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Abstract

We introduce Patch Aligned Contrastive Learning
(PACL), a modified compatibility function for CLIP’s con-
trastive loss, intending to train an alignment between the
patch tokens of the vision encoder and the CLS token of the
text encoder. With such an alignment, a model can identify
regions of an image corresponding to a given text input, and
therefore transfer seamlessly to the task of open vocabulary
semantic segmentation without requiring any segmentation
annotations during training. Using pre-trained CLIP en-
coders with PACL, we are able to set the state-of-the-art
on the task of open vocabulary zero-shot segmentation on
4 different segmentation benchmarks: Pascal VOC, Pascal
Context, COCO Stuff and ADE20K. Furthermore, we show
that PACL is also applicable to image-level predictions and
when used with a CLIP backbone, provides a general im-
provement in zero-shot classification accuracy compared to
CLIP, across a suite of 12 image classification datasets.

1. Introduction
Understanding the semantic content in visual scenes has

been one of the most important problems studied in com-
puter vision at various levels of granularity. Work on this
problem has led to significant improvements along several
threads including image level predictions like image classi-
fication [13, 54, 58], object level predictions like object de-
tection [33,51,53,59–61], as well as pixel level predictions
like semantic segmentation [10,29,51,53]. Although in im-
age classification we require only a single label per image
for prediction, for scene understanding at a higher level of
granularity like segmentation, supervised training requires
annotations at a pixel level. Such annotations require sig-
nificant human effort and are often very expensive to ob-
tain. This impedes training on a large scale with millions of
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Figure 1. High level overview of our model. We train an align-
ment between the patch level embeddings from the image encoder
and the CLS embedding from the text encoder. This alignment
can then be used to perform open-vocabulary semantic segmenta-
tion in a zero-shot manner.

images.
One way to tackle this problem could be to train mod-

els in an unsupervised manner without requiring any seg-
mentation annotations. The best methods [11, 19] in this
category exploit the similarity between internal representa-
tions of self-supervised image encoders [5]. This similarity
is then used to identify and cluster similar regions of the
image as segmentations. These models however are signif-
icantly outperformed by their fully supervised counterparts
on most segmentation benchmarks.

Recent improvements in multi-modal foundation mod-
els has led to the possibility of training on very large scale
datasets scraped off the internet [41]. These datasets contain
pairs of images and their corresponding natural language
text descriptions. Models like CLIP [41], ALIGN [23],
Florence [59] and CoCa [58] trained on such large internet
scale datasets have been shown to transfer very well to sev-
eral downstream tasks. Furthermore, having been trained
on natural language textual descriptions, these models are
often expected to recognize a wide variety of real-world vi-
sual concepts which can be expressed in natural language, a
setting better known as open vocabulary prediction.

The natural question then is whether these multi-modal
models can be used for pixel level predictions, i.e., semantic



segmentation in the open vocabulary setting. Prior works
on this topic [17, 28, 32, 56, 57] show that this is indeed
possible. However, 3 of these works use either fully su-
pervised segmentation annotations [32], class-agnostic seg-
mentation masks [17] or a region proposal model trained
using segmentation annotations [57], thereby being lim-
ited by the availability of expensive segmentation anno-
tations/masks. To the best of our knowledge, only two
models: ViL-Seg [32] and GroupViT [56] perform the
task of open-vocabulary semantic segmentation while be-
ing trained solely on image-text data. Among these two,
the better performer, GroupViT, defines a modified vision
transformer (ViT) [15] architecture to naturally find seman-
tic clusters within an image. Due to a different architecture,
their model has to be trained end-to-end from scratch and
cannot leverage pre-trained vision encoders.

In this work, we tackle the problem of open-vocabulary
semantic segmentation without using any segmentation an-
notations or masks, with a model purely trained on image-
text data. We start with the observation in [19] that self-
supervised ViT models like DINO [5], have similar patch
representations for semantically similar regions of an im-
age. We find this observation to be true for CLIP’s ViT
based vision encoders as well. However, we also find that
CLIP does not exhibit a patch level alignment between its
vision and text encoders, primarily owing to the fact that its
contrastive loss only aligns the CLS image and text tokens.

Inspired from previous work on contrastive learning for
weakly supervised phrase grounding [18], we define a new
compatibility function for contrastive loss to train an align-
ment between the patch tokens of the vision encoder and
the CLS token of the text encoder. In particular, we take the
cosine similarity between the text CLS token and the vision
patch tokens and use these similarities as weights to com-
pute a weighted sum over vision tokens. The final compat-
ibility function is then simply the cosine similarity between
the weighted sum of the vision patch tokens thus obtained
and the CLS text token. We find that models trained on our
Patch Aligned Contrastive Learning loss indeed exhibit the
desired patch level fine-grained alignment. Thus, at infer-
ence time, the compatibility function can be used to make
image level predictions and the patch level alignment can
be used for zero-shot transfer to semantic segmentation. A
high level overview of our model is shown in Fig. 1.

Note that unlike GroupViT, our PACL method is more
flexible and general and can be used with any pre-trained
ViT based encoders as well. We evaluate PACL with a
pre-trained CLIP encoder on the task of zero-shot semantic
segmentation using 4 different datasets: Pascal VOC [16],
Pascal Context [36], COCO Stuff [4] and ADE20K [63].
On all 4 datasets, PACL consistently beats previous base-
lines [17, 28, 32, 56], even the ones which use segmentation
annotations or segmentation masks for training. We also

find that PACL trained on top of a CLIP backbone leads
to a general improvement in zero-shot classification perfor-
mance across a suite of 12 image classification datasets.

In a nutshell, our contributions are as follows. Firstly,
we propose Patch Aligned Contrastive Learning (PACL), a
modified compatibility function for contrastive loss in or-
der to train an alignment between the patch representations
of a ViT based vision encoder and the CLS text represen-
tation of a text encoder. We show that this alignment can
be used to find regions within an image corresponding to a
given text input and hence, can be used for zero-shot trans-
fer to open-vocabulary semantic segmentation. Secondly,
we show that PACL with a pre-trained CLIP encoder ob-
tains state-of-the-art scores on zero-shot semantic segmen-
tation across 4 different segmentation benchmarks: Pascal
VOC, Pascal Context, COCO Stuff and ADE20K. Finally,
PACL with a CLIP backbone also shows a general improve-
ment in performance on zero-shot classification tasks across
12 different image classification datasets.

2. Related Work

In this section, we discuss some of the relevant works
motivating our method.

Supervised semantic segmentation: Given an image,
the task of semantic segmentation [34] involves classifying
every pixel in the image to one of a fixed set of classes. Nat-
urally, supervised datasets for semantic segmentation like
Pascal VOC [16], ADE20K [63] and Cityscapes [12] con-
tain images with class annotations for every pixel. A signif-
icant amount of work [8, 43, 49, 62] has been done to lever-
age these datasets and generate strong models for semantic
segmentation. However, since annotating images at a pixel
level is laborious and expensive, these datasets remain lim-
ited to a relatively small number of classes.

Unsupervised semantic segmentation: Identifying that
the requirement of dense annotations is the problem, some
works [11, 19, 22, 35, 47, 52] have tried to leverage self-
supervised techniques to train features which can be used
for segmentation without requiring dense annotations. No-
table among these works is STEGO [19] which uses the lo-
calized feature correspondences in self-supervised models
like DINO [5] for the task of unsupervised segmentation.
In our work, we study the existence of a similar feature cor-
respondence in vision encoders of multi-modal models like
CLIP [41] and use it to train a patch level alignment between
image and text modalities. Note however, that it is still diffi-
cult for such unsupervised segmentation approaches to scale
up to a large number of visual concepts.

Natural language supervision: Recently, the availabil-
ity of datasets with millions of image-text pairs scraped
from the internet has made it possible to train large-scale
multi-modal fusion models. Such models [23, 25, 41, 45,
58,59] are able to transfer well to several downstream tasks



including vision-language pre-training (VLP) [7] tasks like
image-text retrieval [50] and visual question answering [1],
as well as vision specific tasks like zero-shot image classi-
fication [23, 41, 58] and object detection [24, 61]. Given the
large-scale training of such multi-modal fusion models, it
is natural to ask if these models can be leveraged to scale
up the task of semantic segmentation and recognise a large
number of visual concepts at a fine-grained level.

Natural language supervision for zero-shot segmen-
tation: Some work has been done in this direction of using
large-scale multi-modal models, like CLIP [41], for the task
of semantic segmentation. For instance, LSeg [28] trains
a segmentation model as its vision encoder and uses the
frozen text encoder from CLIP to align pixel level embed-
dings with text. The resulting model is able to recognise
conceptually similar labels which are not present within
the training set. However, it trains the vision encoder in
a fully supervised manner using segmentation annotations.
OpenSeg [17] on the other hand is based on the ALIGN [23]
model and trains using image-text data and class-agnostic
segmentation annotations. ViL-Seg [32] trains using only
image-text data with a vision based contrasting and a cross-
modal contrasting objective along with an online cluster-
ing head to segment visual embeddings. Finally, GroupViT
[56] proposes a modified ViT architecture which allows
grouping semantically similar tokens into clusters useful for
open vocabulary segmentation. To the best of our knowl-
edge, ViL-Seg and Group-ViT are the only existing methods
which solely use image-text data for training an open vocab-
ulary semantic segmentation model. In our work, we pro-
pose a simple modification to the CLIP compatibility func-
tion for contrastive loss, which enables training an align-
ment between the patch tokens of a ViT based vision en-
coder and the CLS token of a text encoder. This alignment
can then be seamlessly utilized for the task of semantic seg-
mentation without using any segmentation annotations or
class-agnostic segmentation masks during training.

3. Patch Level Alignment in CLIP

The contrastive training of CLIP ensures that the CLS
tokens obtained from CLIP’s transformer based vision and
text encoders are aligned for similar image-text pairs. How-
ever, such an alignment between image and text at a patch
level does not necessarily exist. To empirically study this,
we use a semantic segmentation dataset, Pascal VOC [16],
and classify each patch in the dataset to one of a fixed set
of classes. The patch level vision tokens are classified us-
ing the same zero-shot classification [41] method normally
used on the CLS vision token. The classification accuracy,
thus obtained, provides a measure of patch level alignment
between the vision and text representations in the model,
where a high classification accuracy indicates a high align-
ment and vice-versa.

Figure 2. Patch level alignment between the word “cat” and
images of cats. In the first row, we show the original images, in
the second row, we show the patch level alignment in CLIP ViT-
B/16 and in the third row, we show the alignment for our method.

Patch Classification Accuracy
CLIP Vision Encoder Pre-Alignment Post-Alignment

ViT-B-16 52.49 96.51
ViT-L/14 27.91 95.33

Table 1. Accuracy for patch level clas-
sification on Pascal VOC. For a pre-
trained CLIP model, the accuracy is low
indicating low patch level alignment be-
tween image and text. On applying
our PACL alignment method, the ac-
curacy significantly increases for both
CLIP encoders indicating higher image
text patch level alignment.
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Figure 3. ROC curve
indicating semantic co-
herence of CLIP and
DINO vision encoders.
CLIP encoders outper-
form DINO.

More formally, let Dseg = (x,y)Ni=1 be the seman-
tic segmentation dataset where x ∈ RC,H,W and y ∈
RH,W . We represent CLIP’s vision and text encoders as
fv : RC,H,W → RDv and ft : Rl → RDt respectively.
Similarly, let ev : RDv → RD and et : RDt → RD be the
linear embedders to project the vision and text encodings
to the joint D dimensional space. Normally, for zero-shot
classification, we measure the cosine similarity between the
vision and text embeddings: s(x, c) = ev(fv(x))

|ev(fv(x))| ·
et(ft(c))
|et(ft(c))|

for each class name c and compute the predictive probabil-
ity as: p(c|x) = es(x,c)∑

c′ e
s(x,c′) . A simple modification to the

vision encoder: f̂v : RC,H,W → RT,Dv , where T is the
number of tokens or patches, allows us to perform the same
classification method on every patch.

In Tab. 1 second column (Pre-Alignment), we show the
patch classification accuracy thus obtained for two CLIP
models: ViT-B/16 and ViT-L/14. In Fig. 2, first and second
rows, we show qualitative samples of alignment on CLIP
ViT-B/16, for 4 images of cats from Pascal VOC. With a
patch classification accuracy of 52.49% for ViT-B/16 and
27.91% for ViT-L/14, it is clear that the alignment we seek
is very poor at the patch level. Surprisingly, note that for
ViT-L/14, a model known to provide better image level pre-
diction performance than ViT-B/16, the patch level align-



ment is significantly worse. Hence, pre-trained CLIP mod-
els cannot be used for open vocabulary segmentation as the
CLIP contrastive learning objective does not ensure patch
level alignment between image and text modalities.

4. Semantic Coherence in Vision Encoders

Due to the poor patch level alignment between pre-
trained CLIP image and text encoders, our next question
is whether we can train such an alignment in CLIP. This
would however require the pre-trained vision encoder to be
sematically coherent. In other words, semantically similar
regions in an image should produce similar patch represen-
tations in the vision encoder. This property has been studied
before in image self-supervised models like DINO [19]. We
use a similar test to quantify semantic coherence of CLIP’s
vision encoders.

In particular, we collect all patch representations from
the vision encoder for each image in Pascal VOC and store
the corresponding target classes using the segmentation la-
bels. Let f̂v(x1)i,j ∈ RDv and f̂v(x2)p,q ∈ RDv be
the patch representations obtained at index (i, j) of image
x1 and index (p, q) of image x2 respectively. We com-

pute the cosine similarity
(

f̂v(x1)i,j

|f̂v(x1)i,j |
· f̂v(x2)p,q

|f̂v(x2)p,q|

)
between

the patch representations and use this as a binary classi-
fier to predict if the two patches have the same target la-
bel. Let the segmentation labels for the two patches be
l(x1)i,j and l(x2)p,q respectively. Since we have labels for
each pixel, we decide the label for each patch by majority-
voting. The target value for binary classification is 1 if
l(x1)i,j = l(x2)p,q , else 0. Note that performance on this
binary classification task is indicative of semantic coher-
ence, as a good classifier would require patch representa-
tions corresponding to same labels to have high cosine sim-
ilarity and vice-versa.

We present the ROC curve and AUROC scores for CLIP
and DINO in Fig. 3. Surprisingly, we find that CLIP’s vision
encoders outperform DINO on semantic coherence1. This is
encouraging as it indicates that we can indeed train a map-
ping between similar vision tokens and their corresponding
text representations. We also present qualitative results in
Fig. 4 where we plot the patch level cosine similarity be-
tween a chosen patch (marked in yellow X in Fig. 4a) and
the remaining patches in the same image as well as a differ-
ent image having the same class (dog). We do this for CLIP
ViT-B/16 in Fig. 4b and Fig. 4c and for DINO ViT-B/16 in
Fig. 4d and Fig. 4e. In both cases, CLIP’s encoder seems to
perform at par or better than DINO. Motivated by these ob-
servations, in the next section, we discuss a method to train
a patch level alignment between the vision tokens and the

1CLIP’s semantic coherence indicates that CLIP’s vision encoders are
good candidates for unsupervised segmentation approaches like STEGO
[19], but further study of this feature is beyond the scope of this work.

(a) (b) (c) (d) (e)

Figure 4. Qualitative results on semantic coherence between
CLIP and DINO ViT-B/16. a): we show the original image of a
dog class with the patch marker (yellow X near the centre). b, c):
we show CLIP vision encoder cosine similarity across all patches
for the same and a different image of a dog. d, e): we show the
same for DINO. See more examples in Appendix B.1.

CLS text token in CLIP using purely image-text data.

5. Patch Aligned Contrastive Learning (PACL)
In the previous section, we showed that although CLIP

lacks a patch level alignment between image and text repre-
sentations, such an alignment can indeed be trained. How-
ever, note that this is a difficult problem as there is no
ground-truth text data annotating each patch in an image-
text dataset. Hence, training such an alignment can only
be done in a weakly supervised fashion. Inspired from pre-
vious work on weakly supervised phrase grounding [18],
in this section, we propose a modification on CLIP’s con-
trastive loss, to learn an alignment between the vision patch
tokens and the CLS text token.

A modified compatibility function for contrastive
loss: Our method is simple in the sense that the only change
we make to CLIP’s training is in the compatibility func-
tion of its contrastive loss. Normally, for an image-text
pair (x,y), CLIP computes the CLS vision and text em-
beddings as ev(fv(x)) and et(ft(y)) respectively, where
fv : RC,H,W → RDv , ft : RL → RDt are the vision and
text encoders and ev : RDv → RD, et : RDt → RD are
the vision and text embedders to project the representations
into the same dimensional space. The compatibility func-
tion ϕ(x,y) is the cosine similarity between the vision and
text CLS embeddings: ϕ(x,y) =

(
ev(fv(x))
|ev(fv(x))| ·

et(ft(y))
|et(ft(y))|

)
.

Given this compatibility function, CLIP uses the InfoNCE
[38] contrastive loss to learn vision and text representations
which are aligned for similar image-text pairs:

Lx =
1

k

k∑
i=1

(
eϕ(xi,yi)∑k
j=1 e

ϕ(xi,yj)

)

Ly =
1

k

k∑
i=1

(
eϕ(xi,yi)∑k
j=1 e

ϕ(xj,yi)

) (1)

with the contrastive loss being LInfoNCE = 1/2(Lx + Ly).
Note that the above loss function produces an alignment

between the CLS image and text tokens but as we observed
in Section 3, it does not produce the desired alignment at
patch level between vision and text encoders. In order to
then train this alignment, we make the following changes
to CLIP’s loss. First, we use the patch tokens instead of



the CLS token from the vision encoder, f̂v : RC,H,W →
RT,Dv , where T is the number of tokens or patches. Next,
we use a modified vision embedder êv : RT,Dv → RT,D to
generate embeddings in the shared D-dimensional space for
all patch tokens. We compute the patch level similarity

s(x,y) = êv(f̂v(x))et(ft(y)) (2)

between all vision patch embeddings and the CLS text em-
bedding, where s(x,y) ∈ RT . We normalize the patch level
similarity to the range [0, 1] by applying a softmax func-
tion across tokens, a(x,y) = softmax(s(x,y)). Finally,
we take a weighted sum across all vision patch embeddings
where the weights of the tokens are obtained from the patch
level similarities a(x,y) as:

v̂ = êv(f̂v(x))
⊺a(x,y) (3)

where v̂ ∈ RD. The updated compatibility function ϕ̂(x,y)
is then computed as the following dot product:

ϕ̂(x,y) =

(
v̂

|v̂|
· et(ft(y))

|et(ft(y))|

)
. (4)

We use this modified compatibility function with In-
foNCE contrastive loss for training and we call this method
Patch Aligned Contrastive Learning. Fig. 5, shows a dia-
grammatic representation of the steps involved in comput-
ing the compatibility function for an image-text pair.

Grounded in Mutual Information: To understand
how our compatibility function ϕ̂(x,y) works, we go back
to the relation of the InfoNCE [38] loss with mutual in-
formation (MI). Let x ∈ X and y ∈ Y be two multi-
variate random variables with a joint probability function
p(x, y). MI between x and y, computed as I[x, y] =

E(x,y)∼p(x,y) log
[

p(x,y)
p(x)p(y)

]
, captures the amount of infor-

mation shared between x and y. However, MI is compu-
tationally intractable and hence requires approximations in
order to be estimated. The InfoNCE loss LInfoNCE(θ) de-
fined using a compatibility function ϕθ(x, y) with model
parameters θ provides such an estimate and is a lower bound
on MI as: I[x, y] ≥ log(k) − LInfoNCE(θ), where k is
the batch size in InfoNCE loss with one positive sample
and k − 1 negative samples per batch. Hence, minimizing
LInfoNCE maximises the lower bound estimate of MI.

In vanilla CLIP training, the random variables x and
y are images x and texts y respectively, the compatibil-
ity function ϕθ(x, y) is ϕ(x,y), i.e., the cosine similarity
between CLS vision and text token embeddings, and the
model parameters are θ = {fv, ev, ft, et}. Since, we mod-
ify the compatibility function ϕ̂(x,y) using a weighted sum
over vision tokens, to maximise MI I[x, y] between image
and text, LInfoNCE will have to attend to regions of the im-
age which correspond to the text and assign such regions

a higher value in s(x,y). This indicates that s(x,y) intu-
itively captures patch level alignment between image and
text modalities. To empirically verify this, we conduct the
same patch level classification task described in Section 3
where for each patch, we compute the similarity s(x,y) for
all classes and predict the class with the highest similarity.
Results are in Tab. 1, third column (Post-Alignment) with
qualitative results in Fig. 2, third row. In both cases, we
observe a stark improvement in patch level alignment com-
pared to vanilla CLIP using our compatibility function.

It is worth noting here that a similar contrastive learn-
ing approach has been used for the problem of weakly su-
pervised phrase grounding in [18]. Their approach learns
a mapping between ROI features from an object detector
and word representations from a language model using an
attention based weakly supervised contrastive learning. Al-
though similar to our approach, they require the use of an
object detector to provide ROI features, whereas we use
CLIP’s vision encoder patch tokens as region features, hav-
ing shown (see Section 4) that such features indeed are se-
mantically coherent. Furthermore, they also use a contex-
tualised language model to generate negative samples for
contrastive loss, whereas our method fits in seamlessly with
the contrastive setting in CLIP. Finally, whereas they tar-
get weakly supervised phrase grounding, we aim to learn
a multi-modal model which is zero-shot transferable to the
task of open vocabulary semantic segmentation.

Inference: At inference time, we can compute both im-
age level as well as dense predictions. For image level pre-
dictions, similar to CLIP, we simply use our compatibility
function ϕ̂(x,y) to compute similarity between an image
and text. For semantic segmentation, given an image x
and a set of classnames Y = {y1, ...,yC}, we compute
s(x,yc) ∀c ∈ {1, ..., C} as a mask for each class and then
use a softmax across classes. In the next section, we pro-
vide a detailed set of experiments to show the performance
of our approach at both zero-shot semantic segmentation as
well as image classification tasks.

6. Experiments & Discussion
6.1. Zero-shot Semantic Segmentation

In the previous section, we described PACL, a multi-
modal contrastive objective to train an alignment between
vision patch embeddings and CLS text embeddings in CLIP.
In this section, we evaluate the quality of this alignment
through zero-shot transfer to semantic segmentation. We
present implementation and training details for PACL, eval-
uation settings for zero-shot segmentation, and finally, re-
sults and a discussion on the same.

Training a small vision embedder: In Section 4, we
have shown that CLIP’s pre-trained vision encoders f̂v have
a relatively strong semantic coherence. In order to leverage
this coherence and the large scale pre-training of CLIP, we



Figure 5. Compatibility function ϕ(x,y) for Patch Aligned Contrastive Learning (PACL). The image encoder f̂v and embedder êv
produce patch level representations for each image whereas the text encoder ft and embedder et produce the CLS representation for a
given text. We compute the cosine similarity between the CLS text embedding and the vision patch embeddings and use them as weights
to take a weighted sum over vision patch tokens. We use the cosine similarity between the weighted sum and the CLS text token as our
compatibility ϕ̂(x,y).

keep the image encoder f̂v , the text encoder ft and the text
embedder et frozen from a pre-trained CLIP model. We
only train the vision embedder, i.e., θ = {êv}. Note that
the modification of the vision encoder from fv (outputs the
CLS vision token) to f̂v (outputs the patch tokens) does not
require any re-training. For êv , we use a residual block with
two linear layers in the main branch and a single linear layer
in the residual connection, There is a ReLU non-linearity
between the two linear layers (see Appendix A.1). We find
this simple architecture to work well for our applications.

Image-text datasets for training: We train our model
purely on publicly available image-text datasets. In partic-
ular, we use Google Conceptual Captions (GCC) 3M [44],
Google Conceptual Captions (GCC) 12M [6] and YFCC-
15M, a subset of YFCC-100M [46] provided by CLIP [41],
with a total number of approximately 30M training sam-
ples. Similar to GroupViT [56], in addition to the text de-
scriptions in the datasets, we extract nouns from these de-
scriptions, and randomly select one of 7 CLIP prompts (like
“itap of a ().”, see Appendix A.2.2), to form sentences with
these nouns. We add these sentences to the text descrip-
tions as well. More details on the datasets can be found in
Appendix A.3. Note that we do not use any segmentation
annotations or class-agnostic segmentation masks during
training. Further training details are in Appendix A.2.

Stride trick at inference: Since CLIP ViT-B/16 and
ViT-L/14 use either 16 × 16 or 14 × 14 patches, the num-
ber of tokens generated is much smaller than the number
of pixels, which is a problem for fine-grained predictions
in segmentation. One workaround is to upscale the image
at inference time to a larger size. We however find instead
that a change to the stride of the convolutional layer to ex-
tract image patches in ViT can provide better fine-grained
patches at inference time. In particular, we use a stride of
4× 4 at inference time, thereby generating a larger number
of overlapping patch tokens, without requiring any change
in the model weights. For a given set of text inputs, we find

the alignment between each patch and text embedding. The
alignment scores are then interpolated to image dimensions.
Finally, a softmax operation across text inputs provides a
dense prediction in image dimensions.

Segmentation datasets for evaluation: Similar to re-
cent works [17, 56] on zero-shot semantic segmentation,
we use the following datasets for evaluation: a) Pascal
VOC [16] (PV-20): 20 foreground classes with 1449 vali-
dation images, b) Pascal Context [36] (PC-59): 59 classes
with 5k validation images, c) COCO Stuff [4] (CS-171):
171 “thing” or “stuff” classes and 5k validation images, d)
ADE20K [63] (A-150): 150 classes with 2k validation im-
ages. Further details on these datasets can be found in Ap-
pendix A.3. For all datasets, we report the mean intersection
over union (mIoU) [16], the most popular evaluation metric
for semantic segmentation.

Comparative Baselines: We compare PACL with some
of the most well-known recent methods on zero-shot se-
mantic segmentation. In particular, we use LSeg [28], ViL-
Seg [32], GroupViT [56] and OpenSeg [17] as baselines.
In addition, we also compare with two relatively older ap-
proaches: SPNet [55] and ZS3Net [3]. Note that some of
these methods work under relatively relaxed constraints.
In particular, SPNet, ZS3Net and LSeg use full segmenta-
tion annotations during training and OpenSeg uses class-
agnostic segmentation masks. Furthermore, unlike us, ViL-
Seg, SPNet and ZS3Net evaluate on a small subset of “un-
seen” classes from Pascal VOC, Pascal Context and COCO
Stuff. To our knowledge, GroupViT and ViL-Seg are the
only two methods which solely use image-text data for
training. We also add a baseline using vanilla CLIP by tak-
ing the alignment between the vision patch embeddings and
the text CLS embedding from CLIP’s pre-trained model.

Results & discussion: In Tab. 2, we report the mIoU
for each baseline on the 4 segmentation datasets mentioned
above. Note that the numbers shown for SPNet, ZS3Net
and ViL-Seg are obtained from the ViL-Seg paper [32] and



External Constraints mIoU
Method Encoder (Pretrained?) Training Set Annotation Mask PV-20 [16] PC-59 [36] CS-171 [4] A-150 [63]

SPNet [55] ResNet-101 (✗) ✗ ✓ ✗ 15.6 4.0 8.7 -
ZS3Net [3] ResNet-101 (✗) ✗ ✓ ✗ 17.7 7.7 9.6 -
LSeg [28] ViT-L/16 (✗) ✗ ✓ ✗ 52.3 - - -

OpenSeg [17] EfficientNet-B7 (✗) COCO [9] + Loc. Narr. [40] ✗ ✓ 72.2 48.2 - 28.6
ViL-Seg [32] ViT-B/16 (✗) GCC12M [6] ✗ ✗ 34.4 16.3 16.4 -

GroupViT [56] ViT-S/16 (✗) GCC12M [6] + YFCC15M [41, 46] ✗ ✗ 52.3 22.4 24.3 -

CLIP [41] ViT-B/16 (✓) WIT-400M [41] ✗ ✗ 8.4 2.3 2.6 1.3

CLIP + PACL (Ours) ViT-B/16 (✓) GCC3M [44] + GCC12M [6] + YFCC15M [41, 46] ✗ ✗ 72.3 50.1 38.8 31.4

Table 2. Results on zero-shot semantic segmentation on Pascal VOC (PV-20), Pascal Context (PC-59) and COCO Stuff (CS-171) and
ADE20K (A-150) datasets. We provide the encoder architecture, external training dataset (if any) as well as if those methods use segmen-
tation annotations or class-agnostic segmentation masks. Our method (CLIP + PACL) consistently outperforms all previous approaches.

Figure 6. Qualitative results on zero-shot semantic segmenta-
tion. The first row denotes the original images, the second row
shows the corresponding labels, the third row shows results ob-
tained from a vanilla CLIP ViT-B/16, and the fourth row shows
results of our method, PACL trained on a CLIP ViT-B/16 encoder.
The first 3 images from the left are from Pascal VOC and the next
3 images are from ADE20K.

the numbers for all other baselines are obtained from their
respective papers (cited in the table). In Fig. 6, we show
qualitative results of our method (i.e., PACL + CLIP) on
PascalVOC and ADE20K images (more in Appendix B.2).
With mIoU scores of 72.3, 50.1, 38.8 and 31.4 on Pascal
VOC, Pascal Context, COCO Stuff and ADE20K respec-
tively, it is clear that PACL outperforms all other baselines
consistently even though it works under a stricter set of as-
sumptions, i.e., it does not use any segmentation annota-
tions and is evaluated on all classes of the segmentation
datasets. This is further corroborated from our qualitative
results in Fig. 6. It is interesting to note from Fig. 6 that
vanilla CLIP mostly seems to identify the correct classes in
its predictions, just not the locations of those classes within
the image. This relates to the problem of a lack of align-
ment between the CLS text token and the vision patch to-
kens (see Fig. 2) and this problem is solved through the in-
troduction of the PACL objective. Since PACL, as an ap-
proach, is not tied to any particular encoder, we next test its
performance using different pre-trained encoders as well as
different datasets on the zero-shot segmentation task.

Ablations on datasets and encoders: We perform an
ablation by training PACL on a combination of differ-
ent image-text training sets and different pre-trained vi-
sion encoders. For vision encoders we use CLIP ViT-B/16,
CLIP ViT-L/14, DINO [5] ViT-B/16 as well as a Tiny-ViT
5M2 model pretrained on ImageNet-22K. For training sets,
we use GCC3M for the Tiny-ViT encoder and ablate be-

2github.com/microsoft/Cream/tree/main/TinyViT

Dataset Vision Encoder Text Encoder mIoU PV-20

GCC3M Tiny-ViT 5M B/16 40.2

GCC12M
CLIP B/16 B/16 64.1
CLIP L/14 L/14 62.7
DINO B/16 B/16 55.4

GCC12M + YFCC15M
CLIP B/16 B/16 69.2
CLIP L/14 L/14 68.4
DINO B/16 B/16 62.6

GCC3M + GCC12M + YFCC15M
CLIP B/16 B/16 72.3
CLIP L/14 L/14 71.7
DINO B/16 B/16 64.8

Table 3. Ablation on zero-shot segmentation across encoder
architectures and datasets on Pascal VOC (PV-20). In the Text
Encoder column, B/16(L/14) indicates the pre-trained text encoder
trained for CLIP ViT-B/16(L/14).

tween GCC12M, (GCC12M + YFCC15M) and (GCC3M +
GCC12M + YFCC15M) for all other encoders. We report
the mIoU obtained on Pascal VOC from each of the (model,
dataset) combinations in Tab. 3.

These results provide two surprising observations.
Firstly, PACL seems to generate an alignment even be-
tween Tiny-ViT and DINO’s pre-trained vision encoders
and CLIP’s text encoder, although these encoders have
been trained independently. With an mIoU of 55.4, even
the worst performing DINO baseline outperforms all com-
petitive zero-shot segmentation baselines in Tab. 2 except
OpenSeg. Secondly, PACL trained using CLIP’s ViT-B/16
consistently outperforms ViT-L/14 even though ViT-L/14 is
known to be a clear winner in terms of image level zero-
shot tasks. In fact, there is a trend in performance where
CLIP ViT-B/16 outperforms CLIP ViT-L/14 which outper-
forms DINO ViT-B/16. This is also noticeable in Fig. 7
where CLIP encoders generate relatively better segmenta-
tion masks than DINO. This observation is strongly remi-
niscent of the one in Section 4 and Fig. 3, where we note that
semantic coherence is strongest in CLIP ViT-B/16 followed
by CLIP ViT-L/14 and finally by DINO ViT-B/16. These
empirical observations suggest that PACL is a general con-
trastive learning method which can be used to train a patch
level alignment and works independent of vision and text
encoders as long as the vision encoders exhibit the property
of semantic coherence. Indeed, semantic coherence seems
to be the most important factor behind the success of PACL.

ViT-B/16 vs ViT-L/14: To investigate the performance
anomaly between ViT-B/16 and ViT-L/14, we train PACL
with ViT-B/16 and ViT-L/14 encoders along with their re-
spective text encoders end-to-end from scratch on GCC12M
+ YFCC15M. We train both models for a total of 30 epochs.
Additionally, we also perform end-to-end fine-tuning us-

https://github.com/microsoft/Cream/tree/main/TinyViT


(a) GT (b) DINO B/16 (c) CLIP L/14 (d) CLIP B/16
Figure 7. Qualitative results comparing segmentation of differ-
ent encoders using PACL. We use 3 images from PASCAL VOC
val set and show their segmentations for DINO ViT-B/16, CLIP
ViT-L/14 and CLIP ViT-B/16.

mIoU PV-20
CLIP Encoder Scratch Fine-tuned

ViT-B/16 64.5 69.8
ViT-L/14 68.7 70.1

Table 4. Ablation on CLIP ViT-B/16 vs ViT-L/14 trained end-
to-end from scratch or fine-tuned using PACL loss on GCC12M +
YFCC15M. ViT-L/14 outperforms ViT-B/16.

Linear embedder Non-linear embedder
mIoU PV-20 23.3 57.6

Table 5. Ablation with linear vs non-linear embedder.

ing CLIP’s pre-trained encoders for 10 epochs on the same
dataset (GCC12M + YFCC15M). We report the zero-shot
mIoU on Pascal VOC in Tab. 4. Clearly, when the fea-
tures of the vision encoder are modified through training,
ViT-L/14 outperforms ViT-B/16. Furthermore, comparing
with the results from Tab. 3, we see that end-to-end fine-
tuning provides slight improvements over training on top
of a frozen CLIP encoder. This leads us to conclude that
CLIP’s pre-trained ViT-L/14 encoder underperforms due to
CLIP’s contrastive loss which uses only the CLS token and
does not require semantic coherence to be explicitly incor-
porated into the patch tokens. When trained end-to-end on
PACL, we find ViT-L/14 to be the superior model.

Linear vs non-linear vision embedder: Finally, to
study the importance of a non-linear vision embedder, we
train a linear and a non-linear (Fig. 9) embedder on top of
CLIP ViT-B/16 using PACL loss. We train on GCC3M for
10 epochs and report the zero-shot mIoU on Pascal VOC in
Tab. 5. Evidently, the performance of the linear embedder is
inferior indicating that non-linearities in the embedder are
important for PACL.

6.2. Image Classification

In Section 5, we mention that the modified compatibility
function of PACL can be used to make image level predic-
tions, similar to CLIP. In this section, we test our PACL
models on zero-shot image classification.

Zero-shot image classification results: We apply PACL
trained using CLIP ViT-B/16 and ViT-L/14 encoders on
(GCC3M + GCC12M + YFCC15M) to zero-shot image
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Figure 8. Zero-shot image classification performance of PACL
+ CLIP vs vanilla CLIP on 12 datasets. PACL + CLIP is com-
petitive with or outperforms CLIP on most datasets.

classification on 12 different datasets including ImageNet
[14], 4 datasets considered to be standard distribution
shifts on ImageNet, ImageNet-A [21], ImageNet-R [20],
ImageNet-Sketch [48] and ImageNet-V2 [42] as well as
7 other standard classification datasets, detailed in Ap-
pendix A.3. We report the difference in classification ac-
curacy between PACL + CLIP and vanilla CLIP for all
the datasets in Fig. 8 (all classification accuracies in Ap-
pendix B.3). PACL + CLIP outperforms vanilla CLIP on 10
and 7 out of the 12 classification datasets for ViT-B/16 and
ViT-L/14 encoders respectively. Also note that except on
ImageNet-R for ViT-L/14, PACL consistently outperforms
vanilla CLIP on ImageNet and its distribution shifts. This
observation is encouraging as it provides evidence in favour
of our approach being applicable for image level applica-
tions in addition to segmentation. In Appendix C, we dis-
cuss possible avenues for future research.

7. Conclusion

In this work, we explored Patch Aligned Contrastive
Learning (PACL), a modified compatibility function for
image-text contrastive loss which learns an alignment be-
tween patch tokens from a ViT vision encoder and the CLS
token from a text encoder. We show that such an alignment
allows a model to identify regions of an image correspond-
ing to a given text input, thereby enabling a seamless zero-
shot transfer to semantic segmentation, without requiring
segmentation annotations or masks. On 4 different segmen-
tation datasets, we beat previous approaches on zero-shot
open vocabulary segmentation, including ones which use
expensive segmentation annotations or masks. Finally, we
show that PACL can also be used to make image level pre-
dictions and provides a general improvement in accuracy
across 12 different image classification datasets.
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Pérez. Zero-shot semantic segmentation. Advances in Neural
Information Processing Systems, 32, 2019. 6, 7

[4] Holger Caesar, Jasper Uijlings, and Vittorio Ferrari. Coco-
stuff: Thing and stuff classes in context. In Proceedings of
the IEEE conference on computer vision and pattern recog-
nition, pages 1209–1218, 2018. 2, 6, 7, 13

[5] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou,
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