
Fast Matrix Square Roots with Applications to
Gaussian Processes and Bayesian Optimization

Geoff Pleiss
Columbia University

gmp2162@columbia.edu

Martin Jankowiak
The Broad Institute

mjankowi@broadinstitute.org

David Eriksson∗
Facebook

deriksson@fb.com

Anil Damle
Cornell University
damle@cornell.edu

Jacob R. Gardner
University of Pennsylvania
jacobrg@seas.upenn.edu

Abstract

Matrix square roots and their inverses arise frequently in machine learning, e.g.,
when sampling from high-dimensional GaussiansN (0,K) or “whitening” a vector
b against covariance matrix K. While existing methods typically require O(N3)
computation, we introduce a highly-efficient quadratic-time algorithm for comput-
ing K1/2b, K−1/2b, and their derivatives through matrix-vector multiplication
(MVMs). Our method combines Krylov subspace methods with a rational approxi-
mation and typically achieves 4 decimal places of accuracy with fewer than 100
MVMs. Moreover, the backward pass requires little additional computation. We
demonstrate our method’s applicability on matrices as large as 50,000× 50,000—
well beyond traditional methods—with little approximation error. Applying this
increased scalability to variational Gaussian processes, Bayesian optimization,
and Gibbs sampling results in more powerful models with higher accuracy. In
particular, we perform variational GP inference with up to 10,000 inducing points
and perform Gibbs sampling on a 25,000-dimensional problem.

1 Introduction

High-dimensional Gaussian distributions arise frequently in machine learning, especially in the
context of Bayesian modeling. For example, the prior of Gaussian process models is given by a
multivariate Gaussian distribution N (0,K) governed by an N × N symmetric positive definite
kernel matrix K. Historically, O(N3) computation and O(N2) memory requirements have limited
the tractability of inference for high-dimensional Gaussian latent variable models.

A growing line of research aims to reformulate many common covariance matrix operations—such as
linear solves and log determinants—as iterative optimizations involving matrix-vector multiplications
(MVMs) [e.g. 3, 11, 16, 29, 79]. MVM approaches have two primary advantages: 1) the covariance
matrix need not be explicitly instantiated (so only O(N) memory is required) [11, 16, 79]; and
2) MVMs utilize GPU acceleration better than direct methods like Cholesky [3, 29]. Thus MVM
methods can be scaled to much larger covariance matrices.

In this paper, we propose an MVM method that addresses a common computational bottleneck for
high-dimensional Gaussians: computing K±1/2b. This operation occurs frequently in Gaussian
process models and inverse problems. For example, if b ∼ N (0, I), then K

1
2 b ∼ N (0,K). This

operation appears frequently in Bayesian optimization [e.g. 23, 42, 74, 80] and Gibbs sampling [e.g.
∗This work was conducted while David Eriksson was at Uber AI.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

6, 8, 33]. K−
1
2 b can be used to project parameters into a “whitened” coordinate space [50, 54]—a

transformation that accelerates the convergence of variational Gaussian process approximations. To
make these computations more efficient and scalable, we make the following contributions:

• We introduce a MVM approach for computing K±1/2b. The approach uses an insight from
Hale et al. [35] that expresses the matrix square root as a sum of shifted matrix inverses.

• To efficiently compute these shifted inverses, we leverage a modified version of the MINRES
algorithm [59] that performs multiple shifted solves through a single iteration of MVMs. We
demonstrate that, surprisingly, multi-shift MINRES (msMINRES) convergence can be
accelerated with a single preconditioner despite the presence of multiple shifts. Moreover,
msMINRES only requires O(N) storage when used in conjunction with partitioned MVMs
[11, 79]. Achieving 4 or 5 decimal places of accuracy typically requires fewer than 100
matrix-vector multiplications, which can be highly accelerated through GPUs.

• We derive a scalable backward pass for K±1/2b that enables our approach to be used as
part of learning and optimization.

• We apply our K−1/2b and K1/2b routines to three applications: 1) variational Gaussian
processes with up to M = 104 inducing points (where we additionally introduce a O(M2)
MVM-based natural gradient update); 2) sampling from Gaussian process posteriors in
the context of Bayesian optimization with up to 50,000 candidate points; and 3) an image
reconstruction task where we perform Gibbs sampling in 25,600 dimensions.

Code examples for the GPyTorch framework are available at bit.ly/ciq_svgp and bit.ly/
ciq_sampling.

2 Background

Existing Methods for Sampling and Whitening typically rely on the Cholesky factorization: K =
LL>, where L is lower triangular. Though L is not a square root of K, Lb is equivalent to K1/2b
up to an orthonormal rotation. Therefore, Lε, ε ∼ N (0, I) can be used to draw samples from
from N (0,K) and L−1b can be used to “whiten” the vector b. However, the Cholesky factor
requires O(N3) computation and O(N2) memory for an N ×N covariance matrix K. To avoid this
large complexity, randomized algorithms [58, 63], low-rank/sparse approximations [41, 61, 83], or
alternative distributions [80] are often used to approximate the sampling and whitening operations.

Krylov Subspace Methods are a family of iterative algorithms for computing functions of matrices
applied to vectors f(K)b [e.g. 65, 67, 77]. Crucially, K is only accessed through matrix-vector
multiplication (MVM), which is beneficial for extremely large matrices that cannot be explicitly
computed in memory. All Krylov algorithms share the same basic structure: each iteration j produces
an estimate cj ≈ f(K)b which falls within the jth Krylov subspace of K and b:

cj ∈ Kj(K,b) = span
{
b, Kb, K2b, . . . , Kj−1b

}
. (1)

Each iteration expands the Krylov subspace by one vector, requiring a single matrix-vector multiplica-
tion with K. Many Krylov methods, such as linear conjugate gradients, can be reduced to computation-
ally efficient vector recurrences. Krylov methods are exact after N iterations, though most methods
offer extremely accurate solutions in J � N iterations. There has been growing interest in applying
Krylov methods to large-scale kernel methods [3, 4, 11, 13, 15, 16, 29, 30, 57, 61, 65, 70, 71, 82],
especially due to their memory efficiency and amenability to GPU acceleration.

3 Contour Integral Quadrature (CIQ) via Matrix-Vector Multiplication

In this section we develop an MVM method to compute K−1/2b and K1/2b for sampling and
whitening. Our approach scales better than existing methods (e.g. Cholesky) by: 1) reducing
computation fromO(N3) toO(N2); 2) reducing memory fromO(N2) toO(N); 3) more effectively
using GPU acceleration; and 4) affording an efficient gradient computation.

Contour Integral Quadrature (CIQ). A standard result from complex analysis is that K−1/2 can
be expressed through Cauchy’s integral formula: K−1/2 = 1

2πi

∮
Γ
τ−1/2 (τI−K)

−1
dτ, where Γ

2

bit.ly/ciq_svgp
bit.ly/ciq_sampling
bit.ly/ciq_sampling

is a closed contour in the complex plane that winds once around the spectrum of K [18, 35, 44].
Applying a numerical quadrature scheme to the contour integral yields the rational approximations

K−
1
2 ≈

Q∑
q=1

wq (tqI + K)
−1 and K

1
2 ≈ K

Q∑
q=1

wq (tqI + K)
−1
, (2)

where the weights wq encapsulate the normalizing constant, quadrature weights, and the t−
1
2

q terms.
Hale et al. [35] introduce a real-valued quadrature strategy based on a change-of-variables formulation
(described in Appx. B) that converges extremely rapidly—often achieving full machine precision
with only Q ≈ 20 quadrature points. For the remainder of this paper, applying Eq. (2) to compute
K±1/2b will be referred to as Contour Integral Quadrature (CIQ).

3.1 An Efficient Matrix-Vector Multiplication Approach to CIQ with msMINRES.

Using the quadrature method of Eq. (2) for whitening and sampling requires solving several shifted
linear systems. To compute the shifted solves required by Eq. (2) we leverage a variant of the
minimum residuals algorithm (MINRES) developed by Paige and Saunders [59]. At step j MINRES
approximates K−1b by the vector within the Krylov subspace c ∈ Kj(K,b) that minimizes the
residual ‖Kc− b‖2.

msMINRES for multiple shifted solves. To efficiently compute all the shifted solves, we leverage
techniques [e.g. 14, 17, 24, 25, 55] that exploit the shift-invariance property of Krylov subspaces:
i.e.KJ(K,b) = KJ(tI+K,b). We introduce a variant to MINRES, which we refer to as multi-shift
MINRES or msMINRES, that re-uses the same Krylov subspace vectors [b, Kb, . . . , KJ−1b] for
all shifted solves (tI + K)−1b. In other words, using msMINRES we can get all (tqI + K)−1b
essentially for free, i.e. only requiring J MVMs for the Krylov subspace KJ(K,b). As with standard
MINRES, the msMINRES procedure for computing (tqI + K)−1 from [b, Kb, . . . , KJ−1b] can
be reduced to a simple vector recurrence (see Appx. C for details).

3.2 Computational Complexity and Convergence Analysis of msMINRES-CIQ

Pairing Eq. (2) with msMINRES is an efficient algorithm for computing K1/2b and K−1/2b. Alg. 1
(see Appendix) summarizes this approach; below we highlight its computational properties:

Property 1 (Computation/Memory of msMINRES-CIQ). J iterations of msMINRES requires exactly
J MVMs with the input matrix K, regardless of the number of quadrature points Q. The resulting
runtime of msMINRES-CIQ is O(Jξ(K)), where ξ(K) is the time to perform an MVM with K. The
memory requirement is O(QN) in addition to what is required to store K.

For arbitrary positive semi-definite N×N matrices, the runtime of msMINRES-CIQ is O(JN2),
where often J � N . Performing the MVMs in a map-reduce fashion [11, 79] avoids explicitly
forming K, which results in O(QN) total memory. This is in contrast to Cholesky, which produces
an artifact that requires O(N2) memory. Below we bound the error of msMINRES-CIQ:

Theorem 1. Let K � 0 and b be inputs to msMINRES-CIQ, producing aJ ≈ K1/2b after J
iterations with Q quadrature points. The difference between aJ and K1/2b is bounded by:

∥∥∥aJ −K
1
2 b
∥∥∥

2
≤

Quadrature error

O
(

exp
(
− 2Qπ2

log κ(K)+3

))
+

msMINRES error

2Q log
(

5
√
κ(K)

)
κ(K)

√
λmin

π

(√
κ(K)−1√
κ(K)+1

)J−1

‖b‖2 .

where λmax, λmin are the max and min eigenvalues of K, and κ(K) ≡ λmax
λmin

is the condition number.

For a′J ≈ K−1/2b, the bound incurs an additional factor of 1/λmin. (See Appx. G for proofs.)
Thm. 1 suggests that error in computing (tqI + K)−1b will be the primary source of error as the
quadrature error decays rapidly with Q. In many of our applications the rapid convergence of Krylov
subspace methods for linear solves is well established, allowing for accurate solutions if desired. For
covariance matrices up to N = 50,000, often Q = 8 and J ≤ 100 suffices for 4 decimal places of
accuracy and J can be further reduced with preconditioning (see Sec. 4 and Appx. D).

3

3.3 Efficient Vector-Jacobi Products for Backpropagation

In certain applications, such as variational Gaussian process inference, we have to compute gradients
of the K−1/2b operation. This requires the vector-Jacobian product v>(∂K−1/2b/∂K), where v is
the back-propagated gradient. The form of the Jacobian is the solution to a Lyapunov equation, which
requires expensive iterative methods or solving a N2 ×N2 Kronecker sum (K1/2 ⊕K1/2)−1. Both
of these options are much slower than the forward pass and are impractical for large N . Fortunately,
our quadrature formulation affords a computationally efficient approximation to this vector-Jacobian
product. If we back-propagate directly through each term in Eq. (2), we have

v>
(
∂K−1/2b

∂K

)
≈ −1

2

Q∑
q=1

wq (tqI + K)
−1 (

vb> + bv>
)

(tqI + K)
−1
. (3)

Since the forward pass computes the solves with b, the only additional work needed for the backward
pass is computing the shifted solves (tqI + K)−1v, which can be computed with another call to the
msMINRES algorithm. Thus the backward pass takes only O(Jξ(K)) (e.g. O(JN2)) time.

3.4 Preconditioning

Preconditioners are commonly applied to Krylov subspace methods like MINRES to improve the
condition number κ(K) and accelerate convergence. However, standard preconditioning techniques
do not apply to msMINRES, as each shifted system K + tqI requires its own preconditioner (see
Appx. D for details). Each separately preconditioned system would require separate MVMs, de-
feating the efficiency of msMINRES. Nevertheless, we can use a single preconditioner to compute
rotationally-equivalent solutions to K±1/2b. If P ≈ K is a preconditioner matrix, we note that:

KP−
1
2 (P−

1
2 KP−

1
2)−

1
2 b, P−

1
2 (P−

1
2 KP−

1
2)−

1
2 b

are equivalent to K1/2b and K−1/2b (respectively) up to an orthonormal rotation (see Appx. D). We
can use msMINRES-CIQ to compute the (P−1/2KP−1/2)−1/2b terms. Crucially, the convergence
now depends on the condition number of P−1/2KP−1/2, rather than that of K.

3.5 Related Work

Other Krylov methods for K1/2b and K−1/2b, often via polynomial approximations [e.g. 44],
have been explored. Chow and Saad [13] compute K1/2b via a preconditioned Lanczos algorithm.
Unlike msMINRES, however, they require storage of the entire Krylov subspace. Moreover this
approach does not afford a simple gradient computation. Frommer et al. [26, 27] apply a similar
Krylov/quadrature approach to a broad class of matrix functions. More similar to our work is [3, 4],
which uses the quadrature formulation of Eq. (2) in conjunction with a shifted conjugate gradients
solver. We expand upon their method by: 1) introducing a simple gradient computation; 2) proving a
convergence guarantee; and 3) enabling the use of simple preconditioners (see Appx. D).

4 Benchmarking msMINRES-CIQ

In this section we empirically measure the convergence and speedup of msMINRES-CIQ applied to
several types of covariance matrices.

Convergence of msMINRES-CIQ. In Fig. 1 we measure the relative error of computing K1/2b
with msMINRES-CIQ on random matrices.2 We vary 1) the number of quadrature points Q; 2) the
size of the matrix N ; and 3) the conditioning of the matrix. The left and middle plots display
results for matrices with spectra that decay as λt = 1/

√
t and λt = 1/t2, respectively. The right

plot displays results for one-dimensional Matérn kernel matrices (formed with random data), which
have near-exponentially decaying spectra. Consequently, the 1/

√
t matrices are relatively well-

conditioned, while the Matérn kernels are relatively ill-conditioned. Nevertheless, in all cases CIQ
achieves 10−4 relative error with only Q = 8 quadrature points, regardless of the size of the matrix.

2msMINRES is stopped after achieving a relative residual of 10−4 or after reaching J = 400 iterations.

4

1 2 4 8 16 32

Quadrature Sites (Q)

10−6

10−4

10−2

100

R
el

at
iv

e
C

IQ
E

rr
or

Random Cov. Mat. (λt = 1/
√
t)

N=2500

N=5000

N=7500

N=10000

1 2 4 8 16 32

Quadrature Sites (Q)

Random Cov. Mat. (λt = 1/t2)

1 2 4 8 16 32

Quadrature Sites (Q)

Random Matérn 5/2 Kernel Mat.

Figure 1: msMINRES-CIQ relative error when computing K1/2b as a function of number of
quadrature sites Q. We test random matrices with eigenvalues that scale as λt = 1/

√
t (left) and

λt = 1/t2 (middle), as well as Matérn kernels (right). In all cases Q= 8 achieves < 10−4 error.
The error levels out at roughly 10−4 or 10−5, which corresponds to the msMINRES tolerance.
msMINRES is stopped after achieving a relative residual of 10−4 or J = 400 iterations.

0 250 500 750 1000
Number of iterations

0.001

0.01

0.1

1.0

R
el

at
iv

e
re

si
d

u
al

No precond.
Rank-50
Rank-100

Rank-200
Rank-400

2500 5000 7500 10000

Matrix Size (N)

0

2

4

6

8

10

12

14
S

p
ee

d
u

p
ov

er
C

h
ol

es
k
y

1x Speedup

K−1/2b – RBF Kernel

RHS

1

8

64

256

2500 5000 7500 10000

Matrix Size (N)

1x Speedup

K−1/2b – Matérn 5/2 Kernel

Figure 2: (Left:) Effect of preconditioning on msMINRES-CIQ convergence while performing
Bayesian optimization. Samples are drawn from the N = 50,000 posterior covariance matrix of
the ill-conditioned 6-dimensional Hartmann function (see Sec. 5.2), using the pivoted Cholesky
preconditioner [29]. (Middle/Right:) Speedup of msMINRES-CIQ over Cholesky when computing
forward/backward passes of K−1/2b with varying number of right-hand-sides b (RHS).

Additionally, Appx. A demonstrates that msMINRES-CIQ achieves orders of magnitude smaller
error than approximation algorithms like randomized SVD [36] or random Fourier features [63].

To demonstrate the effect of preconditioning, we construct a posterior covariance matrix of size
N = 50,000 points on the 6 dimensional Hartmann function (see Sec. 5.2 for a description). We
note that this problem is particularly ill-conditioned (κ(K) ≈ 108), and thus represents an extreme
test case. Fig. 2 (left) plots the convergence of msMINRES-CIQ (computing K1/2b). Without
preconditioning, it is difficult to achieve relative residuals less than 0.1. Using the pivoted Cholesky
preconditioner of Gardner et al. [29]—a low-rank approximation of K—not only accelerates the
convergence but also reduces the final residual. With rank-200/rank-400 preconditioners, the final
residual is cut by orders of magnitude, and msMINRES-CIQ converges 2×/4× faster.

Speedup over Cholesky. We compare the wall-clock speedup of msMINRES-CIQ over Cholesky in
Fig. 2 (middle/right) on RBF/Matérn kernels.3 We compute K−1/2b and its derivative on multiple
right-hand-side (RHS) vectors. As N increases, msMINRES-CIQ incurs a larger speedup (up to 15×
faster than Cholesky). This speedup is less pronounced when computing many RHSs simultaneously,
as the cubic complexity of Cholesky is amortized across each RHS. Nevertheless, msMINRES-CIQ is
advantageous for matrices larger than N = 3,000 even when simultaneously whitening 256 vectors.

5 Applications

In previous sections we showed, both theoretically and empirically, that msMINRES-CIQ accurately
computes K±1/2b while scaling better than traditional (Cholesky-based) methods. In this section we

3Q = 8. msMINRES is stopped after a residual of 10−4. Kernels are formed using data from the Kin40k
dataset [2]. Timings are performed on a NVIDIA 1070 GPU.

5

31 hrs

9.5 hrs

34 hrs

27.6 hrs

4.9 hrs

21 hrs 24 hrs

10 hrs

21 hrs

3.2x
faster

5.6x
faster

2.0x
faster

Figure 3: Negative log likelihood (NLL) comparison of Cholesky vs CIQ SVGP models. Left:
3DRoad dataset (N = 326155, D = 2, Gaussian likelihood). Middle: Precipitation dataset (N =
75952, D = 3, Student-T likelihood). Right: CoverType dataset (N = 435759, D = 54, Bernoulli
likelihood). NLL improves with more inducing points (M), and Cholesky and msMINRES-CIQ
models have similar performance. However CIQ models train faster than their Cholesky counterparts.

demonstrate applications of this increased speed and scalability. In particular, we show that using
msMINRES-CIQ in conjunction with variational Gaussian processes, Bayesian optimization, and
Gibbs sampling facilitates higher-fidelity models that can be applied to large-scale problems.

5.1 Whitened Stochastic Variational Gaussian Processes

As a first application, we demonstrate that the msMINRES-CIQ whitening procedure K−1/2b can
increase the fidelity of stochastic variational Gaussian processes (SVGP) [39, 40, 54]. These
models are used for non-conjugate likelihoods (e.g. binary classification) or for large datasets that
do not fit into memory. SVGP forms an approximate posterior p(f(x) | X,y) ≈ q(f(x)) =
Eq(u) [p (f(x) | u)] , where u ∈ RM are inducing function values (see [40, 54] for a detailed
derivation). q (u) is a Gaussian variational distribution parameterized by mean m ∈ RM and
covariance S ∈ RM×M . m and S (as well as the model’s kernel/likelihood hyperparameters) are
chosen to maximize the variational ELBO:

LELBO
{
q(u) = N (m,S)

}
=
∑N
i=1 Eq(f(x(i)))

[
log p(y(i) | f(x(i)))

]
−KL [q(u)‖p(u)] .

Rather than directly learning m and S, it is more common to learn the whitened parameters [50, 54]:
m′ = K

−1/2
ZZ m and S′ = K

−1/2
ZZ SK

−1/2
ZZ . Under these coordinates, the KL divergence term is

1
2 (m′>m′+Tr(S′)− log |S′|−M), which doesn’t depend on p(u) and therefore is relatively simple
to optimize. The posterior distribution q(f(x)) = N (µ∗aprx (x) ,Var∗aprx (x)) is given by

µ∗aprx (x) = k>ZxK
− 1

2

ZZm′, Var∗aprx (x) = k(x,x)− k>ZxK
− 1

2

ZZ (I− S′) K
− 1

2

ZZkZx. (4)

Time and space complexity. During training, we repeatedly compute the ELBO and its derivative,
which requires computing Eq. (4) and its derivative for a minibatch of data points. Optimization
typically requires up to 10,000 iterations of training [e.g. 66]. We note that K

−1/2
ZZ b (and its derivative)

is the most expensive numerical operation during each ELBO computation. If we use Cholesky
to compute this operation, the time complexity of SVGP training is O(M3).4 On the other hand,
msMINRES-CIQ-based SVGP training is only O(JM2), where J is the number of msMINRES
iterations. Both methods require O(M2) storage for the m′ and S′ parameters.

Natural gradient descent with msMINRES-CIQ. The size of the variational parameters m′ and
S′ grows quadratically with M . This poses a challenging optimization problem for standard gradient
descent methods. To adapt to the large M regime, we rely on natural gradient descent (NGD) to
optimize m′ and S′ [e.g. 38, 66]. At a high level, these methods perform the updates [m, S] ←
[m, S] − ϕ FFF−1 ∇LELBO, where ϕ is a step size, ∇LELBO is the ELBO gradient, and FFF is the

4Note that Cholesky computes K−1/2b up to an orthogonal rotation, which is suitable for whitened SVGP.

6

0 25 50 75 100
Number of evaluations

0.08

0.13

0.2

0.3

0.45

0.68

1.0

1.6

R
eg

re
t

6D Hartmann

0 125 250 375 500
Number of evaluations

20

30

45

65

95

135

200

300

R
eg

re
t

12D Lunar lander

Cholesky-1k

Cholesky-5k

CIQ-1k

CIQ-5k

CIQ-20k

CIQ-50k

RFF-50k

Figure 4: A comparison of sampling methods for Bayesian Optimization. BO is applied to the
(left) Hartmann (D = 6) and (right) Lunar Lander (D = 12) problems. Methods: Cholesky-〈T 〉
draws posterior samples with Cholesky at T candidate points. CIQ-〈T 〉 draws posterior samples with
msMINRES-CIQ. RFF-50k uses random Fourier features to draw approximate posterior samples at
50,000 candidate points. Larger T results in better optimization. msMINRES-CIQ enables scaling to
T ≥ 50,000. Each plot shows mean regret with standard error in log-scale based on 30 replications.

Fisher information matrix of the variational parameters. Naïvely, each NGD step requires O(M3)
computations with m′ and S′, which would dominate the cost of CIQ-based SVGP. Fortunately, we
can derive a natural gradient update that only relies on matrix solves with S′, which take O(JM2)
time using preconditioned conjugate gradients. Therefore, using NGD incurs the same quadratic
asymptotic complexity as msMINRES-CIQ. See Appx. E for the O(M2) NGD update equations.

Cholesky vs msMINRES-CIQ. We compare msMINRES-CIQ-SVGP against Cholesky-SVGP
on 3 large-scale datasets: a GIS dataset (3droad, D = 2) [34], a monthly precipitation dataset
(Precipitation, D = 3) [52, 53], and a tree cover dataset (Covtype, D = 54) [9].5 Each task has
between N = 70,000 and 500,000 training data points. For 3droad we use a Gaussian observation
model. The Precipitation dataset has noisier observations; therefore we apply a Student-T observation
model. Finally, we reduce the CovType dataset to a binary classification problem and apply a
Bernoulli observation model.6 We train models with 103 ≤M ≤ 104. See Appx. F for details.

The two methods achieve very similar test-set negative log likelihood (Fig. 3). We note that there are
small differences in the optimization dynamics, which is to be expected since K

−1/2
ZZ kZx can differ

by an orthogonal transformation when computed with msMINRES-CIQ versus Cholesky. The key
difference is the training time: with M = 5,000 inducing points, msMINRES-CIQ models are up to
5.6x faster than Cholesky models (on a Titan RTX GPU). Moreover, msMINRES-CIQ models with
M = 8,000-10,000 take roughly the same amount of time as M = 5,000 Cholesky models. This
speed is due to the rapid convergence of msMINRES—on average J = 100 kernel-vector multiplies
suffices to achieve 3 decimal places of error (see Appx. A). Note we do not trainM > 5,000 Cholesky
models as doing so would require 14GB of GPU memory and 2-10 days for training.

Effects of increased inducing points. We find that accuracy improves with increased M on all
datasets. Scaling from M = 5,000 to M = 10,000 reduces test-set NLL by 0.1 nats on the 3droad
and Precipitation datasets. We find similar reductions in predictive error (see Appx. A for plots). By
scaling more readily to large M , msMINRES-CIQ enables high-fidelity variational approximations
that would be computationally prohibitive with Cholesky.

5.2 Posterior Sampling for Bayesian Optimization

The second application of msMINRES-CIQ we explore is Gaussian process posterior sampling in the
context of Bayesian optimization (BO) [e.g. 72]. Many acquisition functions require drawing samples
from posteriors [e.g. 23, 42, 80]. One canonical example is Thompson Sampling (TS) [43, 47, 74].
TS trades off exploitation of existing minima for exploration of new potential minima. TS chooses the
next query point x̃ as the minimizer of a sample drawn from the posterior. Let X∗ = [x∗1, . . . ,x

∗
T] be

5Details on these datasets (including how to acquire them) are in Appx. F.
6The task is predicting whether the primary tree cover at a given location is pine trees or other types of trees.

7

Figure 5: Using msMINRES-CIQ for solving problems in spatial statistics, such as image re-
construction. This requires sampling from a precision matrix of dimension D = 25,600. (Left)
High-resolution image of dimension D. (Middle Left) Low-resolution images. (Middle Right)
Reconstructed image. (Right) Delta between original image and reconstruction (darker colors
correspond to larger deltas).

a candidate set of possible query points. To choose the next query point x̃, TS computes

x̃ = arg min
(
µ∗(X∗) + COV∗(X∗)

1
2 ε
)
, ε ∼ N (0, I) . (5)

where µ∗(X∗) and COV∗(X∗) are the posterior mean and covariance of the Gaussian process at the
candidate set. The candidate set is often chosen using a space-filling design, e.g. a Sobol sequence.
The search space grows exponentially with the dimension; therefore, we need large values of T to
more densely cover the search space for better optimization performance. Using Cholesky to compute
Eq. (5) incurs a O(T 3) computational cost and O(T 2) memory, which severely limits the size of T .
In comparison, msMINRES-CIQ only requires O(T 2) computation and O(T) memory.

We perform BO using TS on the classic test function (Hartmann, D = 6) and a reinforcement
controller tuning problem (Lunar Lander, D = 12) from the OpenAI gym.7 We provide more
details in the supplementary material. For each problem we use exact Gaussian processes as the
surrogate model and TS as the acquisition function. Our goal is to determine whether CIQ-based
sampling is beneficial by enabling scaling to larger candidate set sizes.

Baselines. We measure the performance of TS as a function of the candidate set size T and consider
T ∈ {1,000, 5,000, 20,000, 50,000}. We run Cholesky (Cholesky-T) for T ∈ {1,000, 5,000} and
msMINRES-CIQ (CIQ-T) for T ≥ 5,000. Note that it would be very challenging and impractical to
use Cholesky with T ≥ 10,000, due to its quadratic memory and cubic time complexity. For example,
running Cholesky for T = 50,000 would require ≥ 100 GB of GPU memory, and performing a
single decomposition would take (at best) ≈ 30 seconds. In addition to Cholesky and CIQ with exact
Gaussian processes as the surrogate model, we also compare to random Fourier features (RFF) [63]
with 1,000 random features.

Optimization performance. We plot the mean regret with standard error based on 30 replications
in Fig. 4. By increasing T = 1,000 to T = 50,000, the final regret achieved by CIQ is significantly
lower on both problems. We re-iterate that T = 50,000 is largely impractical with Cholesky. Large
candidate sets have previously only been possible with approximate sampling methods like RFF. We
note, however, that RFF with T = 50,000 is outperformed by CIQ-50k on both problems.

5.3 Gibbs Samplers and Image Reconstruction

High-dimensional Gaussian distributions are ubiquitous in Bayesian statistics, especially in the
context of spatially structured data. Application areas are numerous, including disease mapping,
archaeology, and image analysis [8, 49, 78]. Many of the models that arise in these applications are
amenable to Gibbs sampling, a MCMC method for generating (approximate) samples from Bayesian
posteriors. As such, sampling from high-dimensional Gaussian distributions is often the primary
computational bottleneck for these methods.

To illustrate the utility of msMINRES-CIQ for constructing efficient Gibbs samplers for high-
dimensional Gaussian latent variables, we consider an image reconstruction task [6]. We emphasize,
however, the wide-ranging applicability of these methods, including for non-spatially structured data

7https://gym.openai.com/envs/LunarLander-v2

8

https://gym.openai.com/envs/LunarLander-v2

(e.g. for sparse linear regression [33]). We formulate an image analysis model as follows: we observe
R low-resolution images {yr}Rr=1, with each image of size M ×M . The goal is to reconstruct the
unknown high-resolution image x of size N ×N with N > M . The joint density is given by

p(x,y1:R, γobs, γprior) = N (y1:R|Ax, γ−1
obs1)N (x|0, γ−1

priorL)p(γobs)p(γprior) (6)

where A is a M2R×N2 matrix that encodes how the high-resolution image is blurred and down-
sampled to yield R low-resolution images and L is a N2 × N2 discrete Laplace operator that
encodes our prior smoothness assumptions about the image x. Additionally, γobs and γprior are
scalar hyperparameters that control the scale of the observation noise and strength of the image
prior, respectively. For more details please refer to Appendix F. The computational bottleneck in the
resulting Gibbs sampler is sampling from the conditional Gaussian distribution given by

p(x|y1:R, γobs, γprior) = N (x|m,Λ−1) m = γobsΛ
−1ATy1:R Λ = γobsA

TA + γpriorL

For a concrete demonstration we perform image reconstruction on the image depicted in Fig. 5. Here
N = 160, M = 80, and R = 4, so that the precision matrix Λ is of size 25600× 25600. Despite the
extreme size, our implementation achieves ≈ 0.61 samples per second (using a TitanRTX GPU). We
estimate that a Cholesky version of this method would achieve only ≈ 0.05 samples per second.

6 Discussion

We have introduced msMINRES-CIQ—a MVM-based method for computing K1/2b and K−1/2b. In
sampling and whitening applications, msMINRES-CIQ can be used as a O(N2) drop-in replacement
for the O(N3) Cholesky decomposition. Its scalability and GPU utilization enable us to use more
inducing points with SVGP models and larger candidate sets in Bayesian optimization. In all
applications, such increased fidelity results in better performance.

Stability of msMINRES-CIQ. Krylov methods on symmetric matrices can be prone to numerical
instabilities due to round-off errors [e.g. 60]. Our method has two key advantages that improve
stability. First, we only use Krylov methods to solve linear systems rather than eigenvalue problems.
Common numerical pitfalls that hinder Krylov eigen-solvers (e.g. loss of orthogonality between
Lanczos vectors) have been shown to have little empirical effect on linear system solvers like MINRES
and CG [e.g. 22, 75]. Second, each solve from msMINRES is inherently a shifted system K + tqI.
In practice these shifts dramatically improve the conditioning of K, and allow us to work directly
with the matrix K without having to add diagonal jitter for stability.

Comparison to other fast sampling methods. Historically, GP samples have been drawn using
the Cholesky factor or finite-basis approximations like RFFs. Recently, a growing line of work
investigates using inducing point methods for scalable sampling [61, 83]. We believe that CIQ-
sampling can be used in conjunction with these inducing point approaches. For example, Wilson
et al. [83] use RFFs to sample from the prior and an inducing point approximation of the conditional
to convert prior samples into posterior samples. CIQ can augment this approach, allowing for more
inducing points and/or replacing RFFs for prior sampling.

Advantages and disadvantages. One advantage of the Cholesky decomposition is its reusability.
As discussed in Sec. 4, the cubic cost of computing LL> is amortized when drawing O(M) samples
or whitening O(M) vectors. Conversely, applying msMINRES-CIQ to O(M) vectors would incur
a O(M3) cost, eroding its computational benefits. Thus, our method is primarily advantageous in
scenarios with a small number of right hand sides or where K is too large to apply Cholesky. We
also emphasize that msMINRES-CIQ—like all Krylov methods—can take advantage of fast MVMs
afforded by structured covariances. Though this paper focuses on applying this algorithm to dense
matrices, we suggest that future work explore applications involving sparse or structured matrices.

Broader Impact

This paper introduces an algorithm to improve the efficiency and scalability of a common-place
computation. The results section highlights three common use cases of this algorithm: variational
Gaussian processes, Bayesian optimization, and Gibbs sampling. While there are other potential
use-cases of this method, we will focus on the broader impacts with respect to these three applications.

9

Variational Gaussian processes and Gibbs sampling are common methods. Other researchers have
focused on domains like medicine [28, 68], geo-statistics [19, 73], and time-series modelling [64, 81]
to motivate the need for increased scalability and efficiency. We believe that our proposed algorithm
will make Gaussian process models and Gibbs sampling techniques increasingly applicable in these
settings. Researchers/practitioners in these fields might have previously been unable to use Gaussian
processes/Gibbs sampling due to scalability issues. While we believe increasing the scalability and
usability of these probabilistic techniques is a worthwhile goal, we note that they require additional
care when using. If a system is to rely on probabilistic methods for calibrated uncertainty estimates,
it will no longer be sufficient to iterate on accuracy as a target method. We also note that performing
meaningful probabilistic inferences requires some level of domain expertise regarding modeling
priors and potential biases of sampling/variational approximations.

Bayesian optimization is a tool commonly used for hyperparameter optimization [72], A/B testing [5],
and other black-box optimization problems. One of the most popular and best performing acquisition
functions is Thompson sampling, which requires sampling the unknown function at a candidate set.
The primary benefit of the proposed method is better optimization, which could lead to better machine
learning models (via better hyperparameter searches) and faster experimental testing (via A/B testing).
We would argue that improving the efficiency of such algorithms poses minimal risk beyond more
general concerns about potential misapplications of the underlying technology to the optimization of
nefarious objectives, intentionally or otherwise. However, we will make note here of some general
risks associated with black-box optimization: a potential over-reliance on fully automated methods
and computationally expensive searches for what might be marginal improvements.

We have release an open-sourced implementation of this algorithm to facilitate the adoption of
this method.8 Since our method relies on quadrature approximations and iterative refinement, one
mode of failure is when such iterations fail to converge to a good estimate (for example, due to bad
conditioning). However, there are several easy-to-perform convergence checks (e.g. the msMINRES
residual), and such convergence checks are part of our implementation to catch such failure cases.

Acknowledgments and Disclosure of Funding

We thank David Bindel for helpful conversations about rational approximations and optimization.
At the time of submission, GP was support by grants from the National Science Foundation NSF
(III-1618134, III-1526012, IIS-1149882, IIS- 1724282, OAC-1934714, and TRIPODS-1740822), the
Office of Naval Research DOD (N00014-17-1-2175), the Bill and Melinda Gates Foundation, and the
Cornell Center for Materials Research with funding from the NSF MRSEC program (DMR-1719875).
AD is partially funded by the National Science Foundation under award DMS-1830274 We are
thankful for generous support by Zillow and SAP America Inc.

References

[1] M. Abramowitz and I. A. Stegun. Handbook of mathematical functions with formulas, graphs, and
mathematical tables, volume 55. US Government printing office, 1948.

[2] A. Asuncion and D. Newman. UCI machine learning repository. https://archive.ics.uci.edu/
ml/, 2007. Last accessed: 2018-05-18.

[3] E. Aune, J. Eidsvik, and Y. Pokern. Iterative numerical methods for sampling from high dimensional
Gaussian distributions. Statistics and Computing, 23(4):501–521, 2013.

[4] E. Aune, D. P. Simpson, and J. Eidsvik. Parameter estimation in high dimensional Gaussian distributions.
Statistics and Computing, 24(2):247–263, 2014.

[5] M. Balandat, B. Karrer, D. R. Jiang, S. Daulton, B. Letham, A. G. Wilson, and E. Bakshy. Modular
Bayesian optimization with BoTorch: An efficient differentiable monte-carlo approach. In NeurIPS, 2020.

[6] J. M. Bardsley. MCMC-based image reconstruction with uncertainty quantification. SIAM Journal on
Scientific Computing, 34(3):A1316–A1332, 2012.

8See bit.ly/ciq_svgp and bit.ly/ciq_sampling.

10

https://archive.ics.uci.edu/ml/
https://archive.ics.uci.edu/ml/
bit.ly/ciq_svgp
bit.ly/ciq_sampling

[7] M. Bauer, M. van der Wilk, and C. E. Rasmussen. Understanding probabilistic sparse Gaussian process
approximations. In NeurIPS, pages 1533–1541, 2016.

[8] J. Besag, J. York, and A. Mollié. Bayesian image restoration, with two applications in spatial statistics.
Annals of the institute of statistical mathematics, 43(1):1–20, 1991.

[9] J. A. Blackard and D. J. Dean. Comparative accuracies of artificial neural networks and discriminant
analysis in predicting forest cover types from cartographic variables. Computers and electronics in
agriculture, 24(3):131–151, 1999.

[10] B. C. Carlson and J. Todd. The degenerating behavior of elliptic functions. SIAM Journal on Numerical
Analysis, 20(6):1120–1129, 1983. ISSN 00361429.

[11] B. Charlier, J. Feydy, J. Glaunès, F.-D. Collin, and G. Durif. Kernel operations on the GPU, with autodiff,
without memory overflows. 2020.

[12] S.-C. Choi. Iterative methods for singular linear equations and least-squares problems. PhD thesis, 2006.

[13] E. Chow and Y. Saad. Preconditioned Krylov subspace methods for sampling multivariate Gaussian
distributions. Journal on Scientific Computing, 36(2):A588–A608, 2014.

[14] N. Cundy, S. Krieg, G. Arnold, A. Frommer, T. Lippert, and K. Schilling. Numerical methods for the QCD
overlap operator IV: Hybrid monte carlo. Computer Physics Communications, 180(1):26–54, 2009.

[15] J. P. Cunningham, K. V. Shenoy, and M. Sahani. Fast Gaussian process methods for point process intensity
estimation. In ICML, 2008.

[16] K. Cutajar, M. Osborne, J. Cunningham, and M. Filippone. Preconditioning kernel matrices. In ICML,
2016.

[17] B. N. Datta and Y. Saad. Arnoldi methods for large Sylvester-like observer matrix equations, and an
associated algorithm for partial spectrum assignment. Linear Algebra and its Applications, 154-156:225 –
244, 1991.

[18] P. I. Davies and N. J. Higham. Computing f(A)b for matrix functions f . In QCD and numerical analysis
III, pages 15–24. Springer, 2005.

[19] P. J. Diggle, J. A. Tawn, and R. A. Moyeed. Model-based geostatistics. Journal of the Royal Statistical
Society: Series C (Applied Statistics), 47(3):299–350, 1998.

[20] K. Dong, D. Eriksson, H. Nickisch, D. Bindel, and A. G. Wilson. Scalable log determinants for Gaussian
process kernel learning. In NeurIPS, 2017.

[21] D. Eriksson, M. Pearce, J. Gardner, R. D. Turner, and M. Poloczek. Scalable global optimization via local
Bayesian optimization. In NeurIPS, 2019.

[22] D. C.-L. Fong and M. Saunders. CG versus MINRES: An empirical comparison. Sultan Qaboos University
Journal for Science, 17(1):44–62, 2012.

[23] P. Frazier, W. Powell, and S. Dayanik. The knowledge-gradient policy for correlated normal beliefs.
Journal on Computing, 21(4):599–613, 2009.

[24] R. Freund. On conjugate gradient type methods and polynomial preconditioners for a class of complex
non-Hermitian matrices. Numerische Mathematik, 57(1):285–312, 1990.

[25] A. Frommer and U. Glässner. Restarted GMRES for shifted linear systems. SIAM Journal on Scientific
Computing, 19(1):15–26, 1998.

[26] A. Frommer, S. Güttel, and M. Schweitzer. Convergence of restarted krylov subspace methods for stieltjes
functions of matrices. SIAM Journal on Matrix Analysis and Applications, 35(4):1602–1624, 2014.

[27] A. Frommer, S. Güttel, and M. Schweitzer. Efficient and stable arnoldi restarts for matrix functions based
on quadrature. SIAM Journal on Matrix Analysis and Applications, 35(2):661–683, 2014.

[28] J. Futoma, S. Hariharan, and K. Heller. Learning to detect sepsis with a multitask Gaussian process RNN
classifier. In ICML, 2017.

[29] J. R. Gardner, G. Pleiss, K. Q. Weinberger, D. Bindel, and A. G. Wilson. GPyTorch: Blackbox matrix-
matrix Gaussian process inference with GPU acceleration. In NeurIPS, pages 7576–7586, 2018.

11

[30] J. R. Gardner, G. Pleiss, R. Wu, K. Q. Weinberger, and A. G. Wilson. Product kernel interpolation for
scalable Gaussian processes. In AISTATS, 2018.

[31] G. H. Golub and C. F. Van Loan. Matrix computations, volume 3. JHU press, 2012.

[32] A. Greenbaum. Iterative Methods for Solving Linear Systems. Society for Industrial and Applied
Mathematics, 1997.

[33] J. Griffin, P. Brown, et al. Hierarchical shrinkage priors for regression models. Bayesian Analysis, 12(1):
135–159, 2017.

[34] C. Guo, Y. Ma, B. Yang, C. S. Jensen, and M. Kaul. Ecomark: evaluating models of vehicular environmental
impact. In International Conference on Advances in Geographic Information Systems, 2012.

[35] N. Hale, N. J. Higham, and L. N. Trefethen. Computing Aα, log(A), and related matrix functions by
contour integrals. SIAM Journal on Numerical Analysis, 46(5):2505–2523, 2008.

[36] N. Halko, P.-G. Martinsson, and J. A. Tropp. Finding structure with randomness: Stochastic algorithms for
constructing approximate matrix decompositions. 2009.

[37] H. Harbrecht, M. Peters, and R. Schneider. On the low-rank approximation by the pivoted Cholesky
decomposition. Applied Numerical Mathematics, 4(62):428–440, 2012.

[38] J. Hensman, M. Rattray, and N. D. Lawrence. Fast variational inference in the conjugate exponential
family. In NeurIPS, 2012.

[39] J. Hensman, N. Fusi, and N. D. Lawrence. Gaussian processes for big data. In UAI, 2013.

[40] J. Hensman, A. Matthews, and Z. Ghahramani. Scalable variational Gaussian process classification. 2015.

[41] J. Hensman, N. Durrande, and A. Solin. Variational Fourier features for Gaussian processes. The Journal
of Machine Learning Research, 18(1):5537–5588, 2017.

[42] J. M. Hernández-Lobato, M. W. Hoffman, and Z. Ghahramani. Predictive entropy search for efficient
global optimization of black-box functions. In NeurIPS, 2014.

[43] J. M. Hernández-Lobato, J. Requeima, E. O. Pyzer-Knapp, and A. Aspuru-Guzik. Parallel and distributed
Thompson sampling for large-scale accelerated exploration of chemical space. In ICML, 2017.

[44] N. J. Higham. Functions of matrices: theory and computation, volume 104. SIAM, 2008.

[45] M. D. Hoffman, D. M. Blei, C. Wang, and J. Paisley. Stochastic variational inference. The Journal of
Machine Learning Research, 14(1):1303–1347, 2013.

[46] B. Jegerlehner. Krylov space solvers for shifted linear systems. arXiv preprint hep-lat/9612014, 1996.

[47] K. Kandasamy, A. Krishnamurthy, J. Schneider, and B. Póczos. Parallelised Bayesian optimisation via
Thompson sampling. In AISTATS, 2018.

[48] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

[49] L. Knorr-Held and H. Rue. On block updating in Markov random field models for disease mapping.
Scandinavian Journal of Statistics, 29(4):597–614, 2002.

[50] M. Kuss and C. E. Rasmussen. Assessing approximate inference for binary Gaussian process classification.
Journal of Machine Learning Research, 6(Oct):1679–1704, 2005.

[51] C. Lanczos. An iteration method for the solution of the eigenvalue problem of linear differential and
integral operators1. Journal of Research of the National Bureau of Standards, 45(4), 1950.

[52] B. Lyon. The strength of el niño and the spatial extent of tropical drought. Geophysical Research Letters,
31(21), 2004.

[53] B. Lyon and A. G. Barnston. Enso and the spatial extent of interannual precipitation extremes in tropical
land areas. Journal of Climate, 18(23):5095–5109, 2005.

[54] A. G. d. G. Matthews. Scalable Gaussian process inference using variational methods. PhD thesis,
University of Cambridge, 2017.

[55] K. Meerbergen. The solution of parametrized symmetric linear systems. SIAM journal on matrix analysis
and applications, 24(4):1038–1059, 2003.

12

[56] K. R. Meyer. Jacobi elliptic functions from a dynamical systems point of view. The American Mathematical
Monthly, 108(8):729–737, 2001.

[57] I. Murray. Gaussian processes and fast matrix-vector multiplies. In ICML Workshop on Numerical
Mathematics in Machine Learning, 2009.

[58] M. Mutny and A. Krause. Efficient high dimensional Bayesian optimization with additivity and quadrature
fourier features. In NeurIPS, 2018.

[59] C. C. Paige and M. A. Saunders. Solution of sparse indefinite systems of linear equations. Journal on
numerical analysis, 12(4):617–629, 1975.

[60] B. N. Parlett and D. S. Scott. The lanczos algorithm with selective orthogonalization. Mathematics of
computation, 33(145):217–238, 1979.

[61] G. Pleiss, J. R. Gardner, K. Weinberger, and A. G. Wilson. Constant-time predictive distributions for
Gaussian processes. In ICML, 2018.

[62] S. Qiu, M. K. Vamanamurthy, and M. Vuorinen. Some inequalities for the growth of elliptic integrals.
SIAM journal on mathematical analysis, 29(5):1224–1237, 1998.

[63] A. Rahimi and B. Recht. Random features for large-scale kernel machines. In NeurIPS, 2008.

[64] S. Roberts, M. Osborne, M. Ebden, S. Reece, N. Gibson, and S. Aigrain. Gaussian processes for time-series
modelling. Philosophical Transactions. Series A: Mathematical, Physical and Engineering Sciences, 371
(1984), 2013.

[65] Y. Saad. Iterative methods for sparse linear systems, volume 82. SIAM, 2003.

[66] H. Salimbeni, S. Eleftheriadis, and J. Hensman. Natural gradients in practice: Non-conjugate variational
inference in Gaussian process models. In AISTATS, 2018.

[67] M. K. Schneider and A. S. Willsky. Krylov subspace estimation. SIAM Journal on Scientific Computing,
22(5):1840–1864, 2001.

[68] P. Schulam and S. Saria. A framework for individualizing predictions of disease trajectories by exploiting
multi-resolution structure. In NeurIPS, 2015.

[69] J. R. Shewchuk et al. An introduction to the conjugate gradient method without the agonizing pain, 1994.

[70] D. P. Simpson, I. W. Turner, and A. N. Pettitt. Fast sampling from a gaussian markov random field using
krylov subspace approaches. 2008.

[71] D. P. Simpson, I. W. Turner, C. M. Strickland, and A. N. Pettitt. Scalable iterative methods for sampling
from massive gaussian random vectors. arXiv preprint arXiv:1312.1476, 2013.

[72] J. Snoek, H. Larochelle, and R. P. Adams. Practical Bayesian optimization of machine learning algorithms.
In NeurIPS, 2012.

[73] M. L. Stein. Interpolation of spatial data: some theory for Kriging. Springer Science & Business Media,
2012.

[74] W. R. Thompson. On the likelihood that one unknown probability exceeds another in view of the evidence
of two samples. Biometrika, 25(3/4):285–294, 1933.

[75] L. N. Trefethen and D. Bau III. Numerical linear algebra, volume 50. SIAM, 1997.

[76] S. Ubaru, J. Chen, and Y. Saad. Fast estimation of Tr(f(A)) via stochastic Lanczos quadrature. SIAM
Journal on Matrix Analysis and Applications, 38(4):1075–1099, 2017.

[77] H. A. Van der Vorst. Iterative Krylov methods for large linear systems, volume 13. Cambridge University
Press, 2003.

[78] L. A. Waller, B. P. Carlin, H. Xia, and A. E. Gelfand. Hierarchical spatio-temporal mapping of disease
rates. Journal of the American Statistical association, 92(438):607–617, 1997.

[79] K. A. Wang, G. Pleiss, J. R. Gardner, S. Tyree, K. Q. Weinberger, and A. G. Wilson. Exact Gaussian
processes on a million data points. In NeurIPS, 2019.

[80] Z. Wang and S. Jegelka. Max-value entropy search for efficient Bayesian optimization. In ICML, 2017.

13

[81] A. G. Wilson and R. Adams. Gaussian process kernels for pattern discovery and extrapolation. In ICML,
2013.

[82] A. G. Wilson and H. Nickisch. Kernel interpolation for scalable structured Gaussian processes (KISS-GP).
In ICML, 2015.

[83] J. T. Wilson, V. Borovitskiy, A. Terenin, P. Mostowsky, and M. P. Deisenroth. Efficiently sampling
functions from Gaussian process posteriors. In ICML, 2020.

[84] Z.-H. Yang and J.-F. Tian. Convexity and monotonicity for elliptic integrals of the first kind and applications.
Applicable Analysis and Discrete Mathematics, 13(1):240–260, 2019.

14

Supplementary Information for: Fast Matrix Square
Roots with Applications to Gaussian Processes and

Bayesian Optimization

Geoff Pleiss
Columbia University

gmp2162@columbia.edu

Martin Jankowiak
The Broad Institute

mjankowi@broadinstitute.org

David Eriksson∗
Facebook

deriksson@fb.com

Anil Damle
Cornell University
damle@cornell.edu

Jacob R. Gardner
University of Pennsylvania
jacobrg@seas.upenn.edu

Algorithm 1: Computing K−
1
2 b with MVM-based Contour Integral Quadrature (CIQ)

Input :mvm_K(·) – function for matrix-vector multiplication (MVM) with matrix K
b – right hand side, J – number of msMINRES iterations, Q – number of quad. points

Output :a ≈ K−
1
2 b

[w1, . . . , wQ], [t1, . . . , tQ]← compute_quad(mvm_K(·), Q) // Weights (wi) and
shifts (ti) for quadrature - details in Appx. B.

(t1I + K)−1b, . . . (tQI + K)−1b← msMINRES(mvm_K(·), b, J , t1, . . ., tQ)
// msMINRES computes all solves simultaneously - details in
Appx. C.

return
∑Q
q=1 wq (tqI + K)

−1
b // CIQ estimate of

1
2πi

∫
τ−1/2(τI−K)−1b dτ = K−1/2b

A Additional Results

1 2 4 8 16 32

Quadrature Sites (Q)

10−6

10−4

10−2

100

R
el

at
iv

e
C

IQ
E

rr
or

Random Cov. Mat. (λt = 1/t)

N=2500

N=5000

N=7500

N=10000

1 2 4 8 16 32

Quadrature Sites (Q)

Random Cov. Mat. (λt = exp(−t))

1 2 4 8 16 32

Quadrature Sites (Q)

Random RBF Kernel Mat.

Figure S1: CIQ relative error at computing K1/2b as a function of number of quadrature points Q.
In all cases Q = 8 achieves < 10−4 error.

Fig. S1 and Fig. S2 are continuations of Fig. 1. They plots CIQ convergence and randomized SVD
convergence as a function of Q and R for covariance matrices whose eigenvalues decay as λt = 1√

t
,

λt = 1
t , λt = 1

t2 , and λt = exp(−t) in addition to the kernel matrix results already presented. The

∗This work was conducted while David Eriksson was at Uber AI.

16 32 64 128 256 512 1024
0.00

0.25

0.50

0.75

1.00

R
el

at
iv

e
E

rr
o
r

Random Cov. Mat. (λt = 1/
√
t)

N=2500

N=5000

N=7500

16 32 64 128 256 512 1024

Random Cov. Mat. (λt = 1/t)

16 32 64 128 256 512 1024

Random Cov. Mat. (λt = 1/t2)

16 32 64 128 256 512 1024

Randomized SVD Rank (R)

0.00

0.25

0.50

0.75

1.00

R
el

at
iv

e
E

rr
o
r

Random Cov. Mat. (λt = exp(−t))

16 32 64 128 256 512 1024

Randomized SVD Rank (R)

Random RBF Kernel Mat.

16 32 64 128 256 512 1024

Randomized SVD Rank (R)

Random Matérn 5/2 Kernel Mat.

Figure S2: Randomized SVD relative error at computing K1/2b as a function of approximation rank
R. In all cases, randomized SVD is unable to achieve a relative error better than about 0.25.

results for CIQ demonstrate that it is relatively invariant to the eigenvalue decay speed, and does not
require approximately low rank structure. Randomized SVD on the other hand incurs an order of
magnitude more error; a rank of 1,024 is unable to reduce the relative error to a single decimal point.

0 100 200 300 400

Preconditioner Rank

20

40

60

80

100

m
sM

IN
R

E
S

It
er

at
io

n
s

(J
)

fo
r

10
−

6
E

rr
or

RBF Kernel

N = 1000

N = 2000

N = 5000

N = 7500

0 100 200 300 400

Preconditioner Rank

20

40

60

80

100

Matern 5/2 Kernel

Figure S3: Effect of preconditioning on CIQ convergence (random RBF and Matérn-5/2 kernels with
a pivoted Cholesky preconditioner [29]).

Fig. S3 further demonstrates the effect of preconditioning on msMINRES-CIQ. We construct ran-
dom N × N RBF/Matérn kernels, applying msMINRES-CIQ to a set of N orthonormal vectors
([K1/2b1, . . . ,K

1/2bN]), and compute the empirical covariance. We plot the number of msMINRES
iterations needed to achieve a relative error of 10−4. The pivoted Cholesky preconditioner of Gardner
et al. [29]—which forms a low-rank approximation of K—accelerates convergence of msMINRES.
Without preconditioning (i.e. rank=0), J = 100 iterations are required for N = 7,500 matrices. With
rank-100/rank-400 preconditioners, iterations are cut by a factor of two/four.

To further compare msMINRES-CIQ to randomized methods, Fig. S4 plots the empirical covariance
matrix of 1,000 Gaussian samples drawn from a Gaussian process prior N (0,K). We construct the
RBF covariance matrices K using subsets of the Protein and Kin40k datasets9 [2]. We note that
all methods incur some sampling error, regardless of the subset size (N). msMINRES-CIQ and
Cholesky-based sampling tend to have very similar empirical covariance error. On the other hand, the

9Both datasets are originally from the UCI repository and can be downloaded from https://github.
com/gpleiss/ciq_experiments/tree/main/svgp/data.

16

https://github.com/gpleiss/ciq_experiments/tree/main/svgp/data
https://github.com/gpleiss/ciq_experiments/tree/main/svgp/data

0 2500 5000 7500 10000

Matrix Size (N)

0.5

1.0

1.5

2.0

E
rr

o
r

Empirical Covariance Error (Protein)
Prior Covariance (RBF)

Method
Chol.

CIQ

RFF

0 2500 5000 7500 10000

Matrix Size (N)

0.10

0.15

0.20

E
rr

o
r

Empirical Covariance Error (Kin40K)
Prior Covariance (RBF)

Figure S4: Empirical covariance error (relative norm) for various sampling methods (Cholesky,
msMINRES-CIQ, and 1,000 Random Fourier Features [63]). Empirical covariances are measured
from 1,000 samples. RBF matrices are constructed from data in the Protein and Kin40k datasets [2].

Random Fourier Features method [63] (with 1,000 random features) incurs errors up to 2× as large.
This additional error is due to the randomness in the RFF approximation.

0 5000 10000

M

0.20

0.25

0.30

R
M

S
E

3Droad (Gaussian)
N=326155

SVGP-Chol

SVGP-CIQ

0 5000 10000

M

0.50

0.55

0.60

R
M

S
E

Precip (Student-T)
N=75952

0 5000 10000

M

0.06

0.08

E
rr

o
r

Covtype (Bernoulli)
N=435759

Figure S5: Error comparison of Cholesky-whitened vs CIQ-whitened SVGP models. Left: 3DRoad
dataset RMSE (N = 326155, D = 2, Gaussian likelihood). Middle: Precipitation dataset RMSE
(N = 75952, D = 3, Student-T likelihood). Right: CoverType dataset 0/1 error (N = 435759, D =
54, Bernoulli likelihood). Error improves with more inducing points (M), and Cholesky and CIQ
models have similar performance. However CIQ scales to larger values of M .

In Fig. S5 we plot the predictive error of CIQ-SVGP and Chol-SVGP models as a function of M . For
the two regression datasets (3droad and Precipitation) error is measured by test set root mean squared
error (RMSE). On the Covtype classification dataset error is measured by the test set 0/1 loss. As
with the NLL results in Fig. 3 we find that the CIQ-SVGP and Chol-SVGP perform similarly, despite
the fact that CIQ-SVGP can be up to 5.6× faster. Moreover, we see that error continuously decreases
with more inducing points up to M = 10,000.

In Fig. S6 we plot the learned hyperparameters of the Precipitation SVGP models: 1) o2 (the
kernel outputscale)—which roughly corresponds to variance explained as “signal” in the data;
2) σ2

obs—which roughly corresponds to variance explained away as observational noise; and 3) ν
(degrees of freedom)—which controls the tails of the noise model (lower ν corresponds to heavier
tails). As M increases, we find that the observational noise parameter decreases by a factor of
4—down from 0.19 to 0.05—while the ν parameter also decreases. Models with larger M values can
more closely approximate the true posterior [39]; therefore, we expect that the parameters from the
larger-M likelihoods more closely correspond to the true dataset noise. This confirms findings from
Bauer et al. [7], who argue that variational approximations with small M can tend to overestimate
the amount of noise in datasets.

Fig. S7 is a histogram displaying the msMINRES iterations needed to achieve a relative residual
of 10−3 when training a M = 5,000 SVGP model on the 3droad dataset (subsampled to 30,000
data points). Most msMINRES calls converge in fewer than 100 iterations; almost no calls require
more than 200 iterations. We hypothesize that this fast convergence is due to solving shifted systems

17

0 5000 10000

M

0.15

0.20

0.25

0.30

0.35

V
a
lu

e

o2 (Outputscale)
(Precip, Student-T)

SVGP-Chol

SVGP-CIQ

0 5000 10000

M

0.05

0.10

0.15

σ2
obs (Obs. Noise)

(Precip, Student-T)

0 5000 10000

M

3.0

3.5

4.0

4.5

ν (Deg. Freedom)
(Precip, Student-T)

Figure S6: Hyperparameters versus number of inducing points (M) for Chol-SVGP and CIQ-SVGP
(Precipitation dataset, Student-T likelihood). As M increases, the kernel outputscale (left) also
increases. At the same time, the estimated observational noise (middle) decreases as does the
estimated degrees of freedom (right), reflecting a heavier-tailed noise distribution. This suggests that,
with larger M , SVGP models can find more signal in the data.

60 80 100 120 140 160 180 200

msMINRES Iterations

0.000

0.005

0.010

0.015

0.020

0.025

F
re

q
u

en
cy

Figure S7: Number of msMINRES iterations needed to achieve a relative residual of 10−3. Histogram
captures training a M = 5,000 SVGP model on the 3droad dataset (subsampled to 30,000 data
points).

(K + tqI). The minimum eigenvalues of the shifted matrix are lower-bounded by tq, and therefore
shifted systems have a better condition number than the unshifted matrix K.

B Quadrature for Matrix Square Roots

Here we briefly describe the quadrature formula derived by Hale et al. [35] for use with Cauchy’s
integral formula and refer the reader to the original publication for more details.

Assume that K is a positive definite matrix, and thus has real positive eigenvalues. Our goal is to
approximate Cauchy’s integral formula with a quadrature estimate:

f(K) =
1

2πi

∮
Γ

f(τ) (τI−K)
−1

dτ (S1)

≈ 1

2πi

Q∑
q=1

w̃qf(τq) (τqI−K)
−1
, (S2)

18

where f(·) is analytic on and within Γ, and w̃q and τq are quadrature weights and nodes respectively.
Note that Eq. (S1) holds true for any closed contour Γ in the complex plane that winds once
(counterclockwise) around the spectrum of K.

A naïve approach with uniformly-spaced quadrature. For now, assume that λmin and λmax—the
minimum and maximum eigenvalues of K—are known. (We will later address how they can be
efficiently estimated.) A naïve first approach to Eq. (S2) is to uniformly place the quadrature locations
in a circle that surrounds the eigenvalues and avoids crossing the negative real axis, where we
anticipate f may be singular:

τq =
λmax + λmin

2
+
λmax

2
e2iπ(q/Q), w̃q =

1

Q
, q = 0, 1, . . . , Q− 1.

This corresponds to a standard trapezoid quadrature rule. However, Hale et al. [35] demonstrate that
the convergence of this quadrature rule depends linearly on the condition number κ(K) = λmax/λmin.
In particular, this is because the integrand is only analytic in a narrow region around the chosen
contour. As many kernel matrices tend to be approximately low-rank and therefore ill-conditioned,
this simple quadrature rule requires large Q to achieve the desired numerical accuracy.

Improving convergence with conformal mappings. Rather than uniformly spacing the quadrature
points, it makes more sense to place more quadrature points near λmin and fewer near λmax. This
can be accomplished by using the above trapezoid quadrature rule in a transformed parameter space
that is “stretched” near λmin and contracted near λmax. Mathematically, this is accomplished by
applying a conformal mapping that moves the singularities to the upper and lower boundaries of a
periodic rectangle. We may then apply the trapezoid rule along a contour traversing the middle of the
rectangle—maximizing the region in which the function we are integrating is analytic around the
contour.

B.1 A Specific Quadrature Formula for f(K) = K−1/2

Hale et al. [35] suggest performing a change of variables that projects Eq. (S1) onto an annulus.
Uniformly spaced quadrature points inside the annulus will cluster near λmin when projected back
into the complex plane. This change of variables has a simple analytic formula involving Jacobi
elliptic functions (see [35, Sec. 2] for details.) In the special case of f(K) = K−1/2, we can utilize
an additional change of variables for an even more efficient quadrature formulation [35, Sec. 4].
Setting σ = τ1/2, we have

K−
1
2 =

1

πi

∮
Γs

(
σ2I−K

)−1
dσ.

≈ 1

πi

Q∑
q=1

w̃q
(
σ2
qI−K

)−1
, (S3)

where Γσ is a contour that surrounds the spectrum of K1/2. Since the integrand is symmetric with
respect to the real axis, we only need to consider the imaginary portion of Γσ . Consequently, all the
τq quadrature locations (back in the original space) will be real-valued and negative. Combining
this square-root change-of-variables with the annulus change-of-variables results in the following
quadrature weights/locations:

σ2
q = λmin

(
sn(iuqK′(k) | k)

)2

,

w̃q = −2
√
λmin

πQ
[K′(k) cn (iuqK′(k) | k) dn (iuqK′(k) | k)] ,

(S4)

where we adopt the following notation:

• k =
√
λmin/λmax = 1/

√
κ(K);

• K′(k) is the complete elliptic integral of the first kind with respect to the complimentary
elliptic modulus k′ =

√
1− k2;

• uq = 1
Q (q − 1

2); and

19

• sn(· | k), cn(· | k), and dn(· | k) are the Jacobi elliptic functions with respect to elliptic
modulus k.

The weights w̃q and locations σ2
q from Eq. (S4) happen to be real-valued and negative. Setting

tq = −σ2
q and wq = −w̃q gives us:

K−
1
2 ≈

Q∑
q=1

wq (tqI + K)
−1
, wq = −w̃q > 0, tq = −σ2

q > 0. (S5)

An immediate consequence of this is that the shifted matrices (tqI + K) are all positive definite.

Convergence of the quadrature approximation. Due to the double change-of-variables, the con-
vergence of this quadrature rule in Eq. (S4) is extremely rapid—even for ill-conditioned matrices.
Hale et al. prove the following error bound:
Lemma 1 (Hale et al. [35], Thm. 4.1). Let t1, . . ., tQ > 0 and w1, . . ., wQ > 0 be the locations and
weights of Hale et al.’s quadrature procedure. The error of Eq. (2) is bounded by:∥∥∥∥∥K

Q∑
q=1

wq (tqI + K)
−1 −K

1
2

∥∥∥∥∥
2

≤ O
(

exp

(
− 2Qπ2

log κ(K) + 3

))
,

where κ(K) = λmax/λmin is the condition number of K.

Remarkably, the error of Eq. (2) is logarithmically dependent on the conditioning of K. Consequently,
Q ≈ 8 quadrature points is even sufficient for ill-conditioned matrices (e.g. κ(K) ≈ 104).

B.2 Estimating the Minimum and Maximum Eigenvalues

The equations for the quadrature weights/locations depend on the extreme eigenvalues λmax and
λmin of K. Using the Lanczos algorithm [51]—which is a Krylov subspace method—we can obtain
accurate estimates of these extreme eigenvalues using relatively few matrix-vector multiplies with K.

The Lanczos algorithm is a method for computing an orthonormal basis for Krylov subspaces of a
symmetric matrix K and, simultaneously, projections of A onto that subspace. Given an initial vector
b, the algorithm iteratively factorizes K as:

KQJ = QJTJ + rJe>J

where eJ is a unit vector, and

• QJ ∈ RN×J is an orthonormal basis of the J th Krylov subspace K(K,b),
• TJ ∈ RJ×J is a symmetric tridiagonal matrix, and
• rJ ∈ RJ is a residual term.

At a high level, the Lanczos iterations form the Krylov subspaces while simultaneously performing a
process akin to modified Gram Schmidt orthogonalization:

span{q(1), . . . , q(J)} = K(K,b) = span{b, Kb, K2b, . . . , KJ−1b}.
The orthogonal basis vectors are collected into Q and the orthogonalization coefficients are collected
into T. Due to the symmetry of K a three term recurrence exists for this process and each vector q(j)

only has to be orthogonalized against the two previous basis vectors q(j−1), q(j−2)—resulting in a
tridiagonal T.

Estimating Extreme Eigenvalues from Lanczos. To estimate λmin and λmax from Lanczos, we
perform an eigendecomposition of TJ . If J is small (i.e. J ≈ 10) then this eigendecomposition
requires minimal computational resources. In fact, as TJ is tridiagonal invoking standard routines
allows computation of all the eigenvalues in O(J2) time. A well-known convergence result of the
Lanczos algorithm is that the extreme eigenvalues of TJ tend to converge rapidly to λmin and λmax
[e.g. 31, 65]. Since the Lanczos algorithm always produces underestimates of the largest eigenavlue
and overestimates of the smallest it is reasonable to use slightly larger and smaller values in the
construction of the quadrature scheme—as we see in Lemma 1, the necessary number of quadrature
nodes is insensitive to small overestimates of the condition number.

20

Algorithm 2: Computing wq and tq for Contour Integral Quadrature
Input :mvm_K(·) – function for matrix-vector multiplication (MVM) with matrix K

Q – number of quad. points
Output :w1, . . . , wQ, t1, . . . , tQ
// Estimate extreme eigenvalues with Lanczos.
_,T← lanczos(mvm_K(·)) // Lanczos w/ rand. init. vector
λmin, · · · , λmax ← symeig(T)

// Compute elliptic integral of the first kind.

// We use the relation K′(k) = K(k′), where k′ =
√
1− k2 is the

complementary elliptic modulus.

k2← λmin/λmax // The squared elliptic modulus.

k′2←
√

1− k2 // The squared complementary elliptic modulus.

K′ ← ellipke(k′2) // K′ = K′(k)

// Compute each quadrature weight/location.
for q← 1 to Q do

uq ← (q − 1/2)/Q
// Compute Jacobi elliptic fn’s via Jacobi’s imaginary transform.
// First we compute snq = sn(uqK′(k)|k′), cnq = cn(uqK′(k)|k′),

dnq = dn(uqK′(k)|k′).
snq , cnq , dnq ← ellipj(uqK′, k′2)
// Use identities to convert snq, cnq, dnq values into
// snq = sn(iuqK′(k)|k), cnq = cn(iuqK′(k)|k), dnq = dn(iuqK′(k)|k).
snq ← i [snq/cnq]
dnq ←

[
dnq/cnq

]
cnq ← [1/cnq]

// Quadrature weight wq and location tq

wq ← (−2λ
1/2
min)/(πQ) K′ cnq dnq

tq ← λmin (snq)
2

end
return w1, . . . , wQ, t1, . . . , tQ

B.3 The Complete Quadrature Algorithm

Alg. 2 obtains the quadrature weights wq and locations tq corresponding to Eqs. (S4) and (S5).
Computing these weights requires ≈ 10 matrix-vector multiplies with K—corresponding to the
Lanczos iterations—for a total time complexity ofO(N). All computations involving elliptic integrals
can be readily computed using routines available in e.g. the SciPy library.

C The msMINRES Algorithm

Before introducing the msMINRES algorithm, we will first introduce MINRES as proposed by Paige
and Saunders [59]; MINRES can be derived from the Lanczos algorithm [51] and, therefore, is able
to take advantage of the same three term vector recurrence when building the necessary Krylov
subspaces. We will then describe how msMINRES can be derived as a straightforward extension.
Notably, we present this section assuming our best initial guess for the linear system we seek to
solve is zero. If this is not the case a single step of iterative refinement can be used and the resulting
residual system is solved with zero as the initial guess.

C.1 Standard MINRES

The method of minimum residuals (MINRES) [59] is an alternative to linear conjugate gradients,
with the advantage that it can be applied to indefinite and singular symmetric matrices K. Paige and
Saunders [59] formulate MINRES to solve the least-squares problem arg minc ‖Kc − b‖2. Each

21

iteration J produces a solution cJ which is optimal within the J th Krylov subspace:

c
(MINRES)
J = arg min

c∈KJ (K,b)

‖Kc− b‖2. (S6)

Using the Lanczos matrices and some mathematical manipulation, Eq. (S6) can be re-formulated as
an unconstrained optimization problem:

c
(MINRES)
J = ‖b‖2QJzJ

zJ = arg min
y∈RJ

∥∥∥(T̃J

)
y − e1

∥∥∥
2
, T̃J =

[
TJ

‖rJ‖2e>J

]
, (S7)

where e1, eJ are unit vectors, and QJ , TJ , and rJ are the outputs from the Lanczos algorithm. Since
Eq. (S7) is a least-squares problem (guaranteed to be full column-rank unless b lives in the J th Krylov
subspace—at which point we would exactly solve the problem), we can write the analytic solution to
it using the reduced QR factorization of T̃J =QQQJRJ [e.g. 31]:

c
(MINRES)
J = ‖b‖2 QJ

(
R−1QQQ>J

)
e1. (S8)

One way to perform MINRES is first running J iterations of the Lanczos algorithm, computing
T̃J = QQQJRJ , and then plugging the resulting QJ , QQQJ , and RJ into Eq. (S8). However, this is
unsatisfactory as, naïvely it requires storing the N × J matrix QJ [e.g. 31] so that cJ can be formed.
Paige and Saunders instead introduce a vector recurrence to iteratively compute c(MINRES)

J . This is
possible because the QR factorizations of of successive T̃J may be related, allowing for the derivation
of a simple update cJ−1 → cJ . This recurrence relation, which is given by Alg. 3 and broadly
described below is exactly equivalent to Eq. (S8); however it uses careful bookkeeping to avoid
storing any N × J terms.

First we note that the T̃J matrices are formed recursively, and thus their QR factorizations are also
recursive:

QQQ>T̃J =

[
QQQ>J−1 QQQ>(J,1:J−1)

QQQ>(1:J−1,J+1) Q(J,J+1)

] [
T̃J−1 t(J)

0> ‖rJ‖

]
=

[
RJ−1 r(J,1:J−1)

0 R(J,J)

]
= RJ

where t(J) and [r(J,1:J−1);R(J,J)] are the last columns of TJ and RJ respectively. Moreover, if we
recursively form R−1

J as

R−1
J =

[
RJ−1 r(J,1:J−1)

0 R(J,J)

]−1

=

[
R−1
J−1

(
R−1
J−1r

(J,1:J−1)
)
/R(J,J)

0 1/R(J,J)

]
,

then Eq. (S8) can be re-written in a decent-style update:

c
(MINRES)
J = ‖b‖2

[
QJ−1q

(J)
] [R−1

J−1

R−1
J−1r

(J,1:J−1)

R(J,J)

0 1/R(J,J)

] [
QQQ>J−1 QQQ>(J,1:J−1)

QQQ>(1:J−1,J+1) Q(J,J+1)

]
e1

= ‖b‖2

[
QJ−1R

−1
J−1

QJ−1R
−1
J−1r

(J,1:J−1)

R(J,J)

0 1/R(J,J)qJ−1

] [
QQQ>J−1e1

Q>(1,J+1)

]
=
(
‖b‖2QJ−1R

−1
J−1QQQJ−1e1

)
c
(MINRES)
J−1

+
‖b‖2Q>(1,J+1)

R(J,J)

ϕJ

[
QJ−1R

−1
J−1r

(J,1:J−1)

qJ−1

]
dJ

. (S9)

Thus c
(MINRES)
J = c

(MINRES)
J−1 +ϕJdJ . The only seemingly expensive part of this update is computing

dJ , as we need to compute QJ−1R
−1
J−1r

(J,1:J−1). r(J,1:J−1), which is the next entry in the QR
factorization of T̃J , can be cheaply computed using Givens rotations (see [e.g. 31, Ch. 11.4.1]).
Moreover, only the last two entries of r(J,1:J−1) will be non-zero (due to the tridiagonal structure of
T̃J). Consequently, we only need to store the last two vectors of QJ−1R

−1
J−1, which again can be

computed recursively.

In total, the whole procedure only requires the storage of ≈ 6 vectors. Each iteration requires a single
MVM with K (to form the next Lanczos vector qJ); and all subsequent operations are O(N). The
entire procedure is given by Alg. 3. For simplicity, we have presented the algorithm as if run for a
fixed number of steps J. In practice, the MINRES procedure admits inexpensive computation of the
residual at each iteration [59] allowing for robust stopping criteria to be used.

22

Algorithm 3: Method of Minimum Residuals (MINRES).
Input :mvm_K(·) – function for MVM with matrix K

b – vector to solve against
Output :c = K−1b.

c1← 0 // Current solution.
d1,d0← 0 // Current & prev. “search” direction.
ϕ2← ‖b‖2 // Current “step” size.

q1← b/‖b‖2 // Current Lanczos vector.
v1← mvm_K(q0) // Buffer for MVM output.
δ1← ‖b‖2 // Current Lanczos residual/sub-diagonal.
δ0← 1 // Prev. Lanczos residual/sub-diagonal.
η1← 1 // Current scaling term.
η0← 0 // Prev. scaling term.

for j ← 2 to J do
// Run one iter of Lanczos. Gets next vector of Q matrix, and next

diag/sub-diag (γ, δ) entries of T matrix.
qj ← vj/δj
vj ← mvm_K(qj) −δjqj−1

γj ← qjvj
vj ← vj − γjqj
δj ← ‖vj‖
// Compute the next r(J) (part of QR) via Givens rotations. There

are three non-0 entries: R(J,J−2:J) = [εJ , ζJ , ηJ].

εj ← δj−1

(
δj−2/

√
δ2
j−2 + η2

j−2

)
ζj ← δj−1

(
ηj−2/

√
δ2
j−2 + η2

j−2

)
ηj ← γj

(
ηj−1/

√
δ2
j−1 + η2

j−1

)
+ ζj

(
δj−1/

√
δ2
j−1 + η2

j−1

)
ζj ← ζj

(
ηj−1/

√
δ2
j−1 + η2

j−1

)
+ γj

(
δj−1/

√
δ2
j−1 + η2

j−1

)
ηj ← ηj

(
ηj/
√
δ2
j + η2

j

)
// Compute “step” size ϕJ =QQQ(1,J+1)/R(J,J).

ϕj ← ϕj−1

(
δj−1/

√
δ2
j−1 + η2

j−1

)(
ηj/
√
δ2
j + η2

j

)
// Update the current solution based on the r(J) entries (εJ , ζJ , ηJ)

and previous search vectors dj−1, dj−2.
dj ← (q− ζjdj−1 − εjdj−2) /ηj
cj ← cj−1 + ϕjdj

end
return ‖b‖2 cj

C.2 Multi-Shift MINRES (msMINRES)

To adapt MINRES to multiple shifts (i.e. msMINRES), we exploit a well-established fact about the
shift invariance of Krylov subspaces (see [e.g. 17, 24, 46, 65]).

Observation 1. Let KQJ = QJTJ + rJe>J be the Lanczos factorization for K given the initial
vector b. Then

(K + tI)QJ = QJ(TJ + tI) + rJe>J

is the Lanczos factorization for matrix (K + tI) with initial vector b.

In other words, if we run Lanczos on K and b, then we get the Lanczos factorization of (K + tI) for
free, without any additional MVMs! Consequently, we can re-use the QJ and TJ Lanczos matrices

23

Algorithm 4: Multi-shift MINRES (msMINRES). Differences from MINRES (Alg. 3) are in
blue. Blue for loops are parallelizable.
Input :mvm_K(·) – function for MVM with matrix K

b – vector to solve against
t1, . . . , tQ – shifts

Output :c1 = (K + t1)−1b, . . . , cQ = (K + tQ)−1b.

q1← b/‖b‖2 // Current Lanczos vector.
v1← mvm_K(q0) // Buffer for MVM output.
δ1← ‖b‖2, δ0← 1 // Current/prev. Lanczos residual/sub-diagonal.
for q ← 1 to Q do

c
(q)
1 ← 0 // Current solution.

d
(q)
1 ,d

(q)
0 ← 0 // Current & prev. “search” direction.

ϕ
(q)
2 ← ‖b‖2 // Current “step” size.

η
(q)
1 ← 1, η(q)

0 ← 0 // Current/prev. scaling term.
end
for j ← 2 to J do

qj ← vj/δj
vj ← mvm_K(qj) −δjqj−1

γj ← qjvj
vj ← vj − γjqj
δj ← ‖vj‖
for q ← 1 to Q do

ε
(q)
j ← δj−1

(
δj−2/

√
δ2
j−2 + η

(q)2
j−2

)
ζ

(q)
j ← δj−1

(
η

(q)
j−2/

√
δ2
j−2 + η

(q)2
j−2

)
η

(q)
j ← (γj + tq)

(
η

(q)
j−1/

√
δ2
j−1 + η

(q)2
j−1

)
+ζ

(q)
j

(
δj−1/

√
δ2
j−1 + η

(q)2
j−1

)
ζ

(q)
j ← ζ

(q)
j

(
η

(q)
j−1/

√
δ2
j−1 + η

(q)2
j−1

)
+ (γj + tq)

(
δj−1/

√
δ2
j−1 + η

(q)2
j−1

)
η

(q)
j ← η

(q)
j

(
η

(q)
j /

√
δ2
j + η

(q)2
j

)
ϕ

(q)
j ← ϕ

(q)
j−1

(
δj−1/

√
δ2
j−1 + η

(q)2
j−1

)(
η

(q)
j /

√
δ2
j + η

(q)2
j

)
d

(q)
j ←

(
q− ζ(q)

j d
(q)
j−1 − ε

(q)
j d

(q)
j−2

)
/η

(q)
j

c
(q)
j ← c

(q)
j−1 + ϕ

(q)
j d

(q)
j

end
end
return ‖b‖2 cj

to compute multiple shifted solves.

(K + tI)−1b ≈ ‖b‖2 QJ

(
R

(t)−1
J QQQ(t)>

J

)
e1, QQQ(t)

J R
(t)
J =

[
TJ + tI
‖rJ‖2e>J

]
, (S10)

Assuming Q and T have been previously computed, Eq. (S10) requires no additional MVMs with K.
We refer to this multi-shift formulation as Multi-Shift MINRES, or msMINRES.

A simple vector recurrence for msMINRES. Just as with standard MINRES, Eq. (S10) can also
be computed via a vector recurrence. We can derive a msMINRES algorithm simply by modifying
the existing MINRES recurrence. Before the QR step in Alg. 3, we add t to the Lanczos diagonal
terms (γj + t, where γj = T (j,j)). This can be extended to simultaneously handle multiple shifts
t1, . . . , tQ. Each shift would compute its own QR factorization, its own step size ϕ(tq)

j , and its own

24

search vector d
(tq)
j . However, all shifts share the same Lanczos vectors qj and therefore share the

same MVMs. The operations for each shift can be vectorized for efficient parallelization.

To summarize: the resulting algorithm—msMINRES—gives us approximations to (t1I + K)−1b,
. . ., (tQI + K)−1 essentially for free by leveraging the information we needed anyway to compute
K−1b. Alg. 4 outlines the procedure; below we re-highlight its computational properties:
Property 1 (Restated) (Computation/Memory of msMINRES-CIQ). J iterations of msMINRES
requires exactly J matrix-vector multiplications (MVMs) with the input matrix K, regardless of the
number of quadrature points Q. The resulting runtime of msMINRES-CIQ isO(Jξ(K)), where ξ(K)
is the time to perform an MVM with K. The memory requirement is O(QN) in addition to what’s
required to store K.

D Preconditioning msMINRES-CIQ

To improve the convergence of Thm. 1, we can introduce a preconditioner P where P−1K ≈ I. For
standard MINRES, applying a preconditioner is straightforward. We simply use MINRES to solve
the system (

P−1/2KP−1/2
)

P1/2c = P−1/2b,

which has the same solution c as the original system. In practice the preconditioned MINRES vector
recurrence does not need access to P−1/2—it only needs access to P−1 (see [12, Ch. 3.4] for details).

However, it is not immediately straightforward to apply preconditioning to msMINRES, as precondi-
tioners break the shift-invariance property that is necessary for the O(JN2) shifted solves [3, 46].
More specifically, if we apply P to msMINRES, then we obtain the solves

P−1/2(P−1/2KP−1/2 + tqI)−1(P−1/2b).

Plugging these shifted solves into the quadrature equation Eq. (2) therefore gives us

ãJ ≈ P−
1
2 (P−

1
2 KP−

1
2)−

1
2 (P−

1
2 b). (S11)

In general, we cannot recover K−1/2 from Eq. (S11). Nevertheless, we can still obtain precon-
ditioned solutions that are equivalent to K−1/2b and K1/2b up to an orthogonal rotation. Let
R = KP−1/2(P−1/2KP−1/2)−1/2. We have that

RR> = K
(
P−

1
2 (P−

1
2 KP−

1
2)−

1
2

)(
(P−

1
2 KP−

1
2)−

1
2 P−

1
2

)
K = K.

Thus R is equivalent to K1/2 up to orthogonal rotation. We can compute Rb (e.g. for sampling) by
applying Eq. (S11) to the initial vector P1/2b:

Rb = K
[
P−

1
2 (P−

1
2 KP−

1
2)−

1
2 P−

1
2

] (
P

1
2 b
)

Applying preconditioned msMINRES to P1/2b

. (S12)

Similarly, R′ = P−1/2
(
P−1/2KP−1/2

)−1/2
is equivalent to K−1/2 up to orthogonal rotation:

R′R′> =
(
P−

1
2 (P−

1
2 KP−

1
2)−

1
2

)(
(P−

1
2 KP−

1
2)−

1
2 P−

1
2

)
= K−1.

We can compute R′b (e.g. for whitening) via:

R′b =
[
P−

1
2 (P−

1
2 KP−

1
2)−

1
2 P−

1
2

] (
P

1
2 b
)

Applying preconditioned msMINRES to P1/2b

. (S13)

Crucially, the convergence of Eqs. (S12) and (S13) depends on the conditioning κ(P−1K)� κ(K).

As with standard MINRES, msMINRES only requires access to P−1, not P−1/2. Note however
that Eqs. (S12) and (S13) both require multiplies with P1/2. If a preconditioner P does not readily
decompose into P1/2P1/2, we can simply run the CIQ algorithm on P to compute P1/2b. Thus our
requirements for a preconditioner are:

25

1) it affords efficient solves (ideally o(N2)), and

2) it affords efficient MVMs (also ideally o(N2)) for computing P1/2b via CIQ.

In our experiments we use the partial pivoted Cholesky preconditioner proposed by Gardner et al.
[29], which satisfies the above requirements. The form of P is L̄L̄> + σ2I, where L̄ is a low-rank
factor (produced by the partial pivoted Cholesky factorization [37]) and σ2I is a small diagonal
component. This preconditioner affords ≈ O(N) MVMs by exploiting its low rank structure and
≈ O(N) solves using the matrix inversion lemma. Moreover, this preconditioner is highly effective
on many Gaussian covariance matrices [29, 79].

E O(M2) Natural Gradient Updates

When performing variational inference, we must optimize the m′ and S′ parameters of the whitened
variational distribution q(u′) = N (m′,S′). Rather than using standard gradient descent methods
on these parameters, many have suggested that natural gradient descent (NGD) is better suited for
variational inference [38, 45, 66]. NGD performs the following update:

[m′ S′]← [m′ S′]− ϕFFF−1
[
∂ELBO
∂m′

∂ELBO
∂S′

]
(S14)

where ϕ is a step size,
[
∂ELBO
∂m′

∂ELBO
∂S′

]
is the ELBO gradient, andFFF is the Fisher information matrix

of the variational parameters. Conditioning the gradient withFFF−1 results in descent directions that
are better suited towards distributional parameters [45].

For Gaussian distributions (and other exponential family distributions) the Fisher information matrix
does not need to be explicitly computed. Instead, there is a simple closed-form update that relies on
different parameterizations of the Gaussian N (m′,S′):

[θ Θ]← [θ Θ]− ϕ
[
∂ELBO
∂η

∂ELBO
∂H

]
. (S15)

[θ, Θ] are the Gaussian’s natural parameters and [η, H] are the Gaussian’s expectation parameters:

θ = S′−1m′, Θ = −1

2
S′−1,

η = m′, H = m′m′> + S′

In many NGD implementations, it is common to store the variational parameters via their natural
representation (θ, Θ), compute the ELBO via the standard parameters (m′, S′), and then compute
the derivative via the expectation parameters (η, H). Unfortunately, converting between these three
parameterizations requires O(M3) computation. (To see why this is the case, note that computing S′

essentially requires inverting the Θ matrix.)

A O(M2) NGD update. In what follows, we will demonstrate that the ELBO and its derivative can
be computed from θ and Θ in O(M2) time via careful bookkeeping. Consequently, NGD updates
have the same asymptotic complexity as the other computations required for SVGP. Recall that the
ELBO is given by

ELBO =

expected log likelihood

N∑
i=1

E
q(f(x(i)))

[
log p(y(i) | f(x(i)))

]
−KL [q(u)‖p(u)]

We will separately analyze the expected log likelihood and KL divergence computations.

E.1 The Expected Log Likelihood and its Gradient

Assume we are estimating the ELBO from a single data point x, y. The expected log likelihood term
of the ELBO is typically computed via Gauss-Hermite quadrature or Monte Carlo integration [40]:10

E
q(f(x)

[log p(y | f(x))] =

S∑
s=1

wsp(y | fs), fs = µ∗aprx (x) + Var∗aprx (x)
1/2

εs

10It can also be computed analytically for Gaussian distributions [39]. The analytic form achieves the same
derivative decomposition as in Eq. (S16) and so the following analysis will still apply.

26

where ws are the quadrature weights (or 1/S for MC integration) and εs are the quadrature locations
(or samples from N (0, 1) for MC integration). Therefore, the variational parameters only interact
with the expected log likelihood term via µ∗aprx (x) and Var∗aprx (x). We can write its gradients via
chain rule as:

∂ Eq(f(x) [log p(y|f(x))]

∂η
= c1

∂µ∗aprx (x)

∂η
+ c2

∂Var∗aprx (x)

∂η

∂ Eq(f(x) [log p(y|f(x))]

∂H
= c3

∂µ∗aprx (x)

∂H
+ c4

∂Var∗aprx (x)

∂H
(S16)

for some constants c1, c2, c3, and c4 that do not depend on the variational parameters. It thus suffices
to show that the posterior mean/variance and their gradients can be computed from θ and Θ in
O(M2) time.

The predictive distribution and its gradient. All expensive computations involving θ and Θ are
written in blue.

µ∗aprx (x) and its derivative can be written as:

µ∗aprx (x) = k>ZxK
−1/2
ZZ m′ (standard parameters)

= k>ZxK
−1/2
ZZ η (expectation parameters)

= k>ZxK
−1/2
ZZ (−2Θ)−1θ, (S17)

∂µ∗aprx (x)

∂η
= K

−1/2
ZZ kZx, (S18)

∂µ∗aprx (x)

∂H
= 0.

Var∗aprx (x) and its derivative can be written as:

Var∗aprx (x) = k>ZxK
−1/2
ZZ (S′ − I) K

−1/2
ZZ kZx (standard parameters)

= k>ZxK
−1/2
ZZ

(
H− ηη> − I

)
K
−1/2
ZZ kZx (expectation parameters)

= k>ZxK
−1/2
ZZ

(
(−2Θ)−1 −I) K

−1/2
ZZ kZx, (S19)

∂Var∗aprx (x)

∂η
= −2

(
k>ZxK

−1/2
ZZ (−2Θ)−1θ

)
K
−1/2
ZZ kZx, (S20)

∂Var∗aprx (x)

∂H
=
(
K
−1/2
ZZ k>Zx

)(
k>ZxK

−1/2
ZZ

)
. (S21)

In Eqs. (S17) to (S21), the only expensive operation involving KZZ is K
−1/2
ZZ kZx, which can

be computed with CIQ. The only expensive operation involving the variational parameters is
(−2Θ)−1K

−1/2
ZZ kZx, which can be computed with preconditioned conjugate gradients after com-

puting K
−1/2
ZZ kZx.11 Those operations only need to be computed once, and then they can be reused

across Eqs. (S17) to (S21). In total, the entire computation for the expected log likelihood and its
derivative is O(M2).

E.2 The KL Divergence and its Gradient

We will demonstrate that the KL divergence and its gradient can be computed from θ and Θ in
O(M2) time. All expensive computations involving θ and Θ are written in blue.

The whitened KL divergence from Sec. 5.1 is given by:

KL [q(u′)‖p(u′)] =
1

2

[
m′>m′ + Tr (S′)− log |S′| −M

]
(standard parameters)

=
1

2

[
Tr (H)− log |H− ηη>| −M

]
(expectation parameters)

=
1

2

[
θ>(−2Θ)−2θ + Tr

(
(−2Θ)−1

)
+ log | − 2Θ| −M

]
. (S22)

11We typically apply a Jacobi preconditioner to these solves.

27

The KL derivative with respect to η and H is surprisingly simple when re-written in terms of the
natural parameters

∂KL [q(u′)‖p(u′)]

∂η
=
(
H− ηη>

)−1
η = (S′)−1η

= θ (S23)
∂KL [q(u′)‖p(u′)]

∂H
=

1

2
I− 1

2

(
H− ηη>

)−1
=

1

2
I− 1

2
(S′)−1

=
1

2
I + Θ. (S24)

Thus the derivative of the KL divergence only takes O(M2) time to compute. The forward pass
can also be computed in O(M2) time—using stochastic trace estimation for the trace term [16, 29],
stochastic Lanczos quadrature for the log determinant [20, 76], and CG for the solves. However,
during training the forward pass can be omitted as only the gradient is needed for NGD steps.

F Experimental Details

SVGP experiments. Each dataset is randomly split into 75% training, 10% validation, and 15%
testing sets; x and y values are scaled to be zero mean and unit variance. All models use a constant
mean and a Matérn 5/2 kernel, with lengthscales initialized to 0.01 and inducing points initialized
by K-means clustering. Each model is trained for 20 epochs with a minibatch size of 256.12 We
alternate between optimizing m′/S′ and the other parameters, using NGD for the former and Adam
[48] for the latter. Each optimizer uses an initial learning rate of 0.0113, decayed by 10× at epochs
1, 5, 10, and 15. For CIQ we use Q = 15 quadrature points. msMINRES terminates when the cj
vectors achieve a relative norm of 0.001 or after J = 200 iterations. We experimented with tighter
tolerances and found no difference in the models’ final accuracy. (Note that J = 200 is almost
always enough to achieve the desired 0.001 tolerance; see Fig. S7.) Results are averaged over three
trials.

The 3DRoad [34] and CovType [9] datasets are available from the UCI repository [2]. For 3Droad,
we only use the first two features—corresponding to latitude and longitude. For CovType, we reduce
the 7-way classification problem to a binary problem (Cover_Type ∈ {2, 3} versus Cover_Type ∈
{0, 1, 4, 5, 6}). The Precipitation dataset [52, 53] is available from the IRI/LDEO Climate Data
Library.14 This spatio-temporal dataset aims to predict the “WASP” index (Weighted Anomaly
Standardized Precipitation) at various latitudes/longitudes. Each data point corresponds to the WASP
index for a given year (between 2010 and 2019)—which is the average of monthly WASP indices. In
total, there are 10 years and 10,127 latitude/longitude coordinates, for a total dataset size of 101,270.

Bayesian optimization experiments. The 6-dimensional Hartmann function is a classical test
problem in global optimization15. There are 6 local minima and a global optimal value is −3.32237.
We use a total of 100 evaluations with 10 initial points. The 10 initial points are generated using a
Latin hypercube design and we use a batch size of 5. In each iteration, we draw 5 samples and select
5 new trials to evaluate in parallel.

We consider the same setup and controller as in [21] for the 12-dimensional Lunar Lander problem.
The goal is to learn a controller that minimizes fuel consumption and distance to a given landing
target while also preventing crashes. The state of the lunar lander is given by its angle and position,
and their time derivatives. Given this state vector, the controller chooses one of the following four
actions: a ∈ {do nothing, booster left, booster right, booster down}. The objective is the average
final reward over a fixed constant set of 50 randomly generated terrains, initial positions, and initial
velocities. The optimal controller achieves an average reward of ≈ 309 over the 50 environments.

12The batch size is 512 on the Covtype dataset due to its larger size.
13On the Precipitation dataset, the initial learning rate is 0.005 for NGD stability with the Student-T likelihood.
14A processed version of the dataset is available at https://github.com/gpleiss/ciq_

experiments/tree/main/svgp/data. Original source of data: http://iridl.ldeo.
columbia.edu/maproom/Global/Precipitation/WASP_Indices.html.

15https://www.sfu.ca/~ssurjano/hart6.html

28

https://github.com/gpleiss/ciq_experiments/tree/main/svgp/data
https://github.com/gpleiss/ciq_experiments/tree/main/svgp/data
http://iridl.ldeo.columbia.edu/maproom/Global/Precipitation/WASP_Indices.html
http://iridl.ldeo.columbia.edu/maproom/Global/Precipitation/WASP_Indices.html
https://www.sfu.ca/~ssurjano/hart6.html

For both problems, we use a Matérn-5/2 kernel with ARD and a constant mean function. The
domain is scaled to [0, 1]d and we standardize the function values before fitting the Gaussian process.
The kernel hyperparameters are optimized using L-BFGS-B and we use the following bounds:
(lengthscale) ` ∈ [0.01, 2.0], (signal variance) s2 ∈ [0.05, 50.0], (noise variance) σ2 ∈ [1e−6, 1e−2].
Additionally, we place a horseshoe prior on the noise variance as recommended in [72]. We add
1e−4 to the diagonal of the kernel matrix to improve the conditioning and use a preconditioner of
rank 200 for CIQ.

Image reconstruction experiments. The matrix A = DB is given as the product of two matrices
D andB. HereB is a N2 ×N2 Gaussian blur matrix with a blur radius of 2.5 pixels and filter size
of 5 pixels. The binary matrixD is a KM2 ×N2 downsampling or decimation matrix that connects
the N ×N high-resolution image to the M ×M low-resolution images. For the hyperparameters
γobs and γprior we choose Jeffrey’s hyperpriors, i.e.

p(γobs) ∝ γ−1
obs and p(γprior) ∝ γ−1

prior (S25)

In order to conduct the experiment we use the observation likelihood with γobs = 1 to sample K = 4
low-resolution images y1:K from the high-resolution image. The discrete Laplacian matrix L is
defined by the following isotropic filter:

Lfilter =
1

12

[
1 2 1
2 −12 2
1 2 1

]
(S26)

For both L andB we implicitly use reflected (i.e. non-periodic) boundary conditions. We use a CG
tolerance of 0.001 and a maximum of J = 400 msMINRES iterations. We use a Jacobi preconditioner
for CG. We draw 1000 samples from the Gibbs sampler and treat the first 200 samples as burn-in.
The reconstructed image depicted in the main text is the (approximate) posterior mean. In the main
text we provided the conditional posterior for the latent image x. To complete the specification of the
Gibbs sampler we also need the posterior conditionals for γobs and γprior, both of which are given by
gamma distributions:

p(γobs|x,y1:K) = Ga(γobs|α = 1 + KM2

2 , β = 2/||y1:K −Ax||2)

p(γprior|x) = Ga(γprior|α = 1 + N2−1
2 , β = 2/||Lx||2)

(S27)

G Proof of Theorem 1

To prove the convergence result in Thm. 1, we first prove the following lemmas.
Lemma 2. Let K � 0 be symmetric positive definite and let shifts t1, . . ., tQ > 0 be real-valued and
positive. After J iterations of msMINRES, all shifted solve residuals are bounded by:

∥∥(K + tqI)c
(q)
J − b

∥∥
2
≤

(√
κ(K + tqI)− 1√
κ(K + tqI) + 1

)J
‖b‖2 ≤

(√
κ(K)− 1√
κ(K) + 1

)J
‖b‖2,

where b is the vector to solve against, c
(1)
J , . . ., c(Q) are the msMINRES outputs, and κ(K) is the

condition number of K.

Proof. The convergence proof uses a polynomial bound, which is the standard approach for Krylov
algorithms. See [e.g. 65, 69, 75] for an analogous proof for the conjugate gradients method and [e.g.
32] for a treatment of MINRES applied to both positive definite and indefinite systems.

At iteration J , the msMINRES algorithm produces:

c
(q)
J = arg min

c(q)∈KJ (K,b)

[∥∥(K + tqI)c(q) − b
∥∥

2

]
, q = 1, . . . Q, (S28)

where without loss of generality we assume c
(q)
0 = 0 for simplicity. Using the fact that Krylov

subspaces are shift invariant, we immediately have that

c
(q)
J = arg min

c(q)∈KJ (K+tqI,b)

[∥∥(K + tqI)c(q) − b
∥∥

2

]
, q = 1, . . . Q. (S29)

29

Since (K+ tqI) � 0 we may invoke a result on MINRES error bounds for symmetric positive definite
matrices [32, Chapter 3] to conclude that

∥∥(K + tqI)c
(q)
J − b

∥∥
2
≤

(√
κ(K + tqI)− 1√
κ(K + tqI) + 1

)J
‖b‖2.

Observing that κ(K + tqI) ≥ κ(K) for all q since tq > 0 concludes the proof.

Lemma 2 is a very loose bound, as it doesn’t assume anything about the spectrum of K (which is
standard for generic Krylov method error bounds) and upper bounds the residual error for every shift
using the most ill-conditioned system. In practice, we find that smMINRES converges for many
covariance matrices with J ≈ 100, even when the conditioning is on the order of κ(K) ≈ 104 and
this convergence can be further improved with preconditioning.
Lemma 3. For any positive definite K and positive t, we have√

κ(K + tI)− 1√
κ(K + tI) + 1

=

√
λmax + t−

√
λmin + t√

λmax + t+
√
λmin + t

<
λmax

4t
(S30)

Proof. We can upper bound the numerator√
λmax + t−

√
λmin + t ≤

√
λmax + t−

√
t

=
√
λmax

(√
1 + t/λmax −

√
t/λmax

)
≤
√
λmax

1

2
√
t/λmax

=
λmax

2
√
t
.

where we have applied the standard inequality
√

(·) + 1−
√

(·) < 1

2
√

(·)
. The denominator can be

(loosely) lower-bounded as 2
√
t. Combining these two bounds completes the proof.

Lemma 4. Let σ2
q and w̃q be defined as in Eq. (S4). Then

Q∑
q=1

|wq|
|tq|

=

Q∑
q=1

|w̃q|
|σ2
q |
<

4Q log
(

5
√
κ(K)

)
π
√
λmin

where wq = −w̃q and tq = −σ2
q as used in Eq. (S5).

Proof. Using facts about elliptical integrals we have

K′(k) < log(1 + 4/k) ≤ log(5/k) k ∈ (0, 1) ([62, Thm. 1.7] and [84, Thm. 2])
π

2
≤ K(k) k ∈ [0, 1] ([e.g. 62])

where in the first statement we have used that K′(k) = K(k′). For Jacobi elliptic functions we have
that

0 < dn(uK(k)|k) < 1 u ∈ (0, 1), k ∈ (0, 1) ([e.g. 56])
0 < sn(uK(k)|k) < 1 u ∈ (0, 1), k ∈ (0, 1) ([e.g. 56])

sn(πu/2|0) < sn(uK(k)|k) < 1 u ∈ (0, 1), k ∈ (0, 1) ([10, Thm. 1])

where in the last inequality we have used that K(0) = π/2 [e.g. 1]. Coupling the final inequality
above with sn(πu/2|0) = sin(πu/2) for u ∈ (0, 1) we have that

sin(πu/2) < sn(uK(k)|k) < 1 u ∈ (0, 1), k ∈ (0, 1).

Now, for each q we have that

wq
tq

=
w̃q
σ2
q

=

(
−2
√
λmin

πQλmin

)
K′(k)cn (iuqK′(k) | k) dn (iuqK′(k) | k)

sn(iuqK′(k) | k)2

=

(
2K′(k)

πQλmin

)
dn (uqK(k′) | k′)
sn(uqK(k′) | k′)2

(via Jacobi imaginary transforms [e.g. 1])

30

Consequently, we may conclude that

|wq|
|tq|

=

(
2K′(k)

πQλmin

)
dn (uqK(k′) | k′)
sn(uqK(k′) | k′)2

≤ 2 log(5/k)

πQλmin

(
1

sin2(πuq/2)

)
where we note that all quantities on the right hand side are positive. Plugging in the values of
k = 1/

√
κ(K), uq = (q − 1/2)/Q and summing over uq we see that

Q∑
q=1

|wq|
|tq|

<

Q∑
q=1

2 log
(

5
√
κ(K)

)
πQ
√
λmin sin2(π(q−1/2)

2Q)
. (S31)

Through trigonometric identities
∑Q
q=1 1/(Q sin2 π(q−1/2)

2Q) = 2Q and, therefore,

Q∑
q=1

|wq|
|tq|

<
4Q log

(
5
√
κ(K)

)
π
√
λmin

.

With these lemmas we are now able to prove Theorem 1:

Theorem 1 (Restated). Let K � 0 and b be inputs to msMINRES-CIQ, producing aJ ≈ K1/2b
after J iterations with Q quadrature points. The difference between aJ and K1/2b is bounded by:

∥∥∥vJ −K
1
2 b
∥∥∥

2
≤

Quadrature error

O
(

exp
(
− 2Qπ2

log κ(K)+3

))
+

msMINRES error

2Q log
(

5
√
κ(K)

)
κ(K)

√
λmin

π

(√
κ(K)−1√
κ(K)+1

)J−1

‖b‖2 .

where λmax, λmin are the max and min eigenvalues of K, and κ(K) is the condition number of K.

Proof. First we note that the msMINRES-CIQ solution aJ can be written as
∑
i=1 wqc

(q)
J , where

c
(q)
J is the qth shifted solve ≈ (tqI + K)−1b from msMINRES. Applying the triangle inequality we

have:

∥∥∥aJ −K
1
2 b
∥∥∥

2
=

∥∥∥∥∥∥∥∥∥
msMINRES error

Q∑
q=1

wqc
(q)
J −

(
K

Q∑
q=1

wq (tqI + K)
−1

)
b

+

(
K

Q∑
q=1

wq (tqI + K)
−1

)
b−K

1
2 b

Quadrature error

∥∥∥∥∥∥∥∥∥∥
2

≤
Q∑
q=1

|wq|
∥∥∥c(q)

J −K (tqI + K)
−1

b
∥∥∥

2

+

∥∥∥∥∥K
(

Q∑
q=1

wq (tqI + K)
−1

)
b−K

1
2 b

∥∥∥∥∥
2

(S32)

31

Plugging Lemma 2 into the msMINRES part of the bound bound, we have:

Q∑
q=1

|wq|

(√
κ(K + tqI)− 1√
κ(K + tqI) + 1

)J
‖b‖2

≤
Q∑
q=1

|wq|

(√
κ(K + tqI)− 1√
κ(K + tqI) + 1

)(√
κ(K)− 1√
κ(K) + 1

)J−1

‖b‖2 (via Lemma 2)

≤
Q∑
q=1

|wq|
(
λmax

4tq

)(√
κ(K)− 1√
κ(K) + 1

)J−1

‖b‖2 (via Lemma 3)

≤
2Q log

(
5
√
κ(K)

)
λmax

π
√
λmin

(√
κ(K)− 1√
κ(K) + 1

)J−1

‖b‖2 (via Lemma 4)

≤
2Q log

(
5
√
κ(K)

)√
λminκ(K)

π

(√
κ(K)− 1√
κ(K) + 1

)J−1

‖b‖2 .

Plugging this bound and Lemma 1 into Eq. (S32) completes the proof.

We can also prove this simple corollary:

Corollary 1. Let K � 0 and b be the inputs to Alg. 1, producing the output a′J ≈ K−1/2b after J
iterations with Q quadrature points. The difference between aJ and K1/2b is bounded by:

∥∥∥a′J −K−
1
2 b
∥∥∥

2
≤

Quadrature error

O
(

1
λmin

exp
(
− 2Qπ2

log κ(K)+3

))
+

msMINRES error

2Q log
(

5
√
κ(K)

)
κ(K)

√
λminπ

(√
κ(K)−1√
κ(K)+1

)J−1

‖b‖2 .

where λmax, λmin are the maximal and minimal eigenvalues of K, and κ(K) is the condition number
of K.

Proof. Note that a′J = K−1aJ , where aJ is the msMINRES-CIQ estimate of K1/2b. Using the
sub-multiplicative property of the induced matrix 2-norm we see that∥∥∥a′J −K−

1
2 b
∥∥∥

2
≤
∥∥K−1

∥∥
2

∥∥∥aJ −K
1
2 b
∥∥∥

2
=

1

λmin

∥∥∥aJ −K
1
2 b
∥∥∥

2
,

where the final term is bounded by Thm. 1.

32

	Introduction
	Background
	Contour Integral Quadrature (CIQ) via Matrix-Vector Multiplication
	An Efficient Matrix-Vector Multiplication Approach to CIQ with msMINRES.
	Computational Complexity and Convergence Analysis of msMINRES-CIQ
	Efficient Vector-Jacobi Products for Backpropagation
	Preconditioning
	Related Work

	Benchmarking msMINRES-CIQ
	Applications
	Whitened Stochastic Variational Gaussian Processes
	Posterior Sampling for Bayesian Optimization
	Gibbs Samplers and Image Reconstruction

	Discussion
	References
	Additional Results
	Quadrature for Matrix Square Roots
	A Specific Quadrature Formula for f(K) = K-1/2
	Estimating the Minimum and Maximum Eigenvalues
	The Complete Quadrature Algorithm

	The msMINRES Algorithm
	Standard MINRES
	Multi-Shift MINRES (msMINRES)

	Preconditioning msMINRES-CIQ
	O(M2) Natural Gradient Updates
	The Expected Log Likelihood and its Gradient
	The KL Divergence and its Gradient

	Experimental Details
	Proof of Theorem 1

