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ABSTRACT
Deep learning recommendation models (DLRMs) have been used
across many business-critical services at Meta and are the sin-
gle largest AI application in terms of infrastructure demand in its
data-centers. In this paper, we present Neo, a software-hardware
co-designed system for high-performance distributed training of
large-scale DLRMs. Neo employs a novel 4D parallelism strategy
that combines table-wise, row-wise, column-wise, and data par-
allelism for training massive embedding operators in DLRMs. In
addition, Neo enables extremely high-performance and memory-
efficient embedding computations using a variety of critical systems
optimizations, including hybrid kernel fusion, software-managed
caching, and quality-preserving compression. Finally, Neo is paired
with ZionEX , a new hardware platform co-designed with Neo’s 4D
parallelism for optimizing communications for large-scale DLRM
training. Our evaluation on 128 GPUs using 16 ZionEX nodes shows
that Neo outperforms existing systems by up to 40× for training
12-trillion-parameter DLRM models deployed in production.
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1 INTRODUCTION
Deep learning recommendation models (DLRMs) are ubiquitously
used by online companies, including Amazon for selecting items in
its catalog [34, 36, 57], Netflix for showing movie options [13, 28],
and Google for displaying personalized advertisements [7, 9, 18].

They have also been adopted by standard benchmarking organi-
zations, such as MLCommons (MLPerf) [37, 51]. At Meta, we have
been using recommendation models extensively for ranking and
click through rate (CTR) prediction, including news feed and search
services [14, 16, 41, 46]. DLRMs are the single largest AI application
in terms of infrastructure demand in data centers.

Unlike conventional deep neural networks (DNNs) with mainly
compute-intensive operators (e.g., convolution and matrix multipli-
cation), DLRMs combine compute-intensive components with up to
thousands of data-intensive embedding operators, each with a differ-
ent resource requirement and performance characteristic [42]. As a
result, DLRMs generally exhibit much lower arithmetic intensity
and larger model sizes compared to their computer vision [8, 17, 58],
natural language processing [5, 10, 60], and reinforcement learning
counterparts [54, 55], with models having trillions of parameters
being deployed in practice, as shown in Figure 1.

Existing software and hardware solutions tailored for DNNs
achieve only suboptimal performance and limited scalability on
DLRMs due to the following software/hardware limitations.

On the software side, existing deep learning frameworks paral-
lelize DNN training typically using either data, model or pipeline
parallelism [3, 31, 47]. Frameworks that support combinations of
these strategies are generally designed for specific DNN applica-
tions [15, 21, 40, 49]. However, existing parallelization strategies
designed and optimized for compute-intensive DNNmodels achieve
limited performance and scalability for DLRMs. In particular, data
parallelism requires each device to save a replica of the entire model
and therefore does not support DLRMs with up to trillions of pa-
rameters [31]. Moreover, a DLRM cannot be directly parallelized
using model or pipeline parallelism due to the data-dependent be-
havior of its embedding operators. Specifically, processing different
training samples may require accesses to different embedding pa-
rameters depending on the categorical inputs of each sample. This

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


ISCA ’22, June 18–22, 2022, New York City, NY D. Mudigere, Y. Hao, J. Huang and Z. Jia et al.

AlexNet
GoogLeNet

VGG ResNet

Xception

AlphaZero

AlphaGoZero

BERT

GPT-3

DLRM-2020

DLRM-2021

DLRM-2022

0.01

0.1

1

10

100

1000

10000

2010 2012 2014 2016 2018 2020 2022

Pe
ta
flo

p/
s-
da
ys

AlexNet

GoogLeNet

VGG
ResNet

Xception

AlphaZero

BERT

GPT-3

Switch 
Transformer(G)

DLRM-2020

DLRM-2021

DLRM-2022

0.001

0.01

0.1

1

10

100

1000

10000

2010 2012 2014 2016 2018 2020 2022

N
um

be
r P

ar
am

et
er

s (
Bi

lli
on

)

Figure 1: Comparing deep learning models in total amount
of compute, in petaflop/s-days (top) [44] andmodel capacity
(bottom).

data-dependent behavior makes it infeasible to statically partition a
DLRM’s trainable parameters into disjoint subsets while satisfying
data dependencies for all samples, a necessity for using model and
pipeline parallelism.

In addition, today’s DNN frameworks are designed and opti-
mized for compute-intensive DNN computations and miss critical
optimizations for data-intensive embedding operators. Specifically,
DLRMs contain up to thousands of embedding operators. The for-
ward processing, backward propagation, and gradient synchroniza-
tion for these embedding operators require launching thousands of
CUDA kernels in a training iteration and consume up to terabytes
of aggregated GPU device memory, introducing significant runtime
overheads and memory requirements.

On the hardware side, modern hardware platforms such as GPU-
based clusters provide significant capability boost, but they are
not designed to match the performance characteristics of DLRMs.
Specifically, hardware platforms for DNN training are generally op-
timized for centralized inter-node communications (e.g., parameter
servers [3]) and/or AllReduce communications (e.g., Horovod [53]
and NCCL [1]). However, as identified in Section 3, performant and
scalable DLRM training requires efficient hardware support for a

mixture of diverse communication patterns, including AllReduce,
AlltoAll, ReduceScatter, OneToMany, and ManyToMany.

1.1 Our Approach
We present Neo, a software-hardware co-designed system for fast
and scalable DLRM training building on top of three key techniques.

4D parallelism. To enable fast and scalable training of the mas-
sive embedding operators in DLRMs, it is crucial to effectively
balance the workload distribution across GPUs while minimizing
communication costs. We introduce a 4D parallelism strategy that
combines table-wise, row-wise, column-wise, and data parallelism
to jointly optimize the parallelization performance of embedding
operators. Additionally, Neo also supports applying 4D parallelism
in a recursive manner at different levels of hardware hierarchy to
further improve load balance and hardware efficiency.

High-performance embedding computation. Neo employs two
novel optimizations to minimize the computational costs and mem-
ory requirements of embedding operators. First, we introduce a
hybrid kernel fusion technique that fuses (1) multiple embedding
operators and (2) embedding computations and their parameter up-
dates all in a single CUDA kernel. This is realized by co-designing
the optimization algorithms and software implementation of embed-
ding operators. Second, to provide sufficient memory capacity for
DLRM training, Neo uses a software-managed caching mechanism
to leverage the memory hierarchy of modern hardware platforms.
Finally, a variety of compression techniques are further applied to
minimize memory requirements.

Hardware platform design. We introduce ZionEX , a new hard-
ware platform co-designed with Neo’s 4D parallelism to optimize
inter-node communications for distributed DLRM training. ZionEX
supports a fully-connected topology across all GPUs in the clus-
ter by using a dedicated RDMA over Converged Ethernet (RoCE)
based scale-out network. This topology design promotes high-
performance data transfers for the performance-dominating com-
munication workloads (e.g., AlltoAll and ManyToMany) in dis-
tributed DLRM training. Meanwhile, ZionEX supports both the
RDMA and GPUDirect communication protocols and retains flexi-
ble intra-node GPU fabric. This enables high-performance DLRM
training on ZionEX , while ensuring compatibility with existing
data-center infrastructure to allow wide deployment of ZionEX .

Results. We have evaluated Neo on three DLRMs deployed in
production for different tasks, including click through rate pre-
diction, ranking, and engagement, representing a diverse set of
production-level recommendation models. Our evaluation on 128
A100 GPUs on 16 ZionEX nodes shows that Neo is able to process
up to 1.7 million queries per second for training DLRMs with 12
trillion parameters, a 40× speedup compared to existing solutions
for DLRM training in production. Ablation studies show that 4D
parallelism, high-performance embedding computation, and the
new ZionEX platform are all critical to enabling fast and scalable
DLRM training.
To summarize, our contributions are:

• We present Neo, a software-hardware co-designed system
for fast and scalable training of DLRMs. Neo outperforms
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Table 1: Sample DLRM time to train latency resources demand

Total compute 1+ PF/s

Total memory capacity 1+ TB

Total memory BW 100+ TB/s

Network injection BW per worker 100+ GB/s

Network bisection BW 1+ TB/s

existing systems by up to 40× for training large-scale DLRMs
with 12 trillion parameters.

• We propose 4D parallelism, a combination of table-wise,
row-wise, column-wise, and data parallelism for training
embedding operators.

• We develop and implement high-performance embedding
operators using hybrid kernel fusion, software-managed
caching, and quality-preserving compression.

• We build ZionEX , a new hardware platform co-designed with
Neo’s 4D parallelism to accelerate a variety of communica-
tion patterns in DLRM training.

2 BACKGROUND
DLRMs typically have two modes of training - offline and online,
each with varying requirements. The offline training can be viewed
more as a pre-training, where a candidate model is trained on suf-
ficiently large historical data, and expected to generalize when
deployed to current/unseen samples. Once deployed, DLRMs con-
tinue to be trained in an online mode using the data it has already
served on. Offline training is throughput limited, fitting into the
more conventional "train as fast as possible on as much data as pos-
sible" paradigm, whereas online training is more latency sensitive,
with the frequency of re-training and update being an important
factor. For online training, the throughput requirement is lower
hence it might be desired to use proportionally lower resources.

This creates an unique requirement of training very large models
at smaller scales capable of tolerating lower throughput.

This paper focuses on offline training with more demanding
training throughput needs — up to millions of samples (queries)
per second resulting from processing through tens of petabytes
of training data within a reasonable time. This drives the training
platform requirements, as summarized in Table 1.

Traditionally a disaggregated parameter-server (PS) based dis-
tributed CPU training system has been used for training DLRMs
in a production setting [16, 41]. Specifically, the dense parame-
ters from the MLP modules are duplicated between the trainers
to exploit data-parallelism. Their weights are synchronized with a
centralized dense parameter server using Elastic Averaging method
SGD [65, 68]. On the other hand, The parameters from the embed-
ding tables are partitioned and placed on multiple PS to exploit
model-parallelism, since the size of embedding parameters sim-
ply prevents model replication. To maximize training throughput,
the parameters of embedding operators are updated using Hog-
wild! [50]. In addition, the readers are deployed on a separate tier
of machines to feed training batches to the trainers as illustrated in
Fig. 2.

PS-1 PS-2 PS-n

Dense
PS-0

Readers

Tr-0 Tr-n

Hogwild!

EASGD

Partitioning embedding tables: Model-parallelism

Replicating dense MLPs: Data-parallelism

Trainers

Parameter Servers

… … …

… … …

Figure 2: Disaggregated parameter-server based system

Such PS-based system is well suited for DLRMs allowing scaling
different components separately and achieving a balanced resource
utilization when training different models with different trainer,
parameter server and reader configurations. Moreover, resources in
the system are largely fungible, making it low-cost for datacenter
operations.

However, the need for supporting DLRMs with trillions of pa-
rameters and therefore terabytes in size poses a serious challenge to
the scalability of this approach, necessitating a steep increase of the
number of trainers and parameter-servers to meet the ever growing
training requirements. This quickly becomes intractable, degrad-
ing model accuracy with staleness due to increased asynchronous
updates across a very large number of workers. To tackle these
issues, we build a high-performance synchronous training solution
for large DLRMs, decoupling distributed scaling from statistical
quality.

The efficient design of the synchronous training system leads us
to use a novel combination of 4D parallelism (Section 4) for memory
intensive embeddings tables, data parallelism for compute inten-
sive DNN operators, and pipelining across different components.
This hybrid parallelism requires AlltoAll communications for the
embedding lookup results [41, 42], as well as embedding table input
redistribution if the inputs are streamed from database in batches,
which is often the case. Unlike AllReduce communications for gra-
dient synchronizations, which can be overlapped, these AlltoAll
communications are on the critical path due to data dependencies,
stressing the performance of the interconnect and communication
primitives. Furthermore DLRMs are typically trained on very large
amounts of data, which corresponds to mostly unstructured and
unlabeled interactions from a wide variety of applications. Typical
data-set sizes are in the range of several petabytes, necessitating the
use of common, distributed network storage, such as the Tectonic
filesystem [45]. For training, this data would need to be streamed
in, putting additional stress on the host network and host-to-device
bandwidth.
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Figure 3: Neo overview. Each box in the figure indicates a
neural network component, while edges between boxes are
tensors shared between different components.

3 OVERVIEW
Figure 3 shows an overview of Neo, a software-hardware co-designed
system for fast and scalable training of DLRMs. This section briefly
describes the key components of Neo.

First, Neo uses data parallelism for training compute-intensive
DNN layers (shown in orange) and switches to a 4D parallelism
strategy that combines table-wise, row-wise, column-wise, and data
parallelism for efficient training of memory-intensive embedding
operators.

Second, Neo is equipped with a high-performance implemen-
tation for embedding operators. This is achieved by a number of
critical systems optimizations, including (1) a hybrid kernel fusion
technique to reduce the computational cost of embedding operators,
(2) a software-managed caching mechanism to leverage heteroge-
neous memories of modern hardware platforms, and (3) a variety of
quality-preserving compression techniques to minimize the memory
requirement for embedding computation.

Finally, Neo is deployed on ZionEX , a new hardware platform
co-designed with Neo’s 4D parallelism to optimize inter-node com-
munications for DLRM training.

Additionally, data I/O is an integral part of any training system,
especially with the adoption of fully synchronous training and ac-
celerators. First, the host to device transfer should be non-blocking
and fast enough not to limit the overall training throughput. Ideally
overlapping the input data transfers with training using double
buffering or pipelining. Second, even though mapping input data
distribution to collective communications between trainers is faster,
this introduces additional challenges for the input and output data
layout of the collective communications. Initial experiments show
that these could add significant latency to the critical path. We
will illustrate how we overcome these practical challenges in Sec-
tion 7.1.

4 4D PARALLELISM
A key component in DLRM is embedding operators, which will
be defined in Section 5. To enable high-performance training for
embedding operators, it is crucial to effectively balance the work-
load distribution across GPUs and minimize communication costs.
We introduce 4D parallelism, which combines table-wise, row-wise,

column-wise, and data parallelism for jointly optimizing the paral-
lelization performance of embedding operators.

Table-wise parallelism. The most straightforward parallelism
scheme is partitioning and parallelizing multiple embedding tables
across GPUs, as shown in Figure 4a. Table-wise parallelism does
not further split embedding tables, therefore this scheme requires
no additional handling of embedding table input indices or pooled
embedding results, leading to optimal communication efficiency.
However, table-wise parallelism cannot handle large embedding
tables that exceed the memory capacity of a single GPU, and the
achieved load balance is often limited due to the skew in table sizes.

Row-wise parallelism. This scheme parallelizes large embedding
tables by rows and assigning different table shards to different
trainers. Since the embedding table inputs index tables by rows, they
need to be bucketized based on the row-wise parallelism decision
and distributed to the respective trainers, as illustrated in Figure 4b.
Moreover, partial results onmultiple trainers need to be reduced and
then scattered to all trainers for downstream computations. This
requires a ReduceScatter communication pattern in the forward
pass. This scheme handles large tables well and leads to better load
balance. However, the communication cost scales linearly with the
number of trainers.

Column-wise parallelism. Column-wise parallelism partitions the
embedding tables along the embedding dimensions (see Figure 4c)
and treats the partitioned table with smaller embedding dimen-
sions as individual operators. This scheme requires duplication
of input indices for the partitioned tables. Compared with table-
wise parallelism, it preserves the same flow and communication
pattern (AlltoAll). A key advantage of column-wise parallelism
is enabling finer-grained parallelism, especially for large tables.
However, it works well only with large embedding dimensions
and increases the payload for the input indices, which have to be
replicated to all nodes with the column shards. Furthermore, since
the rows of column-wise sharded tables are split across different
trainers, using an independent row-wise update for these tables
introduces additional parameters, one for each shard of the row
instead of just a single value for the entire row when using sparse
optimizers (see Section 5.1 for details).

Data parallelism. DLRMs tend to have a wide range of table sizes,
while table-, row-, and column-wise parallelism are efficient for rel-
atively large embedding tables prohibitive to replicate. For smaller
tables, data parallelism achieves better performance, since data par-
allelism does not involve any communication in the forward pass
(see Figure 4d). Therefore, for small embedding tables, Neo treats
embedding tables as dense parameters and replicate them across all
trainers. AlltoAll is no longer needed for the pooled embeddings
of data-parallel embedding tables. Instead, AllReduce is required
to synchronize across all replicas. As a result, this depends on the
trade-off between the cost of AlltoAll of the pooled embeddings
versus the cost of AllReduce on the entire table. In general, small
embedding tables with fewer rows are good candidates for data
parallelism. Input indices for these tables are passed through as
data-parallel inputs and no longer require re-distribution.
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(a) Table-wise Parallelism (b) Row-wise Parallelism (c) Column-wise Parallelism (d) Data Parallelism

Figure 4: Embedding table sharding schemes with different implications on the communication cost, load balancing andmem-
ory requirement. Bottom MLP is omitted in this figure for simplicity of illustration.

4.1 Parallelization Algorithms
Neo supports applying 4D parallelism strategies at the granularity
of individual embedding operators to maximize flexibility. Prac-
titioners can mix-and-match the above primitives to determine
the best strategy to partition an embedding operator. Additionally,
Neo also supports partitioning embedding operators in a recursive
manner at different levels of hardware hierarchy to further im-
prove workload balance and hardware efficiency. For example, the
table-wise then row-wise scheme first assigns a set of tables to
a particular node, and within that node the tables are partitioned
row-wise. This family of hierarchical parallelism schemes improve
hardware locality by fully exploiting the fast GPU interconnects
and reduce inter-node communications.

With a cost function defined for each of the above parallelism
schemes, placement algorithms can be explored to minimize the
cost differences between workers. The cost function is a combina-
tion of communication overhead and load imbalance between the
trainers. The communication overheads are computed using the
message volume as a representative metric, with higher message
volumes corresponding to higher costs. This is largely accurate in
capturing the throughput costs and for latency measured values
are incorporated as a fixed additive cost. We estimate the load im-
balance by using the embedding access size per trainer, which can
be approximated as the number of embedding tables per trainer
× the global batch size × average number of indices per sample ×
embedding dimension . The combination of both costs gives us a
reasonable estimate for communication and load imbalance. Further
we introduce scalar weight for each of the individual costs, which
can be tuned based on different system specs to get more accurate
estimations.

We implement and evaluate two polynomial time heuristics as
a proof of concept. The first one is a simple greedy heuristic that
sorts the costs of available schemes in a descending order and
allocates the largest shard first, one per worker. Then, the greedy
algorithm iterates through all remaining shards and assigns the
top cost to the node with the smallest sum of costs. A second
heuristic is the largest differencing method (also known as the

Karmarker–Karp algorithm [25]). The main idea is to take the two
largest numbers from the input and replace them by their difference.
It directly reduces the difference of sums and generally outperforms
the greedy heuristic.

4.2 Pipelining
Although using GPUs as the main compute resource offers limited
pipelining opportunities within model evaluation, we improve GPU
utilization by pipelining inter-batch data movement and overlap-
ping communication with computation.

When batch 𝑖 is being evaluated, the same GPUs can start re-
ceiving and distributing batch 𝑖 + 1 using a separate stream. To
minimize the interference, we overlap the input AlltoAll of batch
𝑖 + 1 with the forward propagation of top MLP of batch 𝑖 where
no communication is involved. In addition, we overlap the pooled
embedding AlltoAllwith the forward propagation of bottomMLP
to hide latency.

5 EMBEDDING OPERATORS
A major difference between DLRMs and conventional deep neural
networks is leveraging categorical features such as users, posts,
or pages. The DLRMs used in production typically contain up to
thousands of categorical features, each of which corresponds to
a dedicated embedding operator. An embedding operator takes as
an input a multi-hot vector, and each non-zero element in the
vector triggers a full row retrieval in the embedding table where
each index in the input vector corresponds to a table row. Finally,
all embedding rows for a given input vector are combined with
element-wise pooling, as shown in Figure 5a.

Optimizing the runtime performance of DLRM’s embedding op-
erators requires addressing two key challenges. First, the forward
processing, backward propagation, and gradient updates for the em-
bedding operators require launching thousands of GPU kernels in
each training iteration, introducing significant GPU kernel launch
overhead. Second, some embedding operators may include up to
billions of parameters and do not fit on the device memory of a
single GPU.
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Figure 5: Embedding operator optimizations

We introduce three novel techniques to reduce the computational
cost and memory requirement of embedding operators. First, we
introduce a hybrid kernel fusion technique to minimize the CUDA
kernel launch overhead and allow each GPU worker to only launch
two kernels (i.e., one for forward and one for back propagation and
parameter update). Second, for parallelizing the computation of
the embedding operators, we propose column-wise parallelism and
row-wise parallelism in addition to data and model parallelism. The
combinations of these four parallelism dimensions enable Neo to
support embedding tables with up to trillions of parameters. Finally,
Neo exploits a series of memory saving techniques that leverage
the memory hierarchy of the ZionEX platform to ensure sufficient
memory capacity for DLRM.

5.1 Kernel Fusion
Neo uses a hybrid kernel fusion mechanism to minimize the CUDA
kernel launch overhead for performing embedding computations in
a training iteration. First, instead of applying a separate embedding
lookup for each embedding table, Neo fuses multiple embedding
lookups on the same GPU into a single CUDA kernel (Figure 5b),
which improves the parallelism and bandwidth utilization and re-
duces the overhead of launching multiple CUDA kernels on GPUs.

Second, Neo also fuses the backward pass with the sparse op-
timizer to further reduce kernel launch overhead and avoid ma-
terializing gradients to the embedding tables. The key challenge
of such fusion is avoiding potential race-condition across gradient
updates from different training samples and handling non-linearity
in advanced optimizers such as AdaGrad [11], LAMB [64], and
Adam [26]. For example, both sample 1 and 2 in Figure 5a con-
tribute to the gradients of the embedding vector 1 and 6. Directly
sending these gradients to a non-linear sparse optimizer without
aggregation would result in incorrect updates to the embedding
tables.

To guarantee correctness while maximizing performance, Neo
applies gradient sorting by rows so that gradients to the same em-
bedding rows are processed by a single CUDA thread block, as
shown in Figure 5c. Gradient aggregation is subsequently applied
within each CUDA thread block using much faster but smaller GPU
shared memory.

Neo’s hybrid fusion technique for embedding operators lead to
three performance benefits. First, Neo reduces the memory require-
ment for embedding operators by avoiding allocating GPU device
memory for embedding gradients. Second, the memory accesses to
GPU device memory are minimized by using GPU shared memory
to save intermediate embedding gradients. Finally, kernel fusion
improves the overall performance of embedding computations by
up to 7× compared to a native implementation. The optimized em-
bedding operator implementations are open sourced as part of the
FBGEMM library∗ and integrated with PyTorch.

5.2 Managing Memory Hierarchy
For DLRMs with up to trillions of parameters, the embedding tables
are too large to entirely fit on a single GPU. We leverage multi-
ple levels of memory hierarchy of the ZionEX platform, including
HBM, DRAM and SSDs in additional to scaling out to multiple
nodes for increasing aggregate capacity, to ensure sufficient mem-
ory for the models, with the faster memory serving as a software
cache of the subsequent layer. Neo’s hierarchical memory manage-
ment strategy is specifically useful for online training of DLRMs,
which warrants using fewer nodes for training original large mod-
els, due to lower throughput requirements, as outlined in Sec. 2.
One approach to managing memory hierarchy is CUDA’s unified
memory (UVM) [43], which provides a single memory address
space for different memory types and automatically replaces and
evicts unused pages. However, random table lookups in embedding
operators requires caching and replacing unused parameters at
the granularity of individual embedding rows, which makes using
UVM as-is insufficient for DLRM. Necessitating additional handling

∗PyToch FBGEMM_GPU library: https://github.com/pytorch/FBGEMM/tree/
master/fbgemm_gpu

https://github.com/pytorch/FBGEMM/tree/master/fbgemm_gpu
https://github.com/pytorch/FBGEMM/tree/master/fbgemm_gpu
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of the look-up to ensure performance is not bound by the frequent
host to device transfers. Instead, Neo uses a customized 32-way
set-associative software cache [62] using least recently used (LRU)
or least frequently used (LFU) cache replacement policies, where
the associativity matches the warp size of GPUs. This enables fine
grain control of caching and replacement, allowing it to be tuned
for target model characteristics. Note that UVM is bounded by PCIe
bandwidth, while Neo’s software cache can bridge the gap for the
bandwidth between PCIe and HBM ( 50× difference). The software
cache improves the end-to-end performance of DLRM workloads
by approximately 15% compared to UVM.

To further reduce the memory requirement of embedding opera-
tors, Neo also employs a variety of compression techniques, such
as a row-wise sparse optimizer, low/mixed-precision training using
a high-precision cache backed by low precision embedding tables,
and advanced factorization techniques. We omit the details of Neo’s
compression techniques due to space limit and will elaborate on
them in the final paper.

6 ZIONEX : HARDWARE PLATFORM DESIGN
We begin by describing the limitations of our previous hardware
platform for DLRM in Section 6.1. Section 6.2 introduces ZionEX ,
a new hardware platform for DLRM. We also outline the design
principles used in the development of ZionEX .

6.1 Previous Platform: Zion
Zion [39] introduced in 2019 was our previous work aimed as a
high-performance hardware platform for training DLRMs. While
Zion offers significantly improved capabilities at single-node level,
it falls short as a distributed platform not being extensible to meet
the rapidly growing DLRM training requirements. We critically ap-
praise its limitations, but other platforms based on a similar design
share the same limitations; we discuss those platforms in Section 9.

Figure 6a shows the architecture of a Zion node, which has 8 CPU
sockets with 1.5 TB memory, 8 GPUs, and 8 network interface cards
(NICs). It provides a powerful heterogeneous super node design for
training DLRM by (1) offloading compute heavy layers of DLRM
(e.g., MLPs) onto GPUs and (2) leveraging CPUs for large embedding
operators on the relatively cheaper DRAM instead of HBM for
accommodating TB-scale DLRMs on a single node.

However, this heterogeneous design introduces a number of
challenges to software design and performance. For example, it’s
critical to balance the workload on CPUs and GPUs to ensure max-
imum overlap. This requires elaborate pipelining between CPUs
and GPUs and partitioning DLRM into fine-grained tasks using an
accurate cost model. In addition, heterogeneous training of DLRM
also introduces non-trivial runtime overheads, such as increased
data transfers between CPUs and GPUs and inter-socket communi-
cation.

Finally, a critical missing component in Zion is that each NIC is
directly attached to a CPU. As a result, all of the inter-node commu-
nications (e.g., gradient synchronization and tensor transformation)
necessitate CPU intervention and additional GPU-CPU transfers.
Furthermore these NICs are connected to the common shared data-
center network infrastructure, which introduces overheads and
interference from network congestion, and are constrained to use
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storage ……
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Figure 6: The system architectures of Zion, ZionEX plat-
forms and the overall training system.

more data center-friendly topologies, protocols (TCP/IP) which are
sub-optimal for distributed training. Although each Zion node is
equipped with 8x 100Gbps NIC bandwidth, in reality we found it
is very difficult to scale out to multiple nodes due to networking
overheads. With today’s increasing demand on modeling size of
DLRMs, Zion is not able to scale well and fully utilize the powerful
hardware resources.

6.2 ZionEX
To address these shortcomings, we introduce ZionEX , which we
have designed to be more scalable than the previous Zion platform
with improved network capabilities, while retaining its flexibility
and core advantages, such as the OAM form factor, modular de-
sign [39, 56], and flexible intra-node accelerator fabric [66]. With
all of these improvements ZionEX bring about orders of magnitude
higher capability both in terms of supporting increased model com-
plexity and higher training performance. This is best illustrated by
comparing the product of maximal model complexity (in terms of
FLOPS/sample) supported by each platform and achieved training
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throughput, which can be seen as normalized effective performance.
For ZionEX with achieving a throughput of 1.2 MQPS for a model
with 638 MFLOPS/sample (from Table.3), this translates into a ef-
fective performance of 766 TFLOPS/s, with additional headroom
to go up to several PETAFLOPS/s. Whereas for Zion, the maximal
model complexity that could be supported was less half of that on
ZionEX (≈ 250𝑀𝐹𝐿𝑂𝑃𝑆/𝑠𝑎𝑚𝑝𝑙𝑒) and with much lower through-
put (≈ 0.25𝑀𝑄𝑃𝑆)[4, 41], thereby leading to more than 10× lower
max achievable effective performance of only 63 TFLOPS/s. Fig-
ure 6b shows the overall system architecture. We briefly highlight
ZionEX ’s core design principles:

Scalability. Both Zion and ZionEX support heterogeneous train-
ing of DLRM, but the most striking difference is that ZionEX is
designed with sufficient scale-up and scale-out network capabili-
ties. As shown in Figure 6b, ZionEX employs a dedicated RDMA over
Converged Ethernet (RoCE) NIC for each of the GPUs connected via
PCIe switches to allow for a dedicated inter-node connectivity (iso-
lated from common data-center network) and importantly support
more efficient RDMA/GPUDirect communication protocols [41].
These ZionEX nodes can be connected with a dedicated backend
network to form a cluster for distributed scalable training. The
extensible design of ZionEX allows for scaling the backend network
to interconnect many thousands of nodes, forming a data-center
scale AI training cluster.

High Performance. As a scale-out solution, we offload the entire
DLRM to GPUs to fully leverage the massive parallelism and high
memory bandwidth to accelerate MLPs and embedding computa-
tions. To transfer tensors and synchronize gradients, each GPU
can communicate directly with GPUs on a different node through
the dedicated low-latency high-bandwidth RoCE NIC, without in-
volving host CPUs. In addition, ZionEX also has a frontend NIC
connected to each CPU. Data ingestion goes through the regular
frontend network and PCIe, without interfering with activations or
gradients. The host CPUs are only used to setup input batches and
marshal the training process.

Capability. With ZionEX we ensure that the platform is compat-
ible with existing infrastructure and can be widely deployed within
our data-centers, without causing major disruptions. This is critical
for being able to effectively leverage the capability of the platform
and make it readily available to across variety of applications and
uses-cases. We achieve this by making the ZionEX platform compli-
ant with the standard Open Rack specifications [2] , which covers
the compatibility with other infrastructure components such as
power, cooling, mechanicals and cabling. Furthermore designing
the platform to be modular and relying on open standards based
technologies, for instance - the ethernet based network fabric for
high-performance scale out solution.

Fig. 6c shows the overall training platform, along with the dis-
aggregated data-ingestion service. This supports streaming input
data from a network store such as Tectonic [45] and perform light-
weight data pre-processing operations in a distributed fashion. So
that the data-ingestion is not a bottleneck for the end-to-end train-
ing and to ensure sufficient throughput in feeding ZionEX trainers.

7 IMPLEMENTATION
We detail the implementation of high-performance scalable training
for DLRMs described above. We built a high-performance training
software stack for DLRMs using PyTorch [47], with efficient CUDA
implementation for most deep learning operators via the ATen li-
brary, and automatic handling of parameter replication and gradient
synchronization with overlapped back-propagation and AllReduce
via the PyTorch DistributedDataParallel library [31]. We have
enabled the following components for efficient DLRM training.

7.1 Data ingestion
Data ingestion is a key component to ensure end-to-end training
performance especially for DLRMs, which typically process through
order(s) of magnitude larger amount of data than other typical DNN
models. We observe that data ingestion, if left unoptimized, can
incur significant latency and introduce non-trivial overheads to
pipelining.

Originally designed for a distributed asynchronous CPU setup,
our readers and data pre-processing module stores the offsets and
indices† of each sparse feature in separate tensors per embedding
table. As a result, a DLRM with hundreds of embedding tables can
easily get a thousand input tensors per iteration, which translates
into significant overheads from CPU↔ GPU transfers and was one
of the key bottlenecks for the previous Zion platform as detailed in
Sec. 2.

To overcome this practical challenge, we co-designed the data
pre-processing module to use a combined format where lengths
rather than offsets are used and inputs to different embedding tables
are simply concatenated. The benefits of using the combined format
are two-fold: (1) it optimizes CPU-GPU transfer by consolidating
small transfers; (2) it can be directly consumed by the embedding
kernel without additional layout transformations. We further op-
timized input data transfer by using pinned memory to avoid the
extra copy.

With the combined format, we developed a module to efficiently
distribute embedding table inputs based on the sharding strategy.
In the case of table-wise sharding (shown in Fig. 4a), an AlltoAll is
needed to distribute the global batch for local tables to each worker.
Since the size of indices is dependent on the values of the lengths,
the communication is actually implemented as an AlltoAll for
lengths followed by an AlltoAll for indices. In a setup with𝑊

workers, 𝑇 local tables and 𝐵 local batch size, this gives us indices
in the order of (𝑊,𝑇, 𝐵), which needs to be further permuted to
(𝑇,𝑊 , 𝐵) for embedding kernel consumption. We have developed
custom GPU kernels for permute, bucketize and replicate to achieve
maximum throughput on embedding input indices distribution for
table-wise, row-wise and column-wise sharding schemes. Check-
pointing the model has similar challenges, requiring to be suffi-
ciently frequency be able to write-out such larger model whilst
not becoming an overhead for training, as outlined in this recent
paper [12].

†Please refer to the interface of nn.EmbeddingBag https://pytorch.org/docs/stable/
generated/torch.nn.EmbeddingBag.html

https://pytorch.org/docs/stable/generated/torch.nn.EmbeddingBag.html
https://pytorch.org/docs/stable/generated/torch.nn.EmbeddingBag.html
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Table 2: ZionEX per-node system specification.‡

Compute (PFLOPS) 2.5 (FP32) / 20 (TF32) / 40 (FP16,BF16)

HBM 320 GB, 12.4 TB/s

DDR 1.5 TB, 320 GB/s

Scale-up bandwidth 2.4 TB/s (uni-directional)

Scale-out bandwidth 1600 Gbps (uni-directional)

Host NW 4 × 100 Gbps

7.2 Communication Primitives
High-performance collective communication is key to performant
and scalable DLRM training. PyTorch provides the Process Group
(PG) interface for collectives - an abstract platform / collectives
library agnostic API. DLRM uses this API directly (for Alltoall)
or indirectly via DDP (for Allreduce) [31]. We use the NVIDIA’s
Collective Communication Library (NCCL) as our primary collective
communication library since it efficiently uses RDMA and NVLINK
for best performance. We extended PyTorch NCCL process group
implementation to support Alltoall/Alltoallv collectives usingNCCL
Send/Recv primitives (requires NCCL 2.7.3 or later).

8 EVALUATION
We provide results for end-to-end training of production models,
operator-wise performance breakdown.

8.1 Experimental Setup
Table 2 summarizes the aggregated capabilities of a single ZionEX
node with 8 NVIDIA A100 GPUs. The 8 GPUs in a node provide a
total 320 GB HBM with 12.4 TB/s aggregated memory bandwidth.
The 4-socket CPUs provide 1.5 TB memory with 320 GB/s band-
width. On network capabilities, the GPUs are interconnected with
high-bandwidth NVLink for intra-node GPU communication, and
each GPU has a dedicated 200 Gbps RoCE NIC for inter-node com-
munication. We use a cluster of 16 ZionEX nodes in the experiments
with 5TB total HBM capacity.

8.2 End-to-End Training
We report results on three DLRMs deployed in production for dif-
ferent tasks, including click through rate (CTR) prediction, ranking,
and engagement. Table 3 lists high-level characteristics of these can-
didate models. Model-A represents large and complex DLRMs that
stress Neo’s compute capability and communication bandwidth,
using significantly higher FLOPS per sample and a large number
of embeddings. Model-F presents a different practical challenge
where despite having low FLOPS per sample and a small number
of embedding tables, it has a single massive table that cannot fit
in the device memory of a single GPU. Finally, Model-I represents
moderate scale DLRMs stressing memory bandwidth with high
average embedding pooling sizes. These target models are trained
on up to 16 ZionEX nodes (128 GPUs) in the cluster. The model

‡Please refer to https://www.opencompute.org/wiki/Server/OAI for detailed HW
spec
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Figure 7: Training quality comparison between asynchro-
nous small batch on a distributed CPU platform and syn-
chronous large batch on the proposed platform, measured
in relative normalized entropy [19].

qualities are evaluated in normalized entropy [19], and the training
throughput is measured in queries per second (QPS).

First, we use model-A to demonstrate the training quality, since
it can also be trained on a distributed CPU platform. As shown
in Figure 7, despite using significantly larger batch size (64K vs.
~150), synchronous large batch training on ZionEX provides on-par
or better model quality (both using tuned hyperparameters). With
the same configuration, Neo achieves 1.2 MQPS using 128 GPUs
on 16 nodes, a 40× speedup compared to our previous generation
distributed CPU asynchronous training platform using 45 parame-
ter servers and 15 trainers. While previous solution was unable to
scale out further without hurting training quality, fully synchro-
nous training on ZionEX allows scaling beyond 16 nodes with even
larger batch sizes.

8.3 Scaling Performance
Figure 8 shows the normalized training throughput of model-A and
model-I using up to 16 nodes, while keeping the per-GPU batch

Table 3: Target models configuration

Model model-A model-F model-I

Num parameters 793B 12T 332B

MFLOPS per sample 638 5 60

Num of emb tables ≈ 1000𝑠 ≈ 10𝑠 ≈ 100𝑠

Embedding table dims [4, 384] [256, 256] [92, 92]
(range [min, max], avg) avg: 93 avg: 256 avg: 92

Avg pooling size 15 20 70

Num MLP layers 20 7 43

Avg MLP size 3375 490 682
Target local batch size 512 512 2048

Achieved QPS 1.2M 1.7M 3.4M
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Figure 8: Training throughput scaling for model-A and
model-I, relative to 8 GPUs (1 node).

size constant. While the workload of data-parallel training remains
the same with the scaling, the numbers of embedding tables per
GPU reduces with scaling due to model-parallelism. For the same
reason, however, each GPU processes the entire global minibatch
for each of its local tables and this increases commensurately with
scale and compensating for the reduced tables, making this still a
weak scaling experiment. To run on smaller node counts, we reduce
the embedding table cardinality and hash inputs to be within the
reduced number of rows. This shrunk version of the model effectively
reduces themodel sizeswithminimal/no impact on the performance
characteristics, hence is used for studying scaling performance.

As seen from the figure, on larger node counts, the scaling ef-
ficiency is around 50% for model-A and around 75% for model-I.
While model-A and model-I come very close in terms of effective
FLOPS and memory requirements after considering the target local
batch size, model-A has larger fully exposed AlltoAll latency. This
is because more embedding tables increase AlltoAll payload, and
mixed dimensions make it more difficult to balance embedding
computations and AlltoAll communications at the same time.
As a consequence, model-A suffers more from reduced AlltoAll
efficiency when scaling out.

To better understand the scaling performance, we provide a
breakdown of serialized and exposed training iteration latency of
model-A in Figure 9. Comparing between serialized and exposed
latency, the CPU to GPU transfer (i.e., HtoD) is completely hidden,
and the exposed communication latency is much less than serialized
AlltoAll and AllReduce latency combined. This demonstrates the
effectiveness of Neo’s pipelining optimization to overlap communi-
cations with computations (see Section 4.2).

As node count increases, we observe increased AlltoAll and
AllReduce latencies. Since most AlltoAll communications are on
the critical path, increased AlltoAll cost has a direct impact on
the exposed communication and overall training latency. While
AllReduce is mostly hidden on up to 16 nodes, the increased AllReduce
latency and unchanged computation latency signifies that AllReduce
can become the bottleneck once the slack in backward pass is com-
pletely used up with higher node counts and/or faster computation.
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Figure 9: Model-A (with local batch size per GPU = 512) re-
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exposed time) per GPU, after optimizations.
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8.4 Training Throughput Optimizations
Using model-A as a case study, we detail the various optimiza-
tions and their contributions in achieving up to 1.5 MQPS, shown
in Figure 10. Further, we use the performance roofline modeling
methodology described in Appendix-B to establish the upper bound
of achievable performance and confirm that reported throughout
is within 15% theoretical estimates. The baseline performance
for model-A on 128 GPUs is below 700 KQPS. Further profiling
reveals large disparities on embedding lookup latency between
different GPUs, signifying severe load imbalance. This is mitigated
using a combination of table-wise, column-wise, and data paral-
lelism for the ≈ 1000𝑠 of embedding tables to partition them across
128 GPUs. Note that even though column-wise parallelism intro-
duces additional cost to its input AlltoAll, the benefit from better
load-balance outweighs the overheads and results in overall QPS
improvement by 20%. However, the scaling efficiency is still about
30% lower than ideal linear scaling.

app:B
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As discussed previously, the two major issues limiting scaling
efficiency are: (1) load imbalance and (2) increased AlltoAll la-
tency. For model-A, further balancing the load using only HBM
is particularly challenging because the model size in TF32 comes
close to the 5TB aggregated HBM capacity on 128 GPUs. After dis-
counting for memory reserved by PyTorch framework and NCCL
on each rank, Neo has little room to explore placement strategies.
To mitigate this issue, we use lower precision (FP16) embedding
tables, reducing the model size by a factor of 2. While this alone
does not provide direct throughput benefit, Neo can leverage the
head room to strike a better balance. As a consequence, the train-
ing throughput is increased by another 20% due to improved load
balancing.

Next, to address the increased AlltoAll latency, we incorpo-
rate quantized collective communications proposed in [63], which
directly reduce the communication volume. For model-A, we vali-
date that using FP16 in forward AlltoAll and BF16 in backward
AlltoAll provides almost 30% speedup without any training qual-
ity loss.

Lastly, we increase the global batch size from 64K to 256K. This
directly increases activation sizes, which helps saturate GPUs and
communication bandwidth better, while being complimentary to
all other optimizations. With appropriately tuned optimizer/hyper-
parameters, we are able to achieve on-par training quality, how-
ever more comprehensive experimentation is warranted since large
batch training of DLRMs is not as well studied and will be part of
future work. Collectively, these techniques unlock an 87% improve-
ment on training throughput compared to TF32 training with a 64K
global batch size.

8.5 Model Capacity Limitation Study
We use model-F as an example to push the model capacity on the
prototype system. Unlike model-A or model-I, efficiently training
model-F presents 2 different challenges. First, with 12T parameters,
model-F can easily require up to 96TB of memory using a naive
training approach, far exceeding the total memory available on a 16-
node cluster§. Second, the model has only a fewmassive embedding
tables with ~10B rows and 256 columns, each requiring multi-node
worth of GPU and host memory to train.

To fit the model onto 16 nodes, we first apply row-wise sparse
AdaGrad optimizer to embedding tables which reduces optimizer
states from per element to per embedding row. Then we use FP16
precision on embedding tables. These two optimizations collec-
tively bring model memory footprint from 96TB down to 24TB,
just fitting under the 4TB HBM + 24TB DRAM memory hierarchy.
On the massive embedding tables, we enable row-wise sharding
to distribute the tables to multiple nodes and adjust the training
flow to use AlltoAll with bucketization and ReduceScatter as
shown in Figure 4b. With UVM enabled and HBM used as a cache,
we are able to train model-F with throughput as high as 1.7 MQPS,
demonstrating capability of our HW/SW co-designed solution to
push beyond the current state-of-the-art.

§Considering FP32 precision and doubled size for optimizer states 12𝑒12× 4× 2 =
96𝑒12. The prototype cluster has in total 4TB HBM and 24TB DRAM

9 RELATEDWORK
Researchers have proposed various system-level innovations to
tackle the challenges from extremely large models. DeepSpeed [49]
fully shardsmodel parameters, gradients and optimizer states across
all nodes, and reconstructs necessary states on the fly using check-
point partitioning and rematerialization [20, 27] to drastically re-
duce memory usage. GShard [30] trains a massive translation model
with mixture of experts, sharded across accelerators through anno-
tation of parallelization strategy at tensor level. FlexFlow [21] uses
automatic search to discover the best operator parallelization strat-
egy in the graph. Building on this direction of auto-parallelization,
these recent papers [38, 59] use optimal synthesis and reinforcement
learning to find optimized device placement to further improve par-
allelism without the need for manual intervention. However, these
general systems are not specifically designed for highly sparse
recommendation models.

To that end, Alibaba introduced XDL [22], an industry-scale
training system designed for high-dimensional sparse data. XDL in-
corporates optimizations such as hierarchical sample compression,
workflow pipelining, zero copy and CPU binding to improve train-
ing efficiency of the sparse part of the model. Kraken [61] targets
at more efficient online training with decoupled key-value fetching
and embedding, codesigned cache eviction policy with ML domain
knowledge for the embedding tables, memory efficient optimizers
for the sparse and dense part of the model, and a non-colocated
deployment model allowing the inference servers and parameter
servers to grow independently. [24] optimizes CPU-based DLRM
training through lock-free embedding table update, tuned loop
tiling for dense MLP, the AlltoAll communication primitive and
a new split-SGD implementation that takes advantage of the bits
aliasing in FP32 and BFloat16 to reduce memory footprint. Baidu’s
AIBox [67] takes a different approach to horizontally scaling and
focuses on fitting training of large recommendation models in a sin-
gle node. AIBox hides serving latency by pipelining network, disk
and CPU/GPU tasks, reduces model update overhead, and improves
SSD life span through a grouped hashing scheme and a multi-level
in-memory hashing system.

Much attention is given to communication performance as it has
become a major bottleneck in distributed training at cluster and dat-
acenter scale. BytePS and ByteScheduler [23, 48] harnesses idle CPU
and network resources and better communication scheduling to im-
prove parameter exchange efficiency. However, in a homogeneous
training cluster where each job spans multiple nodes, there are
reduced opportunities for finding and exploiting spare network re-
sources, resulting in a sub-optimal use of such approach. SwitchML
and ATP [29, 52] leverages programmable network switches to per-
form in-network aggregation for cross-rack bandwidth reduction in
datacenter environments. [6, 35] discovers and exploits datacenter
network locality and forms optimized and dynamic aggregation
routes through learning and optimal synthesis. Alternatively, these
papers [32, 33] address the communication overheads by using
various quantization schemes to reduce communication volume.

10 CONCLUSION
DLRMs are an important class of models widely used by many
internet companies for a wide range of applications. They can
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often be the single largest AI application in terms of infrastructure
demand in data-centers. These models have atypical requirements
compared to other types of deep learning models, but they still
follow a similar trend of rapid rate of growth that is common across
all deep learning-based applications. This growth constantly pushes
the performance boundary required of the underlying software
stack and hardware platform.

In this paper we co-design a solution that enables us to run
models with trillions of parameters, while attaining 40× faster to-
tal training time for production recommendation models. On the
software side, Neo is equipped with a number of novel software
techniques, including 4D parallelism, high-performance embedding
kernels, hybrid kernel fusion, and hierarchical memory manage-
ment. On the hardware side, the extensible ZionEX platform allows
for scaling up to the full data center with thousands of nodes, thus
enabling a data center-scale AI training cluster to continue catering
to the growing demands of deep learning models.

Finally, we also explore co-designing models and algorithms
to make them more amenable to the training cluster, for instance
model architectures that reduce global AlltoAll communication
for better scaling efficiency. With this solution successfully de-
ployed in production, we intend to continue working on these
future directions to further push the capability for large scale deep
learning training.
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APPENDIX-A
Compute Benchmarks
We collected and developed a set of operator-level benchmarks which we have also open sourced as part of PARAM bench¶, to evaluate
the representative problem sizes and shapes on the candidate hardware platforms and to better understand the throughput and latency in
compute, memory, and communications.

GEMM benchmark. This benchmark calls cuBLAS GemmEx routine to compute matrix multiplications on configurable problem sizes with
multiple precision choices. On the V100 GPU, this benchmark supports FP32 GEMM on the CUDA core and FP16 mixed-precision GEMM on
Tensor Core. On the A100 GPU, it additionally supports TF32 GEMM and BF16 GEMM on the Tensor Core.

The benchmark results are shown in Figures 11.
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Figure 11: GEMM performance (TF/s) for V100 FP16 vs. A100 FP16/BF16.

MLP benchmark. This benchmark implements the following multilayer perceptron (MLP) layers:
• Batch size = 128, 256, 512, 1024, 2048, 4096;
• 20 MLP layers, where each layer is 1K×1K , 2K×2K and 4K×4K;
• Each layer has ReLU and final layers has SoftMax;
• Both backward and forward passes, including SGD update as the optimizer after the backward pass;
• Precision support: FP16, BF16, TF32, FP32.

The batch size, layer dimension, and number of layers can be configured to the customized number. We implemented this MLP benchmark
using C++, directly implementing FC and FCGradients in the MLP layer using cuBLAS SGEMM/GemmEx function, ReLU with cuDNN
cudnnActivationForward/ cudnnActivationBackward function, SoftMax with cudnnSoftmaxForward in the forward a customized CUDA
kernel for the backward pass, and SGD optimizer with cuBLAS axpy function. This benchmark can be used to project the performance
of V100/A100 GPUs using a minimal MLP network without the framework overhead in PyTorch. The benchmark results are shown in
Figures 12 and 13.

Memory Benchmark
This benchmark evaluates the achieved memory bandwidth of the embedding kernels described in Section 5. To eliminate the L2 cache
effects, a random tensor with 40 MB data (A100 L2 cache size) is allocated to flush the cache.

• Support the evaluation forward and backward pass (the backward pass is fused with optimizer);
• Precision Support: FP32 and FP16;
• Number of rows: 1000000, Number of tables: 64, Embedding dimension: 128, Pooling size: 32, rows per thread block: 32.

The benchmark results are shown in Figures 14 and 15.

¶https://github.com/facebookresearch/param

https://github.com/facebookresearch/param
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Figure 12: MLP performance for V100 FP32 vs. A100 FP32/TF32.
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Figure 13: MLP performance for V100 FP16 vs. A100 FP16/BF16.

Communications Benchmark
Low-level collective communication benchmarks, e.g. NVIDIA’s NCCL tests or OSU MPI benchmarks, have the following limitations:

• Do not capture the behavior of actual workloads, i.e. exact message sizes, sequence of collective operations, etc. Instead these
benchmarks support power-of-two message sizes - helpful to detect network trends.

• Limited to one specific communication library. As the name suggests, NCCL tests works only with NCCL and OSU MPI benchmarks
is limited to MPI.

The PARAM comms benchmarks addresses these gaps by:
• Creating common abstractions across platforms (e.g. NVIDIA GPUs, x86 CPUs, Google TPU etc.) to help standardize the benchmarking
logic.

• Using PyTorch Process Group APIs to provide a portable interface across different communication libraries (e.g. NCCL, MPI, and
UCC).
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Figure 14: Achieved embedding lookup forward bandwidth using FP32 vs. FP16 on V100 vs. A100.
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Figure 15: Achieved embedding lookup backward+optimizer bandwidth using FP32 vs. FP16 on V100 vs. A100.

PARAM comms benchmarks supports two types of collective benchmarks:
• Bench mode: Simplest mode of operation similar to NCCL tests. Run single collective in blocking or non-blocking manner across fixed
set of message sizes (e.g. power of 2 message sizes). This is mainly used for low-level HW testing

• Replay mode: Replays a trace of collective communication calls to mimic exact workload behavior in terms of collective sizes.
Figure 16 presents AlltoAll and AllReduce benchmark scaling for power-of-two message sizes on 128 GPUs. AlltoAll achieves 7GB/s

and is primarily limited by scale-out bandwidth (12.5 GB/s peak; 10.5 GB/s achievable on V100). AllReduce achieves higher bandwidth since
it uses NVLINK more effectively.
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Figure 16: Achieved AlltoAll and AllReduce bandwidth at 128GPUs

APPENDIX-B
Performance roofline and benchmarking

Figure 17: DLRM dependency graph

In order to identify performance gaps, to see how far we are from
fully utilizing the platform capabilities - we establish the upper bound
for achievable performance using an analytical roofline model. DL-
RMs can be broken down into the following major components - 1)
bottom MLP; 2) embedding lookup and update; 3) AlltoAll communi-
cation of the model-parallel pooled embeddings; 4) interaction and Top
MLP; 5) AllReduce communication for the data-parallel MLP gradient
synchronization. The execution dependency between there different
components are outlined in Fig.17. As discussed above, individually
each of these have different characteristics. The latency/performance
for each component is dependent on different parts of the system, for
instance the embedding ops performance depends on the achievable
HBM bandwidth, whereas the MLP performance is bounded by achiev-
able compute flops. Even between the two collective communication
primitives - AllReduce performance depends on both the scale-out and
scale-up bandwidths, whereas the AlltoAll performance primarily
depends on the scale-out bandwidth. With estimates for latencies for
these individual components, the overall per-iteration latency can be
estimated as shown in Eq. 1

𝑇𝑓 𝑤𝑑 = max[𝐵𝑜𝑡𝑀𝐿𝑃𝑓 𝑤𝑑 , (𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔_𝑙𝑜𝑜𝑘𝑢𝑝 + 𝑎𝑙𝑙𝑡𝑜𝑎𝑙𝑙𝑓 𝑤𝑑 )] + 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑓 𝑤𝑑 + 𝑇𝑜𝑝𝑀𝐿𝑃𝑓 𝑤𝑑

𝑇𝑏𝑤𝑑 = max[𝑇𝑜𝑝𝑀𝐿𝑃𝑏𝑤𝑑 + 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑏𝑤𝑑 +max{𝑎𝑙𝑙𝑡𝑜𝑎𝑙𝑙𝑏𝑤𝑑 + 𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔_𝑢𝑝𝑑𝑎𝑡𝑒, 𝐵𝑜𝑡𝑀𝐿𝑃𝑏𝑤𝑑 },
(𝑇𝑜𝑝𝑀𝐿𝑃_𝐴𝑙𝑙𝑟𝑒𝑑𝑢𝑐𝑒 + 𝐵𝑜𝑡𝑀𝐿𝑃_𝐴𝑙𝑙𝑟𝑒𝑑𝑢𝑐𝑒)]

𝑇𝑡𝑜𝑡𝑎𝑙 = 𝑇𝑓 𝑤𝑑 +𝑇𝑏𝑤𝑑 (1)

To estimate the performance and latencies for each of these components, we use operator-level benchmarks which allow evaluation
of target operator shapes/sizes on candidate HW platforms. We benchmark∥ the 1) embedding operators, 2) typical MLP sizes, and 3)
communication primitives. With these benchmarks we are able to establish the max achievable HBM bandwidth to be 850 GB/s for V100

∥https://github.com/facebookresearch/param

https://github.com/facebookresearch/param
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and 1300 GB/s on A100 GPUs, and for the MLP sizes of interest, achievable compute efficiencies to be up to 78.6% (V100) and 70.5%. (A100).
Furthermore, we achieve 7GB/s for 256MB AlltoAll and 60GB/s for 256MB AllReduce. AllReduce is able to achieve higher effective
bandwidth since it utilizes both scale-out and NVLINK badnwidths. These benchmarking results and configuration used are detailed in
Appendix-A.
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