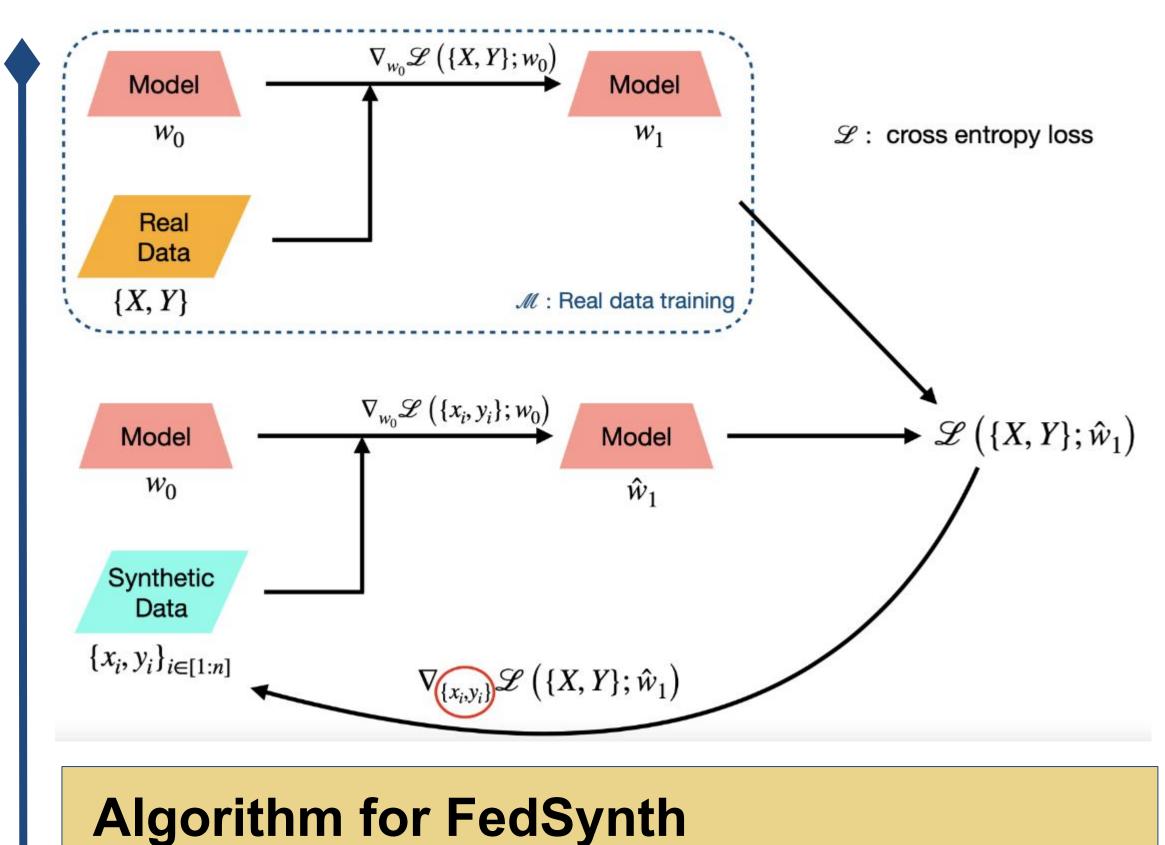
FedSynth: Gradient Compression via Synthetic Data in **Meta** Carnegie Mellon **Federated Learning**

University Shengyuan Hu (CMU)*, Jack Goetz (Meta), Kshitiz Malik (Meta), Hongyuan Zhan (Meta), Zhe Liu (Meta), Yue Liu (Meta)

Background

- □ Training large models in Federated Learning (FL) suffers from huge communication cost. Therefore, information compression is important in the context of large scale FL.
- □ Prior works studying compression in FL focus on sparsification / quantization of gradients / model updates.
- □ Large compression rate under sparsification based compression might lead to drastic utility tradeoff.
- □ This work: proposes to distill the dataset and communicate the synthetic data used to reconstruct



the gradient updates.

Compression via Synthetic Data

- Communicating data is more efficient than communicating model.
- □ Instead of sending a large model update, we can send synthetic data to the server such that the server could use the synthetic data to reconstruct an approximate model update.

Notations

• $D_k^{tr} = (X_k, Y_k)$: training data for client k

• $D_k^{syn} = \{x_k^i, y_k^i\}_{i=1,\dots,m}$: *m* batches of synthetic data for client *k*

Local objective for standard FL

$$\min_{w} F_k(D_k^{tr};w)$$

Local objective for FedSynth at any iteration

$$\mathbf{E} \left(\mathbf{D}^{tr}_{t} = \mathbf{E} \left(\mathbf{D}^{syn}_{t} \right) \right)$$

Algorithm 1 FedSynth

- 1: **Input:** $T, E, \eta, \eta_w, w^0, \{D_k^{tr}\}_{k=1,\dots,K}$ 2: for $t = 0, \dots, T - 1$ do Server selects a subset of clients S_t and broadcasts w^t to S_t . for all $k \in S_t$ in parallel do 4: Client k initializes $w_k^t = w^t$ and m batches of synthetic data $D_k^{syn} = \{x_i, y_i\}_{i=1,\dots,m}$. 5: for $j = 0, 1, \dots, E$ do 6: Client k obtains the model updated by D_k^{syn} 7: $w_k^{syn} = \texttt{ClientUpdate}(D_k^{syn}; w_k^t)$ Client k updates D_k^{syn} by $D_k^{syn} \leftarrow D_k^{syn} - \eta \nabla_{D_k^{syn}} F_k(D_k^{tr}; w_k^{syn})$ 8: end for 9: Client k sends D_k^{syn} back to the server. 10: end for 11: Server recovers $\widehat{w}_k^{syn} = \texttt{ClientUpdate}(D_k^{syn}, w_k^t)$ for every k. 12: Server aggregates the weight 13: $w^{t+1} = w^t + \frac{1}{|S_t|} \sum_{k \in S} \left(\widehat{w}_k^{syn} - w^t \right)$ 14: **end for** 15: return w^T 16: ClientUpdate($\{x_i, y_i\}_{i=1,2,...,m}; w$) 17: for $j = 1, \dots, m$ do 18:
 - Client performs minibatch-SGD locally

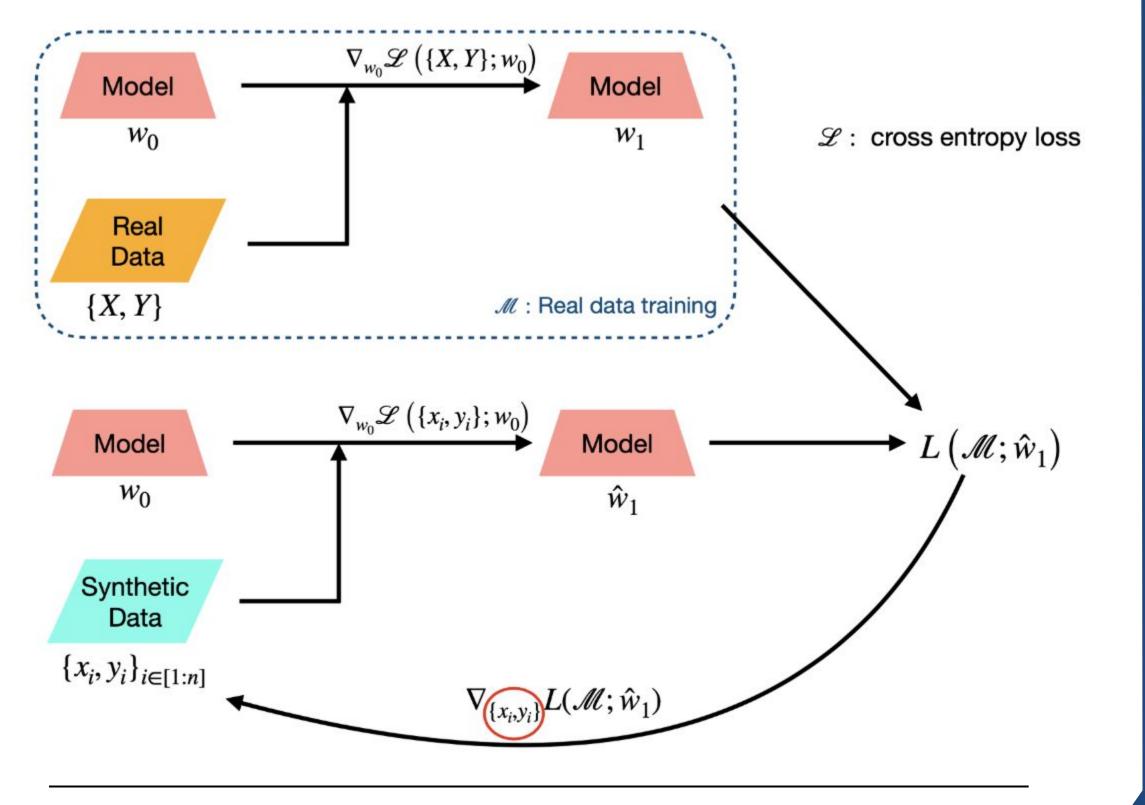
 $w \leftarrow w - \eta_w \nabla_w F_k((x_i, y_i); w)$

19: end for

Experiment Results

FEMNIST FedAvg Random Masking FedSynth(Ours) FedSynth w/ Trainable y (Ours)

 $\min_{D_k^{syn}} F_k\left(D_k^{tr}; \arg\min_{w} F_k(D_k^{syn}; w)\right)$ $\min_{D_k^{syn}} F_k\left(D_k^{tr}; \text{ClientUpdate}_k(D_k^{syn}; w_k^t)\right)$



*: Work done as an intern at Meta

1x	69.29	69.29	69.29	69.29
5.8x	-	68.21	68.63	46.67
11.6x	-	67.34	63.27	39.98
MNIST	FedAvg	Random Masking	FedSynth(Ours)	FedSynth w/ Trainable y (Ours)
1x	97.74	97.74	97.74	97.74
7.8x		97.08	95.28	97.25
15.6x	-	96.94	93.68	96.62
Reddit	FedAvg	Random Masking	FedSynth(Ours)	FedSynth w/ Trainable y (Ours)
1x	14.19	14.19	14.19	14.19
1.3x	. —	8.20	8.86	
2.6x	-	4.87	4.89	en.i

• Our method is able to achieve comparable / better performance compared to random masking under all three datasets, especially under low compression rate. • Our method with trainable label does not always give better utility given the same compression rate.

Future works

Compare with stronger baselines on all three datasets. • Experiment on larger models and more complicated tasks.