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Abstract. The quality and generality of deep image features is crucially
determined by the data they have been trained on, but little is known
about this often overlooked effect. In this paper, we systematically study
the effect of variations in the training data by evaluating deep features
trained on different image sets in a few-shot classification setting. The ex-
perimental protocol we define allows to explore key practical questions.
What is the influence of the similarity between base and test classes?
Given a fixed annotation budget, what is the optimal trade-off between
the number of images per class and the number of classes? Given a fixed
dataset, can features be improved by splitting or combining different
classes? Should simple or diverse classes be annotated? In a wide range
of experiments, we provide clear answers to these questions on the mini-
ImageNet, ImageNet and CUB-200 benchmarks. We also show how the
base dataset design can improve performance in few-shot classification
more drastically than replacing a simple baseline by an advanced state
of the art algorithm.

Keywords: Dataset labeling, few-shot classification, meta-learning, weakly-
supervised learning

1 Introduction

Deep features can be trained on a base dataset and provide good descriptors
on new images [39,31]. The importance of large scale image annotation for the
base training is now fully recognized and many efforts are dedicated to creating
very large scale datasets. However, little is known on the desirable properties
of such dataset, even for standard image classification tasks. To evaluate the
impact of the dataset on the quality of learned features, we propose an experi-
mental protocol based on few-shot classification. In this setting, a first model is
typically trained to extract features on a base training dataset, and in a second
classification stage, features are used to label images of novel classes given only
few exemplars. Beyond the interest of few-shot classification itself, our protocol
is well suited to vary specific parameters in the base training set and answer
specific questions about its design, such as the ones presented in Fig. 1.

We believe this work is the first to study, with a consistent approach, the
importance of the similarity of training and test data, the suitable trade-off be-
tween the number of classes and the number of images per class, the possibility
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(b) Build classes using more or less diverse images?

Fig. 1: How should we design the base training dataset and how will it influ-
ence the features? a) Many classes with few examples / few classes with many
examples; b) Simple or diverse base training images.

of defining better labels for a given set of images, and the optimal diversity and
complexity of the images and classes to annotate. Past studies have mostly fo-
cused on feature transfer between datasets and tasks [23,48]. The study most
related to ours is likely [23], which asks the question “What makes ImageNet
good for transfer learning?”. The authors present a variety of experiments on
transferring features trained on ImageNet to SUN [47] and Pascal VOC classifica-
tion and detection [11], as well as a one-shot experiment on ImageNet. However,
using AlexNet fc7 features [26], and often relying on the WordNet hierarchy [13],
the authors find that variations of the base training dataset do not significantly
affect transfer performance, in particular for the balance between image-per-
class and classes. This is in strong contrast with our results, which outline the
importance of this trade-off in our setup. We believe this might partially be due
to the importance of the effect of transfer between datasets, which overshadows
the differences in the learned features. Our few-shot learning setting precisely
allows to focus on the influence of the training data without considering the
complex issues of domain or task transfer.

Our work also aims at outlining data collection strategies and research direc-
tions that might lead to new performance boosts. Indeed, several works [6,41]
have recently stressed the limitations of performance improvements brought
when training on larger datasets, obtained for example by aggregating datasets [41].
On the contrary, [15] shows performance can be improved using a “Selective
Joint Fine-Tuning” strategy for transfer learning, selecting only images in the
source dataset with low level feature similar to the target dataset and train-
ing jointly on both. Our results give insights on why it might happen, showing
in particular that a limited number of images per class is often sufficient to
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obtain good features. Code is available at imagine.enpc.fr/~sbaio/fewshot_
dataset_design.

Contribution. Our main contribution is an experimental protocol to systemat-
ically study the influence of the characteristics of the base training dataset on
the resulting deep features for few-shot classification. It leads us to the following
key conclusions:
– The similarity of the base training classes and the test classes has a cru-

cial effect and standard datasets for few-shot learning consider only a very
specific scenario.

– For a fixed annotation budget, the trade-off between the number of classes
and the number of images per class has a major effect on the final perfor-
mance. The best trade-off usually corresponds to much fewer images per
class (∼ 60) than collected in most datasets.

– If a dataset with a sub-optimal class number is already available, we demon-
strate that a performance boost can be achieved by grouping or splitting
classes. While oracle features work best, we show that class grouping can be
achieved using self-supervised features.

– Class diversity and difficulty also have an independent influence, easier classes
with lower than average diversity leading to better few-shot performances.
While we focus most of our analysis on a single few-shot classification ap-

proach and architecture backbone, key experiments for other methods and ar-
chitectures demonstrate the generality of our results.

2 Related work and classical few-shot benchmarks

2.1 Data selection and sampling

Training image selection is often tackled through the lens of active learning
[7]. The goal of active learning is to select a subset of samples to label when train-
ing a model, while obtaining similar performance as in the case where the full
dataset is annotated. A complete review of classical active learning approaches
is beyond the scope of this work and can be found in [38]. A common strat-
egy is to remove redundancy from datasets by designing acquisition functions
(entropy, mutual information, and error count) [14,6] to better sample training
data. Specifically, [6] introduces an “Adaptive Dataset Subsampling” approach
designed to remove redundant samples in datasets. It predicts the uncertainty
of ensemble of models to encourage the selection of samples with high “disagree-
ment”. Another approach is to select samples close to the boundary decision
of the model, which in the case of deep networks can be done using adversarial
examples [10]. In [37], the authors adapt active learning strategies to batch train-
ing of neural networks and evaluate their method in a transfer learning setting.
While these approaches select specific training samples based on their diversity
or difficulty, they typically focus on performance on a fixed dataset and classes,
and do not analyze performance of learned features on new classes as in our
few-shot setting.

imagine.enpc.fr/~sbaio/fewshot_dataset_design
imagine.enpc.fr/~sbaio/fewshot_dataset_design
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Related to active learning is the question of online sampling strategies
to improve the training with fixed, large datasets [12,30,3,24]. For instance,
the study of [3] on class imbalance highlights over-sampling or under-sampling
strategies that are privileged in many works. [12] and [24] propose respectively
reinforcement learning and importance sampling strategies to select the samples
which lead to faster convergence for SGD.

The spirit of our work is more similar to studies that try to understand key
properties of good training samples to remove unnecessary samples from
large datasets. Focusing on the deep training process and inspired by active
SVM learning approaches, [43] explored using the gradient magnitude as a mea-
sure of the importance of training images. However using this measure to select
training examples leads to poor performances on CIFAR and ImageNet. [2] iden-
tifies redundancies in datasets such as ImageNet and CIFAR using agglomerative
clustering [8]. Similar to us, they use features from a network pre-trained on the
full dataset to compute an oracle similarity measure between the samples. How-
ever, their focus is to demonstrate that it is possible to slightly reduce the size
of datasets (10%) without harming test performance, and they do not explore
further the desirable properties of a training dataset.

2.2 Few-shot classification

The goal of few-shot image classification is to be able to classify images from
novel classes using only a few labeled examples, relying on a large base dataset
of annotated images from other classes. Among the many deep learning ap-
proaches, the pioneer Matching networks [42] and Prototypical networks [40]
tackle the problem from a metric learning perspective. Both methods are meta-
learning approaches, i.e. they train a model to learn from sampled classification
episodes similar to those of evaluation. MatchingNet considers the cosine simi-
larity to compute an attention over the support set, while ProtoNet employs an
`2 between the query and the class mean of support features.

Recently, [5] revisited few-shot classification and showed that the simple,
meta-learning free, Cosine Classifier baseline introduced in [17] performs better
or on par with more sophisticated approaches. Notably, its results on the CUB
and Mini-ImageNet benchmarks were close to the state-of-the-art [1,27]. Many
more approaches have been proposed even more recently in this very active re-
search area (e.g. [35,28]), including approaches relying on other self-supervised
tasks (e.g. [16]) and semi-supervised approaches (e.g. [25,29,22]), but a com-
plete review is outside the scope of this work, and exploration of novel methods
orthogonal to our goal.

The choice of the base dataset remains indeed largely unexplored in previous
studies, whereas we show that it has a huge impact on the performance, and
different choices of base datasets might lead to different optimal approaches.
The Meta-dataset [41] study is related to our work from the perspective of an-
alyzing dataset impact on few-shot performance. However, it investigates the
effect of meta-training hyper-parameters, while our study focuses on how the
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base dataset design can improve few-shot classification performance. More re-
cently, [49] investigates the same question of selecting base classes for few-shot
learning leading to a performance better than that of random choice while high-
lighting the importance of base dataset selection in few-shot learning.

Since a Cosine Classifier (CC) with a Wide ResNet backbone is widely rec-
ognized as a strong baseline [17,16,5,45], we use it as reference, but also report
results with two other classical algorithms, namely MatchingNet and ProtoNet.

The classical benchmarks for few-shot evaluation on which we build and eval-
uate are listed below. Note this is not an exhaustive review, but a selection of
diverse datasets which are suited to our goals.

Mini-ImageNet benchmark. Mini-ImageNet is a common benchmark for
few-shot learning of small resolution images [42,33]. It includes 600K images from
100 random classes sampled from the ImageNet-1K [9] dataset and downsampled
to 84×84 resolution. It has a standard split of base training, validation and test
classes of 64, 16, and 20 classes respectively.

ImageNet benchmark. For high-resolution images, we consider the few-
shot learning benchmark proposed by [19,46]. This benchmark splits the ImageNet-
1K dataset into 389 base training, 300 validation and 311 novel classes. The base
training set contains 497350 images.

CUB benchmark. For fine-grained classification, we experiment with the
CUB-200-2011 dataset [44]. It contains 11,788 images from 200 classes, each
class containing between 40 to 60 images. Following [21,5] we resize the images
to 84 × 84 pixels and use the standard splits in 100 base, 50 validation and 50
novel classes and use exactly the same evaluation protocol as for mini-ImageNet.

3 Base dataset design and evaluation for few-shot
classification

In this section, we present the different components of our analysis. First, we
explain in detail the main few-shot learning approach that we use to evaluate
the influence of training data. Second, we present the large base dataset we use
to sample training sets. Third, we discuss the different descriptors of images and
classes that we consider, the different splitting and grouping strategies we use
for dataset relabeling and the class selection methods we analyze. Finally we
give details on architecture and training.

3.1 Dataset evaluation using few-shot classification

Few-shot image classification aims at classifying test examples in novel categories
using only a few annotated examples per category and typically relying on a
larger base training set with annotated data for training categories. We use the
simple but efficient nearest neighbor based approach, visualized in Fig. 2.

More precisely, we start by training a feature extractor f with a cosine clas-
sifier on base categories (Fig. 2 top). Then, we define a linear classifier for the
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Fig. 2: Illustration of our few-shot learning framework. We train a feature ex-
tractor together with a classifier on base training classes. Then, we evaluate
the few-shot classification performance of this learned feature extractor to clas-
sify novel unseen classes with few annotated examples using a nearest neighbor
classifier.

novel classes as follows: if zi for i = 1...N are the labelled examples for a given
novel class, we define the classifier weights w for this class as:

w =
1

N

N∑
i=1

f(zi)

‖f(zi)‖
. (1)

In other words, we associate each test image to the novel class for which its
average cosine similarity with the examples from this novel class is the highest.
Previous work on few-shot learning focuses on algorithm design for improving
the classifier defined on new labels. Instead, we explore the orthogonal dimension
of base training dataset and compare the same baseline classifier using features
trained on different base datasets.

3.2 A large base dataset, ImageNet-6K

To investigate a wide variety of base training datasets, we design the ImageNet-
6K dataset from which we sample images and classes for our experiments. We
require both a large number of classes and a large number of images per class,
to allow very diverse image selections, class splittings or groupings. We define
ImageNet-6K as the subset from the ImageNet-22K dataset [34,9] containing
the largest 6K classes, excluding ImageNet-1K classes. Image duplicates are re-
moved automatically as done in [36]. Each class has more than 900 images. For
experiments on mini-ImageNet and CUB, we downsample the images to 84×84,
and dub the resulting dataset MiniIN6K. For CUB experiments, to avoid train-
ing on classes corresponding to the CUB test set, we additionally look for the
most similar images to each of the 2953 images of CUB test set using our oracle
features (see Section 3.3), and completely remove the 296 classes they belong to.
We denote this base dataset MiniIN6K*.
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3.3 Class definition and sampling strategies

Image and class representation. In most experiments, we represent images
by what we call oracle features, i.e. features trained on our IN6k or miniIN6K
datasets. These features can be expected to provide a good notion of distance
between images, but can of course not be used in a practical scenario where no
large annotated dataset is available. Each class is represented by its average fea-
ture as defined in Equation 1. This class representation can be used for examples
to select training classes close or far from the test classes, or to group similar
classes.

We also report results with several alternative representations and metrics. In
particular, we experiment with self-supervised features, which could be computed
on a new type of images from a non-annotated dataset. We tried using features
from RotNet [18], DeepCluster [4], and MoCo [20] approaches, and obtained
stronger results with MoCo features which we report in the paper. MoCo exploits
the self-supervised feature clustering idea and builds a feature dictionary using a
contrastive loss. As an additionnal baseline we report results using deep features
with randomly initialized weights and updated batch normalization layers during
1 epoch of miniIN6k. Finally, similar to several prior works, we experiment using
the WordNet [13] hierarchy to compute similarity between classes based on the
shortest path that relates their synsets and on their respective depths.

Defining new classes. A natural question is whether for a fixed set of images,
different labels could be used to train a better feature extractor.

Given a set of images, we propose to use existing class labels to define new
classes by splitting or merging them. Using K-means to cluster images or classes
would lead to unbalanced classes, we thus used different strategies for splitting
and grouping, which we compare to K-means in the Sup. Mat:
– Class splitting.

We iteratively split in half every class along the principal component com-
puted over the features of the class images. We refer to this strategy as BPC
(Bisection along Principal Component).

– Class grouping. To merge classes, we use a simple greedy algorithm which
defines meta-classes by merging the two closest classes using their mean
features, and repeat the same process for unprocessed classes recursively.
We display examples of resulting grouped and split classes in the Sup. Mat.

Measuring class diversity and difficulty. One of the questions we ask is
whether class diversity impacts the trained features’ few-shot performance. We
therefore analyze results by sampling classes more or less frequently according
to their diversity and difficulty:
– Class diversity. We use the variance of the normalized features as a measure

of class diversity. Classes with low feature variance consist of very similar
looking objects or simple visual concepts while the ones with high feature
variance represent abstract concepts or include very diverse images.

– Class difficulty. To measure the difficulty of a class, we use the validation
accuracy of our oracle classifier.



8 Sbai et al.

3.4 Architecture and training details

We use different architectures and training methods in our experiments. Similar
to previous works [45,5], we employ WRN28-10, ResNet10, ResNet18 and Conv4
architectures. The ResNet architectures are adapted to handle 84×84 images by
replacing the first convolution with a kernel size of 3 and stride of 1 and removing
the first max pooling layer. In addition to the cosine classifier described in Section
3.1, we experiment with the classical Prototypical Networks [40] and Matching
Networks [42].

Since we compare different training datasets, we adapt the training schedule
depending on the size of the training dataset and the method. For example on
MiniIN-6k, we train Prototypical Networks and Matching Networks for 150k
episodes, while when training on smaller size datasets we use 40k episodes as
in [5]. We use fewer query images per class when training on classes with not
enough images per class for Prototypical and Matching Networks.

When training a Cosine Classifier, we train using an SGD optimizer with
momentum of 0.9 and weight decay of 5.10−4 for 90 epochs starting with an
initial learning rate of 0.05 and dividing it by 10 every 30 epochs. We also use
a learning rate warmup for the first 6K iterations, that we found beneficial for
stabilizing the training and limiting the variance of the results. For large datasets
with more than 106 images, we use a batch size of 256 and 8 GPUs to speed up
the training convergence, while for smaller datasets (most of our experiments are
done using datasets of 38400 images, as in MiniIN training set), we use a batch
size of 64 images and train on a single GPU. During training, we use a balanced
class sampler that ensures sampled images come from a uniform distribution
over the classes regardless of their number of images.

On the ImageNet benchmark, we use a ResNet-34 network and trained for
150K dividing the learning rate by 10 after 120K, 135K and 145K iterations
using a batch size of 256 on 1 GPU.

Following common practices, during evaluation, we compute the average top-
1 accuracy on 15 query examples over 10k episodes sampled from the test set
on 5-way tasks for miniIN and CUB benchmarks, while we compute the top-5
accuracy on 6 query examples over 250-way tasks on the ImageNet benchmark.

4 Analysis

4.1 Importance of base data and its similarity to test data

We start by validating the importance of the base training dataset for the few-
shot classification, both in terms of size and of the selection of classes. In Table 1,
we report five shot results on the CUB and MiniIN datasets, the one shot re-
sults are available in the Sup. Mat. We write N the total number of images in
the dataset and C the number of classes. Similar results on ImageNet bench-
mark can be read in the Sup. Mat. On the miniIN benchmark, we observe that
our implementation of the strong CC baseline using a WRN backbone yields
slightly better performance using miniIN base classes than the ones reported
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MiniIN test CUB test

Algo.

Base
data

MiniIN
N=38400
C = 64

MiniIN6K
Random
N=38400
C = 64

MiniIN6K
N≈7,1.106

C=6000

CUB
N=5885
C = 100

MiniIN6K*
Random
N=38400
C = 64

MiniIN6K*
N≈6,8.106

C = 5704

PN [40] 73.64±0.84 70.26±1.30 85.14±0.28 87.84±0.42 52.51±1.57 68.62±0.5
WRN MN [42] 69.19±0.36 65.45±1.87 82.12±0.27 85.08±0.62 46.32±0.72 59.90±0.45

CC 78.95±0.24 75.48±1.53 96.91±0.14 90.32±0.14 58.03±1.43 90.89±0.10

Conv4 CC 65.99±0.04 64.05±0.75 74.56±0.12 80.71±0.15 56.44±0.63 66.81±0.30

ResNet10 CC 76.99±0.07 74.17±1.42 91.84±0.06 89.07±0.15 57.01±1.44 82.20±0.44

ResNet18 CC 78.29±0.05 75.14±1.58 93.36±0.19 89.99±0.07 56.64±1.28 88.32±0.23

Table 1: 5-shot, 5-way accuracy on MiniIN and CUB test sets using different
base training data, algorithms and backbones. PN: Prototype Networks [40].
MN: Matching Networks [42]. CC: Cosine Classifier. WRN: Wide ResNet28-
10. MiniIN6K (resp. MiniIN6K*) Random: 600 images from 64 classes sampled
randomly from MiniIN6K (resp. MiniIN6K*). We evaluate the variances over 3
different runs.

in [16,27](76.59). We validate the consistency of our observations by varying
algorithms and architectures using the codebase of [5].

Our first finding is that using the whole miniIN-6K dataset for the base
training boosts the performance on miniIN by a very large amount, 20% and
18% for 1-shot and 5-shot classification respectively, compared to training on 64
miniIN base classes. Training on IN-6K images also results in a large 10% boost in
5-shot top-5 accuracy on ImageNet benchmark. Another interesting result is that
sampling random datasets of 64 classes and 600 images per class leads to a 5-shot
performance of 75.48% on MiniIN clearly below the one using the base classes
from miniIN 78.95%. A similar observation can be made for different backbones
(Conv4, ResNets) and algorithms tested (ProtoNet, MatchingNets), as well as
on the ImageNet benchmark. A natural explanation for these differences is that
the base training classes from the benchmarks are correlated to the test classes.

To validate this hypothesis, we selected a varying number of base training
classes from miniIN-6K closest and farthest to miniIN test classes using either
oracle features, MoCo features, or the WordNet hierarchy, and report the results
of training using a cosine classifier with WRN architecture in Fig. 3a. A similar
experiment on CUB is shown in the Sup. Mat. We use 900 random images for
each class. While all features used for class selection yield similarly superior re-
sults for closest class selection and worst results for farthest class selection, we
observe that using oracle features leads to larger differences than using MoCo
features and Wordnet hierarchy. In Fig. 3b, we study the influence of the ar-
chitecture and training method on the previously observed importance of class
similarity to test classes. Similar gaps can be observed in all cases. Note how-
ever that for ProtoNet, MatchingNet and smaller backbones with CC, the best
performance is not obtained with the largest number of classes.
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(a) Different selection criteria (b) Different backbone and algorithms

Fig. 3: Five-shot accuracy on miniIN when sampling classes from miniIN-6K
randomly or closest/farthest to the miniIN test set using 900 images per class.
(a) Comparison between different class selection criteria for selecting classes
closest or farthest from the test classes. (b) Comparison of results with different
algorithms and backbones using oracle features to select closest classes.

While these findings themselves are not surprising, the amplitude of per-
formance variations demonstrates the importance of studying the influence of
training data and strategies for data selection, especially considering that most
advanced few-shot learning strategies only increase performance by a few points
compared to strong nearest neighbor based baselines such as CC [5,32].

4.2 Effect of the number of classes for a fixed number of annotations

An important practical question when building a base training dataset is the
number of classes and images to annotate, since the constraint is often the cost of
the annotation process. We thus consider a fixed number of annotated images and
explore the effect of the trade-off between the number of images per class and the
number of classes. In Fig. 4, we visualize the 5-shot performance resulting from
this trade-off in the base training classes on the miniIN and CUB benchmarks.
In all cases, we select the classes and images randomly from our miniIN6K and
miniIN6k* dataset respectively, and plot the variance over 3 runs.

First, in Fig. 4 (a,b) we compare the trade-off for different numbers of an-
notated images. We sample randomly datasets of 38400 or 3840 images with
different number of classes and the same number of image in each class. We also
indicate the performance with the standard benchmarks base dataset and the
full miniIN6K data. The same graph on ImageNet benchmark can be seen in the
Sup. Mat using 50k and 500k images datasets.

As expected, the performance decreases when too few classes or too few
images per classes are available. Interestingly, on the miniIN test benchmark
(Fig. 4a) the best performance is obtained around 384 classes and 100 images
per class with a clear boost (around 5%) over the performance using 600 images
for 64 classes which is the trade-off chosen in the miniIN benchmark, we observe
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Fig. 4: Trade-off between the number of classes and images per class for a fixed
image budget. In (a) we show the trade-off for different dataset sizes and points
are annotated with the corresponding number of images per class. In (b) we
consider a total budget of 38400 annotated images and show the trade-off for
different architectures and methods. The top scale shows the number of images
per class and the bottom scale the number of classes.

that the best trade-off is very different on the CUB benchmark, corresponding
to more classes and very few images per class. We believe this is due to the
fine-grained nature of the dataset.

Second, in Fig. 4 (b), we study the consistency of these findings for different
architectures and few-shot algorithms with a 38400 annotated images budget.
While the trade-off depends on the architecture and method, there is always a
strong effect, and the optimum tends to correspond to much fewer images per
class than in standard benchmarks. For example, the best performance with
ProtoNet and MatchingNet on the miniIN benchmark is obtained with as few
as 30 images per class. This is interesting since it shows that the ranking of
different few-shot approaches may depend on the trade-off between number of
base images and classes selected in the benchmark.

The importance of this balance, and the fact that it does not necessarily
correspond to the one used in the standard datasets is also important if one
wants to pre-train features with limited resources. Indeed, better features can
be obtained by using more classes and less images per class compared to using
all available images for the classes with the largest number of images as is often
done, with the idea to avoid over-fitting. Again, the boost observed for few-shot
classification performance is very important compared to the ones provided by
many advanced few-shot learning approaches.

4.3 Redefining classes

There are two possible explanations for the improvement provided by the in-
creased number of classes for a fixed number of annotated images discussed in
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Fig. 5: Impact of class grouping or splitting on few-shot accuracy on miniIN
and CUB depending on the initial number of classes. Starting from different
number of classes C, we group similar classes together into meta-classes or split
them into sub-classes to obtain α×C ones. α ∈ { 18 ,

1
4 ,

1
2 , 1, 2, 4, 8} is the x-axis.

Experiments in a) and b) use CC WRN setup.

the previous paragraph. The first one is that the images sampled from more ran-
dom classes cover better the space of natural images, and thus provide images
more likely similar to the test images. The second one is that learning a classifier
with more classes is itself beneficial to the quality of the features. To investigate
whether for fixed data, increasing the number of classes can boost performances,
we relabel images inside each class as described in Section 3.3.

In Figure 5, we compare the effect of grouping and splitting classes on three
dataset configurations sampled from miniIN-6K and miniIN6K*, with a total
number of images of 38400 with different number of classes C ∈ {96, 384, 1536}
for miniIN and C ∈ {384, 1536, 5704} for CUB. Given images originally labeled
with C classes, we relabel images of each class to obtain α×C sub-classes. The
x-axes represent the class ratio α ∈ {18 ,

1
4 ,

1
2 , 1, 2, 4, 8}. For class ratios lower

than 1, we group classes using our greedy iterative grouping, while for ratios α
greater than 1, we split classes using our BCP method. In Fig 5 (a,b), we show
three possible behaviors on miniIN and CUB when using our oracle features:
(i) if the number of initial classes is higher than the optimal trade-off, grouping
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is beneficial and splitting hurts performances (yellow curves); (ii) if the num-
ber of initial classes is the optimal one, both splitting and grouping decrease
performances (blue curves); (iii) if the number of initial classes is smaller than
the optimal tradeoff, splitting is beneficial and grouping hurts performance (red
curves). This is a strong result, since it shows there is potential to improve per-
formances with a fixed training dataset by redefining new classes. This can be
done for grouping using the self-supervised MoCo features. However, we found
it is not sufficient to split classes in a way that improves performances. Using
random features on the contrary does not lead to any significant improvements.
Fig. 5c confirms the consistency of results with various architecture on miniIN
benchmark. Fig. 5d compares these results to the ones obtained with ProtoNet
and MatchingNet. Interestingly, we see that since the trade-off for these methods
is with much fewer images per class, class splitting increases performances in all
the scenarios we considered.

These results outline the need to adapt not only the base training images
but also the base training granularity to the target few-shot task and algorithm.
They also clearly demonstrate that the performance improvements we observe
compared to standard trade-offs by using more classes and less images per class
is not only due to the fact that the training data is more diverse, but also to
the fact that training a classifier with more classes leads to improved features
for few-shot classification.

4.4 Selecting classes based on their diversity or difficulty

After observing in Sec. 4.1 the importance of the similarity between base training
classes and the test classes, we now study whether the diversity of the base
classes or their difficulty is also an important factor. To this end, we compute
the measures described in Sec. 3.3 for every miniIN-6K class and rank them
by increasing order. Then, we split the ranked classes into 10 bins of similar
diversity or validation accuracy. The classes in the obtained bins are correlated
to the test classes and thus introduces a bias in the performance due to this
similarity instead of the diversity or difficulty we want to study (see the Sup.
Mat, showing the similarity of classes in each bin to the test classes). To avoid
this sampling bias, we associate to each class its distance to test classes, and
sample base classes in each bin only in a small range of similarities, so that the
average distance to the test classes is constant over all bins. In Fig. 6 we show the
performances obtained by sampling using this strategy 64 classes and 600 images
per class for a total of 38400 images in each bin. The performances obtained are
shown on miniIN and CUB in Fig. 6a, 6b both using random sampling from
the bin and using sampling with distance filtering as explained before. It can be
seen that the effect of distance filtering is very strong, decreasing significantly
the range of performance variation especially on the CUB dataset, however the
difference in performance is still significant, around 5% in all experiments. Both
for CUB and miniIN, moderate class diversity - avoiding both the most and least
diverse classes - seems beneficial, while using the most difficult classes seems to
harm performances.
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Fig. 6: Impact of class selection using class diversity and validation ac-
curacy on few-shot accuracy on miniIN and CUB. For training, we rank the
classes of miniIN-6K in increasing feature variance or validation accuracy and
split them into 10 bins from which we sample C = 64 classes that we use for base
training. Fig. 6a, 6b show the importance of selecting classes in each bin while
considering their distance to test classes to disentangle both selection effects.

5 Conclusion

Our empirical study outlines the key importance of the base training data in
few-shot learning scenarios, with seemingly minor modifications of the base data
resulting in large changes in performance, and carefully selected data leading to
much better accuracy. We also show that few-shot performance can be improved
by automatically relabelling an intial dataset by merging or splitting classes. We
hope the analysis and insights that we present will:
1. impact dataset design for practical applications, e.g. given a fixed number of
images to label, one should prioritize a large number of different classes and po-
tentially use class grouping strategies using self-supervised features. In addition
to base classes similar to test data, one should also prioritize simple classes, with
moderate diversity.
2. lead to new evaluations of few-shot learning algorithm, considering explicitly
the influence of the base data training in the results: the current miniIN setting
of 64 classes and 600 images per class is far from optimal for several approaches.
Furthermore, the optimal trade-off between number of classes and number of
images per class is different for different few-shot algorithms, suggesting tak-
ing into account different base data distributions in future few-shot evaluation
benchmarks.
3. inspire advances in few-shot learning, e.g. the design of practical approaches
to adapt base training data automatically and efficiently to target few-shot tasks.

Acknowledgements: This work was supported in part by ANR project EnHerit
ANR-17-CE23-0008, project Rapid Tabasco. We thank Maxime Oquab, Diane
Bouchacourt and Alexei Efros for helpful discussions and feedback.



Few-shot dataset design 15

References

1. Antoniou, A., Storkey, A.J.: Learning to learn via self-critique. NeurIPS (2019)
2. Birodkar, V., Mobahi, H., Bengio, S.: Semantic redundancies in image-classification

datasets: The 10% you don’t need. ArXiv preprint 1901.11409 (2019)
3. Buda, M., Maki, A., Mazurowski, M.A.: A systematic study of the class imbalance

problem in convolutional neural networks. ArXiv preprint 1710.05381 (2017)
4. Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised

learning of visual features. In: ECCV (2018)
5. Chen, W., Liu, Y., Kira, Z., Wang, Y.F., Huang, J.: A closer look at few-shot

classification. ICLR (2019)
6. Chitta, K., Alvarez, J.M., Haussmann, E., Farabet, C.: Less is more: An exploration

of data redundancy with active dataset subsampling. ArXiv preprint 1905.12737
(2019)

7. Cohn, D., Ladner, R., Waibel, A.: Improving generalization with active learning.
In: Machine Learning. pp. 201–221 (1994)

8. Defays, D.: An efficient algorithm for a complete link method. The Computer
Journal 20(4), 364–366 (1977)

9. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-scale
hierarchical image database. In: CVPR (2009)

10. Ducoffe, M., Precioso, F.: Adversarial active learning for deep networks: a margin
based approach. arXiv preprint arXiv:1802.09841 (2018)

11. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal
visual object classes (VOC) challenge. International journal of computer vision
88(2), 303–338 (2010)

12. Fan, Y., Tian, F., Qin, T., Liu, T.Y.: Neural data filter for bootstrapping stochastic
gradient descent (2016)

13. Fellbaum, C.: Wordnet: An electronic lexical database and some of its applications
(1998)

14. Gal, Y., Islam, R., Ghahramani, Z.: Deep bayesian active learning with image data.
In: ICML (2017)

15. Ge, W., Yu, Y.: Borrowing treasures from the wealthy: Deep transfer learning
through selective joint fine-tuning. In: CVPR (2017)

16. Gidaris, S., Bursuc, A., Komodakis, N., Pérez, P., Cord, M.: Boosting few-shot
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