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Fig. 1. We propose a drivable volumetric model for full-body avatars, which relies on texel-aligned features to be fully faithful to the driving signal.

Photorealistic telepresence requires both high-fidelity body modeling and
faithful driving to enable dynamically synthesized appearance that is indis-
tinguishable from reality. In this work, we propose an end-to-end framework
that addresses two core challenges in modeling and driving full-body avatars
of real people. One challenge is driving an avatar while staying faithful to
details and dynamics that cannot be captured by a global low-dimensional pa-
rameterization such as body pose. Our approach supports driving of clothed
avatars with wrinkles and motion that a real driving performer exhibits be-
yond the training corpus. Unlike existing global state representations or non-
parametric screen-space approaches, we introduce texel-aligned features—a
localised representation which can leverage both the structural prior of a
skeleton-based parametric model and observed sparse image signals at the
same time. Another challenge is modeling a temporally coherent clothed
avatar, which typically requires precise surface tracking. To circumvent this,
we propose a novel volumetric avatar representation by extending mixtures
of volumetric primitives to articulated objects. By explicitly incorporating
articulation, our approach naturally generalizes to unseen poses. We also
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introduce a localized viewpoint conditioning, which leads to a large im-
provement in generalization of view-dependent appearance. The proposed
volumetric representation does not require high-quality mesh tracking as
a prerequisite and brings significant quality improvements compared to
mesh-based counterparts. In our experiments, we carefully examine our
design choices and demonstrate the efficacy of our approach, outperforming
the state-of-the-art methods on challenging driving scenarios.
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1 INTRODUCTION
Augmented reality (AR) and virtual reality (VR) have the potential
to become major computing platforms, enabling people to interact
with each other in ever more immersive ways across space and time.
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Among these possibilities, authentic social telepresence aims at life-
like presence in AR and VR which is indistinguishable from reality.
This imposes a fundamental requirement for techniques to faithfully
teleport every possible detail expressed by humans in reality.
One promising path to achieve this is to rely on a photoreal-

istic animatable model, often obtained with an elaborate capture
system, which essentially acts as a strong data-driven prior [Bagaut-
dinov et al. 2021; Lombardi et al. 2018; Xiang et al. 2021]. Although
these methods are capable of producing realistically-looking free-
viewpoint renders, and are robust to occlusions and driving signal
incompleteness, these methods do not fully exploit available inputs.
In practice, such methods typically map dense sensory inputs to
sparse driving signals, such as body pose or low-dimensional em-
beddings. Therefore, a large proportion of detailed observations
about the subject are effectively thrown away, resulting in the need
to re-hallucinate these details in the final render. This creates a clear
fidelity gap between teleportation and reality, resulting in a loss in
quality of the conveyed social cues. One of the reasons why relying
exclusively on such model-based methods is insufficient lies in the
fact that it is non-trivial to design a driving representation which
is simultaneously expressive and relatively agnostic to the capture
setup to ensure generalization in novel conditions.
An alternative path to building telepresence systems showing

promise, is to rely on model-free methods which combine classi-
cal geometry reconstruction methods with image-space processing,
either with ad-hoc image fusion [Lawrence et al. 2021] or neu-
ral re-rendering [Martin-Brualla et al. 2018; Shysheya et al. 2019].
Such methods are able to better exploit available inputs, but usu-
ally require highly specialized hardware for high-fidelity real-time
sensing and would be limited in handling occlusions and incom-
plete data, either exhibiting limited quality rendering of novel view-
points [Martin-Brualla et al. 2018] or requiring high viewpoint cov-
erage by using multiple highly-specialized sensors [Lawrence et al.
2021]. Moreover, due to the challenges in real-time sensing, artifacts
may occur around occlusion boundaries and body parts with limited
resolution, like fingers or hair.

In this work, our goal is to design a method that effectively com-
bines the expressiveness of model-free methods with the robustness
of model-based neural rendering. The key idea is a localized state
representation, which we call texel-aligned features, that provides
the model with a dense conditioning signal while still relying on
a data-driven neural rendering model. Dense conditioning allows
us to maximize the amount of information extracted from the driv-
ing signals, while the data-driven model acts as a strong prior that
allows the model to perform well even in scenarios with impov-
erished sensory input. Additionally, our approach uses a hybrid
volumetric representation specifically tailored to modeling human
bodies, which exhibits both good generalization to novel poses and
produces high-quality free-viewpoint renders. This is in contrast to
image-space neural rendering methods [Martin-Brualla et al. 2018]
and mesh-based [Bagautdinov et al. 2021] methods, which either
lead to poor generalization on novel views, or are not capable of
modeling complex geometries with varying topology, which are
abundant in clothed dynamic humans.
In our experiments, we demonstrate the effectiveness of such

hybrid representations for full-bodies over the state-of-the-art. We

also showcase the efficacy of our method by building a complete
one-way telepresence system, which allows a person to be virtually
teleported using only a few commodity sensors.

In summary, our contributions are:

• We introduce Drivable Volumetric Avatars (DVA): a novel
neural representation for animation and free-viewpoint ren-
dering of personalized human avatars.

• We propose texel-aligned features for DVA: a dense condi-
tioning method that leads to better expressiveness and better
generalization to novel viewpoints for unseen poses.

• We introduce a novel virtual teleportation system that uses
DVA for one-way photorealistic telepresence.

Sample implementation will be made publicly available1.

2 RELATED WORK
We first discuss existing representations for modeling dynamic hu-
man appearance and geometry. We then review existing telepres-
ence systems, with a focus on how these systems exploit available
driving signals, typically trading off robustness for fidelity.

Mesh-Based Avatars. Textured meshes have been widely used to
represent human geometry and appearance for efficient rendering
with modern graphics hardware. Parametric human body models
can be learned from thousands of scans by deforming a template
mesh [Anguelov et al. 2005; Hasler et al. 2009; Loper et al. 2015].
These approaches primarily focus on the geometry of minimally
clothed human bodies. Recent works also model clothing shape
variation [Bhatnagar et al. 2019; Ma et al. 2020]. Template meshes are
also utilized to model the shape and appearance of clothed humans
from video inputs [Alldieck et al. 2018] or a single image [Alldieck
et al. 2019; Weng et al. 2019]. In particular, approaches [Grigorev
et al. 2019; Lazova et al. 2019] are highly related to our work, as
they leverage warping pixels to UV maps to perform novel view
synthesis of clothed humans.

However, these methods model only static geometry and appear-
ance, failing to produce high-fidelity drivable avatars for novel poses.
Recently [Bagautdinov et al. 2021] proposed a method to model
high-fidelity drivable avatars from a multi-view capture system by
decoding dynamic geometry and appearance from disentangled
driving signals. [Xiang et al. 2021] extends this representation by
modeling clothing explicitly as a separate mesh layer, similarly
to ClothCap [Pons-Moll et al. 2017], recovering sharper clothing
boundaries.

Despite providing an efficient and effective way to represent dy-
namic humans, these mesh-based approaches require accurate track-
ing of the underlying geometry of avatars as a preprocessing step,
which significantly limits supported clothing types. LiveCap [Haber-
mann et al. 2019] and its follow-up learning-based method [Haber-
mann et al. 2021] simplify the tracking requirement by leveraging
silhouette constraints while achieving real-time performance. How-
ever, at the cost of simplification, the fidelity of the resulting avatars
are not on par with the aforementioned approaches that rely on

1https://github.com/facebookresearch/dva
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Fig. 2. General overview of the architecture. The core of our full-body model is a encoder-decoder architecture, which takes as input raw images, body
pose, facial expression and view direction, and outputs a mixture of volumetric primitives. These are ray marched through to produce a full-body avatar.

accurate tracking. In contrast, our approach, is based on a more flexi-
ble volumetric representation, simplifying the tracking prerequisites
while further improving the fidelity.

Volumetric Avatars. Recently volumetric representations have
been shown effective for modeling 3D humans from a single im-
age [Huang et al. 2020; Li et al. 2020a; Saito et al. 2019, 2020; Zheng
et al. 2021], RGBD inputs [Li et al. 2020b; Yu et al. 2021], 3D scans [Bhat-
nagar et al. 2020; Chibane et al. 2020; Palafox et al. 2021; Saito et al.
2021; Tiwari et al. 2021], or multi-view captures [Liu et al. 2021;
Lombardi et al. 2019, 2021; Peng et al. 2021a,b; Su et al. 2021].

PIFu [Saito et al. 2019] and its follow up works [Huang et al. 2020;
Li et al. 2020a; Saito et al. 2020; Zheng et al. 2021] learn occupancy
and texture fields given pixel-aligned image features and 3D co-
ordinates. Extending it to RGBD inputs also enables robust avatar
creation [Li et al. 2020b; Yu et al. 2021]. Parametric bodies such as
SMPL model [Loper et al. 2015] are used to warp image-features
to a canonical T-pose for modeling animatable avatars from a sin-
gle image [He et al. 2021; Huang et al. 2020]. IFNet [Chibane et al.
2020] infers implicit functions from partial point clouds by lever-
aging multi-level features, which is later extended to multi-body
parts [Bhatnagar et al. 2020]. Since volumetric representations sup-
port varying topology, modeling animatable clothed avatars is now
possible without explicit surface registration [Palafox et al. 2021;
Saito et al. 2021; Tiwari et al. 2021]. While some of these approaches
model pose-dependent body geometry, the appearance is either
ignored or not photo-realistic.
Given multi-view video sequences, Neural Volumes [Lombardi

et al. 2019] models volumetric human heads by decoding radiance
in voxels, whose efficiency and fidelity are further improved by Mix-
ture of Volumetric Primitives (MVP) [Lombardi et al. 2021]. Similarly,
[Ma et al. 2021a,b] introduce a collection of articulated primitives

to model clothed humans, primarily focusing on geometry. Neural
Body [Peng et al. 2021b] applies differentiable volumetric render-
ing [Mildenhall et al. 2020] to model articulated human geometry
and appearance by diffusing per-vertex latent codes on a SMPL
model via sparse 3D convolutions. Neural Actor [Liu et al. 2021] in-
stead projects 3D coordinates on the closest SMPL surface to regress
radiance fields. A-NeRF [Su et al. 2021] and [Peng et al. 2021a]
leverages spatial transformations provided by joint articulation for
better generalization with unseen poses. While the volumetric ren-
dering approaches do not require precise tracking of the surface,
they neither run in real-time nor model stochastic nature of cloth-
ing deformations as avatars are driven by only pose parameters. In
contrast, our volumetric avatar runs in real-time, and supports more
fine-grained control of the reconstructed avatars such as wrinkles
and clothing dynamics.

Drivable Telepresence Systems. Drivable telepresence systems can
be divided into two categories; Non-parametric solutions are holis-
tically modeling a scene and faithfully transmit observed signals as
it is [Lawrence et al. 2021; Martin-Brualla et al. 2018; Orts-Escolano
et al. 2016]. The other solution is to leverage a category-specific
parametric model for driving [Bagautdinov et al. 2021; Lombardi
et al. 2018; Xiang et al. 2021].
Non-parametric telepresence systems, including Holoportation

[Orts-Escolano et al. 2016], and Project Starline [Lawrence et al.
2021], leverage classical 3D reconstruction techniques and image-
space post-processing for real-time rendering of the scene. While
these approaches do not require per-user training, its fidelity is
bounded by the input signals. Thus, occluded regions remain void.
To alleviate this limitation, LookingGood [Martin-Brualla et al. 2018]
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proposes a system to augment real-time performance capture sys-
tems with 2D neural rendering. A neural network takes imper-
fect rendering of captured geometry and appearance, and jointly
performs completion, super-resolution, and denoising in real-time.
However, we argue that such a image-based solution lacks strong
structural prior of human avatar, and results in sub-optimal render-
ing quality when input views are sparse (i.e., temporal flickering and
blur in impainted regions). Such a 2D neural rendering technique
has been recently applied to human body to better incorporate hu-
man prior [Prokudin et al. 2021; Raj et al. 2021; Shysheya et al. 2019].
However, these approaches rely exclusively on pose for driving the
avatars, and do not capture remaining information such as clothing
deformations and dynamics.
On the contrary, parametric approaches build strong subject-

specific priors for face [Lombardi et al. 2018] and body [Bagautdinov
et al. 2021; Habermann et al. 2021; Xiang et al. 2021] by training on
a large corpus of multi-view data. While the advantage of these ap-
proaches lies in the robustness to limited input signals (e.g., driving
from images from VR headsets [Wei et al. 2019]), high compression
of drivers’ state into low-dimensional driving signal often leads
to lack of expressiveness for driving. In this work, our proposed
texel-aligned feature representation allows us to leverage strong
structural prior provided by a parametric model while recovering
fine-grained details observed from sparse input images as in non-
parametric systems.

3 METHOD

3.1 Overview
Our goal is to build a photorealistic personalized avatar of a hu-
man that is expressive and faithful to the driving signal, while also
being robust to our driving setup with a sparse view inputs. An
overview of our approach is provided in Fig. 2. Our model is an
encoder-decoder architecture that takes as input a set of sparse
multi-view images, body pose and a viewing direction, and pro-
duces a collection of volumetric primitives on a human body. The
inferred volumetric primitives are then rendered with a differen-
tiable ray marching to produce a photorealistic avatar. Input pose
is used to produce coarse geometry articulated by Linear Blend
Skinning [Kavan et al. 2008; Magnenat-Thalmann et al. 1989] (LBS).
This provides the initial positions of the volumetric primitives. The
underlying skinned model is also used to align all the available driv-
ing inputs onto texel-aligned features, which include localized pose,
viewpoints, and image features. Those texel-aligned features are
then decoded to a volumetric payload that captures high-resolution
local geometry and appearance as well as dynamic correctives to the
primitives’ transformations. Similarly to [Bagautdinov et al. 2021],
we use a shadow branch to capture non-local shading effects, which
also operates in the texture space.

3.2 Background: Mixture of Volumetric Primitives
At the core of the MVP [Lombardi et al. 2021], the representation
is a set of 𝐾 dynamically moving volumetric primitives that jointly
parameterize the color and opacity distribution of a modeled scene.
This yields a scene representation that, unlike mesh-based ones, is
not bound to a fixed topology and, compared to regular volumetric

grids [Lombardi et al. 2019], is memory efficient and fast to render,
allowing for real-time rendering of high-resolution dynamic scenes.

In practice, each primitive P𝑘 = {𝑡𝑘 , 𝑅𝑘 , 𝑠𝑘 ,𝑉 RGB
𝑘

,𝑉𝛼
𝑘
} is parame-

terized by a position 𝑡𝑘 ∈ R3 in 3D space, an orientation 𝑅𝑘 ∈ SO(3),
a per-axis scale factor 𝑠𝑘 ∈ R3, an appearance (RGB) payload
𝑉
rgb
𝑘

∈ R3×𝑆×𝑆×𝑆 , and opacity𝑉𝛼
𝑘

∈ R𝑆×𝑆×𝑆 , where 𝑆 is the number
of voxels along each spatial dimension.
The synthetic image is then obtained through differentiable ray

marching, using a cumulative volumetric rendering scheme of [Lom-
bardi et al. 2019]. More specifically, given a pixel 𝑝 and correspond-
ing ray r𝑝 (𝑡) = o + 𝑡d𝑝 we compute its color 𝐼 rgb𝑝 as

𝐼
rgb
𝑝 =

∫ 𝑡max

𝑡min

𝑉 rgb (r𝑝 (𝑡))
𝑑𝑇 (𝑡)
𝑑𝑡

𝑑𝑡 , (1)

𝑇 (𝑡) =
∫ 𝑡max

𝑡min

𝑉𝛼 (r𝑝 (𝑡))𝑑𝑡 , (2)

where𝑉 RGB,𝑉𝛼 denote global color and opacity fields and are com-
puted by trilinearly interpolating each primitive hit by the ray.

3.3 Articulated Primitives
[Lombardi et al. 2021] introduces a model for human faces, where
volumetric primitives are loosely attached to a guide mesh directly
regressed by an MLP. Unlike faces, however, bodies undergo large
rigid motions that are hard to handle robustly with position-based
regression. In order to generalize better to articulated motion, we
propose to attach primitives to the output mesh of Linear Blend
Skinning model:

M𝜽 = LBS(𝜽 ,M) , (3)

where \ denotes human pose,M a template mesh in canonical pose,
andM\ is the final mesh geometry after posing.

We then initialize primitive locations by uniformly sampling UV-
space, mapping each primitive to the closest texel, and positioning it
at the corresponding surface point 𝑡𝑘 (𝜽 ) ∈ M𝜽 . In practice, we use
𝐾 = 4096 primitives, and thus this procedure produces a𝑊 ×𝑊,𝑊 =

64 grid, where each primitive is aligned to a specific texel. The
orientation of the primitives is initialized based on the local tangent
frame 𝑅𝑘 (𝜽 ) of the 3D surface point on the reposed mesh, and the
scale 𝑠𝑘 of each primitive is initialized based on the gradient of 3D
rest shape w.r.t.the UV-coordinates at the corresponding grid point
position.

Moreover, although the primitives are associated with the articu-
lated mesh, in order to allow for larger variations in topology, they
are allowed to deviate:

𝑡𝑘 = 𝛿𝑡𝑘 + 𝑡𝑘 (𝜽 ), (4)

𝑅𝑘 = 𝛿𝑅𝑘 · 𝑅𝑘 (𝜽 ), (5)
𝑠𝑘 = 𝛿𝑠𝑘 + 𝑠𝑘 , (6)

where 𝛿𝑡𝑘 , 𝛿𝑅𝑘 , 𝛿𝑠𝑘 are primitive correctives that are produced by
the motion branch of our decoder.

3.4 Texel-Aligned Features
In this section, we describe our novel dense representation which
allows us to fully exploit available driving signals. As discussed
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earlier, our primitives are aligned into a𝑊 ×𝑊 2D grid, where each
primitive is assigned to a specific texel on the UV-map. In order to
condition each of the primitives only on the relevant information,
we propose to use the same spatial prior to align all the input signals
to the corresponding structure.

Body Pose. For body pose 𝜽 , we employ location-specific encod-
ings similar to [Bagautdinov et al. 2021]: we use skinning weights to
limit the spatial extent of each pose parameter, project the resulting
masked features to the UV-space at the same𝑊 ×𝑊 resolution, and
then apply a dimensionality reducing projection, implemented as a
1x1 convolution, to get 𝐹𝜽 . Such localized representation helps limit
overfitting, and reduces the tendency to learn spurious long-range
correlations which might be present in the training data as shown
in prior works [Bagautdinov et al. 2021; Saito et al. 2021].

Images. Conditioning the model only on pose is insufficient for
faithful driving, as it does not contain all the information required to
explain the entire appearance of a clothed human in motion, such as
stochastic clothing state and dynamics. To this end, we propose to
use available image evidence, by projecting it to a common texture
space. Namely, for each available input view, we back-project image
pixels corresponding to all visible vertices of our posed LBS template
to UV-domain. Once all visual evidence has been mapped to a com-
mon UV-domain, we average it across all the available views to get a
multi-view texture. We then compress the resulting high-resolution
texture to the same resolution as 𝐹𝜽 with a convolutional encoder
to obtain 𝐹I. Note that, unlike the existing works [Bagautdinov
et al. 2021; Lombardi et al. 2018], which assume all the remaining
information is encoded into a global low-dimensional code, our
representation preserves spatial structure of the signal and is signifi-
cantly more expressive, thus allowing to better capture deformations
present in the input signals (see Fig.4).

Viewpoint. The existing work on modeling view-dependent ap-
pearance of human body [Bagautdinov et al. 2021; Liu et al. 2021;
Peng et al. 2021a,b] represents viewpoint globally for the entire
body, as a relative camera position w.r.t.the root joint. However, this
representation is not explicitly taking into account articulation, and
the model is forced to learn complex interactions between pose-
dependent deformations and viewpoint from limited data, which
leads to overfitting (see Fig. 3). To address this, we encode the camera
position in the local coordinate frame of each primitive. Specifically,
given a view-direction v ∈ R3 and the posed template meshM\ , we
compute per-triangle normals n𝑡 and use them to express camera
coordinates relatively to the local tangent plane of each triangle as

𝑣𝑡 = v · n𝑡 . (7)

Then, we warp this quantity to UV space, and sample it at𝑊 ×𝑊
resolution to get texel-aligned viewpoint features 𝐹v.

3.5 Architecture and Training Details
Given texel-aligned features, our decoder produces the payload of
the volumetric primitives (Fig. 2). In practice, we employ three inde-
pendent branches, each being a sequence of 2D transposed convolu-
tions with untied biases that preserve spatial alignment. The motion

branch is conditioned on (𝐹𝜽 , 𝐹I), and produces transformation cor-
rectives {(𝛿𝑡𝑘 , 𝛿𝑅𝑘 , 𝛿𝑠𝑘 )}𝑘 ∈ R9×𝑊 ×𝑊 , which are then applied to
the initial locations of articulated primitives. The opacity branch is
conditioned on (𝐹𝜽 , 𝐹I) and produces a slab {𝑉𝛼

𝑘
}𝑘 ∈ R𝑆×𝑊 ·𝑆×𝑊 ·𝑆 ,

where 𝑆 = 16 is the number of voxels along a spatial dimension. The
appearance branch is conditioned on (𝐹𝜽 , 𝐹I, 𝐹v), and produces a slab
{𝑉 rgb

𝑘
}𝑘 ∈ R3×𝑆×𝑊 ·𝑆×𝑊 ·𝑆 . Additionally, to capture long-range pose-

dependent effects, we employ a shadow branch in [Bagautdinov
et al. 2021] by replacing the output channel of the last convolution
layer to match with the 𝑉 rgb

𝑘
for multiplication.

We use the following composite loss to train all our models:

L = _rgbLrgb + _vggLvgg + _mLm + _volLvol , (8)

where Lrgb is the MSE image loss, Lvgg is the perceptual VGG-loss,
Lm is the MAE segmentation mask loss, and Lvol is the volume
prior loss [Lombardi et al. 2021] that encourages primitives to be as
small as possible. Empirically, we found that it is important to train
the model in two stages to ensure robustness with respect to the
quality of tracking and LBS model. Namely, for the first 𝑁 = 1000
iterations we condition our model on all available training views (for
our data 160 cameras), and then continue training on a sparse signal
computed from 3 randomly sampled view. Intuitively, this helps
our model pick up useful signals by gradually shifting from easy
samples to harder ones in the spirit of curriculum learning [Bengio
et al. 2009].

4 EXPERIMENTS
In this section, we report our experimental findings, ablate different
components of our method (DVA), and showcase a teleportation sys-
tem that uses DVA to create a one-way photorealistic telepresence
experience.

4.1 Datasets
We report most of our results on data acquired with a setup similar
to [Bagautdinov et al. 2021; Xiang et al. 2021]: a multi-view dome-
shaped rig with 160 high-resolution (4K) synchronized cameras.
We collect data for three different identities, including one with
challenging multi-layer clothing (a suit), run LBS-tracking pipeline
to obtain ground truth poses, and then use roughly 1000 frames in
various poses for training our models. Additionally, we evaluate
the performance of our articulated volumetric representation for
human bodies on a public dataset ZJU-MoCAP [Peng et al. 2021b]2.

4.2 Ablation Study
View Conditioning. In this experiment, we demonstrate the effec-

tiveness of the localized view conditioning described in Section 3.4.
In Fig. 3, we show qualitative performance of a version of our model
trained with local view conditioning and the instance trained with
the global one [Bagautdinov et al. 2021]. Our localized view condi-
tioning leads to plausible view-dependent appearance with unseen
poses, whereas the global view conditioning suffers from significant
visual artifacts due to overfitting.

2No facial meshes were created for the individuals in ZJU-MoCAP, and the dataset was
not used to identify individuals
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Fig. 3. Effects of view conditioning. Localized view conditioning leads to
better generalization on unseen combinations of poses and viewpoints.

Bottleneck Texel-Aligned Ground Truth
Fig. 4. Effects of texel-aligned features. Expressive texel-aligned features
allow our model to generalize better to challenging unseen clothing states.

Texel-Aligned Features. In Fig. 4, we provide qualitative compari-
son of two different instances of our method: one that uses texel-
aligned features, and one that relies on a bottleneck representa-
tion akin to [Bagautdinov et al. 2021]. The instance with texel-
aligned features demonstrates significantly better preservation of
high-frequency details with respect to the ground truth.

4.3 Novel View Synthesis
In order to evaluate the effectiveness of our articulated volumet-
ric representation with respect to existing methods, we provide
quantitative and qualitative comparisons on ZJU-MoCap [Peng et al.
2021b] dataset. The goal of this challenging benchmark is to produce
a photorealistic novel view synthesis (NVS) of a clothed human in
motion, while training only from 4 views.

Table 1. Quantitative results (PSNR) for NVS on ZJU-MoCap.

Method S386 S387
FBCA 32.123 27.886

NeuralBody 33.196 28.640
OURS 35.414 30.512

We compare to Full-Body Codec Avatars (FBCA) [Bagautdinov
et al. 2021] and Neural Body [Peng et al. 2021b], which represent

FBCA NeuralBody OURS Ground Truth
Fig. 5. Novel View Synthesis.We compare our method to state-of-the-art
for NVS on ZJU-MoCap. Despite not being explicitly tailored to be trained
with sparse supervision, our method outperforms competitors. Real faces
and their reconstructions are blurred for anonymity.

the state-of-the-art among respectively mesh-based and volumetric
approaches. In Tab. 1, we provide quantitative results for novel view
synthesis in terms of PSNR for two subjects, which suggest that our
method provides significant improvements over baselines. In Fig. 5,
we provide a qualitative comparison; our method produces sharper
reconstructions and less artifacts than both of the baselines. Inter-
estingly, the mesh-based FBCA is performing significantly worse
in settings without direct mesh supervision by precise multi-view
stereo and tracking (the only source of geometry supervision in ZJU-
MoCap dataset is silhouette and image losses through differentiable
rendering). In constrast, our volumetric approach is able to learn
more accurate underlying geometry with only image-based supervi-
sion due to the flexibility of volumetric representation. Please refer
to the supplemental video for more detailed visual comparison.

4.4 Driving Results
We compare our approach to two different kinds of drivable telepres-
ence systems: a mesh-based model (FBCA), and image-space model
(LookingGood), both trained on our high-quality multi-view cap-
tures. Note that, in practice we use our own re-implementation of
LookingGood, which uses LBS tracking instead of raw depth maps.

Table 2. Quantitative results (PSNR) on unseen motion. Please refer to
supplementary video for more results.

Method Views Test view
front back avg

FBCA None 30.571 30.656 30.613

LookingGood 2 33.442 26.059 29.750
3 33.256 32.453 32.854

OURS 2 33.615 33.203 33.409
3 33.617 33.838 33.728

Results of quantitative evaluation are provided in Table 2. Models
are evaluated on two different views, front-facing and back-facing.
To evaluate robustness to the sparsity of input views, we consider
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two different settings for the approaches that utilize input images as
driving signal: one where we provide only conditioning from 2 front
facing cameras, and a less challenging one where we provide 3 uni-
formly sampled conditioning views. Our model outperforms both
of the baselines, and is more robust to missing information com-
pared to LookingGood, in particular on settings with severe sensory
deprivation. Qualitative results are provided in Fig. 6. We provide
additional comparisons on dynamic sequences in supplementary
video.

4.5 Teleportation
We also demonstrate the versatility of our method and show that
our reconstructed avatars can be driven outside the capture system
used to generate training data without losing details. Our setup
consists of 8 synchronized and calibrated Microsoft Azure Kinects
cameras 3, uniformly placed in a circle of 4.5-meter diameter. To
obtain body poses (LBS parameters), we fit a pre-built personal-
ized LBS body model to a sequence of detected and triangularized
keypoints from RGB images [Wei et al. 2016], as well as meshes
obtained by fusing multiview point clouds [Yu et al. 2021]. To obtain
texel-aligned features, we simply apply texture unwrapping as in
our data processing for the capture dome. Even though these driving
signals are obtained from unseen sequences under different sensor
modality and pre-processing, we can still faithfully animate our
avatars. Figure 1 shows that the animated avatars preserve local
details such as wrinkles on the clothes without noticeable artifacts
in appearance. For more results, please refer to the supplementary
video.

5 CONCLUSION
We introduced Drivable Volumetric Avatars, a novel method for
building expressive fully articulated avatars and faithfully driving
it from sparse view inputs. Our approach combines the robustness
of parametric models by incorporating a strong articulated volu-
metric prior, and the expressiveness of non-parametric models by
leveraging texel-aligned features. We demonstrated the efficacy of
our method on novel view synthesis and driving scenarios, and
showcased a one-way teleportation system based on our approach
to create a photorealistic telepresence experience. Some of the main
limitations of our work originate from our reliance on LBS track-
ing: our model still requires cumbersome skeleton tracking as a
pre-processing step, and cannot handle very loose clothing that
significantly deviates from the guide LBS mesh. A potential avenue
for future work is extending the model to multi-identity settings,
multiple outfits, and driving from a head-mounted capture device
for a two-way telepresence system.

3https://azure.microsoft.com/en-us/services/kinect-dk/
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FBCA LookingGood (V=2) LookingGood (V=3) OURS (V=2) OURS (V=3) Ground truth
Fig. 6. Qualitative results: Driving.We compare our method to state-of-the-art approaches for drivable avatars on unseen sequences from our dataset. Best
seen in supplemental video.𝑉 is the number of view inputs.
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