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ABSTRACT
Telepresence for virtual meetings has gained interest due to
recent travel limitations and the new reality of working from
home. However, current literature supporting real-world mi-
crophone arrays for realistic telepresence in audio is very lim-
ited. This paper investigates a scenario of a distant participant
joining virtually a meeting between two dymanic participants.
The audio signal processing chain (i) starts by recording using
an array mounted on glasses, (ii) with initial processing pro-
viding direction-of-arrival estimation of a desired speaker us-
ing a direct-path dominance test robust to reverberation, com-
bined with speaker separation for improved dynamic localiza-
tion, (iii) followed by speech enhancement against interfering
speakers and noise, (iv) and ends with applying binaural sig-
nal matching for headphone listening. This paper compares
model-based processing to learning-based processing in both
noisy and dynamic scenarios, and presents a novel processing
using data from a real wearable array, studied by simulation
and a listening test.

Index Terms— Telepresence, spatial enhancement, speaker
tracking, binaural signal matching

1. INTRODUCTION

Telepresence has recently gained tremendous interest due to
travel limitations and the popularity of working from home.
Acoustic telepresence allow a distant participant to virtually
join a remote meeting. This typically requires a microphone
array to capture the sound in the meeting room, and head-
phones to playback a binaural signal at the remote location,
reproduced from the array measurement using spatial audio
signal processing [1, 2]. Meeting rooms may include noise
or interfering speakers, and so signal enhancement may be
required. Furthermore, meeting participants and wearable ar-
rays may change their position, imposing a challenge on the
processing and playback.

Current methods for acoustic telepresence typically em-
ploy binaural arrays [1, 3] or spherical arrays to encode Am-
bisonics signals [4, 5], which facilitates high-quality binaural
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reproduction. Signal enhancement may also be incorporated
[6, 7, 8] to suppress interfering speakers or noise. However,
the performance of these deteriorate under conditions of mul-
tiple moving speakers and/or a moving array [9]. Moreover,
binaural and spherical arrays may not be available with hand-
held devices or wearable arrays. In summary, current methods
for acoustic telepresence have the following limitations: (i) a
microphone array of a general configuration, e.g., a wearable
array, cannot be incorporated, (ii) dynamic and noisy scenes
lead to significant performance degradation.

This paper investigates solutions for acoustic telepresence
that aim to overcome the current limitations. The proposed
solution consists of three stages: (i) acoustic scene analysis,
that is, the estimation of speaker directions under reverbera-
tion using a direct-path dominance (DPD) test [10], (ii) signal
enhancement based on desired source and array transfer func-
tion estimation; and (iii) binaural signal reproduction using
the binaural signal matching method [11].

The proposed solution is investigated by simulations
based on measurements from a real glasses-mounted array
[12]. Two alternative solutions are studied: the first is model-
based, while the second incorporates a learning-based speech
separation method [13] to support consistent enhancement
under dynamic conditions. Finally, a listening test quantifies
the subjective performance. In summary, this work offers
two main contributions: (i) the proposal and investigation
of an end-to-end acoustic telepresence system based on data
from real glasses-mounted array, (ii) an investigation of the
enhanced performance due to learning for dynamic scenes
with interfering speakers.

2. SIGNAL MODEL AND SYSTEM GOAL

Consider a meeting room with K speakers. The sound field
in the room is assumed to be represented by L far-field
sources arriving from directions {ψl}Ll=1 with source signals
{sl(f)}Ll=1, where f denotes frequency. Source sl(f) can
represent the direct-sound of an actual source, or a reflection
from room boundaries. The sound field is captured by a mi-
crophone array with an arbitrary configuration, having I mi-



crophones. The model of the microphone signals is given by:

x(f) = Vd(f)sd(f)︸ ︷︷ ︸
d(f)

+Vu(f)su(f) + n(f)︸ ︷︷ ︸
u(f)

, (1)

where x(f) = [x1(f), ..., xI(f)]
T is the microphone sig-

nal vector, sd(f) = [s1(f), ..., sL′(f)]T and su(f) =
[sL′+1(f), ..., sL(f)]

T are source signal vectors contain-
ing the direct-path signal and reflections of the desired and
undesired speaker signals, respectively, Vd(f) = [v(f, ψ1),
...,v(f, ψL′)] and Vu(f) = [v(f, ψL′+1), ...,v(f, ψL)] are
steering matrices, with their l’th column v(f, ψl) represent-
ing the array steering vector from direction ψl, and n(f) is
a noise term which represents sensor noise, model error, and
late reverberation.

The goal is to produce the binaural signal pl,r(f) that
would have been received by a listener if they were in the
room at the array position, while suppressing the undesired
part u(f). The desired output can be formulated as:

pl,r(f) = h(f)T sd(f), (2)

where h(f) = [hl,r(ψ1), ..., hl,r(ψL′)] contains the head-
related transfer functions (HRTFs) corresponding to L′ direc-
tions of the desired source signals.

3. PROPOSED SYSTEM

This section presents a three-stage system for estimating
pl,r(f) from the microphone signals. Two versions of the
system, which differ by their level of learning, are presented.
The first system is primarily model-based and incorporates
spectral and spatial learning, and the second incorporates a
deep-learning speaker separation method in the scene analysis
stage to support dynamic scenes. Both versions are presented
in Fig. 1, and are described next.

3.1. System 1 - model-based processing

Scene analysis: In the first stage, speakers’ DOAs are es-
timated using a DPD test-based method robust to reverbera-
tion. This family of methods operates in the time-frequency
(TF) domain and overcomes reverberation by using only TF
bins in which the direct-path is dominant for DOA estimation.
In [10], the set of direct-path bins is determined by:

ADPD = {(t, f) |max (St,f (ψ)) > T H} , (3)

where t and f denote the time and frequency indices, St,f (ψ)
denotes a directional spectrum (e.g. MUSIC, space-domain
distance (SDD)[10]) computed at bin (t, f), and T H is a pre-
defined threshold. Next, a single DOA is estimated at each of
the selected bins by the direction ψ that maximizes St,f (ψ).
Finally, the DOA estimates from the selected bins are clus-
tered using k-means and the final DOA estimates, denoted by

{ψ̂i}Ki=1, are given by the mean of each cluster. Each esti-
mated DOA is labeled as desired or undesired by the user.

Signal enhancement: In the second stage, the desired
signal, d(f), assuming a single desired speaker, is estimated.
For multiple desired speakers, the below procedure can be re-
peated for each of the speakers while defining d(f) and u(f)
accordingly, followed by summing the contribution of each
desired speaker. The DOA estimates {ψ̂i}Ki=1 are used to form
a minimum-variance distortionless response (MVDR) beam-
former which is used for estimating the direct-sound from the
desired source signal as follows:

ŝ(f) =

(
P(f)−1v(f, ψ̂d)

v(f, ψ̂d)HP(f)−1v(f, ψ̂d)

)H

x(f), (4)

where v(f, ψ̂d) is the array’s free-field steering vector corre-
sponding to the estimated DOA of the desired speaker ψ̂d, and
P(f) = E[u(f)u(f)H ], with E[·] and H denoting the sta-
tistical expectation and the conjugate transpose, respectively.
In this paper, we assume that the matrix P(f) is known. In
practice, this may not be the case and an estimation of P(f)
may be required. Then, the acoustic transfer function (ATF)
between the desired speaker and the array a(f) is estimated
using an H1 estimator as follows [14]:

â(f) =
Sŝx(f)

Sŝŝ(f)
, (5)

where Sŝx(f) = E[ŝ(f)x(f)∗] and Sŝŝ(f) = E[ŝ(f)ŝ(f)∗].
Practically, Sŝx(f) and Sŝŝ(f) are estimated in the STFT
domain by replacing the expectation operation by averaging
over time frames. Finally, d(f) is estimated by:

d̂(f) = ŝ(f) · â(f). (6)

Binaural reproduction: In the final stage, pl,r(f) is esti-
mated using the binaural signal matching (BSM) method pre-
sented in [11]. With this method, pl,r(f) are estimated from
the desired microphone signal d̂(f) as follows:

p̂l,r (f) = wH
l,r (f) d̂ (f) , (7)

where wl,r(f) are left and right filters applied to d̂(f).
wl,r(f) are computed as follows:

wl,r(f) = argmin
w

E
[∣∣wHd(f)− pl,r(f)

∣∣2] , (8)

where pl,r(f) is the desired binaural signal presented in (2).
Since pl,r(f) is unknown, the minimization problem in (8) is
solved for a binaural signal pl,r(f) and a microphone signals
d(f) generated by Q independent and uniformly distributed
sources (see [11] for further details).

The system presented above is most suitable for static
scenarios. To support dynamic conditions, multiple-speaker
tracking algorithms, such as [15, 16] are typically required.



Fig. 1. Block diagram of the proposed acoustic telepresence systems.

However, since these methods rely on DOA estimates alone,
their performance may drop following inactive speech periods
(due to speakers moving while silent) when DOA estimates
are not available [9].

3.2. System 2 - extended speaker learning

To overcome the limitation of current tracking methods, a
speech separation network [13] that separates speakers us-
ing masking in the STFT domain is incorporated in the first
stage. Speakers TF masks, estimated by the network, are
employed to associate each TF bin (DOA estimate) with a
specific speaker. Unlike the estimate-speakers association
provided by current speaker tracking methods [15, 16], the
proposed association is based on spectral information; thus,
it may not be affected by inactive speech periods. The in-
put of the speaker separation network is the spectrogram of
a single microphone signal, and the outputs are TF masks
Mi(t, f), i = 1, ...,K, indicating the dominance of the i’th
speaker at each bin. Each entry of Mi(t, f) takes values in the
range [0, 1], where higher values signify higher dominance
of a speaker. The set of TF bins in which the i’th speaker is
dominant is determined as follows:

Ai = {(t, f)|Mi(t, f) > T Hsep}, (9)

where T Hsep is a selected threshold. Combining (3) and (9),
the set of direct-path bins of a specific speaker is formed by:

Ai
DPD = Ai ∩ ADPD. (10)

Given the sets {Ai
DPD}Ki=1, the DOA of the i’th speaker is

estimated by the most frequent DOA estimate in the i’th set.
The obtained DOA is labeled accordingly with label {Yi}Ki=1,
i.e. desired or undesired.

4. SIMULATION STUDY

A simulation study was conducted to evaluate the perfor-
mance of each of the proposed system stages in a scenario
that includes a wearable array, desired and undesired speak-
ers, and noise. In particular, the quality of the reproduced
binaural signal and the effect of estimate-speaker association
on signal enhancement were investigated.

Fig. 2. Simulated scenario of speakers switching positions.

Setup: A meeting scene that included two speakers, de-
sired and undesired, in a reverberant room and a microphone
array mounted on glasses was simulated. To examine the pro-
posed association, we simulated speakers position exchange
at time instance t = 5. This positions exchange challenges the
system to adapt to new and instant speaker positions, which
may occur following inactive speech segments. The simu-
lated scenario is presented in Fig. 2. The room size was 10×
15 × 3m with an approximate reverberation time of 0.5 sec-
onds. The array, illustrated in Fig. 3, was used for recording
in the recent EasyCom dataset [12]. In this study, only micro-
phones 1-4 were used for processing, where the signal at mi-
crophones 5 and 6 served as a reference binaural signal, with
the steering vectors to microphone 5 and 6 serving as HRTFs.
The array steering vectors, provided as part of the dataset
from 1020 directions, were downsampled from 48 to 16 kHz.
The array was positioned at (x, y, z) = [3, 5, 1.7]m and the
speakers were placed 2.5 m away from the array, at the same
height, and at an azimuth angle of ±45◦ relative to the array
coordinate system. The impulse responses from the speakers’
positions to the array were simulated using the image method
[17]. 10 second male and female speech segments, from the
wsj0-2mix dataset [18], sampled at 16 kHz, were convolved
with the room impulse responses corresponding to the posi-
tions of the desired and undesired speakers. Speakers position
exchange was simulated by switching the impulse responses.

Methodology: The proposed systems were implemented
with the following STFT parameters: Hann window of 256
samples, 192 samples overlap and FFT length of 256 sam-
ples. The local SDD spectrum [10] was calculated for a grid
of directions in the frontal-horizontal plane with 31 azimuth



angles ranging between −90◦ and 90◦. The set of direct path
bins was obtained according to (3), with a frequency depen-
dent threshold, which was designed to select the top 5% of
the bins. For system 1, a k-means algorithm with 2 means
was employed for clustering. For system 2, an Asteroid [19]
implementation of the speech separation method presented in
[13] was employed. The network was trained with the clean
speech mixtures from the wsj0-2mix dataset [18]. The train-
ing data did not include speech samples or speakers that were
used for the evaluation. The sets {Ai}2i=1 were generated ac-
cording to (9) with T Hsep of 0.8. The matrix P(f) in (4)
was computed in advance for each of the allowed speaker po-
sitions from a 110 seconds length microphone signal and us-
ing a 1-second STFT window. The undesired speaker DOA
estimate, ψ̂u, was used for selecting the matrix P(f) to be
substituted in (4). Note that, for a general setup, calculat-
ing P(f) in advance may not be practical, and an alternative
way for estimating P(f) may be required. Sŝx(f) and Sŝŝ(f)
were also computed from an appropriate 110 seconds length
microphone signal using a 1-second STFT window. The BSM
filters wl,r(f) in (8) were computed assuming that the sound
field is composed of 1020 independent sources from the 1020
directions, and magnitude least squares (MagLS) processing
was applied to the HRTFs, as suggested in [20].

Results: Table 1 presents azimuth estimates and normal-
ized mean square error (NMSE) in estimating d. Table (1)
shows that both systems perform well for 0 < t < 5 and
that only system 2, which employed speaker separation, man-
ages to track the position exchange, resulting in low NMSE
for t > 5. This result suggests that the proposed method can
handle dynamic scenes with inactive moving speakers.

5. LISTENING TESTS

Two listening tests were conducted to study the system’s
enhancement and binaural reproduction stages following the
multiple stimuli with hidden reference and anchor (MUSHRA)
protocol. 2 female and 7 male subjects with previous ex-
perience participated in both tests. Participants rated the
similarity to the reference with respect to the overall quality.

The first test examines the reproduction stage by compar-
ing the performance of the BSM method with the Ambisonics
reproduction. The microphone signal processed by the BSM
and the Ambisonics signals were generated using the simula-
tion scenario described above and included only the desired
signal part before the position exchange. A high order am-
bisonics (HOA) signal of order N = 9, was used to render
the reference signal. Two other test signals were rendered us-
ing first order Ambisonics (FOA) signals, with and without
MagLS. The upper plot in Fig. 4, which depicts the results,
shows that the BSM was rated close to the FOA with MagLS
and the reference, and much better than FOA, indicating that
the proposed method with the 4-microphone array achieves
good-quality binaural signals. The second test examines the

Fig. 3. Illustration of the microphone array mounted on
glasses with the approximate microphone positions.

0 < t < 5 5 < t < 10
Azimuth Desired

speaker
Undesired
speaker

Desired
speaker

Undesired
speaker

True 45◦ −45◦ −45◦ 45◦

System 1 43.1◦ −45.2◦ 44◦ −44.3◦

System 2 42◦ −42◦ −42◦ 42◦

NMSE 0 < t < 5 5 < t < 10

Unprocessed −6.1 dB −2 dB
System 1 −13.4 dB 1.6 dB
System 2 −13.4 dB −15 dB

Table 1. Azimuth estimates (upper table) and NMSE in esti-
mating d(f) (lower table) with each system.

enhancement stage. All four test signals were generated using
the simulation described above after position exchange. The
enhanced binaural signals obtained with the proposed systems
were compared with a reference and anchor signals that were
generated by applying the BSM to the clean desired and the
unprocessed microphone signals, respectively. The test result
presented in the lower plot of Fig. 4 shows that system 2
operates well while system 1 fails. This is due to wrong asso-
ciation, which resulted in enhancing the undesired speaker.

6. CONCLUSIONS

A practical acoutic telepresence system may be required to
support wearable arrays, suppress interfering speakers and
noise, and handle speakers and array movements. In this
work, a three-stage system that addresses these challenges is
proposed and investigated. The simulation study and listen-
ing tests demonstrate that the proposed approach applied to
the glasses array may be useful under realistic conditions.

HOA MagLS FOA MagLS BSM MagLS FOA
0

50

100

Desired System2 System1 Unprocessed
0

50

100

Fig. 4. Listening tests results.
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