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Abstract— Multi-vehicle collision avoidance is a highly crucial
problem due to the soaring interests of introducing autonomous
vehicles into the real world in recent years. The safety
of these vehicles while they complete their objectives is of
paramount importance. Hamilton-Jacobi (HJ) reachability is
a promising tool for guaranteeing safety for low-dimensional
systems. However, due to its exponential complexity in com-
putation time, no reachability-based methods have been able
to guarantee safety for more than three vehicles successfully in
unstructured scenarios. For systems with four or more vehicles,
we can only empirically validate their safety performance.
While reachability-based safety methods enjoy a flexible least-
restrictive control strategy, it is challenging to reason about
long-horizon trajectories online because safety at any given
state is determined by looking up its safety value in a pre-
computed table that does not exhibit favorable properties
that continuous functions have. This motivates the problem of
improving the safety performance of unstructured multi-vehicle
systems when safety cannot be guaranteed given any least-
restrictive safety-aware collision avoidance algorithm while
avoiding online trajectory optimization. In this paper, we
propose a novel approach using supervised learning to enhance
the safety of vehicles by proposing new initial states in very
close neighborhood of the original initial states of vehicles.
Our experiments demonstrate the effectiveness of our proposed
approach and show that vehicles are able to get to their goals
with better safety performance with our approach compared
to a baseline approach in wide-ranging scenarios.

I. INTRODUCTION

The safety of multi-vehicle systems has emerged as an

essential and important problem as new technologies such

as unmanned aerial vehicles (UAVs) develop quickly. We

have seen vast interests and growth in the domain of UAVs

in industry or for government purposes. For example, Google

X [1], Amazon [2], and UPS [3] aim to use drones to

accomplish their business goals of delivery of goods. Drones

have also been proposed for use in transport of critical

medical supplies [4], [5]. There have also been many efforts

in using UAVs for disaster responses and military operations

[6], [7], [8], [9]. Due to the substantial growth in utilizing

drones for a wide range of domains, the Federal Aviation Ad-

ministration created guidelines specifically targeting UAVs

in recent years [10]. It is thus of high urgency to develop

effective approaches for multiple UAVs to achieve their goals

in the same environment safely. A central problem in this

realm is the ability to have robots visit their goals safely

starting from some approximate initial regions. The ability

to pick exact initial conditions that makes the multi-vehicle
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system safer from an approximate initial regions for the

vehicles is thus highly crucial.

The problem of safety in multi-agent systems has been

studied through various approaches. Some methods used po-

tential functions to address safety while vehicles travel along

pre-specified trajectories [11], [12]. There have also been

works that introduce the idea of velocity obstacles, induced

by control inputs of the vehicles, for collision avoidance [13],

[14], [15]. Authors in [16] used control strategies derived

with Lyapunov-type analysis for safe control of multiple

vehicles. However, these approaches do not flexibly offer

the safety guarantee for general dynamical systems that

reachability offers. They also do not offer the desirable

property of a “least-restrictive” safe control strategy that

reachability-based strategies permit.

A promising class of methods for addressing safety in

the context of multi-vehicle systems is differential games.

In particular, Hamilton-Jacobi (HJ) reachability [17] is a

framework that uses differential games to model conflicts

of more than one agent. However, although HJ reachability

offers safety guarantees for general dynamical systems, its

computation scales exponentially with the number of states

in the systems, limiting reachabilty to be directly applica-

ble to systems with only two vehicles [18], [17]. While

attempts have been made to use reachability-based methods

to guarantee safety for a larger number of vehicles [19],

[20], [21], these works either make strong assumptions on

the formation of the vehicles or require that the vehicles

know other vehicles’ trajectories a priori. In contrast, in

this paper, we tackle unstructured collision avoidance where

unstructuredness refers to the scenario that vehicles do not

have to follow specific structures and formation or require

knowledge of future trajectories of other agents.

The recent work [22] is the first work that enables

guaranteed safety for three vehicles in unstructured settings

using reachability via a higher level control logic. [23]

further investigates the problem of guaranteed safety for four

vehicles, however, it requires the assumption that vehicles

can be removed from the environment when conflicts cannot

be resolved, which is not always possible. Guaranteed-safe

collision avoidance methods for four or more vehicles in

unstructured settings without needing to remove vehicles

in certain situation using reachability do not yet exist.

However, reachability-based methods enable the desirable

least-restrictive safe control algorithms such that agents can

perform any action while they’re deemed safe. Inspired by

this, we tackle the problem of improving safety performance

of systems with at least four vehicles when the vehicles



adopt least-restrictive safe control strategies. While our goal

is not to offer safety guarantees, we demonstrate that our

proposed learning-based approach can effectively improve

safety performance just by learning good initialization of the

vehicle states.

Machine learning approaches for tackling collision avoid-

ance for multi-vehicle systems have been investigated in

prior works. For example, [24] uses an end-to-end learning

approach to generate reactive safe policies. However, it only

considers local collision avoidance and assumes the system

is holonomic. Another line of work uses reinforcement learn-

ing (RL) to learn control policies of multi-vehicle systems

[25], [26]. However, RL-based methods require substantial

number of experiences of interactions among the vehicles

to learn good policies and can take hours and, often, days

to train. Furthermore, they do not result in least-restrictive

safe controllers. In contrast, our proposed method is not

aim at learning a policy but directed towards tackling the

problem of improving safety performance through learning

better initialization.

Our main contribution is a novel learning-based approach

to effectively enhance the safety of multi-vehicle systems

by learning good initialization of vehicles. We formulate the

problem such that each vehicle is tasked with visiting a goal

and each also proposes a state it will start closely at. These

agents use a least-restrictive safety-aware algorithm to get to

their goals while taking safety into account. Motivated by

the fact that safety cannot be guaranteed for larger multi-

vehicle systems and the difficulty of reasoning about long-

horizon trajectories for least-restrictive safety-aware algo-

rithms, we show that it is possible to figure out, without

human intervention, a fast and effective strategy that makes

only minor modification to each agent’s original proposed

initial state and run the same safety-aware algorithm while

improving the safety performance of the system. We demon-

strate through extensive experiments on four to six vehicles

that our proposed learning-based method consistently and

reliably improves the safety performance of multi-vehicle

systems.

II. BACKGROUND

In this paper, we propose to use machine learning to learn

initialization of multi-vehicle systems to effectively enhance

the safety of the systems when vehicles adopt a least-

restrictive safety-aware algorithm to get toward their goals.

In this section, we provide an overview of HJ reachability

to motivate what is means for a safe control strategy to be

least-restrictive, a discussion on least-restrictive safe control

methods, and the relevant machine learning background for

our proposed approach.

A. Hamilton-Jacobi (HJ) Reachability

HJ reachability is a promising method for ensuring safety.

We give a brief overview of how HJ reachability is used to

guarantee safety for a pair of vehicles as presented in [17].

For any two vehicles Qi and Qj with dynamics describe by

the following ordinary differential equation (ODE)

ẋm = f(xm, um), um ∈ U ,m = i, j, (1)

their relative dynamics can be specified by an ODE

ẋij = gij(xij , ui, uj), ui, uj ∈ U (2)

where xij is a relative state representation between xi and

xj .

In the reachability problem, for any pair of vehicles Qi and

Qj , we are interested in determining the backward reachable

set (BRS) Vij(T ), the set of states from which there exists

no control for Qi, in the worst case non-anticipative control

strategy by Qj , that can keep the system from entering some

final set Zij within a time horizon T . For safety purpose, Zij

represents dangerous configurations between Qi and Qj . In

this paper, we assume the danger zones Zij’s are defined

such that xij ∈ Zij ⇔ xji ∈ Zji. Note in this paper we

will also use the term unsafe set to refer to the backward

reachable set.

The backward reachable set Vij can be mathematically

described as

Vij(t) = {xij : ∀ui ∈ U, ∃uj ∈ U,

xij(·) satisfies (2), ∃s ∈ [0, t], xij(s) ∈ Zij},
(3)

and obtained by Vij(t) = {xij : Vij(t, xij) ≤ 0} where

the details on how to obtain the value function Vij(t, xij)
is in [17]. In this paper, we assume t → ∞ and write

Vij(xij) = limt→∞ Vij(t, xij). If the relative state xij of

Qi and Qj is outside of Vij , then Qi is safe from Qj . If

xij is at the boundary of Vij , [17] shows that as long as the

optimal control

u∗
ij = argmax

ui∈U
min
uj∈U

Dxij
V (xij) · gij(xij , ui, uj) (4)

is applied immediately, Qi is guaranteed to be able to avoid

collision with Qj over an infinite time horizon.

B. Least-restrictive safe control strategies

As we’ve seen in Section II-A on HJ reachability, as long

as the optimal safe control in Equation (4) is applied by Qi

at the boundary of the BRS Vij , Qi will remain safe from Qj

for all time. A similar least-restrictive safe control strategy

based on reachability can be adopted for single agent systems

that aim to avoid dangerous regions in the environment

while disturbance is present. This enables a least-restrictive

control strategy where an agent gets to execute any type of

controller such as a goal controller that gets the vehicle to its

target [22], [23] or a machine learning-based controller [27],

[28] when the agent is not at the boundary of a backward

reachable set.

This can be a highly desirable property in a safety strat-

egy because it offers high flexibility for agents to execute

whatever control they would like when they’re deemed safe

and decouples the reasoning of safe controllers and task-

oriented controllers. On the other hand, this means that the

system performs a zero-step look-ahead at each time step

online and does not reason how its current action affect

the future trajectories of all the vehicles in the environment.



Theoretically we can incorporate safety derived from reach-

ability into a trajectory optimization problem and reason

about future trajectories online. However, it would be very

difficult to perform this optimization online efficiently due

to the nature that the value function Vij(xij) is a discrete

look-up table computed offline and hence does not exhibit

favorable properties that continuous functions have in terms

of being easily incorporated into an optimization problem

and optimized efficiently. One could theoretically perform

the optimization in an optimization problem that requires

look-up of values in a discrete table with a sampling-based

method, however, this scales poorly with the time horizon of

the trajectory and the number of vehicles.

Motivated by the difficulty of planning and reasoning

about long horizon trajectories online with least-restrictive

safe control strategies such as those based on reachability,

we instead investigate whether it is possible to learn a good

initialization strategy that identifies a new set of initial states

within a close neighborhood of some original proposed initial

states for all agents in the environment so that the safety

performance of the multi-vehicle system improves without

having to reason explicitly about future trajectories. Interest-

ingly, we demonstrate in this paper that this is possible.

C. Probabilistic Modeling in Machine Learning

Machine learning (ML) has emerged as a promising tool

for many application domains such as vision, speech, and

robotics. ML methods have shown high potential in tackling

problems when the dimension of the task is high or when

direct modeling is not feasible due to the complexity of the

system and the substantial computation required.

Given a data set {(hj , yj)}
n
j=1 where hj is the feature

vector and yj is the corresponding label for each data point,

a classification problem aims to learn how to best predict the

label given the feature vector through training. In this paper,

we focus on the scenario where the labels y are binary labels

that take on values of either 0 or 1. We adopt ML models

that are parameterized by some function fθ(h) where θ is

the parameter we aim to learn. In particular, we model the

probability that feature h has label y = 1 as fθ(h), i.e.,

p(y = 1|h) = fθ(h) and p(y = 0|h) = 1 − fθ(h). The

function approximator fθ(h) can in general be any model

such as a neural network.

By assuming each observation is independent and identi-

cally distributed, a common assumption in probabilistically-

motivated ML loss functions, we have that the likelihood of

observing the data points {(hj , yj)}
n
h=1 given θ is

L(θ) =
n∏

j=1

fθ(hj)
yj (1− fθ(hj))

1−yj . (5)

The goal of learning is to then maximize the above

likelihood with respect to θ. This is equivalent to minimizing

the negative log likelihood on the data set with respect to θ:

n∑

j=1

−yj log fθ(hj)− (1− yj) log (1− fθ(hj)) . (6)

III. PROBLEM FORMULATION

Consider N vehicles, denoted Qi, i = 1, 2, . . . , N , with

identical dynamics described by the following ordinary dif-

ferential equation (ODE)

ẋi = f(xi, ui), ui ∈ U , i = 1, . . . , N (7)

where xi ∈ R
n is the state of the ith vehicle Qi, and ui

is the control of Qi. Each of the N vehicles is tasked with

visiting a target whose location gi ∈ R
ng is known before

all vehicles begin their journey.

We assume the vehicles adopt a least-restrictive safety-

aware algorithm A that explicitly optimizes for safety of the

vehicles while they get to their targets. Given the vehicle

dynamics in Equation (7), the initial states xi(t0), and the

target location gi of each vehicle Qi, the algorithm A should

determine the control ui for each vehicle Qi based on the

joint configuration of all vehicles at each time step. In

addition, the safety-aware algorithm A should be primarily

designed with safe control of multiple vehicles in mind and

should not be naive when concerning safety. For example,

the algorithm introduced in [22] satisfies this criteria. In this

paper, we focus on multi-vehicle systems where there is no

guarantee that the safety-aware algorithm A is able to get

all vehicles to their targets without any safety violation and

our goal is to improve the safety performance of the system

when safety cannot be guaranteed.

We allow each vehicle the flexibility in determining

approximately where their starting states are. Instead of

having full freedom of placing vehicles wherever we wish,

we make the problem more challenging by only allowing

our proposed method to place each vehicle within a close

neighborhood of the original proposed state of the vehicle.

We also enact the constraint that we are not allowed to

modify the proposed initial states of Nfixed vehicles of the

N vehicles. Mathematically, let the original proposed initial

state of vehicle Qi be xi,o(t0) = [p1,o, p2,o, . . . , pK,o] where

pk,o’s, k ∈ {1, . . . ,K}, are disjoint blocks of the state and

how the state of the system is divided into blocks can be

freely determined by users of our proposed approach. For

each agent Qi such that we are allowed to modify the initial

state for, the new initial state xi(t0) = [p1, p2, . . . , pK ]
based on our proposed method should satisfy constraints

‖pk − pk,o‖ ≤ ǫk for some small real ǫk > 0. The norm

can be any norm that makes sense for measuring distance,

which typically we use the L-1 or L-2 norm. On the other

hand, if we are restricted from modifying a vehicle Qj’s

initial state, then the new initial state xj(t0) = xj,o(t0).
Given the vehicle dynamics in Equation (7), the original

proposed initial state of each vehicle xi,o(t0), the set of

Nfixed vehicles that we cannot modify initial states for, the

danger zones Zij , the target location gi for each vehicle

Qi, and the least-restrictive safety-aware algorithm A, we

propose an effective learning-based method to improve the

safety performance of the multi-vehicle system while adopt-

ing the same algorithm A. We demonstrate the effectiveness

of our proposed learning-based approach by comparing it



with randomly selecting close neighboring states of the

original proposed initial states as new initial states with

experiments and show that our approach results in better

overall success rate of zero safety violation throughout the

execution. Our proposed method also achieves lower number

of total safety violations on average.

IV. METHODOLOGY

In this section, we describe in detail our proposed learning-

based method for improving safety performance of any least-

restrictive safety-aware algorithm while incurring very little

computation cost online. In particular, our proposed approach

encompasses how we frame this problem as a machine

learning problem, which includes gathering data, modeling

the problem, learning the model, and using the learned model

to obtain better initialization for the vehicles to enhance the

safety performance of the multi-vehicle system.

A. Data gathering and preparation

To gather training data for a N -vehicle system for our

proposed approach, we ran M simulations such that the

initial states of all vehicles are randomly generated as fol-

lows. First, we determine N distinct initial states that will

likely make collision avoidance a challenging problem. In

each simulation, we then randomly assign each vehicle to a

distinct initial state it should start close to. For each vehicle,

we further randomly sample a state around the initial state

it is assigned to such that the new initial state is in close

proximity to its original initial state as illustrated in Section

III. There are N distinct fixed goal locations, one for each

of the N vehicles. In each simulation, we also randomize

the goal location each vehicle is assigned to. The reason

we determine in advance a set of original initial states the

vehicles should start close to and the target locations instead

of just randomly sample initial states and target locations

throughout the entire space is that the vehicles will rarely

even come close to being in danger of each other in the

latter initialization method. We want to focus on challenging

scenarios where we have high confidence that the agents will

come into close contact with each other as they head to their

targets, enabling the safety-critical control from algorithm A
to play a large role in the safety performance and making it

meaningful to apply our proposed method.

For each simulation j ∈ {1, . . . ,M}, we keep track of

the following information: the initial states of all vehicles

xi(t0)’s, the goal locations of all vehicles gi’s, and an indi-

cator variable yj that represents whether the least-restrictive

safety-aware algorithm A was able to get all vehicles to their

goals without any vehicle getting into each other’s danger

zone in this trial. We let yj = 1 if all vehicles reach their

goals without any safety violation and yj = 0 otherwise.

Note that for each trial j, the simulation continues even

when vehicles get into each other’s danger zone and only

ends when all vehicles have reached their goals.

To illustrate how we propose to construct the features

for training, first let the concatenated vector of all initial

states xi(t0) and target locations gi in trial j be pj =

[x1(t0), . . . , xN (t0), g1, . . . , gN ] ∈ R
N×(n+ng). We con-

struct the feature map φ(p) as follows: first we determine

the order these initial states are in counter-clockwise starting

from a particular reference direction such as the twelve

o’clock direction. This gives a bijective map whose domain

and range are both {1, . . . , N} and maps each vehicle to

its position based on the ordering logic. We use x(i)(t0)
and g(i) to denote the initial state and the target location

of the vehicle in the ith position based on the ordering logic

mentioned above. The feature map φ is then

h = φ(p) = [x(1)(t0), . . . , x
(N)(t0), g

(1), . . . , g(N)]. (8)

After applying this feature map to the data gathered from

all M trials, we obtain the data set {hj , yj}
M
j=1 for training.

In general, M is selected based on the user of the proposed

algorithm to provide sufficient data to learn a good model

and is dependent on the dynamics and the size of the multi-

vehicle system.

B. Learning a model with machine learning

To achieve our desired goal of determining good initial-

ization for vehicles, one intermediate step is to determine the

likelihood of algorithm A succeeding in getting all vehicles

to their targets without any vehicle getting into each other’s

danger zone given the initial states and target locations of

all vehicles. To achieve this, we use supervised learning to

make predictions on this likelihood.

During training, we model the probability that algorithm

A will succeed in getting all vehicles to their targets without

any safety violations given the feature vector h as fθ(h) and

aim to learn the parameter θ. As described in Section II-C,

given data set {hj , yj}
M
j=1 where yj’s are binary variables,

we minimize the following negative log likelihood with

respect to θ to solve for the optimal θ:

n∑

j=1

−yj log fθ(hj)− (1− yj) log (1− fθ(hj)) . (9)

We use stochastic gradient descent to find a local mini-

mizer θ⋆ of this loss function. Once we obtain the minimizer

θ⋆, given any new feature vector h representing the configu-

ration of the initial states and target locations of the vehicles

in the environment not seen during training, we predict the

probability that algorithm A will get all vehicles to their

goals without any safety violations as fθ⋆(h).

C. Evaluation on novel test scene online

Recall that our goal is to design a strategy to propose a

new initial state close to the original proposed initial state

of each vehicle that will result in a higher success rate of

getting all vehicles to their targets without any danger zone

violations. We also aim to have less number of total danger

zone violations with a better initialization.

Given a novel scene online where the original proposed

states of each vehicle Qi is xi,o(t0) = [p1,o, p2,o, . . . , pK,o]
where as described in Section III, pk,o’s are disjoint blocks

of the state. Suppose each vehicle’s target location is gi. To

find a good initialization, first we uniformly sample L sets



of N initial states in the close neighborhood of xi,o(t0)’s by

setting the constraint that each sampled state xi(t0) should be

in the set {xi(t0) = [p1, p2, . . . , pK ]| ‖pk − pk,o‖ ≤ ǫk, k =
1, . . . ,K}. For the Nfixed vehicles that we are restricted

from modifying their original proposed initial states of, we

set ǫk = 0, ∀k ∈ {1, . . . ,K}. Otherwise we set ǫk to a small

positive real number. Note that we cannot modify the target

locations of the vehicles.

After obtaining L candidate sets of initial states for all

vehicles and constructing data points pl’s, l ∈ {1, . . . , L},

based on Section IV-A, we select the set of initial states with

the highest likelihood of succeeding in getting all vehicles

to their targets without any danger zone violations using the

learned function approximator fθ⋆(h) as the new set of initial

states. Mathematically, the selected set of initial states is the

the set of initial states p⋆ correspond to where

p⋆ = max
l∈{1,...,L}

fθ⋆(φ(pl)). (10)

The number of candidate sets L can in general be a large

number as the above computation can be easily done in

parallel.

V. EXPERIMENTS

In this section, we present extensive experimental results

which demonstrate that with our proposed learning-based ini-

tialization strategy, the safety performance of multi-vehicle

systems are effectively and reliably better compared with the

baseline initialization strategy that randomly picks a set of

initial states from all candidate initial sets in the vicinity of

the original proposed set of initial states of all vehicles.

For all experiments, we use the least-restrictive safety-

aware algorithm proposed in [22]. This reachability-based

algorithm guarantees safety for three-vehicle systems but

does not guarantee safety when the number of vehicles N is

greater than 3. This algorithm has been demonstrated to be

substantially better in safety performance already compared

to a baseline safety algorithm in the paper when N > 3.

Thus the safety algorithm we use in this paper is not a

naive collision avoidance algorithm and is an ideal algorithm

for use in the evaluation on our proposed learning-based

initialization strategy. We conduct experiments using this

algorithm on multi-vehicle systems where the number of

vehicles N are equal to 4, 5, and 6.

In our experiments, the dynamics of each vehicle Qi is

given by the Dubins Car dynamics

q̇x,i = v cos θi, q̇y,i = v sin θi, θ̇i = ωi, |ωi| ≤ ω̄

where the state variables qx,i, qy,i, θi represent the x position,

y position, and heading of vehicle Qi. Each vehicle travels

at a constant speed of v = 5, and chooses its turn rate ωi,

constrained by maximum ω̄ = 1. The danger zone for HJ

computation between Qi and Qj is defined as

Zij = {xij : (qx,j − qx,i)
2 + (qy,j − qy,i)

2 ≤ R2
c}, (11)

whose interpretation is that Qi and Qj are considered to be

in each other’s danger zone if their positions are within Rc

of each other. Here, xij represents their joint state, xij =
[qx,j − qx,i, qy,j − qy,i, θj − θi].

To evaluate the effectiveness of our proposed learning-

based initialization strategy, we perform large scale exper-

iments on two settings of the speed v in the dynamics

and the danger zone radius Rc, (v = 5, Rc = 5) and

(v = 6, Rc = 4), for number of vehicles N = 4, 5, 6.

For each set of experiments, we evaluate extensively the

safety performance of the multi-vehicle systems by varying

Nfixed, the number of vehicles such that we cannot modify

the original proposed initial states for. Note that it only

makes sense to run experiments to evaluate the effective of

our approach when we can modify at least one of vehicles’

proposed initial states. For each run, we initialize each

vehicle by placing them symmetrically on a circle of radius

10 + 2 × (N − 3) facing the center of the circle, and then

add random perturbations to these states in each run. This

gives us the original proposed initial states of all vehicles.

This initialization ensures challenging collision avoidance

scenarios as all vehicles will likely come in close contact

with each other as they head to their targets. For any vehicle

Qi that we are allow to modify its initial state for, suppose

its proposed initial state is xi,o(t0) = [qx,i,o, qy,i,o, θi,o]. We

constrain the new initial state xi(t0) = [qx,i, qy,i, θi] to be

in close proximity to the original proposed state such that

xi(t0) should satisfy

|qx,i,o − qx,i| ≤ 3, |qy,i,o − qy,i| ≤ 3, |θi − θi,o| ≤ π/5.
(12)

We train a model for each N ∈ {4, 5, 6} for each of the

two settings (v = 5, Rc = 5) or (v = 6, Rc = 4). To train

each model, we gather 5000 data points when N = 4 and

10000 data points when N = 5, 6 with the data collection

technique proposed in Section IV-A. The hyperparameter

settings are described as follows. For all models, we use

a three-layer fully connected neural network with ReLU

activation on the hidden layer and Sigmoid activation on the

output layer. The number of nodes in the hidden layer of the

network is 10, 15, 20 for N = 4, 5, 6 vehicles respectively.

As described in Section IV-B, we use the cross entropy loss.

For optimization, we the Adam optimizer [29] with learning

rate 0.01 to train the network.

To demonstrate the safety benefits with our proposed

approach, we compare our proposed initialization strategy

with a random initialization strategy. For each N -vehicle

system, we ran Nruns = 200 randomized runs for each

possible combination of v,Rc, Nfixed. For each individual

comparison run, we randomly sample L = 10 set of initial

states in close proximity to the original proposed states such

that each set satisfies the constraints (12). With our proposed

learning-based approach, we use the learned parameters of

ML model to select the best set of proposed initial states out

of all candidate sets; for the baseline random initialization

strategy, we uniformly select one of the L candidate sets

of initial states as the initial states for the vehicles. We

report the results for the settings (v = 6, Rc = 4) and

(v = 5, Rc = 5) in Table I and Table II respectively. We



consider the following two safety metrics:

• Success rate ps: the percentage of runs such that all

vehicles get to their goals without any safety violation.

• Average number of collisions Ncol: the total number of

safety violations throughout the entire execution for all

Nruns runs divided by the product of the number of

vehicles N and the number of runs Nruns. One safety

violation is defined as a pair of vehicle being within

a distance Rc of each other in a time step. There can

be multiple safety violations at a given time because

multiple pairs of vehicles might be in each other’s

danger zones at once.

From Table I and Table II, we can see that our proposed

learning-based initialization strategy effectively and reliably

improves the success rate ps and reduces the average number

of collisions Ncol across all experiments, For some scenar-

ios, our approach substantially outperforms the baseline. In

particular, when v = 5, Rc = 5, N = 4, Nfixed = 1, we see

that our proposed approach has 90% success rate whereas the

baseline approach has only 66.5% success rate. In the same

setting, the average number of collisions with our proposed

approach is only 25% of the average number of collisions

with the baseline initialization strategy. In general, we can

see that our proposed approach outperforms the baseline

approach more substantially when Nfixed is smaller, which

intuitively makes sense because we get to optimize the states

of more vehicles when Nfixed is small. In addition, we can

also observe that our proposed approach is more likely to

considerably outperform the baseline when the number of

vehicles N is smaller, which also makes intuitive sense as

there are likely more interactions among vehicles that are

more difficult to be inferred by the initial states alone when

N is large. However, even when the number of vehicles N
is 6 and Nfixed = 5, we still get around an 18% reduction in

the average number of collisions for both settings of (v,Rc)
with our proposed learning-based initialization method.

In Figure 1, we plotted the initial states selected with

our proposed learning-based method (solid arrows) versus

those selected via the baseline randomized selection (dash-

dot arrows) from the L candidate sets of initial states sampled

around the original proposed initial states for each scenario.

For all depicted scenarios, the least-restrictive safety-aware

algorithm was able to get all agents successfully to the goal

locations without any safety violation with our proposed

learning-based initialization strategy while the randomized

selection failed and resulted in safety violations. The goal

location of each vehicle is plotted with the same color as

the vehicle. When the initial state of a vehicle is not allowed

to be modified, initial states are identical for both strategies

and the solid and dash-dot arrows are overlaid on top of each

other.

Although it is not possible for humans to always pinpoint

why the initial states learned by our proposed method are

more effective for safety than the baseline just by looking at

the initial states given that they are generally very close to

each other, we can observe patterns by running the least-
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Fig. 1: In this figure, we illustrate the initial states selected

by our proposed learning-based strategy (solid arrows) versus

those chosen with the baseline random selection method

(dash-dot arrows) for four different scenarios where our

proposed method succeeded in getting all vehicles to their

goals successfully without any safety violation while the

baseline method resulted in safety violations even though the

initial states selected from the two methods are very close

to each other.

restrictive safety-aware algorithm. Our approach tends to

effectively identify initial states such that vehicles are less

likely to run into the situation where many vehicles are on

the boundary of the unsafe sets of each other simultaneously

or the situation where conflicts of multiple vehicles are less

likely to be resolved based on the algorithm used. This shows

that our proposed method is able to reason about safety

based on the geometry of initial states of the vehicles and

their goals by identifying the strength of the safety-aware

algorithm used.

Figure 2 and Figure 3 further illustrate the proposed

learned v.s. baseline initialization in the scenario depicted

in the top right figure of Figure 1. We plot the danger zone

around each vehicle with a dash-dot circle in the same color

as the vehicle; if the base of the arrow representing a vehicle

is in a circle of a different color, safety has been violated.

We see that in Figure 2, our proposed initialization strategy

enables that only three (red, blue, purple) of the four vehicles

get close to the unsafe sets of each other, which our safety-

aware algorithm is able to resolve with guaranteed success.

At the end, all vehicles get to their goals without any safety

violations. On the other hand, in Figure 3, the initial states

selected by the baseline strategy results in all four vehicles
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Fig. 2: This figure illustrates different time points of the

simulation when we use our proposed learning-based initial-

ization strategy to select the initial states of the vehicles. This

scenario is identical to that in the top right figure of Figure 1.

We observe that our proposed approach learns to identify the

strength of the safety-aware algorithm in guaranteeing safety

for three vehicles and initializes vehicles such that only three

vehicles end up coming into close contact with each other.

All vehicles successfully reach their goals without any safety

violations.

getting very close to each other and the algorithm isn’t

able to maintain safety while resolving the conflicts. We

can see that the green and purple vehicles violated safety

at time t = 2.0s and t = 2.7s. We see that our learning-

based proposed method is able to effectively pick up on

the advantages of the least-restrictive safety-aware algorithm

assign a higher probability of success for initialization that

is favorable with the algorithm used, effectively improving

the safety performance of the multi-vehicle system.

During the training phase, all models take less than 30
seconds to complete training. During the online phase where

we figure out the new initial states based on the learned

model and the original proposed initial states, it takes on

average 0.30 seconds total to compute the optimal sets of

initial states for all Nruns = 200 runs in parallel for a given

(v,Rc, N,Nfixed) setting with our proposed strategy. Thus

our proposed method can be very efficiently applied as we

encounter new scenes online.

VI. CONCLUSION

In this paper, we proposed a novel approach for enhanc-

ing the safety performance of least-restrictive safety-aware

algorithms for multiple vehicles in unstructured settings
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Fig. 3: This figure illustrates the simulation when the baseline

random initialization strategy is used in the scenario identical

to that in the top right figure of Figure 1. This is meant to

contrast Figure 2 that with the randomized strategy, even

though the initial states are very close to those selected by

our proposed method, it results in danger zone violations

between the green and the purple vehicles at time t = 2.0s

and t = 2.7s.

and showed that it is possible to use machine learning to

make minor modifications to initial states of vehicles in the

environment and improve, sometimes quite substantially, the

safety of the system compared to a randomized initialization

approach. This is a promising step towards making least-

restrictive safety algorithms such as those enabled by reach-

ability more practically useful in unstructured scenarios for

multi-vehicle systems that safety cannot be guaranteed for

with the algorithms.
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