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1 CLOTH SIMULATOR
Our real-time cloth simulator implements eXtended Position Based
Dynamics [Fratarcangeli et al. 2016; Macklin et al. 2016]. XPBD
is a constraint-based simulation model that often obtains much
better performance compared to expensive non-linear solvers. It
uses an iterative Gauss-Seidel solution for the linearized equations
of motion. The method can be easily parallelized [Fratarcangeli et al.
2016] and implemented on hardware such as multi-core CPUs and
GPUs, enabling interactive or real-time simulations on common
modern hardware.
The method aims to solve Newton’s equations of motion

M¥x = −∇𝑈 (x), (1)

where x ∈ R3𝑛 encodes 𝑛 vertex positions (of the cloth mesh in this
case) and M is the mass matrix computed from element volumes
and constant material density 𝜌 . The energy potential 𝑈 (x) needs
to be specified in terms of a vector of constraint functions C(x) =
[𝐶1 (x),𝐶2 (x), · · ·,𝐶𝑚 (x)]⊤ as

𝑈 (x) = 1
2
C(x)⊤𝜶−1C(x), (2)

where 𝜶 is a block diagonal compliance matrix. Any energy that
can be written this way is suitable for XPBD. Using implicit Euler
time integration, the XPBD algorithm reduces to solving for the
constraint multiplier updates Δ𝝀 with

(∇C(x𝑖 )⊤M−1∇C(x𝑖 ) + �̃� )Δ𝝀 = −C(xi) − �̃�𝝀𝑖 , (3)

where x𝑖 and 𝝀𝑖 are the values of x and 𝝀 at iteration 𝑖 , and �̃� = 𝜶
Δ𝑡2

.
Then the position is updated by

Δx = M−1∇C(x𝑖 )Δ𝝀. (4)

The system in Eq. 3 is typically solved using Gauss-Seidel- or Jacobi-
style updates. Stretching and shearing of the fabric is modeled as a
mass-spring system whereas the bending is modeled as a zero angle
constraint for dihedral elements. The underlying body is modeled
as a triangle mesh and it is directly used for collision handling. Our
solver is implemented using CUDA kernels and runs on the GPU.

1.1 Discussion: Simulation Parameters
In Fig. 1, we show example results generated by our system using
different material parameters in the cloth simulation. Two critical
parameters in the simulation are bending stiffness and stretching
stiffness.

• (A) The bending stiffness controls the level of wrinkles. The
larger the bending stiffness is, the fewer wrinkles remain in
the output results.

• (B) The stretching stiffness influences the level of stretching
of clothing at equilibrium. The larger the stretching stiff-
ness is, the closer the output sticks to the rest length of the
clothing template.

For the results in this paper, we experiment with different physical
parameters and select the output that is visually most similar to
the captured images. The process is well illustrated by Fig. 1. In
addition, it can be observed in Fig. 1 that the performance of our
appearance model is not sensitive to the parameters. Therefore, we
only need to devote modest efforts into the selection of parameters.
More sophisticated approaches can also be adopted, including using
measured material data [Miguel et al. 2012; Wang et al. 2011], or
building a perceptual control space for simulation [Sigal et al. 2015],
which are beyond the scope of this paper.

1.2 Discussion: A Different Simulator
In this section, we demonstrate the possibility to use a different
simulator from the our default XPBD simulator in our system. For
this purpose, we adopt an open-source cloth simulator1 based on
Projective Dynamics with frictional contact modeling [Ly et al.
2020]. We compare the results generated by this simulator (named
‘Projective Friction’) with those from XPBD simulator in Fig. 2. The
body configurations and the clothing appearance model are kept
the same for the comparison.
As shown in Fig. 2, the XPBD simulator and Projective Friction

simulator produce different clothing geometry due to the discrepan-
cies in their formulations. However, our clothing appearance model
can generate proper appearance with reasonable detail of wrinkles
and shadow that agree with the corresponding geometry from both
simulators. This suggests that the clothing appearance model is
not tied to a specific simulator. The animation framework that we
present in this paper has the potential to generalize to different
implementation of physics-based cloth simulation.

1.3 Implementation Detail: Simulation Template
Our XPBD simulator supports using a 3D clothing mesh as rest
shape, from which the the reference triangle sizes for the stretching
and shearing energy terms are computed. For the bending energy,
we still assume zero rest angles for dihedral elements. This allows
us to directly use the same template mesh for clothing registration
as the rest shape for the simulation.

The open-source simulator [Ly et al. 2020] requires a 2D template
as the rest shape. We follow a previous work [Bang et al. 2021]
to create a 2D template from the 3D registration template. The
basic idea is to cut the 3D template mesh into several pieces, flatten
them with minimal distortion, and enforce boundary smoothness
requirements.

It should be also possible to adopt a very recent method [Pietroni
et al. 2022] to create a 2D template. Another alternative is to modify
the implementation [Ly et al. 2020] to support 3D template shapes.
We leave a thorough discussion of these different possibilities to
future work.

1https://gitlab.inria.fr/elan-public-code/projectivefriction

https://gitlab.inria.fr/elan-public-code/projectivefriction


2 •

(A) Bending Stiffness
1.0 10.0 100.0

(B) Stretching Stiffness
103 104 105

Fig. 1. We show results of different physical parameters used in the cloth simulation. We adjust the scale of bending stiffness on the left (A), and stretching
stiffness on the right (B). Notice that our rendered results are reasonable despite the difference in simulation parameters.

XPBD Projective Friction

Fig. 2. We compare animation results using our default XPBD simulator with Projective Friction [Ly et al. 2020]. We show normal rendering of the simulated
geometry together with the underlying body on the left, and the results of our photorealistic clothing appearance model on the right.
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2 IMPLEMENTATION DETAIL

2.1 Base Body Avatars
In this work, we use two types of base body avatars, which we call
minimally clothed avatars and underlying body avatars.

The minimally clothed avatars are built from captured sequences
where the subjects wear only a green tight suit. To build these
types of avatars, we use the same procedure as in previous work
[Bagautdinov et al. 2021]. Since the capture suit tightly follow the
body motion, the single-layer full-body avatar is able to model
the full appearance. The avatars adopt a convolutional Variational
Autoencoder (cVAE) architecture, conditioned on body pose, facial
conditioning (if applicable), a latent code from the encoder, and
ambient occlusion as input. At test (animation) time, we follow
Bagautdinov et al. [2021] and use a fixed latent code (all zeros in
our case) for all the body motion in the test sequence.
The underlying body avatars are built from normally clothed

body capture as in previous work [Xiang et al. 2021]. To train these
types of avatars, we register the clothing and body in two separate
layers. The clothing registration method is described in Sec. 4 of our
paper. In order to track body under loose clothing, we utilize the
minimally clothed body data of the same subject as a prior. When
tracking the skeleton poses using the clothed body reconstruction in
[Xiang et al. 2021] (supplementary document, Sec. 1.2), we exclude
the highly dynamic clothing region (bottom of the dress and the
whole skirt) in the surface distance loss. To estimate the underlying
body surface, we couple the invisible region of the body shape with
the minimally clothed LBS model, and penalize collisions with the
clothing surface similar to [Zhang et al. 2017]. With the tracked
body data, we train the body-layer avatars with the same network
architecture as described in the supplementary document of [Xiang
et al. 2021], but without the clothing branch. The training process
is similar to the description in Sec. 5.1 and 5.3 of [Xiang et al. 2021].

2.2 Clothing Appearance Model
In this section we provide more implementation detail on the cloth-
ing appearance model. We use the same architecture for both the
view-independent and view-dependent networks, which is described
in Fig. 3. For the shadow network, the architecture is kept to be the
same as in previous work [Xiang et al. 2021]. The appearance model
is trained end-to-end in PyTorch using the AdamW optimizer with
an initial learning rate of 1 × 10−4. The training goes on for 100k
iterations with the batch size of 2.

3 ETHICAL CONSIDERATIONS
With the formulation described in this paper, building a high-quality
avatar is not yet possible unless the subject agrees to be captured in
a multi-camera system, a relatively high requirement on the capture
setup. However, with the high-quality photorealistic avatars, there
exist risks of others using the content to create fake imagery of the
subjects. Engineering efforts must be made to promote security and
limit access to intended users only.
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Fig. 3. The detailed architecture of view-independent and view-dependent
networks used in the clothing appearance models. We adopt the UNet
[Ronneberger et al. 2015] structure with skip connections. Data tensors are
shown in green where the numbers represent ‘[channels, height, width]’.
Network modules are shown in blue, where the numbers represent ‘(input
channels, output channels, stride)’. For the exact detail of each block, please
refer to the supplementary document of [Xiang et al. 2021].
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