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Abstract

We propose a method for inferring human attributes
(such as gender, hair style, clothes style, expression, ac-
tion) from images of people under large variation of view-
point, pose, appearance, articulation and occlusion. Con-
volutional Neural Nets (CNN) have been shown to perform
very well on large scale object recognition problems [14].
In the context of attribute classification, however, the sig-
nal is often subtle and it may cover only a small part of
the image, while the image is dominated by the effects of
pose and viewpoint. Discounting for pose variation would
require training on very large labeled datasets which are
not presently available. Part-based models, such as pose-
lets [4] and DPM [12] have been shown to perform well for
this problem but they are limited by flat low-level features.
We propose a new method which combines part-based mod-
els and deep learning by training pose-normalized CNNs.
We show substantial improvement vs. state-of-the-art meth-
ods on challenging attribute classification tasks in uncon-
strained settings. Experiments confirm that our method out-
performs both the best part-based methods on this problem
and conventional CNNs trained on the full bounding box of
the person.

1. Introduction
Recognizing human attributes, such as gender, age, hair

style, and clothing style, has many applications, such as
facial verification, visual search and tagging suggestions.
This is, however, a challenging task when dealing with
non-frontal facing images, low image quality, occlusion,
and pose variations. The signal associated with some at-
tributes is subtle and the image is dominated by the effects
of pose and viewpoint. For example, consider the problem
of detecting whether a person wears glasses. The signal
(glasses wireframe) is weak at the scale of the full person
and the appearance varies significantly with the head pose,
frame design and occlusion by the hair. Therefore, localiz-
ing object parts and establishing their correspondences with

model parts can be key to accurately predicting the under-
lying attributes.

Deep learning methods, and in particular convolutional
nets [20], have achieved very good performance on several
tasks, from generic object recognition [14] to pedestrian de-
tection [25] and image denoising [6]. Moreover, Donahue
et al. [8] show that features extracted from the deep con-
volutional network trained on large datasets can benefit re-
lated tasks because they provide good generic visual fea-
tures. However, as we report below, they may underper-
form compared to conventional methods which exploit ex-
plicit pose or part-based normalization. We conjecture that
available training data, even ImageNet-scale, is presently
insufficient for learning pose normalization in a CNN, and
propose a new class of deep architectures which explicitly
incorporate such representations. We combine a part-based
representation with convolutional nets in order to obtain the
benefit of both approaches. By decomposing the input im-
age into parts that are pose-specific we make the subsequent
training of convolutional nets drastically easier, and there-
fore, we can learn very powerful pose-normalized features
from relatively small datasets.

Part-based methods have gained significant recent atten-
tion as a method to deal with pose variation and are the
state-of-the-art method for attribute prediction today. For
example, spatial pyramid matching [18] incorporates ge-
ometric correspondence and spatial correlation for object
recognition and scene classification. The DPM model [12]
uses a mixture of components with root filter and part fil-
ters capturing viewpoint and pose variations. Zhang et al.
proposed deformable part descriptors [27], using DPM part
boxes as the building block for pose-normalized representa-
tions for fine-grained categorization task. Poselets [5, 3] are
part detectors trained on positive examples clustered using
keypoint annotations; they capture a salient pattern at a spe-
cific viewpoint and pose. Several approaches [11, 26] have
used poselets as a part localization scheme for fine-grained
categorization tasks which are related to attribute predic-
tion. Although part-based methods have been successful on
several tasks, they have been limited by the choice of the
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Figure 1: Overview of Pose Aligned Networks for Deep Attribute modeling (PANDA). One convolutional neural net
is trained on semantic part patches for each poselet and then the activations of all nets are concatenated to obtain a pose-
normalized deep representation. The final attributes are predicted by linear SVM classifier using the pose-normalized repre-
sentations.

low-level features applied to the image patches.
We propose the PANDA model, Pose Alignment Net-

works for Deep Attribute modeling, which augments deep
convolutional networks to have input layers based on se-
mantically aligned part patches. Our model learns features
that are specific to a certain part under a certain pose. We
then combine the features produced by many such networks
and construct a pose-normalized deep representation. In
this work, we use poselets, but the method can also be gen-
eralized to other part-based models, such as DPM [12]. We
demonstrate the effectiveness of PANDA on attribute classi-
fication problems and present state-of-the-art experimental
results on three datasets, a large-scale attribute dataset from
the web, the Berkeley Attributes of People Dataset [4] and
the Labeled Faces in the Wild dataset [15].

2. Related work
2.1. Attribute classification

Attributes are used as an intermediate representation for
knowledge transfer in [17, 10] on object recognition tasks.
By representing the image as a list of human selected at-
tributes enables it to recognize unseen objects with few or
zero examples. Other related work on attributes includes
that by Parikh et al. [22] exploring the relative strength of at-
tributes by learning a rank function for each attribute, which
can be applied to zero-shot learning as well as generat-
ing richer textual descriptions. There are also some related
work in automatic attribute discovery. Berg et al. [1] pro-

posed automatic attribute vocabularies discovery by mining
unlabeled text and image data sampled from the web. Duan
et al. [9] proposed an interactive crowd-sourcing method to
discover both localized and discriminative attributes to dif-
ferentiate bird species.

In [15, 16], facial attributes such as gender, mouth shape,
facial expression, are learned for face verification and im-
age search tasks. Some of the attributes used by them are
similar to what we evaluate in this work. However, the dif-
ference is that all of their attributes are about human faces
and most of images in their dataset are just frontal face sub-
jects while our dataset is much more challenging in terms
of image quality and pose variations.

A very closely related work on attribute prediction is
Bourdev et al. [4], which is a three-layer feed forward clas-
sification system and the first layer predicts each attribute
value for each poselet type. All the predicted scores of
first layer are combined as a second layer attribute clas-
sifier and the correlation between attributes are leveraged
in the third layer. Our method is also built on poselets,
from which the part correspondence is obtained to gener-
ate a pose-normalized representation.

2.2. Deep learning

The most popular deep learning method for vision,
namely the convolutional network, has been pioneered by
LeCun and collaborators [20] who initially applied it to
OCR [21] and later to generic object recognition tasks [13].



As more labeled data and computational power has be-
come recently available, convolutional nets have become
the most accurate method for generic object category clas-
sification [14] and pedestrian detection [25].

Although very successful when provided very large la-
beled datasets, convolutional nets usually generalize poorly
on smaller dataset because they require the estimation of
millions of parameters. This issue has been addressed
by using unsupervised learning methods leveraging large
amounts of unlabeled data [23, 13, 19]. In this work, we
take instead a different perspective: we make the learning
task easier by providing the network with pose-normalized
inputs and we also train on a related task using a larger
dataset.

While there has already been some work on using deep
learning methods for attribute prediction [7], in this work
we explore many more ways to predict attributes, we in-
corporate the use of poselets in the deep learning frame-
work and we perform a more extensive empirical validation
which compares against conventional baselines and deep
CNNs evaluated on the whole person region.

3. Pose Aligned Networks for Deep Attribute
modeling (PANDA)

We explore part-based models, specifically poselets, and
deep learning to obtain pose-normalized representation for
attribute classification tasks. Our goal is to use poselets for
part localization and incorporate these normalized parts into
deep convolutional nets in order to extract pose-normalized
representations. Towards this goal, we leverage both the
power of convolutional nets for learning discriminative fea-
tures from data and the ability of poselets to simplify the
learning task by decomposing the objects into their canoni-
cal poses. We develop Pose Aligned Networks for Deep At-
tribute modeling (PANDA), which incorporates part-based
and whole-person deep representations.

While convolutional nets have been successfully applied
to large scale object recognition tasks, they do not general-
ize well when trained on small datasets. In this work, we
propose a part-based deep convolutional neural nets, using
poselets based part model (but DPM could also be used).
Starting from well-aligned poselet patches, a deep net is
trained on patches from each poselet yielding highly local-
ized and discriminative feature representations.

Specifically, we start from aligned poselet patches and
resize each patch to 64x64 pixels and some example pose-
let patches are shown in Figure 3. The overall convolutional
net architecture is shown in Figure 2. First, we randomly
jitter the image and flip it horizontally with probably 0.5 in
order to improve generalization. The network consists of
four convolutional, max pooling, local response normaliza-
tion stages, then followed by a fully connected layer with
576 hidden units. After that, the network branches out one

poselet 1

poselet 16

poselet 79

Figure 3: Poselet Input Patches. For each poselet, we
use the detected patches to train a convolution neural net.
Here are some examples of input poselet patches and we are
showing poselet patches with high scores for poselet 1,16
and 79.

fully connected network with 128 hidden units for each at-
tribute and each of the branch outputs a binary classifier of
the attribute. The last two layers are split to let the network
develop customized features for each attribute (e.g., detect-
ing whether a person wears a “dress” or “sunglasses” pre-
sumably reuqires different features) while the bottom layers
are shared to a) reduce the number of parameters and b) to
leverage common low-level structure.

The whole network is trained jointly by standard back-
propagation of the error [24] and stochastic gradient de-
scent [2] using as a loss function the sum of the log-losses
of each attribute for each training sample. The details of
the layers are given in Figure 2, further implementation de-
tails can be found in [14]. To deal with noise and inaccurate
poselet detections, we train on patches with high poselet
detection scores and then we gradually add more low confi-
dence patches.

Different parts of the body may have different signals for
each of the attributes and sometimes signals coming from
one part cannot infer certain attributes accurately. For ex-
ample, deep net trained on person leg patches contains little
information about whether the person wears a hat. There-
fore, we first use deep convolutional nets to generate dis-
criminative image representations for each part separately
and then we combine these representations for the final
classification. Specifically, we extract the activations from
fc attr layer in Figure 2, which is 576 dimensional, for the
CNN at each poselet, and concatenate the activations of all
poselets together into 576*150 dimensional feature. If a
poselet does not activate for the image, we simply leave the
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Figure 2: Part-based Convolutional Neural Nets. For each poselet, one convolutional neural net is trained on patches
resized 64x64. The network consists of 4 stages of convolution/pooling/normalization and followed by a fully connected
layer. Then, it branches out one fully connected layer with 128 hidden units for each attribute. We concatenate the activation
from fc attr from each poselet to obtain the pose-normalized representation. The details of filter size, number of filters and
stride we used are depicted above.

feature representation to zero.
The part-based deep representation mentioned above

leverages both the discriminative deep convonvolutional
features and part correpondence. However, poselet detected
parts may not always cover the whole image region and in
some degenerate cases, images may have few poselets de-
tected. To deal with that, we also incorporate a deep net-
work covering the whole-person bounding box region as in-
put to our final pose-normalized representation.

Based on our experiments, we find a more complex net
is needed for the whole-person region than for the part re-
gions. We extract deep convolutional features from the
model trained on Imagenet [14] using the open source pack-
age provided by [8] as our deep representation on whole
image patch.

As shown in Figure 1, we incorporate both part-based
deep representation and deep representation on whole im-
age patch in our model to obtain the deep pose-normalized
representation. A linear SVM classifier is trained using the
pose-normalized representation for each of the attribute to
get the final prediction.

4. Datasets
4.1. The Berkeley Human Attributes Dataset

We tested our method on the Berkeley Human Attributes
Dataset [4]. This dataset consists of 4013 training, and 4022
test images collected from PASCAL and H3D datasets. The
dataset is challenging as it includes people with wide vari-
ation in pose, viewpoint and occlusion. About 60% of the
photos have both eyes visible, so many existing attributes
methods that work on frontal faces will not do well on this
dataset.

4.2. Attributes 25K Dataset

Unfortunately the training portion of the Berkeley
dataset is not large enough for training our deep-net models
(they severely overfit when trained just on these images).
We collected an additional dataset from the web of 24963

Figure 4: Statisitcs of the number of groundtruth labels on
Attribute 25k Dataset. For each attribute, green is the num-
ber of positive labels, red is the number of negative labels
and yellow is the number of uncertain labels.

people split into 8737 training, 8737 validation and 7489
test examples. We made sure the images do not intersect
those in the Berkeley dataset. The statistics of the images
are similar, with large variation in viewpoint, pose and oc-
clusions.

We train on our large training set and report results on
both the corresponding test set and the Berkeley Attributes
test set. We chose to use a subset of the categories from the
Berkeley dataset and add a few additional categories. This
will allow us to explore the transfer-learning ability of our
system.

Not every attribute can be inferred from every image. For
example, if the head of the person is not visible, we cannot
enter a label for the ”wears hat” category. The statistics of
ground truth labels are shown on Figure 4.

5. Results

In this section, we will present a comparative perfor-
mance evaluation of our proposed methods.



5.1. Results on the Berkeley Attributes of People
Dataset

On Table 1 we show the results on applying our sys-
tem on the publicly available Berkeley Attributes of Peo-
ple dataset. Poselets and DPD rows show the results on
that dataset as reported by [4] and [27]. For our method,
PANDA, we use Attributes25K dataset to train the poselet-
level CNNs of our system, and we used the Berkeley dataset
validation examples to train the SVM.

As the table shows, our system outperforms all the prior
methods across most attributes. In the case of t-shirt, [4]
performs slightly better, perhaps due to the fact that they
use skin-tone channel and part masks. It should be noted
that our method is conceptually very simple: We feed the
raw RGB pixels to each poselet CNN, then we concate-
nate the features extracted from each CNN and train a lin-
ear SVM classifier. In contrast, [4] uses a combination of
HOG features, color histogram features, skin channels, and
part-dependent soft masks and combines the results using
context by training a polynomial SVM. [27] use gradient,
LBP, RGB and normalized RGB combined in Spatial Pyra-
mid Match Kernel.

Note also that the attributes t-shirt, shorts, jeans and
long pants are not present in the Attributes25K dataset. In
Figure 5, we show the attribute prediction results returned
by PANDA by generating queries of several attributes. To
search for person images wearing both hat and glasses, we
return the images with the largest cumulative score for those
attributes.

In Figure 6, we show the top failure cases for wear tshirts
and wear long sleeves on the test dataset. In the case of
wearing tshirt, the top failure cases are picking the sleeve-
less, which look very similar to tshirts. And for the case of
wearing long sleeves, some of failures are due to the occlu-
sion of the arms and presence of jacket.

5.2. Results on the Attributes25K Dataset

Table 2 shows results on the Attributes25K-test Dataset.
Poselets150. shows the performance of our implemen-

tation of the three-layer feed-forward network proposed by
[4]. Instead of the 1200 poselets in that paper we used the
150 publicly released poselets, and instead of multiple as-
pect ratios we use 64x64 patches. Our system underper-
forms [4] and on the Berkeley Attributes of People dataset
yields mean AP of 60.6 vs 65.21, but it is faster and simpler
and we have adopted the same setup for our CNN-based
poselets. This allows us to make more meaningful compar-
isons between the two methods.

DPD and DeCAF We used the publicly available imple-
mentations of [27] based on deformable part models and [8]

1see supplementary material for more

based on CNN trained on ImageNet. The results in this ta-
ble confirm that our method performs very well.

5.3. Component Evaluation

We now explore the performance of individual compo-
nents of our system as shown on Table 3 using the Berkeley
dataset. Our goal is to get insights into the importance of
using deep learning and the importance of using parts.

How well does a conventional deep learning classifier
perform? We first explore a simple model of feeding the
raw RGB image of the person into a deep network. To help
with rough alignment and get signal from two resolutions
we split the images into four 64x64 patches – one from the
top, center, and bottom part of the person’s bounds, and one
from the full bounding box at half the resolution.

We resize each image to 64x128 pixels and crop it into
three overlapping 64x64 squares (top, middle and bottom).
We also resize the input image to 64x64 pixels to provide
the network with information about the whole image at a
coarser scale. In total we have 4 concatenated 64x64 square
color images as input (12 channels). We train a CNN on
this 12x64x64 input on the full Attributes-25K dataset. The
structure we used is similar to the CNN in Figure 2 and
it consists of two convolution/normalization/pooling stages,
followed by a fully connected layer with 512 hidden units
followed by nine columns, each composed of one hidden
layer with 128 hidden units. Each of the 9 branches outputs
a single value which is a binary classifier of the attribute.
We then use the CNN as a feature extractor on the valida-
tion set by using the features produced by the final fully
connected layer. We train a logistic regression using these
features and report its performance on the ICCV test set as
DL-Pure on Table 3.

We also show the results of our second baseline – De-
CAF, which is the global component of our system. Even
though it is a convolutional neural net originally trained on
a completely different problem (ImageNet classification),
it has been exposed to millions of images and it outper-
forms DL-Pure.

How important is deep learning at the part level?. By
comparing the results of Poselets150L2 and DLPoselets we
can see the effect of deep learning at the part level. Both
methods use the same poselets, train poselet-level attribute
classifiers and combine them at the person level with a lin-
ear SVM. The only difference is that Poselets150L2 uses
the features as described in [4] (HOG features, color his-
togram, skin tone and part masks) whereas DLPoselets uses
features trained with a convolutional neural net applied to
the poselet image patch. As our table shows, deep-net pose-
lets result in increased performance.

PANDA shows the results of our proposed system which
combines DeCAF and DLPoselets. As Table shows, our
part and holistic classifiers use complementary features and



(a) Query: Women with long hair who wear glasses.

(b) Query: people who wear hats and glasses.

(c) Query: men with short pants and glasses.

Figure 5: Example of PANDA queries. Top results returned by our proposed method PANDA on Berkeley Attributes of
People Dataset for query about multiple attributes. The prediction scores of multiple attributes are computed as a linear
combination of attribute prediction scores.

Attribute male long hair glasses hat tshirt longsleeves shorts jeans long pants Mean AP
Poselets[4] 82.4 72.5 55.6 60.1 51.2 74.2 45.5 54.7 90.3 65.18
DPD[27] 83.7 70.0 38.1 73.4 49.8 78.1 64.1 78.1 93.5 69.88
PANDA 91.7 82.7 70.0 74.2 49.8 86.0 79.1 81.0 96.4 78.98

Table 1: Attribute classification results on Berkeley Attributes of People Dataset as compared to the methods of Bourdev et
al. [4] and Zhang et al. [27] .

combining them together further boosts the performance.

5.4. Robustness to viewpoint variations

In Table 4, we show the performance of our method as a
function of the viewpoint of the person. We considered as
frontal any image in which both eyes of the person are visi-
ble, which includes approximately 60% of the dataset. Pro-
file views are views in which one eye is visible and Back-
facing are views where both eyes are not visible. As ex-
pected, our method performs best for front-facing people

because they are most frequent in our training set. How-
ever, the figure shows that PANDA can work well across a
wide range of viewpoints.

5.5. Results on the LFW Dataset

We also report results on the Labeled Faces in the Wild
dataset [15]. The dataset consists of 13233 images of
cropped, centered frontal faces. Such constrained envi-
ronment does not leverage the strengths of our system in
its ability to deal with viewpoint, pose and partial occlu-
sions. Nevertheless it provides us another datapoint to com-



Figure 6: Example of failure cases on Berkeley Attributes of People Dataset. On the left we show highest scoring failure
cases for ”wears t-shirt” and on the right – for ”wears long sleeves”.

Attribute male long hair hat glasses dress sunglasses short sleeves baby mean AP
Poselets150[4] 86.00 75.31 29.03 36.72 34.73 50.16 55.25 41.26 51.06

DPD[27] 85.84 72.40 27.55 23.94 48.55 34.36 54.75 41.38 48.60
DeCAF [8] 82.47 65.03 19.15 14.91 44.68 26.91 56.40 50.19 44.97

PANDA 94.10 83.17 39.52 72.25 59.41 66.62 72.09 78.76 70.74

Table 2: Average Precision on the Attributes25K-test dataset.

Method Gender AP
Simile [15] 95.52

FrontalFace poselet 96.43
PANDA 99.54

Table 5: Average precision of PANDA on the gender recog-
nition of the LFW dataset.

pare against other methods. This dataset contains many at-
tributes, but unfortunately the ground truth labels are not
released. We used crowd-sourcing to collect ground-truth
labels for the gender attribute only. We split the examples
randomly into 3042 training and 10101 test examples with
the only constraint that the same identity may not appear
in both training and test sets. We used our system whose
features were trained on Attribute-25K to extract features
on the 3042 training examples. Then we trained a linear
SVM and applied the classifier on the 10101 test examples.
We also used the publicly available gender scores of [15]
to compute the average precision of their system on the test
subset. The results are shown on Table 5.

PANDA’s AP on LFW is 99.54% using our parts model,
a marked improvement over the previous state of the art.
Our manual examination of the results shows that roughly
1 in 200 test examples either had the wrong ground truth
or we failed to match the detection results with the correct
person. Thus PANDA shows nearly perfect gender recogni-
tion performance in LFW. This experiment also shows the
difficulty of the Berkeley Attributes of People and the At-
tributes25K datasets.

One interesting observation is that, even though the
dataset consists of only frontal-face people, the perfor-

mance of our frontal-face poselet is significantly lower than
the performance of the full system. This suggests that our
system benefits from combining the signal from multiple
redundant classifiers, each of which is trained on slightly
different set of images.

6. Conclusion
We presented a method for attribute classification of peo-

ple that improves performance compared with previously
published methods. It is conceptually simple and leverages
the strength of convolutional neural nets without requiring
datasets of millions of images. It uses poselets to factor out
the pose and viewpoint variation which allows the convolu-
tional network to focus on the pose-normalized appearance
differences. We concatenate the deep features at each pose-
let and add a global deep feature. Our feature representa-
tion is generic and we achieve state-of-the-art results on the
Berkeley Attributes dataset and on LFW even if we train our
features on a dataset with very different statistics. We be-
lieve that our proposed hybrid method using mid-level parts
and deep learning classifiers at each part will prove effec-
tive not just for attribute classification, but also for problems
such as detection, pose estimation, action recognition.
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