilet, stool, towel, tv monitor, shower, bathtub,
counter, fireplace, gym equipment, seating, and clothes. All
of these categories have objects that are visually present
in Matterport environments. By rendering object-specific
sounds at the locations of the Matterport objects, we ob-
tain semantically meaningful and contextual sounds. For
example, the water flush sound will be associated with the
toilet in the bathroom, and the crackling fire sound with the
fireplace in the living room or the bedroom. We filter out
object instances that are not reachable by the navigability
graph. The number of object instances for train/val/test is
303/46/80 on average for each object category.

We consider two types of sound events: object-emitted
and object-related. Object-emitted sounds are generated
by the object, e.g., a toilet flushing, whereas object-related
sounds are caused by people’s interactions with the object,
e.g., food being chopped on the counter. To provide a vari-
ety of sounds, we search a public database freesound.
org by the 21 object names to get long copyright-free audio

clips per object. We split the original clips (average length
81s) evenly into train/val/test clips. These splits allow the
characteristics of the unheard sounds (i.e., waveforms not
heard during training) to be related to those in the training
set, while still preserving natural variations.2 The duration
of the acoustic phase in each episode is randomly sampled
from a Gaussian of mean 15s and deviation 9s, clipped for a
minimum 5s and maximum 500s. If the sampled duration is
longer than the length of the audio clip, we replay the clip.
See the Supp. video for examples.

Action space and sensors. The agent’s action space is
MoveForward, TurnLeft, TurnRight, and Stop. The last
three actions are always valid, while MoveForward only
takes effect when the node in front of the agent is reachable
from that position (no collision). The sensory inputs are
egocentric binaural sound (two-channel audio waveforms),
RGB, depth, and the agent’s current pose.
Episode specification and success criterion. An episode
of semantic AudioGoal is defined by 1) the scene, 2) the
agent start location and rotation, 3) the goal location, 4) the
goal (object) category and 5) the duration of the audio event.
In each episode in a given scene, we choose a random object
category and a random instance of that category as the goal.
The agent’s start pose is also randomly positioned in the
scene. In semantic AudioGoal, the agent has to stop near the
particular sounding object instance, not simply any instance
of the class. This is a stricter success criterion than Object-
Goal [4], which judges an episode as successful if the agent
stops near any instance of that category. We define a set
of viewpoints around each object within 1 m of the object’s
boundary; issuing the Stop action at any of these viewpoints
is considered a successful termination of the episode.

4. Approach
We propose SAVi, a novel model for the semantic

audio-visual navigation task. SAVi uses a persistent mul-
timodal memory along with a transformer model, which,
unlike RNN-based architectures (e.g., [11]) or reactive ones
(e.g., [19]), can directly attend to observations with various
temporal distances from the current step to locate the goal
efficiently. Furthermore, our model learns to capture goal
information from acoustic events in an explicit descriptor
and uses it to attend to its memory, thus enabling the agent
to discover any spatial and semantic cues that may help it
reach the target faster.

Our approach has three main components (Figure 2): 1)
an Observation Encoder that maps the egocentric visual and
acoustic observations received by the agent at each step to
an embedding space; 2) a Goal Descriptor Network that

2Note that even the same waveform will sound different when rendered
in a new environment; the sound received by the agent is a function of
not only that waveform but also the environment geometry and the agent’s
position relative to the source.
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Figure 2: In our model, the agent first encodes input observations and stores their features in memory M . Then our goal
descriptor network leverages the acoustic cues to dynamically infer and update a goal descriptorDt of the target object, which
contains both location Lt and object category Ct information about the goal. By conditioning the agent’s scene memory on
the goal descriptor, the learned state representation st preserves information most relevant to the goal. Our transformer-based
policy network attends to the encoded observations in M with self-attention to reason about the 3D environment seen so
far, and it attends to Me with Dt to capture possible associations between the hypothesized goal and the visual and acoustic
observations to predict the state st. Then, st is fed to an actor-critic network, which predicts the next action at. The agent
receives its reward from the environment based on how close to the goal it moves and whether it succeeds in reaching it.

produces a goal descriptor based on the encoded obser-
vations; and 3) a Policy Network that given the encoded
observations and the predicted goal descriptor, extracts a
descriptor-conditioned state representation and outputs the
action distribution. Next, we describe each module. We
defer CNN architecture details to Sec. 4.4.

4.1. Observation Encoder

At each time step t, the agent receives an observation
Ot = (It, Bt, pt, at−1), where I is the egocentric visual
observation consisting of an RGB and depth image; B is
the received binaural audio waveform represented as a two-
channel spectrogram; p is the agent pose defined by its loca-
tion and orientation (x, y, θ) with respect to its starting pose
p0 in the current episode; and at−1 is the action taken at the
previous time step.

Our model encodes each visual and audio observation
with a CNN, eIt = fI(It) and eBt = fB(Bt). Then, the
observation Ot encoding is eOt = [eIt , e

B
t , pt, at−1]. The

model stores the encoding of the observations up to time t
in memory M = {eOi : i = max{0, t− sM}, . . . , t} (see
Figure 2 second column), where sM is the memory size.

4.2. Goal Descriptor Network

As described in Sec. 3, the agent does not receive direct
information about the goal; rather, it needs to rely solely on

its observations to set its own target. Audio carries rich cues
about the target—not only its relative direction and distance
from the agent, but also the type of object that may have
produced the acoustic event. Hence, we leverage the acous-
tic signal to predict the goal properties, namely its location
(spatial) and object category (semantics). Both properties
are crucial for successful navigation. The estimated goal
location gives the agent an idea of where to find the goal.
However, since the acoustic event may be short-lived, and
the estimate may be inaccurate, the agent cannot solely rely
on this initial estimate. Our model thus aims to also lever-
age the goal semantics in terms of both the object’s likely
appearance and the scene’s visual context.

The goal descriptor network is a CNN fD such that
D̂t = fD(Bt), where D̂t is the step-wise estimate of the de-
scriptor and it consists of two parts: the current estimate of
the goal location L̂t = (∆x,∆y) relative to the agent’s cur-
rent pose pt, and its predicted object label Ĉt. To reduce the
impact of noise from a single prediction, the agent aggre-
gates the current estimate with the previous goal descriptor
Dt = fλ(D̂t, Dt−1,∆pt) = (1−λ)D̂t +λfp(Dt−1,∆pt),
where fp(·) transforms the previous goal location L̂t−1

based on the last pose change ∆pt (the goal label is unaf-
fected by this transformation), and λ is the weighting factor,
which is set to 0.5 based on validation. When sound stops
(i.e., the sound intensity becomes zero), the agent maintains
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its latest estimate Dt by simply transforming the previous
descriptor based on the pose change ∆pt to obtain the cur-
rent descriptor Dt = fp(Dt−1,∆pt).

4.3. Policy Network

Our reinforcement learning policy network is based on
a transformer architecture. Using the memory M collected
so far in the episode, the transformer proceeds by encoding
these observation embeddings with a self-attention mech-
anism to capture any possible relations among the inputs,
yielding the encoded memory Me = Encoder(M). Then,
using the predicted goal descriptor Dt, a decoder network
attends to all cells in the encoded memory Me to calcu-
late the state representation st = Decoder(Me, Dt). An
actor-critic network uses st to predict the action distribu-
tion and value of the state. The actor and the critic are each
modelled by single linear layer neural network. Finally, an
action sampler samples the next action at from this action
distribution, determining the agent’s next motion in the 3D
scene.

4.4. Training

To train the goal descriptor network, we generate pairs
of ground truth locations and categories from the simula-
tor for the array of training sounds, and train the prediction
network in a supervised fashion. For the category predic-
tion portion, we find off-policy training gives good accu-
racy; hence we pre-train the classifier on 3.5M collected
spectrogram-category pairs at a variety of positions in the
training environments and freeze it during policy training.
In contrast, location prediction is learned better on-policy.
Training theLt predictor on-policy has the benefit of match-
ing the training data distribution with policy behavior, lead-
ing to higher accuracy (see Supp.). We use the same ex-
perience collected for policy training to train the location
predictor and update them at the same frequency. We use
the mean squared error loss for the location predictor and
the cross entropy loss for the goal object label predictor.

For policy training, we follow a two-stage training
paradigm (as shown to be effective for transformer-based
models [15]) using decentralized distributed proximal pol-
icy optimization (DD-PPO) [42]. In the first stage, we set
the memory size sM = 1 (the most recent observation) to
train the observation encoder without attention. Then, in the
second stage, we freeze the observation encoder and train
the rest of the model with the full memory size (sM = 150).
In both stages, the loss consists of a value network loss to
reduce the error of state-value prediction, a policy network
loss to produce better action distributions, and an entropy
loss to encourage exploration. We refer readers to PPO [39]
for more details. To train the policy, we reward the agent
with +10 if it reaches the goal successfully and issue an in-
termediate reward of +1 for reducing the geodesic distance

to the goal, and an equivalent penalty for increasing it. We
also issue a time penalty of −0.01 per time step to encour-
age efficiency.

To avoid sampling easy episodes (e.g., short or straight-
line paths), we require the geodesic distance from the start
pose to the goal to be greater than 4 m and the ratio of Eu-
clidean distance to geodesic distance to be greater than 1.1.
We collect 0.5M/500/1000 episodes for train/val/test splits
for all 85 Matterport3D SoundSpaces environments.

We train our model with Adam [25] with a learning rate
of 2.5× 10−4 for the policy network and 1× 10−3 for the
descriptor network. We roll out policies for 150 steps, up-
date them with collected experiences for two epochs, and
repeat this procedure until convergence. We train all meth-
ods, both ours and the baselines, for 300M steps for them to
fully converge.

At each time step, the agent receives a binaural audio clip
of 1s, represented as two 65 × 26 spectrograms. The au-
dio is computed by convolving the appropriate impulse re-
sponse from SoundSpaces with the source audio waveform,
thereby generating the sound the agent would hear in that
environment at its current position relative to the source.
The RGB and depth images are center cropped to 64 × 64.
Both the observation encoder CNNs fB and fI and the de-
scriptor network fD use a simplified ResNet-18 [24] that is
trained from scratch. For the transformer model, we use one
encoder layer and one decoder layer, which employ multi-
attention with 8 heads. The hidden state size is 256 and the
memory size sM is 150, matching the frequency of policy
updates.

5. Experiments
Baselines. We compare our model to the following base-
lines and existing work:

1. Random: A random baseline that uniformly samples
one of three actions and executes Stop automatically
when it reaches the goal (perfect stopping).

2. ObjectGoal RL: An end-to-end RL policy with a GRU
encoder and RGB-D inputs (no audio). It is given the
one-hot encoding of the true category label as an addi-
tional input to search for the goal object instance. This
baseline is widely used in ObjectGoal tasks [23, 9, 30, 7].
We train this method for 800M steps with perfect stop-
ping. Details in Supp.

3. Gan et al. [19]: A modular audio-visual model that
trains a goal location predictor offline and uses a geomet-
ric planner for planning. Since the original model can
not handle sporadic audio events, we improve its goal
location predictor with our update operation fλ.

4. Chen et al. [11]: An end-to-end RL policy that encodes
past memory with a GRU RNN and is trained to reach
the goal using audio and visual observations.
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Heard Sounds Unheard Sounds
Success ↑ SPL ↑ SNA ↑ DTG ↓ SWS ↑ Success ↑ SPL ↑ SNA ↑ DTG ↓ SWS ↑

Random 1.4 3.5 1.2 17.0 1.4 1.4 3.5 1.2 17.0 1.4
ObjectGoal RL 1.5 0.8 0.6 16.7 1.1 1.5 0.8 0.6 16.7 1.1
Gan et al. [19] 29.3 23.7 23.0 11.3 14.4 15.9 12.3 11.6 12.7 8.0
Chen et al. [11] 21.6 15.1 12.1 11.2 10.7 18.0 13.4 12.9 12.9 6.9
AV-WaN [12] 20.9 16.8 16.2 10.3 8.3 17.2 13.2 12.7 11.0 6.9

SMT [15] + Audio 22.0 16.8 16.0 12.4 8.7 16.7 11.9 10.0 12.1 8.5
SAVi (Ours) 33.9 24.0 18.3 8.8 21.5 24.8 17.2 13.2 9.9 14.7

Table 1: Navigation performance on the SoundSpaces Matterport3D dataset [11]. Our SAVi model has higher success rates
and follows a shorter trajectory (SPL) to the goal compared to the state-of-the-art. Equipped with its explicit goal descriptor
and having learned semantically grounded object sounds from training environments, our model is able to reach the goal more
efficiently—even after it stops sounding—at a significantly higher rate than the closest competitor (see the SWS metric).

5. AV-WaN [12]: A hierarchical RL model that records
acoustic observations on the ground plane, predicts way-
points, and uses a path planner to move towards these
waypoints using a sequence of navigation actions.

6. SMT [15] + Audio: We adapt the scene memory trans-
former (SMT) model [15] to our task by also encoding
the audio observation in its memory. Unlike our model,
it does not explicitly predict the goal description and re-
lies only on the cues available in memory to reach the
goal. The latest observation embedding is used as de-
coder input to decode Me and predict the state.

All models use the same reward function and inputs. For
all methods, there is no actuation noise since audio render-
ing is only available at grid points (see [11] for details).

Metrics. We evaluate the following navigation metrics: 1)
success rate: the fraction of successful episodes; 2) suc-
cess weighted by inverse path length (SPL): the standard
metric [2] that weighs successes by their adherence to the
shortest path; 3) success weighted by inverse number of ac-
tions (SNA) [12]: this penalizes collisions and in-place rota-
tions by counting number of actions instead of path lengths;
4) average distance to goal (DTG): the agent’s distance to
the goal when episodes are finished; 5) success when silent
(SWS): the fraction of successful episodes when the agent
reaches the goal after the end of the acoustic event.

Navigation results. Following standard protocol [11] we
evaluate all models in two settings: 1) heard sounds—train
and test on the same sound 2) unheard sounds—train and
test on disjoint sounds. In both cases, the test environments
are always unseen, hence both require generalization. All
results are averaged over 1,000 test episodes.

Table 1 shows the results. Our SAVi approach outper-
forms all other models by a large margin on all metrics—
with 0.3%, 8.9%, 7.2%, 7.2% absolute gains in SPL on
heard sounds and 4.9%, 3.8%, 4%, 5.3% absolute SPL

gains on unheard sounds compared to Gan et al. [19], Chen
et al. [11], AV-WaN [12], and SMT [15], respectively. This
shows our model leverages audio-visual cues intelligently
and navigates to goals more efficiently. AV-WaN represents
the state-of-the-art for AudioGoal audio-visual navigation.
Our SAVi model’s gains over AV-WaN show both 1) the
distinct new challenges offered by the semantic AudioGoal
task, and 2) our model’s design effectively handles them.3

In addition, our model improves the success-when-silent
(SWS) metric by a large margin compared to the closest
competitor. This emphasizes the advantage of our goal de-
scriptor module. The explicit and persistent descriptor for
the goal in our model helps to maintain the agent’s focus on
the target even after it stops emitting a sound. Although the
SMT+Audio [15] model also has access to a large memory
pool and can leverage implicit goal information from old
observations, lacking our goal descriptor and the accompa-
nying goal-driven attention, it underperforms our model by
a sizeable margin.

As expected, Random does poorly on this task due to the
challenging complex environments. Although ObjectGoal
RL has the goal’s ground truth category label as input, it
fails in most cases. This shows that knowing the category
label by itself is insufficient to succeed in this task; the agent
needs to locate the specific instance of that category, which
is difficult without the acoustic cues.

Navigation trajectories. Figure 3 shows test episodes for
our SAVi model. The agent uses its acoustic-visual percep-
tion and memory along with the spatial and semantic cues
from the acoustic event, whether from a long event (water
dripping sound) or a short one (opening and closing a door

3While AV-WaN [12] reports large performance improvements over
Chen et al. [11] on the standard AudioGoal task, we do not observe sim-
ilar margins between the two models here. We attribute this to temporal
gaps in the memory caused by AV-WaN’s waypoint formulation—which
are not damaging for constantly sounding targets, but do cause problems
for semantic AudioGoal (see Supp. for details).
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Figure 3: Example SAVi navigation trajectories. In the first episode (top/magenta) the agent hears a water dripping sound and
in the second episode (bottom/orange) a sound of opening and closing a door. For each episode, we show three egocentric
visual views (right) sampled from the agent’s trajectory at the start location 1©, when the sound stops 2©, and at the end
location 3©. In the top episode, the acoustic event lasts for two thirds of the trajectory and when the sound stops the agent has
an accurate estimate of the object location that helps it find the sounding object (the sink). The second episode (bottom) has a
much shorter acoustic event. The agent’s estimate of the object location is inaccurate when the sound stops but still helps the
agent as a general directional cue. The agent leverages this spatial cue and the semantic cue from its estimate of the object
category, a cabinet, to attend to its multimodal memory to find the object in the kitchen and end the episode successfully.

sound), to successfully find the target objects (the sink and
the cabinet). See the Supp. video for more examples.

Common failure cases are when: 1) the sound stops too
early in the episode, and the agent has not accumulated
enough spatial or semantic cues about the goal. In this case
the agent might either search for the wrong object (noisy se-
mantics) or search for the object in the wrong place (noisy
location); 2) the agent issues a premature stop action near
the target object but not exactly at the right location.

Distractor sounds. In our tests so far, there is a single
acoustic event per episode, whether comprised of a heard
or unheard sound (Table 1). Next, we generalize the set-
ting further to include unheard distractor sounds—sounds
happening simultaneously with the target object. This cor-
responds to real-world scenarios, for example, where the
door slams shut while the AC is humming. For this setting
to be well-defined, the agent must know which sound is its
target; hence, we input the one-hot encoding of the target
object to all models and concatenate it with their state fea-
tures. For our model, in addition to replacing Ct with this
one-hot encoding, we also use it as input to the location
prediction network along with Bt. This allows the location
prediction network to learn to identify which of the sounds
mixed in the input needs to be localized. We use the 102 pe-
riodic sounds from SoundSpaces [11] as the set of possible
distractor sounds, which are disjoint from the target object
sounds curated for this work. We divide these 102 sounds
into non-overlapping 73/11/18 splits for train/val/test, and
hence the distractor sound at test time is unheard. In each

Success ↑ SPL ↑ SNA ↑ DTG ↓ SWS ↑
Chen et al. [11] 4.0 2.4 2.0 14.7 2.3
AV-WaN [12] 3.0 2.0 1.8 14.0 1.6

SMT [15]+Audio 4.2 2.9 2.1 14.9 2.8
SAVi (Ours) 11.8 7.4 5.0 13.1 8.4

Table 2: Navigation performance on unheard sounds in the
presence of unheard distractor sounds.

episode, we randomly position one distractor sound in the
environment at a location different from the goal.

Table 2 shows the results. While the performance of
the baselines suffers from the distracting environment noise,
our agent is still able to reach a success rate of 11.8% and
SPL of 7.4%, which is 7.6% and 4.5% higher than the best-
performing baseline. This shows the proposed inferred goal
descriptor helps the agent attend to important observations
to capture semantic and spatial cues, making our model
more robust to the environment noise. That said, the ab-
solute performance declines for all methods in this hard set-
ting. We plan to investigate ways to explicitly separate the
“clutter” sounds in future work.

Analyzing the goal descriptor. Next we ablate the two
main components in the goal descriptor, location and cate-
gory, to study their relative impact for the unheard sounds
experiment from Table 1. Table 4 shows that ablating any
component results in a performance drop. Lt has a compar-
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Success ↑ SPL ↑ SNA ↑ DTG ↓ SWS ↑
Ct-only 20.5 13.5 11.6 9.8 11.0
Lt-only 23.9 16.2 13.5 9.3 13.8

w/o aggregation 21.9 14.3 11.1 9.7 13.4
Full model 24.8 17.2 13.2 9.9 14.7

Table 3: Ablation experiment results.

atively larger impact on our model’s performance.
Next we analyze the successful episodes in the context

of Lt and Ct. For 56% of them, our model ends the episode
by stopping at its own estimate of the goal location in its
descriptor, suggesting that the agent has successfully used
its directional sound prediction to guide its movements. On
the other hand, for the other 44%, the agent stops at a (cor-
rect) location different thanLt, suggesting that the agent has
relied more on the visual context cues leading to the antici-
pated objectCt. In fact, if we inject a random category label
instead of Ct at the start of the episode, success rates and
SPL drop up to 8%. The learned associations between the
spatial and semantic cues are important for success; break-
ing these associations with random category labels forces
the agent to attend to contradictory cues about the goal in
its memory, thus increasing the chance of failure.

To understand if the performance gain comes from our
goal descriptor or the transformer, we further ablate our
model by replacing the transformer with an RNN. We find
that our goal descriptor network also provides significant
improvements when combined with RNNs (see Supp.).

Goal descriptor accuracy and aggregation. The goal
descriptor network has two main modules: 1) fD(·), which
produces the current descriptor estimate and 2) an aggrega-
tion function fλ(·), which aggregates the current estimate
with the previous goal descriptor. Next we evaluate goal
prediction accuracy with and without aggregation, as well
as how aggregation impacts the navigation performance.

The average location prediction error is 8.1 m and the av-
erage category prediction accuracy is 64.5% with aggrega-
tion, and 8.4 m, 53.6% without aggregation. Aggregation is
important because the source sound is divided into 1s clips
for each step, and the characteristics of the sound in some
seconds are harder to identify, e.g., the silent moment be-
tween pulling and pushing a chest of drawers. Essentially,
aggregation stabilizes the goal descriptor prediction. See
Supp. for the distribution of prediction accuracy over dis-
tance to goal. Navigation performance is affected as well:
success rate and SPL drop about 3 points without aggrega-
tion (“w/o aggregation” ablation in Table 4).

Robustness to silence duration. Figure 4 analyzes how
the models perform after the goal sound stops. We plot the
cumulative success rate vs. silence ratio, where the latter

Figure 4: Cumulative success rate vs. silence percentage.

is the ratio of the minimum number of actions required to
reach the goal to the duration of audio. A point (x, y) on
this plot means the fraction of successful episodes with ra-
tios up to x among all episodes is y. When this ratio is
greater than 1, no agent can reach the goal before the audio
stops. The greater this ratio is, the longer the fraction of
silence, and hence the harder the episode. Indeed, we see
for all models the success rate accumulates more slowly as
the ratio becomes bigger. However, while the success rates
of Chen et al. [11], AV-WaN [12], and SMT [15] increase
only marginally for ratios greater than 1, our model shows
a noticeable increase after the ratios surpass 1 and even 2.
This indicates our model is able to cope with long silence
to reach goals, thanks to the guidance of our predicted goal
descriptor and its attention on the memory.

6. Conclusions
We introduce the task of semantic audio-visual naviga-

tion in complex 3D environments. To support this task,
we expand an existing audio simulation platform to pro-
vide semantically grounded object sounds. We introduce
a transformer-based model that learns to predict a goal de-
scriptor capturing both spatial and semantic properties of
the target. By encoding the observations conditioned on
this goal descriptor, our model learns to associate acoustic
events with visual observations. We show that our approach
outperforms existing state-of-the-art models. We provide an
in-depth analysis of the impact of the goal descriptor and its
components, and show that our model is more robust to long
silence duration and acoustic distractors. In future work, we
are interested in generalizing policies learned in these high
quality simulators to test in the real world.
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7. Supplementary Material
In this supplementary material, we provide additional

details about:

1. Video (with audio) for qualitative assessment of our
agent’s performance. Please listen with headphones to
hear the spatial sound properly.

2. Implementation details and analysis of the baselines
(Sec. 5)

3. Ablation of the policy network

4. Distribution of prediction accuracy over distance to goal
(Sec. 5)

5. Analysis of semantic audio-visual navigation with dis-
tractors

6. On-policy location predictor training (Sec. 4.4)

7. Ablation with true goal category and location

7.1. Qualitative Video

The supplementary video4 demonstrates the audio simu-
lation platform that we use and shows the comparison be-
tween our proposed model and the baselines as well as qual-
itative analysis for failure cases. Please listen with head-
phones to hear the binaural audio correctly.

7.2. Implementation Details and Analysis of the
Baselines

ObjectGoal RL. We implement this baseline by first
feeding the RGB-D observations into a CNN (similar CNN
to fI(·) in our model) and concatenating the visual features
with a one-hot encoding of the target label. A one-layer
GRU memory takes the concatenated feature as input and
outputs a state vector of size 512. Similar to our work,
this state representation is used by an actor-critic network
to predict the action distribution and value of the current
state. Furthermore, we use perfect stopping for this base-
lines since the model performs poorly with a learned stop
action.

Although this baseline has the goal’s ground truth label
and perfect stopping, it fails quite often in reaching the goal.
This shows knowing the category alone is insufficient to
locate the particular object instance and to succeed in this
task. The model needs to leverage both visual and acoustic
cues to find the goal. This experiment also draws attention
to the difference between the proposed semantic AudioGoal
and the existing task of ObjectGoal.

Gan et al. [19] We compare to the model from Gan et
al. [19] , which trains a goal location predictor in an offline
fashion and uses a geometric planner for planning a path

4https://youtu.be/EKCYc1dFOhw

to the predicted goal location. We use the same amount
of training data for our category predictor to train the goal
predictor from [19]. The original model from [19] assumes
a continuous periodic acoustic event and it cannot handle
sporadic or short acoustic events like those considered in
this work. To improve the existing model to perform in this
task, we augment its goal location predictor with our up-
date operation fλ (Sec. 4.2) for transforming the predicted
location when the audio goal becomes silent.

In evaluation, our observations confirm those reported
in [12]. Since the model does not leverage visual cues for
reasoning about the goal location, it does not learn to as-
sociate visual and acoustic cues with scene observations
and goal properties. Therefore, it is more prone to errors
and the agent suffers from backtracking its steps quite often
when the goal location prediction is inaccurate. The model
achieves 15.9% success rate and 12.3% SPL on the unheard
sound test split, compared to our SAVi model 24.8% suc-
cess rate and 17.2% SPL. While [19] leverages external
supervision for training the location predictor, this is not
enough to solve this task efficiently because the agent needs
to fully leverage the semantic and spatial cues from audio
along with its visual perception to locate the sounding ob-
jects.

AV-WaN [12]. While AV-WaN [12] reports large perfor-
mance improvements over Chen et al. [11] on the standard
AudioGoal task (see [12] for details), we do not observe
similar margins between the two models here. Both mod-
els, AV-WaN [12] and Chen et al. [11], use RNNs to encode
the state representation; however, AV-WaN accumulates the
observations at the waypoint prediction level while Chen et
al. does so at each step. We speculate that this behavior cre-
ates large temporal gaps in the memory for AV-WaN, which
makes it harder for the model to adapt to the more challeng-
ing task of semantic AudioGoal; the sound may stop at any
moment, and the AV-WaN model may not be able to capture
the last important acoustic cues in between waypoints. Our
model outperforms both since it can keep track of a large set
of observations and leverage this information at each step
while navigating.

7.3. Ablation of the Policy Network

To analyze the impact of the transformer architecture of
the policy network on our model performance, we include
an additional ablation by replacing the transformer in our
SAVi model with a typical RNN+MLP for action and value
prediction (similar to [11]). Table 4 shows the results in the
unheard sounds setting. We see that a significant part of the
performance improvement comes from our goal descriptor
network (GDN) contribution. Both models (SAVi w/ Trans-
former and SAVi w/ RNN+MLP) benefit significantly from
having our GDN, with the transformer model leading to best
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Success ↑ SPL ↑ SNA ↑ DTG ↓ SWS ↑
RNN Policy Network
Chen et al. [11] 18.0 13.4 12.9 12.9 6.9
SAVi w/ RNN+MLP (Ours) 21.4 15.4 12.6 9.8 11.2

Transformer Policy Network
SMT [15] + Audio 16.7 11.9 10.0 12.1 8.5
SAVi w/ Transformer (Ours) 24.8 17.2 13.2 9.9 14.7

Table 4: Ablation of our policy network with a typical
RNN+MLP.

(a) (b)

Figure 5: Error analysis of the location predictions and the
category predictions in the goal descriptor as a function of
the agent’s geodesic distance to goal.

performance since it allows the GDN to attend to longer ob-
servation sequences compared to the RNN.

7.4. Distribution of Goal Descriptor Accuracy

Figure 5 shows how the location descriptor error and the
category descriptor accuracy change as the agent gets closer
to the goal with and without temporal aggregation. The lo-
cation error is measured as the Euclidean distance between
the predicted and the ground truth goal location. The cat-
egory accuracy is measured by whether the correct goal is
predicted or not. We can see that the error of both predic-
tions get lower as the agent gets closer to the goal location
and the temporal aggregation leads to higher performance.

7.5. Analysis of Semantic Audio-Visual Navigation
with Distractors

We have evaluated in the main paper the navigation per-
formance of our model in the presence of acoustic distrac-
tors. The target and distractor sounds are disjoint in this set-
ting and both are unheard at test time, which poses a great
challenge for the agent to clearly separate the mixed audio
signal. We believe this is a main factor in the performance
drop seen by all models, though ours remains best (Table 2
in the main paper).

To further analyze the impact of acoustic dsitractors, we
conduct an ablation of our model by changing the type of
distractors at each test run. Table 5 shows a subset of the
(goal, distractor) combinations. Indeed, when the distractor
sound is sufficiently different from the goal (e.g., Music and

Beeps Music Creak Horn Telephone

Chair 0.26 0.28 0.20 0.20 0.24
Cabinet 0.25 0.25 0.14 0.12 0.23
Counter 0.28 0.47 0.34 0.25 0.41
Sink 0.03 0.07 0.03 0 0.07
TV 0.14 0.19 0.19 0.14 0.19

Table 5: Success rate of goals (rows) in the presence of var-
ious distractors (columns). We test our model with a single
distractor type in each test run, and normalize the SR by the
number of episodes for each goal type.

Telephone), the model performs well, but when it is similar
(e.g., Cabinet and Creak) or much louder (e.g., Horn) then it
is harder for the model to extract a clear signal for the goal.

7.6. On-policy Location Predictor Training

As noted in the main paper, we find training the loca-
tion predictor on-policy and online leads to higher accuracy
compared to using a pretrained model. If we use an off-
policy model in our approach (i.e., similar to the location
predictor trained for Gan et al.), this version underperforms
our model by 4.8% success rate and 4.7% SPL on the un-
heard sound test split.

7.7. Ablation with True Goal Category and Loca-
tion

Our SAVi model learns to predict the goal descriptor
(i.e., location and category) based on the heard acoustic
cues while navigating. To show an upper bound perfor-
mance for our goal descriptor network, we supply the model
with the true goal category and location instead of the pre-
dictions. Our model achieves 65% SPL compared to the
24% SPL under the same setting but with predicted descrip-
tors. Note that when the ground truth location of the goal
is available at each step, the task boils down to the common
PointGoal navigation [38, 10].
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