Open Vocabulary Semantic Segmentation with Patch Aligned Contrastive Learning

Jishnu Mukhoti^{*1,2}, Tsung-Yu Lin², Omid Poursaeed², Rui Wang², Ashish Shah², Philip H.S. Torr¹, Ser-Nam Lim² ¹University of Oxford, ²Meta AI

Abstract

We introduce Patch Aligned Contrastive Learning (PACL), a modified compatibility function for CLIP's contrastive loss, intending to train an alignment between the patch tokens of the vision encoder and the CLS token of the text encoder. With such an alignment, a model can identify regions of an image corresponding to a given text input, and therefore transfer seamlessly to the task of open vocabulary semantic segmentation without requiring any segmentation annotations during training. Using pre-trained CLIP encoders with PACL, we are able to set the state-of-the-art on the task of open vocabulary zero-shot segmentation on 4 different segmentation benchmarks: Pascal VOC, Pascal Context, COCO Stuff and ADE20K. Furthermore, we show that PACL is also applicable to image-level predictions and when used with a CLIP backbone, provides a general improvement in zero-shot classification accuracy compared to CLIP, across a suite of 12 image classification datasets.

1. Introduction

Understanding the semantic content in visual scenes has been one of the most important problems studied in computer vision at various levels of granularity. Work on this problem has led to significant improvements along several threads including image level predictions like image classification [13, 54, 58], object level predictions like object detection [33, 51, 53, 59–61], as well as pixel level predictions like semantic segmentation [10, 29, 51, 53]. Although in image classification we require only a single label per image for prediction, for scene understanding at a higher level of granularity like segmentation, supervised training requires annotations at a pixel level. Such annotations require significant human effort and are often very expensive to obtain. This impedes training on a large scale with millions of

Figure 1. **High level overview of our model.** We train an alignment between the patch level embeddings from the image encoder and the CLS embedding from the text encoder. This alignment can then be used to perform open-vocabulary semantic segmentation in a zero-shot manner.

images.

One way to tackle this problem could be to train models in an unsupervised manner without requiring any segmentation annotations. The best methods [11, 19] in this category exploit the similarity between internal representations of self-supervised image encoders [5]. This similarity is then used to identify and cluster similar regions of the image as segmentations. These models however are significantly outperformed by their fully supervised counterparts on most segmentation benchmarks.

Recent improvements in multi-modal foundation models has led to the possibility of training on very large scale datasets scraped off the internet [41]. These datasets contain pairs of images and their corresponding natural language text descriptions. Models like CLIP [41], ALIGN [23], Florence [59] and CoCa [58] trained on such large internet scale datasets have been shown to transfer very well to several downstream tasks. Furthermore, having been trained on natural language textual descriptions, these models are often expected to recognize a wide variety of real-world visual concepts which can be expressed in natural language, a setting better known as *open vocabulary prediction*.

The natural question then is whether these multi-modal models can be used for pixel level predictions, i.e., semantic

^{*}Corresponding author.

segmentation in the open vocabulary setting. Prior works on this topic [17, 28, 32, 56, 57] show that this is indeed possible. However, 3 of these works use either fully supervised segmentation annotations [32], class-agnostic segmentation masks [17] or a region proposal model trained using segmentation annotations [57], thereby being limited by the availability of expensive segmentation annotations/masks. To the best of our knowledge, only two models: ViL-Seg [32] and GroupViT [56] perform the task of open-vocabulary semantic segmentation while being trained solely on image-text data. Among these two, the better performer, GroupViT, defines a modified vision transformer (ViT) [15] architecture to naturally find semantic clusters within an image. Due to a different architecture, their model has to be trained end-to-end from scratch and cannot leverage pre-trained vision encoders.

In this work, we tackle the problem of open-vocabulary semantic segmentation without using any segmentation annotations or masks, with a model purely trained on imagetext data. We start with the observation in [19] that selfsupervised ViT models like DINO [5], have similar patch representations for semantically similar regions of an image. We find this observation to be true for CLIP's ViT based vision encoders as well. However, we also find that CLIP does not exhibit a patch level alignment between its vision and text encoders, primarily owing to the fact that its contrastive loss only aligns the CLS image and text tokens.

Inspired from previous work on contrastive learning for weakly supervised phrase grounding [18], we define a new compatibility function for contrastive loss to train an alignment between the patch tokens of the vision encoder and the CLS token of the text encoder. In particular, we take the cosine similarity between the text CLS token and the vision patch tokens and use these similarities as weights to compute a weighted sum over vision tokens. The final compatibility function is then simply the cosine similarity between the weighted sum of the vision patch tokens thus obtained and the CLS text token. We find that models trained on our Patch Aligned Contrastive Learning loss indeed exhibit the desired patch level fine-grained alignment. Thus, at inference time, the compatibility function can be used to make image level predictions and the patch level alignment can be used for zero-shot transfer to semantic segmentation. A high level overview of our model is shown in Fig. 1.

Note that unlike GroupViT, our PACL method is more flexible and general and can be used with any pre-trained ViT based encoders as well. We evaluate PACL with a pre-trained CLIP encoder on the task of zero-shot semantic segmentation using 4 different datasets: Pascal VOC [16], Pascal Context [36], COCO Stuff [4] and ADE20K [63]. On all 4 datasets, PACL consistently beats previous baselines [17, 28, 32, 56], even the ones which use segmentation annotations or segmentation masks for training. We also find that PACL trained on top of a CLIP backbone leads to a general improvement in zero-shot classification performance across a suite of 12 image classification datasets.

In a nutshell, our contributions are as follows. Firstly, we propose Patch Aligned Contrastive Learning (PACL), a modified compatibility function for contrastive loss in order to train an alignment between the patch representations of a ViT based vision encoder and the CLS text representation of a text encoder. We show that this alignment can be used to find regions within an image corresponding to a given text input and hence, can be used for zero-shot transfer to open-vocabulary semantic segmentation. Secondly, we show that PACL with a pre-trained CLIP encoder obtains state-of-the-art scores on zero-shot semantic segmentation across 4 different segmentation benchmarks: Pascal VOC, Pascal Context, COCO Stuff and ADE20K. Finally, PACL with a CLIP backbone also shows a general improvement in performance on zero-shot classification tasks across 12 different image classification datasets.

2. Related Work

In this section, we discuss some of the relevant works motivating our method.

Supervised semantic segmentation: Given an image, the task of semantic segmentation [34] involves classifying every pixel in the image to one of a fixed set of classes. Naturally, supervised datasets for semantic segmentation like Pascal VOC [16], ADE20K [63] and Cityscapes [12] contain images with class annotations for every pixel. A significant amount of work [8, 43, 49, 62] has been done to leverage these datasets and generate strong models for semantic segmentation. However, since annotating images at a pixel level is laborious and expensive, these datasets remain limited to a relatively small number of classes.

Unsupervised semantic segmentation: Identifying that the requirement of dense annotations is the problem, some works [11, 19, 22, 35, 47, 52] have tried to leverage selfsupervised techniques to train features which can be used for segmentation without requiring dense annotations. Notable among these works is STEGO [19] which uses the localized feature correspondences in self-supervised models like DINO [5] for the task of unsupervised segmentation. In our work, we study the existence of a similar feature correspondence in vision encoders of multi-modal models like CLIP [41] and use it to train a patch level alignment between image and text modalities. Note however, that it is still difficult for such unsupervised segmentation approaches to scale up to a large number of visual concepts.

Natural language supervision: Recently, the availability of datasets with millions of image-text pairs scraped from the internet has made it possible to train large-scale multi-modal fusion models. Such models [23, 25, 41, 45, 58, 59] are able to transfer well to several downstream tasks including vision-language pre-training (VLP) [7] tasks like image-text retrieval [50] and visual question answering [1], as well as vision specific tasks like zero-shot image classification [23, 41, 58] and object detection [24, 61]. Given the large-scale training of such multi-modal fusion models, it is natural to ask if these models can be leveraged to scale up the task of semantic segmentation and recognise a large number of visual concepts at a fine-grained level.

Natural language supervision for zero-shot segmentation: Some work has been done in this direction of using large-scale multi-modal models, like CLIP [41], for the task of semantic segmentation. For instance, LSeg [28] trains a segmentation model as its vision encoder and uses the frozen text encoder from CLIP to align pixel level embeddings with text. The resulting model is able to recognise conceptually similar labels which are not present within the training set. However, it trains the vision encoder in a fully supervised manner using segmentation annotations. OpenSeg [17] on the other hand is based on the ALIGN [23] model and trains using image-text data and class-agnostic segmentation annotations. ViL-Seg [32] trains using only image-text data with a vision based contrasting and a crossmodal contrasting objective along with an online clustering head to segment visual embeddings. Finally, GroupViT [56] proposes a modified ViT architecture which allows grouping semantically similar tokens into clusters useful for open vocabulary segmentation. To the best of our knowledge, ViL-Seg and Group-ViT are the only existing methods which solely use image-text data for training an open vocabulary semantic segmentation model. In our work, we propose a simple modification to the CLIP compatibility function for contrastive loss, which enables training an alignment between the patch tokens of a ViT based vision encoder and the CLS token of a text encoder. This alignment can then be seamlessly utilized for the task of semantic segmentation without using any segmentation annotations or class-agnostic segmentation masks during training.

3. Patch Level Alignment in CLIP

The contrastive training of CLIP ensures that the CLS tokens obtained from CLIP's transformer based vision and text encoders are aligned for similar image-text pairs. However, such an alignment between image and text at a patch level does not necessarily exist. To empirically study this, we use a semantic segmentation dataset, Pascal VOC [16], and classify each patch in the dataset to one of a fixed set of classes. The patch level vision tokens are classified using the same zero-shot classification [41] method normally used on the CLS vision token. The classification accuracy, thus obtained, provides a measure of patch level alignment between the vision and text representations in the model. where a high classification accuracy indicates a high alignment and vice-versa.

Figure 2. Patch level alignment between the word "cat" and images of cats. In the first row, we show the original images, in the second row, we show the patch level alignment in CLIP ViT-B/16 and in the third row, we show the alignment for our method.

	Patch Classification Accuracy		
CLIP Vision Encoder	Pre-Alignment	Post-Alignment	
ViT-B-16	52.49	96.51	
ViT-L/14	27.91	95.33	

Table 1. Accuracy for patch level classification on Pascal VOC. For a pre-

trained CLIP model, the accuracy is low indicating low patch level alignment be- Figure 3. ROC curve tween image and text. On applying indicating semantic coour PACL alignment method, the ac- herence of CLIP and curacy significantly increases for both DINO vision encoders. CLIP encoders indicating higher image CLIP encoders outpertext patch level alignment.

form DINO.

More formally, let $\mathcal{D}_{seg} = (\mathbf{x}, \mathbf{y})_{i=1}^{N}$ be the semantic segmentation dataset where $\mathbf{x} \in \mathbb{R}^{C,H,W}$ and $\mathbf{y} \in \mathbb{R}^{H,W}$. We represent CLIP's vision and text encoders as $f_v : \mathbb{R}^{C,H,W} \to \mathbb{R}^{D_v} \text{ and } f_t : \mathbb{R}^l \to \mathbb{R}^{D_t} \text{ respectively.}$ Similarly, let $e_v : \mathbb{R}^{D_v} \to \mathbb{R}^D$ and $e_t : \mathbb{R}^{D_t} \to \mathbb{R}^D$ be the linear embedders to project the vision and text encodings to the joint D dimensional space. Normally, for zero-shot classification, we measure the cosine similarity between the vision and text embeddings: $s(\mathbf{x}, c) = \frac{e_v(f_v(\mathbf{x}))}{|e_v(f_v(\mathbf{x}))|} \cdot \frac{e_t(f_t(c))}{|e_t(f_t(c))|}$ for each class name c and compute the predictive probabil-ity as: $p(c|\mathbf{x}) = \frac{e^{s(\mathbf{x},c)}}{\sum_{c'} e^{s(\mathbf{x},c')}}$. A simple modification to the vision encoder: $\hat{f}_v : \mathbb{R}^{C,H,W} \to \mathbb{R}^{T,D_v}$, where T is the number of tokens or patches, allows us to perform the same classification method on every patch.

In Tab. 1 second column (Pre-Alignment), we show the patch classification accuracy thus obtained for two CLIP models: ViT-B/16 and ViT-L/14. In Fig. 2, first and second rows, we show qualitative samples of alignment on CLIP ViT-B/16, for 4 images of cats from Pascal VOC. With a patch classification accuracy of 52.49% for ViT-B/16 and 27.91% for ViT-L/14, it is clear that the alignment we seek is very poor at the patch level. Surprisingly, note that for ViT-L/14, a model known to provide better image level prediction performance than ViT-B/16, the patch level alignment is significantly worse. Hence, *pre-trained CLIP mod*els cannot be used for open vocabulary segmentation as the CLIP contrastive learning objective does not ensure patch level alignment between image and text modalities.

4. Semantic Coherence in Vision Encoders

Due to the poor patch level alignment between pretrained CLIP image and text encoders, our next question is whether we can train such an alignment in CLIP. This would however require the pre-trained vision encoder to be *sematically coherent*. In other words, semantically similar regions in an image should produce similar patch representations in the vision encoder. This property has been studied before in image self-supervised models like DINO [19]. We use a similar test to quantify semantic coherence of CLIP's vision encoders.

In particular, we collect all patch representations from the vision encoder for each image in Pascal VOC and store the corresponding target classes using the segmentation labels. Let $\hat{f}_v(\mathbf{x_1})_{i,j} \in \mathbb{R}^{D_v}$ and $\hat{f}_v(\mathbf{x_2})_{p,q} \in \mathbb{R}^{D_v}$ be the patch representations obtained at index (i, j) of image $\mathbf{x_1}$ and index (p,q) of image $\mathbf{x_2}$ respectively. We compute the cosine similarity $\left(\frac{\hat{f}_v(\mathbf{x_1})_{i,j}}{|\hat{f}_v(\mathbf{x_1})_{i,j}|} \cdot \frac{\hat{f}_v(\mathbf{x_2})_{p,q}}{|\hat{f}_v(\mathbf{x_2})_{p,q}|}\right)$ between the patch representations and use this as a binary classifier to predict if the two patches have the same target label. Let the segmentation labels for the two patches be $l(\mathbf{x_1})_{i,j}$ and $l(\mathbf{x_2})_{p,q}$ respectively. Since we have labels for each pixel, we decide the label for each patch by majorityvoting. The target value for binary classification is 1 if $l(\mathbf{x_1})_{i,j} = l(\mathbf{x_2})_{p,q}$, else 0. Note that performance on this binary classification task is indicative of semantic coherence, as a good classifier would require patch representations corresponding to same labels to have high cosine similarity and vice-versa.

We present the ROC curve and AUROC scores for CLIP and DINO in Fig. 3. Surprisingly, we find that *CLIP's vision encoders outperform DINO on semantic coherence*¹. This is encouraging as it indicates that we can indeed train a mapping between similar vision tokens and their corresponding text representations. We also present qualitative results in Fig. 4 where we plot the patch level cosine similarity between a chosen patch (marked in yellow X in Fig. 4a) and the remaining patches in the same image as well as a different image having the same class (dog). We do this for CLIP ViT-B/16 in Fig. 4b and Fig. 4c and for DINO ViT-B/16 in Fig. 4d and Fig. 4e. In both cases, CLIP's encoder seems to perform at par or better than DINO. Motivated by these observations, in the next section, we discuss a method to train a patch level alignment between the vision tokens and the

Figure 4. Qualitative results on semantic coherence between CLIP and DINO ViT-B/16. a): we show the original image of a dog class with the patch marker (yellow X near the centre). b, c): we show CLIP vision encoder cosine similarity across all patches for the same and a different image of a dog. d, e): we show the same for DINO. See more examples in Appendix B.1.

CLS text token in CLIP using purely image-text data.

5. Patch Aligned Contrastive Learning (PACL)

In the previous section, we showed that although CLIP lacks a patch level alignment between image and text representations, such an alignment can indeed be trained. However, note that this is a difficult problem as there is no ground-truth text data annotating each patch in an imagetext dataset. Hence, training such an alignment can only be done in a weakly supervised fashion. Inspired from previous work on weakly supervised phrase grounding [18], in this section, we propose a modification on CLIP's contrastive loss, to learn an alignment between the vision patch tokens and the CLS text token.

A modified compatibility function for contrastive loss: Our method is simple in the sense that the only change we make to CLIP's training is in the compatibility function of its contrastive loss. Normally, for an image-text pair (\mathbf{x}, \mathbf{y}) , CLIP computes the CLS vision and text embeddings as $e_v(f_v(\mathbf{x}))$ and $e_t(f_t(\mathbf{y}))$ respectively, where $f_v : \mathbb{R}^{C,H,W} \to \mathbb{R}^{D_v}$, $f_t : \mathbb{R}^L \to \mathbb{R}^{D_t}$ are the vision and text encoders and $e_v : \mathbb{R}^{D_v} \to \mathbb{R}^D$, $e_t : \mathbb{R}^{D_t} \to \mathbb{R}^D$ are the vision and text embedders to project the representations into the same dimensional space. The compatibility function $\phi(\mathbf{x}, \mathbf{y})$ is the cosine similarity between the vision and text CLS embeddings: $\phi(\mathbf{x}, \mathbf{y}) = \left(\frac{e_v(f_v(\mathbf{x}))}{|e_v(f_v(\mathbf{x}))|} \cdot \frac{e_t(f_t(\mathbf{y}))}{|e_t(f_t(\mathbf{y}))|}\right)$. Given this compatibility function, CLIP uses the InfoNCE [38] contrastive loss to learn vision and text representations which are aligned for similar image-text pairs:

$$\mathcal{L}_{\mathbf{x}} = \frac{1}{k} \sum_{i=1}^{k} \left(\frac{e^{\phi(\mathbf{x}_{i}, \mathbf{y}_{i})}}{\sum_{j=1}^{k} e^{\phi(\mathbf{x}_{i}, \mathbf{y}_{j})}} \right)$$

$$\mathcal{L}_{\mathbf{y}} = \frac{1}{k} \sum_{i=1}^{k} \left(\frac{e^{\phi(\mathbf{x}_{i}, \mathbf{y}_{i})}}{\sum_{j=1}^{k} e^{\phi(\mathbf{x}_{j}, \mathbf{y}_{i})}} \right)$$
(1)

with the contrastive loss being $\mathcal{L}_{\text{InfoNCE}} = 1/2(\mathcal{L}_{\mathbf{x}} + \mathcal{L}_{\mathbf{y}})$.

Note that the above loss function produces an alignment between the CLS image and text tokens but as we observed in Section 3, it does not produce the desired alignment at patch level between vision and text encoders. In order to then train this alignment, we make the following changes to CLIP's loss. First, we use the patch tokens instead of

¹CLIP's semantic coherence indicates that CLIP's vision encoders are good candidates for unsupervised segmentation approaches like STEGO [19], but further study of this feature is beyond the scope of this work.

the CLS token from the vision encoder, $\hat{f}_v : \mathbb{R}^{C,H,W} \to \mathbb{R}^{T,D_v}$, where T is the number of tokens or patches. Next, we use a modified vision embedder $\hat{e}_v : \mathbb{R}^{T,D_v} \to \mathbb{R}^{T,D}$ to generate embeddings in the shared D-dimensional space for all patch tokens. We compute the patch level similarity

$$s(\mathbf{x}, \mathbf{y}) = \hat{e}_v(\hat{f}_v(\mathbf{x}))e_t(f_t(\mathbf{y}))$$
(2)

between all vision patch embeddings and the CLS text embedding, where $s(\mathbf{x}, \mathbf{y}) \in \mathbb{R}^T$. We normalize the patch level similarity to the range [0, 1] by applying a softmax function across tokens, $a(\mathbf{x}, \mathbf{y}) = \operatorname{softmax}(s(\mathbf{x}, \mathbf{y}))$. Finally, we take a weighted sum across all vision patch embeddings where the weights of the tokens are obtained from the patch level similarities $a(\mathbf{x}, \mathbf{y})$ as:

$$\hat{v} = \hat{e}_v(\hat{f}_v(\mathbf{x}))^{\mathsf{T}} a(\mathbf{x}, \mathbf{y})$$
(3)

where $\hat{v} \in \mathbb{R}^{D}$. The updated compatibility function $\hat{\phi}(\mathbf{x}, \mathbf{y})$ is then computed as the following dot product:

$$\hat{\phi}(\mathbf{x}, \mathbf{y}) = \left(\frac{\hat{v}}{|\hat{v}|} \cdot \frac{e_t(f_t(\mathbf{y}))}{|e_t(f_t(\mathbf{y}))|}\right).$$
(4)

We use this modified compatibility function with InfoNCE contrastive loss for training and we call this method *Patch Aligned Contrastive Learning*. Fig. 5, shows a diagrammatic representation of the steps involved in computing the compatibility function for an image-text pair.

Grounded in Mutual Information: To understand how our compatibility function $\phi(\mathbf{x}, \mathbf{y})$ works, we go back to the relation of the InfoNCE [38] loss with mutual information (MI). Let $x \in \mathcal{X}$ and $y \in \mathcal{Y}$ be two multivariate random variables with a joint probability function p(x,y). MI between x and y, computed as $\mathbb{I}[x,y] =$ $\mathbb{E}_{(x,y)\sim p(x,y)}\log\left[\frac{p(x,y)}{p(x)p(y)}\right]$, captures the amount of information shared between x and y. However, MI is computationally intractable and hence requires approximations in order to be estimated. The InfoNCE loss $\mathcal{L}_{InfoNCE}(\theta)$ defined using a compatibility function $\phi_{\theta}(x, y)$ with model parameters θ provides such an estimate and is a lower bound on MI as: $\mathbb{I}[x, y] \geq \log(k) - \mathcal{L}_{\text{InfoNCE}}(\theta)$, where k is the batch size in InfoNCE loss with one positive sample and k - 1 negative samples per batch. Hence, minimizing $\mathcal{L}_{InfoNCE}$ maximises the lower bound estimate of MI.

In vanilla CLIP training, the random variables x and y are images \mathbf{x} and texts \mathbf{y} respectively, the compatibility function $\phi_{\theta}(x, y)$ is $\phi(\mathbf{x}, \mathbf{y})$, i.e., the cosine similarity between CLS vision and text token embeddings, and the model parameters are $\theta = \{f_v, e_v, f_t, e_t\}$. Since, we modify the compatibility function $\hat{\phi}(\mathbf{x}, \mathbf{y})$ using a weighted sum over vision tokens, to maximise MI $\mathbb{I}[x, y]$ between image and text, $\mathcal{L}_{\text{InfoNCE}}$ will have to attend to regions of the image which correspond to the text and assign such regions a higher value in $s(\mathbf{x}, \mathbf{y})$. This indicates that $s(\mathbf{x}, \mathbf{y})$ intuitively captures patch level alignment between image and text modalities. To empirically verify this, we conduct the same patch level classification task described in Section 3 where for each patch, we compute the similarity $s(\mathbf{x}, \mathbf{y})$ for all classes and predict the class with the highest similarity. Results are in Tab. 1, third column (Post-Alignment) with qualitative results in Fig. 2, third row. In both cases, we observe a stark improvement in patch level alignment compared to vanilla CLIP using our compatibility function.

It is worth noting here that a similar contrastive learning approach has been used for the problem of weakly supervised phrase grounding in [18]. Their approach learns a mapping between ROI features from an object detector and word representations from a language model using an attention based weakly supervised contrastive learning. Although similar to our approach, they require the use of an object detector to provide ROI features, whereas we use CLIP's vision encoder patch tokens as region features, having shown (see Section 4) that such features indeed are semantically coherent. Furthermore, they also use a contextualised language model to generate negative samples for contrastive loss, whereas our method fits in seamlessly with the contrastive setting in CLIP. Finally, whereas they target weakly supervised phrase grounding, we aim to learn a multi-modal model which is zero-shot transferable to the task of open vocabulary semantic segmentation.

Inference: At inference time, we can compute both image level as well as dense predictions. For image level predictions, similar to CLIP, we simply use our compatibility function $\hat{\phi}(\mathbf{x}, \mathbf{y})$ to compute similarity between an image and text. For semantic segmentation, given an image \mathbf{x} and a set of classnames $Y = {\mathbf{y}_1, ..., \mathbf{y}_C}$, we compute $s(\mathbf{x}, \mathbf{y}_c) \ \forall c \in {1, ..., C}$ as a mask for each class and then use a softmax across classes. In the next section, we provide a detailed set of experiments to show the performance of our approach at both zero-shot semantic segmentation as well as image classification tasks.

6. Experiments & Discussion

6.1. Zero-shot Semantic Segmentation

In the previous section, we described PACL, a multimodal contrastive objective to train an alignment between vision patch embeddings and CLS text embeddings in CLIP. In this section, we evaluate the quality of this alignment through zero-shot transfer to semantic segmentation. We present implementation and training details for PACL, evaluation settings for zero-shot segmentation, and finally, results and a discussion on the same.

Training a small vision embedder: In Section 4, we have shown that CLIP's pre-trained vision encoders \hat{f}_v have a relatively strong semantic coherence. In order to leverage this coherence and the large scale pre-training of CLIP, we

Figure 5. Compatibility function $\phi(\mathbf{x}, \mathbf{y})$ for Patch Aligned Contrastive Learning (PACL). The image encoder \hat{f}_v and embedder \hat{e}_v produce patch level representations for each image whereas the text encoder f_t and embedder e_t produce the CLS representation for a given text. We compute the cosine similarity between the CLS text embedding and the vision patch embeddings and use them as weights to take a weighted sum over vision patch tokens. We use the cosine similarity between the weighted sum and the CLS text token as our compatibility $\hat{\phi}(\mathbf{x}, \mathbf{y})$.

keep the image encoder \hat{f}_v , the text encoder f_t and the text embedder e_t frozen from a pre-trained CLIP model. We only train the vision embedder, i.e., $\theta = {\hat{e}_v}$. Note that the modification of the vision encoder from f_v (outputs the CLS vision token) to \hat{f}_v (outputs the patch tokens) does not require any re-training. For \hat{e}_v , we use a residual block with two linear layers in the main branch and a single linear layer in the residual connection, There is a ReLU non-linearity between the two linear layers (see Appendix A.1). We find this simple architecture to work well for our applications.

Image-text datasets for training: We train our model purely on publicly available image-text datasets. In particular, we use Google Conceptual Captions (GCC) 3M [44], Google Conceptual Captions (GCC) 12M [6] and YFCC-15M, a subset of YFCC-100M [46] provided by CLIP [41], with a total number of approximately 30M training samples. Similar to GroupViT [56], in addition to the text descriptions in the datasets, we extract nouns from these descriptions, and randomly select one of 7 CLIP prompts (like *"itap of a ()."*, see Appendix A.2.2), to form sentences with these nouns. We add these sentences to the text descriptions as well. More details on the datasets can be found in Appendix A.3. Note that *we do not use any segmentation annotations or class-agnostic segmentation masks during training*. Further training details are in Appendix A.2.

Stride trick at inference: Since CLIP ViT-B/16 and ViT-L/14 use either 16×16 or 14×14 patches, the number of tokens generated is much smaller than the number of pixels, which is a problem for fine-grained predictions in segmentation. One workaround is to upscale the image at inference time to a larger size. We however find instead that a change to the stride of the convolutional layer to extract image patches in ViT can provide better fine-grained patches at inference time. In particular, we use a stride of 4×4 at inference time, thereby generating a larger number of overlapping patch tokens, without requiring any change in the model weights. For a given set of text inputs, we find

the alignment between each patch and text embedding. The alignment scores are then interpolated to image dimensions. Finally, a softmax operation across text inputs provides a dense prediction in image dimensions.

Segmentation datasets for evaluation: Similar to recent works [17, 56] on zero-shot semantic segmentation, we use the following datasets for evaluation: **a)** *Pascal VOC* [16] (PV-20): 20 foreground classes with 1449 validation images, **b)** *Pascal Context* [36] (PC-59): 59 classes with 5k validation images, **c)** *COCO Stuff* [4] (CS-171): 171 "thing" or "stuff" classes and 5k validation images, **d)** *ADE20K* [63] (A-150): 150 classes with 2k validation images. Further details on these datasets can be found in Appendix A.3. For all datasets, we report the mean intersection over union (mIoU) [16], the most popular evaluation metric for semantic segmentation.

Comparative Baselines: We compare PACL with some of the most well-known recent methods on zero-shot semantic segmentation. In particular, we use LSeg [28], ViL-Seg [32], GroupViT [56] and OpenSeg [17] as baselines. In addition, we also compare with two relatively older approaches: SPNet [55] and ZS3Net [3]. Note that some of these methods work under relatively relaxed constraints. In particular, SPNet, ZS3Net and LSeg use full segmentation annotations during training and OpenSeg uses classagnostic segmentation masks. Furthermore, unlike us, ViL-Seg, SPNet and ZS3Net evaluate on a small subset of "unseen" classes from Pascal VOC, Pascal Context and COCO Stuff. To our knowledge, GroupViT and ViL-Seg are the only two methods which solely use image-text data for training. We also add a baseline using vanilla CLIP by taking the alignment between the vision patch embeddings and the text CLS embedding from CLIP's pre-trained model.

Results & discussion: In Tab. 2, we report the mIoU for each baseline on the 4 segmentation datasets mentioned above. Note that the numbers shown for SPNet, ZS3Net and ViL-Seg are obtained from the ViL-Seg paper [32] and

		External	Constra	ints		ml	oU	
Method	Encoder (Pretrained?)	Training Set	Annotation	Mask	PV-20 [16]	PC-59 [36]	CS-171 [4]	A-150 [63]
SPNet [55]	ResNet-101 (X)	×	1	×	15.6	4.0	8.7	-
ZS3Net [3]	ResNet-101 (X)	×	1	x	17.7	7.7	9.6	-
LSeg [28]	ViT-L/16 (X)	×	1	×	52.3	-	-	-
OpenSeg [17]	EfficientNet-B7 (X)	COCO [9] + Loc. Narr. [40]	×	1	72.2	48.2	-	28.6
ViL-Seg [32]	ViT-B/16 (X)	GCC12M [6]	×	×	34.4	16.3	16.4	-
GroupViT [56]	ViT-S/16 (X)	GCC12M [6] + YFCC15M [41,46]	×	×	52.3	22.4	24.3	-
CLIP [41]	ViT-B/16 (🗸)	WIT-400M [41]	X	×	8.4	2.3	2.6	1.3
CLIP + PACL (Ours)	ViT-B/16 (✔)	GCC3M [44] + GCC12M [6] + YFCC15M [41,46]	×	x	72.3	50.1	38.8	31.4

Table 2. **Results on zero-shot semantic segmentation** on Pascal VOC (PV-20), Pascal Context (PC-59) and COCO Stuff (CS-171) and ADE20K (A-150) datasets. We provide the encoder architecture, external training dataset (if any) as well as if those methods use segmentation annotations or class-agnostic segmentation masks. Our method (CLIP + PACL) consistently outperforms all previous approaches.

Figure 6. Qualitative results on zero-shot semantic segmentation. The first row denotes the original images, the second row shows the corresponding labels, the third row shows results obtained from a vanilla CLIP ViT-B/16, and the fourth row shows results of our method, PACL trained on a CLIP ViT-B/16 encoder. The first 3 images from the left are from Pascal VOC and the next 3 images are from ADE20K.

the numbers for all other baselines are obtained from their respective papers (cited in the table). In Fig. 6, we show qualitative results of our method (i.e., PACL + CLIP) on PascalVOC and ADE20K images (more in Appendix B.2). With mIoU scores of 72.3, 50.1, 38.8 and 31.4 on Pascal VOC, Pascal Context, COCO Stuff and ADE20K respectively, it is clear that PACL outperforms all other baselines consistently even though it works under a stricter set of assumptions, i.e., it does not use any segmentation annotations and is evaluated on all classes of the segmentation datasets. This is further corroborated from our qualitative results in Fig. 6. It is interesting to note from Fig. 6 that vanilla CLIP mostly seems to identify the correct classes in its predictions, just not the locations of those classes within the image. This relates to the problem of a lack of alignment between the CLS text token and the vision patch tokens (see Fig. 2) and this problem is solved through the introduction of the PACL objective. Since PACL, as an approach, is not tied to any particular encoder, we next test its performance using different pre-trained encoders as well as different datasets on the zero-shot segmentation task.

Ablations on datasets and encoders: We perform an ablation by training PACL on a combination of different image-text training sets and different pre-trained vision encoders. For vision encoders we use CLIP ViT-B/16, CLIP ViT-L/14, DINO [5] ViT-B/16 as well as a Tiny-ViT 5M² model pretrained on ImageNet-22K. For training sets, we use GCC3M for the Tiny-ViT encoder and ablate be-

Dataset	Vision Encoder	Text Encoder	mIoU PV-20
GCC3M	Tiny-ViT 5M	B/16	40.2
	CLIP B/16	B/16	64.1
GCC12M	CLIP L/14	L/14	62.7
	DINO B/16	B/16	55.4
	CLIP B/16	B/16	69.2
GCC12M + YFCC15M	CLIP L/14	L/14	68.4
	DINO B/16	B/16	62.6
	CLIP B/16	B/16	72.3
GCC3M + GCC12M + YFCC15M	CLIP L/14	L/14	71.7
	DINO B/16	B/16	64.8

Table 3. Ablation on zero-shot segmentation across encoder architectures and datasets on Pascal VOC (PV-20). In the Text Encoder column, B/16(L/14) indicates the pre-trained text encoder trained for CLIP ViT-B/16(L/14).

tween GCC12M, (GCC12M + YFCC15M) and (GCC3M + GCC12M + YFCC15M) for all other encoders. We report the mIoU obtained on Pascal VOC from each of the (model, dataset) combinations in Tab. 3.

These results provide two surprising observations. Firstly, PACL seems to generate an alignment even between Tiny-ViT and DINO's pre-trained vision encoders and CLIP's text encoder, although these encoders have been trained independently. With an mIoU of 55.4, even the worst performing DINO baseline outperforms all competitive zero-shot segmentation baselines in Tab. 2 except OpenSeg. Secondly, PACL trained using CLIP's ViT-B/16 consistently outperforms ViT-L/14 even though ViT-L/14 is known to be a clear winner in terms of image level zeroshot tasks. In fact, there is a trend in performance where CLIP ViT-B/16 outperforms CLIP ViT-L/14 which outperforms DINO ViT-B/16. This is also noticeable in Fig. 7 where CLIP encoders generate relatively better segmentation masks than DINO. This observation is strongly reminiscent of the one in Section 4 and Fig. 3, where we note that semantic coherence is strongest in CLIP ViT-B/16 followed by CLIP ViT-L/14 and finally by DINO ViT-B/16. These empirical observations suggest that PACL is a general contrastive learning method which can be used to train a patch level alignment and works independent of vision and text encoders as long as the vision encoders exhibit the property of semantic coherence. Indeed, semantic coherence seems to be the most important factor behind the success of PACL.

ViT-B/16 vs ViT-L/14: To investigate the performance anomaly between ViT-B/16 and ViT-L/14, we train PACL with ViT-B/16 and ViT-L/14 encoders along with their respective text encoders end-to-end from scratch on GCC12M + YFCC15M. We train both models for a total of 30 epochs. Additionally, we also perform end-to-end fine-tuning us-

²github.com/microsoft/Cream/tree/main/TinyViT

(a) GT (b) DINO B/16 (c) CLIP L/14 (d) CLIP B/16 Figure 7. Qualitative results comparing segmentation of different encoders using PACL. We use 3 images from PASCAL VOC val set and show their segmentations for DINO ViT-B/16, CLIP ViT-L/14 and CLIP ViT-B/16.

	mIoU PV-20		
CLIP Encoder	Scratch	Fine-tuned	
ViT-B/16	64.5	69.8	
ViT-L/14	68.7	70.1	

Table 4. **Ablation on CLIP ViT-B/16 vs ViT-L/14** trained endto-end from scratch or fine-tuned using PACL loss on GCC12M + YFCC15M. ViT-L/14 outperforms ViT-B/16.

Table 5. Ablation with linear vs non-linear embedder.

ing CLIP's pre-trained encoders for 10 epochs on the same dataset (GCC12M + YFCC15M). We report the zero-shot mIoU on Pascal VOC in Tab. 4. Clearly, when the features of the vision encoder are modified through training, ViT-L/14 outperforms ViT-B/16. Furthermore, comparing with the results from Tab. 3, we see that end-to-end finetuning provides slight improvements over training on top of a frozen CLIP encoder. This leads us to conclude that CLIP's pre-trained ViT-L/14 encoder underperforms due to CLIP's contrastive loss which uses only the CLS token and does not require semantic coherence to be explicitly incorporated into the patch tokens. When trained end-to-end on PACL, we find ViT-L/14 to be the superior model.

Linear vs non-linear vision embedder: Finally, to study the importance of a non-linear vision embedder, we train a linear and a non-linear (Fig. 9) embedder on top of CLIP ViT-B/16 using PACL loss. We train on GCC3M for 10 epochs and report the zero-shot mIoU on Pascal VOC in Tab. 5. Evidently, the performance of the linear embedder is inferior indicating that non-linearities in the embedder are important for PACL.

6.2. Image Classification

In Section 5, we mention that the modified compatibility function of PACL can be used to make image level predictions, similar to CLIP. In this section, we test our PACL models on zero-shot image classification.

Zero-shot image classification results: We apply PACL trained using CLIP ViT-B/16 and ViT-L/14 encoders on (GCC3M + GCC12M + YFCC15M) to zero-shot image

Figure 8. Zero-shot image classification performance of PACL + CLIP vs vanilla CLIP on 12 datasets. PACL + CLIP is competitive with or outperforms CLIP on most datasets.

classification on 12 different datasets including ImageNet [14], 4 datasets considered to be standard distribution shifts on ImageNet, ImageNet-A [21], ImageNet-R [20], ImageNet-Sketch [48] and ImageNet-V2 [42] as well as 7 other standard classification datasets, detailed in Appendix A.3. We report the difference in classification accuracy between PACL + CLIP and vanilla CLIP for all the datasets in Fig. 8 (all classification accuracies in Appendix B.3). PACL + CLIP outperforms vanilla CLIP on 10 and 7 out of the 12 classification datasets for ViT-B/16 and ViT-L/14 encoders respectively. Also note that except on ImageNet-R for ViT-L/14, PACL consistently outperforms vanilla CLIP on ImageNet and its distribution shifts. This observation is encouraging as it provides evidence in favour of our approach being applicable for image level applications in addition to segmentation. In Appendix C, we discuss possible avenues for future research.

7. Conclusion

In this work, we explored *Patch Aligned Contrastive Learning* (PACL), a modified compatibility function for image-text contrastive loss which learns an alignment between patch tokens from a ViT vision encoder and the CLS token from a text encoder. We show that such an alignment allows a model to identify regions of an image corresponding to a given text input, thereby enabling a seamless zeroshot transfer to semantic segmentation, without requiring segmentation annotations or masks. On 4 different segmentation datasets, we beat previous approaches on zero-shot open vocabulary segmentation, including ones which use expensive segmentation annotations or masks. Finally, we show that PACL can also be used to make image level predictions and provides a general improvement in accuracy across 12 different image classification datasets.

Acknowledgements The majority of this work was done in Meta AI. The Oxford authors are partially supported by the UKRI grant: Turing AI Fellowship EP/W002981/1 and EPSRC/MURI grant: EP/N019474/1. The Oxford authors would also like to thank the Royal Academy of Engineering and FiveAI. Meta AI authors are neither supported by the UKRI grants nor have any relationships whatsoever to the grant.

References

- [1] Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra, C Lawrence Zitnick, and Devi Parikh. Vqa: Visual question answering. In *Proceedings of the IEEE international conference on computer vision*, pages 2425– 2433, 2015. 3
- [2] Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101 – mining discriminative components with random forests. In *European Conference on Computer Vision*, 2014.
 13, 14
- [3] Maxime Bucher, Tuan-Hung Vu, Matthieu Cord, and Patrick Pérez. Zero-shot semantic segmentation. Advances in Neural Information Processing Systems, 32, 2019. 6, 7
- [4] Holger Caesar, Jasper Uijlings, and Vittorio Ferrari. Cocostuff: Thing and stuff classes in context. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 1209–1218, 2018. 2, 6, 7, 13
- [5] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerging properties in self-supervised vision transformers. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 9650–9660, 2021. 1, 2, 7
- [6] Soravit Changpinyo, Piyush Sharma, Nan Ding, and Radu Soricut. Conceptual 12M: Pushing web-scale image-text pre-training to recognize long-tail visual concepts. In *CVPR*, 2021. 6, 7
- [7] Feilong Chen, Duzhen Zhang, Minglun Han, Xiuyi Chen, Jing Shi, Shuang Xu, and Bo Xu. Vlp: A survey on visionlanguage pre-training. arXiv preprint arXiv:2202.09061, 2022. 3
- [8] Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam. Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587, 2017. 2
- [9] Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakrishna Vedantam, Saurabh Gupta, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco captions: Data collection and evaluation server. arXiv preprint arXiv:1504.00325, 2015. 7
- [10] Zhe Chen, Yuchen Duan, Wenhai Wang, Junjun He, Tong Lu, Jifeng Dai, and Yu Qiao. Vision transformer adapter for dense predictions. *arXiv preprint arXiv:2205.08534*, 2022.
- [11] Jang Hyun Cho, Utkarsh Mall, Kavita Bala, and Bharath Hariharan. Picie: Unsupervised semantic segmentation using invariance and equivariance in clustering. In *Proceedings* of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 16794–16804, 2021. 1, 2
- [12] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic urban scene understanding. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 3213–3223, 2016. 2
- [13] Zihang Dai, Hanxiao Liu, Quoc V Le, and Mingxing Tan. Coatnet: Marrying convolution and attention for all data sizes. Advances in Neural Information Processing Systems, 34:3965–3977, 2021. 1

- [14] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition, pages 248–255. Ieee, 2009. 8, 13, 14
- [15] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020. 2
- [16] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The pascal visual object classes (voc) challenge. *International Journal of Computer Vision*, 88(2):303– 338, June 2010. 2, 3, 6, 7, 13
- [17] Golnaz Ghiasi, Xiuye Gu, Yin Cui, and Tsung-Yi Lin. Open-vocabulary image segmentation. arXiv preprint arXiv:2112.12143, 2021. 2, 3, 6, 7
- [18] Tanmay Gupta, Arash Vahdat, Gal Chechik, Xiaodong Yang, Jan Kautz, and Derek Hoiem. Contrastive learning for weakly supervised phrase grounding. In *European Conference on Computer Vision*, pages 752–768. Springer, 2020. 2, 4, 5
- [19] Mark Hamilton, Zhoutong Zhang, Bharath Hariharan, Noah Snavely, and William T Freeman. Unsupervised semantic segmentation by distilling feature correspondences. arXiv preprint arXiv:2203.08414, 2022. 1, 2, 4
- [20] Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, et al. The many faces of robustness: A critical analysis of out-of-distribution generalization. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 8340–8349, 2021. 8, 13, 14
- [21] Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song. Natural adversarial examples. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 15262–15271, 2021. 8, 13, 14
- [22] Jyh-Jing Hwang, Stella X Yu, Jianbo Shi, Maxwell D Collins, Tien-Ju Yang, Xiao Zhang, and Liang-Chieh Chen. Segsort: Segmentation by discriminative sorting of segments. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 7334–7344, 2019. 2
- [23] Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-Hsuan Sung, Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning with noisy text supervision. In *International Conference on Machine Learning*, pages 4904–4916. PMLR, 2021. 1, 2, 3
- [24] Aishwarya Kamath, Mannat Singh, Yann LeCun, Gabriel Synnaeve, Ishan Misra, and Nicolas Carion. Mdetrmodulated detection for end-to-end multi-modal understanding. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 1780–1790, 2021. 3
- [25] Wonjae Kim, Bokyung Son, and Ildoo Kim. Vilt: Visionand-language transformer without convolution or region supervision. In *International Conference on Machine Learning*, pages 5583–5594. PMLR, 2021. 2, 15

- [26] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained categorization. In 4th International IEEE Workshop on 3D Representation and Recognition (3dRR-13), Sydney, Australia, 2013. 13, 14
- [27] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009. 13, 14
- [28] Boyi Li, Kilian Q Weinberger, Serge Belongie, Vladlen Koltun, and René Ranftl. Language-driven semantic segmentation. *arXiv preprint arXiv:2201.03546*, 2022. 2, 3, 6,7
- [29] Feng Li, Hao Zhang, Shilong Liu, Lei Zhang, Lionel M Ni, Heung-Yeung Shum, et al. Mask dino: Towards a unified transformer-based framework for object detection and segmentation. arXiv preprint arXiv:2206.02777, 2022. 1
- [30] Fei-Fei Li, Marco Andreeto, Marc'Aurelio Ranzato, and Pietro Perona. Caltech 101, 2022. 13, 14
- [31] Junnan Li, Ramprasaath Selvaraju, Akhilesh Gotmare, Shafiq Joty, Caiming Xiong, and Steven Chu Hong Hoi. Align before fuse: Vision and language representation learning with momentum distillation. Advances in neural information processing systems, 34:9694–9705, 2021. 15
- [32] Quande Liu, Youpeng Wen, Jianhua Han, Chunjing Xu, Hang Xu, and Xiaodan Liang. Open-world semantic segmentation via contrasting and clustering vision-language embedding. In *European Conference on Computer Vision*, pages 275–292. Springer, 2022. 2, 3, 6, 7
- [33] Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, et al. Swin transformer v2: Scaling up capacity and resolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 12009–12019, 2022. 1
- [34] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic segmentation. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, June 2015. 2
- [35] Luke Melas-Kyriazi, Christian Rupprecht, Iro Laina, and Andrea Vedaldi. Deep spectral methods: A surprisingly strong baseline for unsupervised semantic segmentation and localization. In *Proceedings of the IEEE/CVF Conference* on Computer Vision and Pattern Recognition, pages 8364– 8375, 2022. 2
- [36] Roozbeh Mottaghi, Xianjie Chen, Xiaobai Liu, Nam-Gyu Cho, Seong-Whan Lee, Sanja Fidler, Raquel Urtasun, and Alan Yuille. The role of context for object detection and semantic segmentation in the wild. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 2014. 2, 6, 7, 13
- [37] Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number of classes. In *Indian Conference on Computer Vision, Graphics and Image Processing*, Dec 2008. 13, 14
- [38] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive coding. arXiv preprint arXiv:1807.03748, 2018. 4, 5
- [39] Omkar M. Parkhi, Andrea Vedaldi, Andrew Zisserman, and C. V. Jawahar. Cats and dogs. In *IEEE Conference on Computer Vision and Pattern Recognition*, 2012. 13, 14

- [40] Jordi Pont-Tuset, Jasper Uijlings, Soravit Changpinyo, Radu Soricut, and Vittorio Ferrari. Connecting vision and language with localized narratives. In ECCV, 2020. 7
- [41] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural language supervision. In *International Conference on Machine Learning*, pages 8748–8763. PMLR, 2021. 1, 2, 3, 6, 7, 12, 13
- [42] Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet classifiers generalize to imagenet? In *International Conference on Machine Learning*, pages 5389–5400. PMLR, 2019. 8, 13, 14
- [43] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. Unet: Convolutional networks for biomedical image segmentation. In *International Conference on Medical image computing and computer-assisted intervention*, pages 234–241. Springer, 2015. 2
- [44] Piyush Sharma, Nan Ding, Sebastian Goodman, and Radu Soricut. Conceptual captions: A cleaned, hypernymed, image alt-text dataset for automatic image captioning. In *Proceedings of ACL*, 2018. 6, 7
- [45] Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela. Flava: A foundational language and vision alignment model. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 15638–15650, 2022. 2, 15
- [46] Bart Thomee, David A Shamma, Gerald Friedland, Benjamin Elizalde, Karl Ni, Douglas Poland, Damian Borth, and Li-Jia Li. Yfcc100m: The new data in multimedia research. *Communications of the ACM*, 59(2):64–73, 2016. 6, 7, 13
- [47] Wouter Van Gansbeke, Simon Vandenhende, Stamatios Georgoulis, and Luc Van Gool. Unsupervised semantic segmentation by contrasting object mask proposals. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 10052–10062, 2021. 2
- [48] Haohan Wang, Songwei Ge, Zachary Lipton, and Eric P Xing. Learning robust global representations by penalizing local predictive power. In Advances in Neural Information Processing Systems, pages 10506–10518, 2019. 8, 13, 14
- [49] Jingdong Wang, Ke Sun, Tianheng Cheng, Borui Jiang, Chaorui Deng, Yang Zhao, Dong Liu, Yadong Mu, Mingkui Tan, Xinggang Wang, et al. Deep high-resolution representation learning for visual recognition. *IEEE transactions* on pattern analysis and machine intelligence, 43(10):3349– 3364, 2020. 2
- [50] Kaiye Wang, Qiyue Yin, Wei Wang, Shu Wu, and Liang Wang. A comprehensive survey on cross-modal retrieval. arXiv preprint arXiv:1607.06215, 2016. 3, 14
- [51] Wenhui Wang, Hangbo Bao, Li Dong, Johan Bjorck, Zhiliang Peng, Qiang Liu, Kriti Aggarwal, Owais Khan Mohammed, Saksham Singhal, Subhojit Som, et al. Image as a foreign language: Beit pretraining for all vision and visionlanguage tasks. arXiv preprint arXiv:2208.10442, 2022. 1
- [52] Yangtao Wang, Xi Shen, Yuan Yuan, Yuming Du, Maomao Li, Shell Xu Hu, James L Crowley, and Dominique Vaufreydaz. Tokencut: Segmenting objects in images and videos

with self-supervised transformer and normalized cut. *arXiv* preprint arXiv:2209.00383, 2022. 2

- [53] Yixuan Wei, Han Hu, Zhenda Xie, Zheng Zhang, Yue Cao, Jianmin Bao, Dong Chen, and Baining Guo. Contrastive learning rivals masked image modeling in fine-tuning via feature distillation. *arXiv preprint arXiv:2205.14141*, 2022.
- [54] Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes, Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al. Model soups: averaging weights of multiple fine-tuned models improves accuracy without increasing inference time. In *International Conference on Machine Learning*, pages 23965–23998. PMLR, 2022. 1
- [55] Yongqin Xian, Subhabrata Choudhury, Yang He, Bernt Schiele, and Zeynep Akata. Semantic projection network for zero-and few-label semantic segmentation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 8256–8265, 2019. 6, 7
- [56] Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, and Xiaolong Wang. Groupvit: Semantic segmentation emerges from text supervision. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 18134–18144, 2022. 2, 3, 6, 7
- [57] Mengde Xu, Zheng Zhang, Fangyun Wei, Yutong Lin, Yue Cao, Han Hu, and Xiang Bai. A simple baseline for zeroshot semantic segmentation with pre-trained vision-language model. arXiv preprint arXiv:2112.14757, 2021. 2
- [58] Jiahui Yu, Zirui Wang, Vijay Vasudevan, Legg Yeung, Mojtaba Seyedhosseini, and Yonghui Wu. Coca: Contrastive captioners are image-text foundation models. *arXiv preprint arXiv:2205.01917*, 2022. 1, 2, 3
- [59] Lu Yuan, Dongdong Chen, Yi-Ling Chen, Noel Codella, Xiyang Dai, Jianfeng Gao, Houdong Hu, Xuedong Huang, Boxin Li, Chunyuan Li, et al. Florence: A new foundation model for computer vision. arXiv preprint arXiv:2111.11432, 2021. 1, 2
- [60] Hao Zhang, Feng Li, Shilong Liu, Lei Zhang, Hang Su, Jun Zhu, Lionel M Ni, and Heung-Yeung Shum. Dino: Detr with improved denoising anchor boxes for end-to-end object detection. arXiv preprint arXiv:2203.03605, 2022. 1
- [61] Haotian Zhang, Pengchuan Zhang, Xiaowei Hu, Yen-Chun Chen, Liunian Harold Li, Xiyang Dai, Lijuan Wang, Lu Yuan, Jenq-Neng Hwang, and Jianfeng Gao. Glipv2: Unifying localization and vision-language understanding. arXiv preprint arXiv:2206.05836, 2022. 1, 3
- [62] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya Jia. Pyramid scene parsing network. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 2881–2890, 2017. 2
- [63] Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and Antonio Torralba. Scene parsing through ade20k dataset. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 633–641, 2017. 2, 6, 7, 13