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ABSTRACT
Multiple teams at Facebook are tasked with monitoring compute
and memory utilization metrics that are important for managing
the efficiency of the codebase. An efficiency regression is charac-
terized by instances where the CPU utilization or query per second
(QPS) patterns of a function or endpoint experience an unexpected
increase over its prior baseline. If the code changes responsible
for these regressions get propagated to Facebook’s fleet of web
servers, the impact of the inefficient code will get compounded over
billions of executions per day, carrying potential ramifications to
Facebook’s scaling efforts and the quality of the user experience.
With a codebase ingesting in excess of 1,000 diffs across multiple
pushes per day, it is important to have a real-time solution for
detecting regressions that is not only scalable and high in recall,
but also highly precise in order to avoid overrunning the remedia-
tion queue with thousands of false positives. This paper describes
the end-to-end regression detection system designed and used at
Facebook. The main detection algorithm is based on sequential
statistics supplemented by signal processing transformations, and
the performance of the algorithm was assessed with a mixture of
online and offline tests across different use cases. We compare the
performance of our algorithm against a simple benchmark as well
as a commercial anomaly detection software solution.
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1 INTRODUCTION
Facebook is the world’s largest social media platform, with over 2
billion people accessing the site each month [17]. As such, it runs
one of the largest and most complex distributed infrastructures
in the world [1, 7, 21]. At this scale, operating the site efficiently
is important to sustain user growth while keeping the increasing
resource demands associated with hosting new users and services
within manageable levels. Code changes that degrade efficiency
from a compute or memory utilization perspective for some element
of the codebase are said to have caused an efficiency regression.

The Efficiency Infra team at Facebook monitors the global CPU
share (gCPU) for functions and endpoints in the WWW codebase
which serves the desktop version of the site as well as client apps.
The team’s primary charter is to detect gCPU regressions, diag-
nose the root cause, and work with code owners to clean up or
roll back regressive code changes. Similarly, the Core Data De-
mand team monitors QPS patterns across functions and endpoints
that run realtime queries against Facebook’s social graph. Both
tasks fundamentally amount to finding sustained deviations over a
prior baseline across a collection of time series, and leveraging that
information to triage and roll back inefficient code changes.

At the scale of Facebook’s codebase, it is infeasible to manually
review even a modest fraction of these efficiency-related time series.
Adding to the challenge, in late 2016 Facebook moved 100% to a
quasi-continuous push model [18, 19], which means the company
transitioned from a weekly push cycle to pushing code changes
to the site multiple times in a day. A highly precise automated
regression detection mechanism is therefore not only advantageous,
but complementary to the company’s engineering development
and release model.
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Real-time anomaly detection covers a broad range of approaches
that can generally be categorized into three main subdomains [8].
Point anomalies are sudden, outsized spikes or dips; pattern anom-
alies are a run of points which taken collectively have characteris-
tics dissimilar to historical data; and change point anomalies are
sustained level shifts in statistical attributes of the series (mean,
variance, and/or seasonality). The central challenge in anomaly
detection is that the definition of success for a detection framework
hinges on which classes of anomalies are considered detrimental,
and even within a family of use cases this can vary across different
objectives. For example, the traffic team at Facebook is interested
in catching point anomalies which could be an early indication of
an event like a DDoS attack, whereas in the performance regres-
sion domain certain endpoints can exhibit periodic spikes as part
of normal behavior. Regressions can also arise and fix themselves
without any intervention from the efficiency teams, and surfacing
these instances is likewise distracting and counterproductive. In
our use case, we are strictly interested in catching change point
anomalies and filtering out the other two anomaly modes as noise
in the system.

Detecting change point anomalies is a well-studied problem [2].
At a high level, change point detection can be separated into offline
and real-time or online algorithms. Offline algorithms are used in
batch processing to identify change points retroactively in a histor-
ical data set. Online algorithms are oriented towards monintoring
and catching change points as they occur. In practice the notion
of real-time for change point detection algorithms is different and
not as absolute as real-time detection for point anomalies, as some
observations after the change point are required to establish the
persistence of a level shift. The present system is designated as real-
time in the sense of being invoked or activated at regular intervals
with the utility of the operation depending on its logical correctness
as well as the time in which it is performed, which coincides with
the established definition of real-time computing systems [20].

Change point algorithms can further be subdivided into statis-
tical rule based and machine learning based approaches. Machine
learning based approaches project anomaly detection as a binary
classification problem. While machine learning has successfully
been used for other time series applications such as forecasting [15],
these methods require careful feature mining and a large volume of
labeled examples to perform well [24]. In real-time monitoring for
efficiency regressions, there is neither a natural well-defined set of
predictive features nor a prelabeled training set. At best, thousands
of examples would need to be collected and labeled by hand to
construct the training set required for a supervised learning model.
Statistical rule based approaches can alternately be grouped into
parametric and non-parametric methods [13]. Given hundreds of
thousands of time series with a wide degree of variance profiles, it
is difficult to justify consistent assumptions about a stationary error
distribution required for a parametric model. This consequently led
us to non-parametric methods such as the commonly used CUSUM
algorithm [10, 14, 16, 22].

An off-the-shelf implementation for CUSUM is available in the
changepoint package in R [13]. We ran into limitations using a
traditional implementation of the CUSUM algorithm due to the
assorted scale and variance profiles in the time series we monitor,
and the volume of false positives that entails given the scale of

Facebook’s operations. Our solution relies on combining a scaled
CUSUM score with signal processing operators, namely lowpass
filtering and Fourier regression, to normalize the input signal. Post-
CUSUM, we apply a clustering heuristic based on sampled stack
traces that groups together regressions likely to be related, and
singles one of them as the probable root cause.

Several other solutions have been proposed for changepoint
detection. In general, simpler approaches based on exponential
smoothing and ARIMA were not found to perform favorably com-
pared to traditional CUSUM. On the other hand, more sophisti-
cated proposals based on filtering came with limiting assumptions
about the behavior of the error process or were tested on generated
data [23]. The contribution of the present work however is not
to elaborate on different methodologies in this space and draw a
comprehensive comparison with regards to their performance, for
which multiple surveys already exist [2, 8]. Instead, the aim of the
paper is to present a pragmatic and scalable solution to a problem
facing every enterprise codebase, substantiate that it can perform
above par compared to commercial software solutions, and provide
detail on howwe tested and tuned the model with samples collected
across a very large, unlabeled production dataset.

In Section 2, we describe in more detail the end-to-end system
we designed, and how we customize the solution across different
customers. Section 3 describes the multiple testing workflows we
developed to assess the performance of the algorithm, and Section
4 compares the performance against the traditional CUSUM algo-
rithm and a commercial anomaly detection software solution called
Anodot. We conclude with discussion in Section 5.

2 SYSTEM DESIGN
The detection workflow is comprised of the CUSUM algorithm as
well as custom signal processing operators to account for periodic-
ity and noise effects. At the end of the section, we describe specific
use cases for three individual teams at Facebook, the different chal-
lenges they posed, and how we leveraged the aforementioned set
of tools to improve detection quality.

2.1 CUSUM
CUSUM (cumulative sum) is a widely-used nonparametric method
for detecting change points. For a time series Xt , the CUSUM statis-
tic St is derived as follows:

x̄ =

∑T
t=1 Xt

T

St =

∑T
t=1(Xt − x̄)

T

The minimum CUSUM statistic designates the point most likely to
be a changepoint in the positive direction, and the converse also
holds true. The objective then is to find a suitable threshold π to
separate actual changepoints from noise.

The CUSUM statistic is scale dependent. In other words, if we
uniformally scale a set of time seriesXt by an arbitrary factor α > 0,
the corresponding decision threshold would have to be revised to
απ to preserve the original outcome. Along similar lines, if the
series in Xt have a wide range of scales, a single decision threshold
might struggle balancing detection quality at different ends of the



spectrum. This is the case in our application. Even though our met-
rics (compute and memory utilizations for functions and endpoints)
are bound between 0 and 1, the utilization distirbution has a long
tail, with certain functions having an order of magnitude difference
in utilization compared to each other. To address the differences in
scale, we added the option to normalize by a scale measure, which
in practice is commonly the mean or median of the original series.

Overall, CUSUM is a highly effectivemethod for detecting change
points in instances where the variance of the series is small relative
to the magnitude of the change point. This is not generally true
in practice. In terms of utilizations, transient spikes are in fact ex-
pected to arise occasionally during the course of normal operation.
A large isolated utilization spike in itself is unlikely attributable to
an inefficient code change, but could raise a false alert especially
if the jump happens to be close to the end of the time window. To
illustrate, consider the series

X = (0, 0, 0, 2, 0)
Y = (0, 0, 2, 0, 0)
Z = (0, 0, 0, 1, 1)

X and Y both look like the same transient spike albeit occurring
at different periods in the time window, whereas Z looks like a
sustained increase and therefore one we would like our system
to identify. Whereas the CUSUM statistic of Y is less than the
CUSUM ofZ , the CUSUM statistics forX andZ are equal. Whatever
threshold we set, it will at best result in a false positive or a false
negative (the latter being less desirable in our case).

Likewise, seasonality and periodicity effects are present in vir-
tually any globally-distributed production system. Depending on
the time of day, a diurnal or weekly cyclical pattern can easily be
mistaken for a regression over a small enough time window. Pushes
are not scheduled at regular intervals and cyclical peaks take place
at different times of the day for different entities, obviating efforts to
avoid them by scheduling the detection workflow during “off-peak”
hours. The presence of daily and weekly seasonality in particular
raise a practical tradeoff in setting the time window for CUSUM.
While an input window on the order of days instead of hours can
help expose the presence of these effects, it also requires greater re-
sources for data querying and ingestion, which can pose a limiting
factor and slow down detection times when running the workflow
at scale.

Up to this point, we have only touched on running CUSUM once
to detect a single change point. It could happen that a time series
has multiple change points. The typical solution in this case is to
package CUSUM with a recursive search algorithm like dynamic
programming to find the additional change points. We chose not to
look for multiple change points in our implementation. Doing so
would introduce an additional layer of tuning, without clear gains
to our detection rates. We also expect change points are closely tied
to code pushes, therefore we do not expect to find multiple level
shifts in a time window that has a single push.

2.2 Time Series Operators
As discussed above, two limitations of CUSUM center around its
ability to filter periodicity and noise. The domain of signal process-
ing offers flexible and proven solutions for handling these effects.

Figure 1: Time series operators help to mitigate noise and
seasonality effects. The top figure shows a time series be-
fore and after seasonality is removed using Fourier regres-
sion. The bottom figure shows a noisy time series that is
smoothed using a Butterworth lowpass filter. The lowpass
filter preserves the general shape of the series while smooth-
ing out spikey noise which can trigger false alerts.

Specifically, we use two classic signal processing techniques—the
Fourier regression and lowpass filter—to preprocess the time series
and reduce the prevalence of false alerts.

2.2.1 Fourier Regression. The Fourier transform is the most
widespread and well-understood method for contextualizing peri-
odicity in time series. Fourier regression [11] is a closely related
concept consisting of a generalized linear model with Fourier terms
as basis functions. For a time series Yt , a simple Fourier regression
model can be expressed as

Yt = β0 +
K∑
k=1

(
β2k−1sin(ωk t) + β2k cos(ωk t)

)
+ ϵt

where β0, β1, . . . , βK are coefficients to be estimated, ωk = 2πk/M
is the angular velocity or frequency,M is the cycle length (number
of time periods per cycle), and ϵt is an error process. K sets the
order of the model, a higher order includes more harmonics of the
Fourier terms and results in a closer fit.

The above equation assumes a single value for M . In practice
there may be multiple seasonality effects in a production environ-
ment. One way to check this is to examine the output of the FFT,
and it is possible to extract significant cycle lengths through some



automated process such as cross validation. Pragmatically however,
it is reasonable to assume we will be encountering primarily, if
not exclusively, diurnal and weekly seasonal cycles in our appli-
cation. For time series with hourly granularity, incorporating this
assumption will result in the final form

Yt = β0 +
K∑
k=1

(
β2k−1sin

( 2πkt
24

)
+ β2k cos

( 2πkt
24

))
+

K+N∑
k=K+1

(
β2k−1sin

( 2πk ′t
7 × 24

)
+ β2k cos

( 2πk ′t
7 × 24

))
+ ϵt

where we define k ′ = k − K . We select the model order (K ,N )

by fitting multiple models and choosing the one with the lowest
corrected AIC score [12].

Effectively the above Fourier regression assumes that Yt can be
reliably modelled by the sum of a collection of relatively high-order
sine waves. If there is a trend in the underlying data, however, this
assumption will lead to a poor fit. We estimate the trend by calcu-
lating daily medians for Yt , and smoothing them using LOESS. We
remove the trend by division, fit and subtract the Fourier regres-
sion from the detrended data, and add the trend back in through
multiplication. In summary,

Dt = median([YM (t−1)+1, . . . ,YMt ])

Ỹt =
Yt

D̃ ⌊1+t/M ⌋

Y ′
t = D̃ ⌊1+t/M ⌋ ×

(
Ỹt − f (Ỹt )

)
where D̃t is the LOESS-smoothed Dt , and f (Ỹt ) is the Fourier
regression fitted onto the detrended time series. We apply CUSUM
on Y ′

t to check for a change point.
We can fit the regression through ordinary least squares if the

error process ϵt is approximately normal. Even in the case of time
series with isolated, mild point anomalies, OLS tends to provide
a reasonable fit. OLS is less resilient in the presence of pattern
anomalies, andwill overcompensate in cases where a daily peak falls
unusually above or below the baseline. Since this is occassionally
observed in our dataset, we opt instead to fit the regression through
iteratively reweighted least squares, with a Huber loss function
which is more resilient to outliers.

2.2.2 Butterworth Filter. While Fourier regression will let us
estimate and remove seasonal effects, it does not help with re-
moving noise, including isolated spikes which can lead to false
positives. Signal filtering methods, in particular low pass filters, are
designed for this purpose. A Fourier transform maps a series from
the time domain (t ,Yt ) to the frequency domain (ω,A(ω)). Once in
the frequency domain, a lowpass filter can suppress higher-order
frequencies that are likely contributors to noise.

A lowpass filter is characterized by a frequency response function
H (ω). The filter is applied by taking Ã(ω) = H (ω)A(ω) over the
frequency domain, and the filtered signal is returned to the time
domain by taking an inverse Fourier transform on Ã(ω). From a
range of options for lowpass filters, one of the most commonly
used is the Butterworth filter [6], characterized by the frequency

response function

H (ω) =
1

1 +
( ω
ωc

)2n
where n is called the order of the model and ωc is the cutoff fre-
quency. Butterworth filters are popular because they can be shown
to be maximally flat in the passband. Intuitively, this means there
are no ripples in the filtered output signal.

Frequencies lower than ωc are passed through with minimal
attenuation, whereas frequencies higher than ωc are penalized at
an exponential rate. n determines the rate at which H (ω) tapers off
to 0. A higher n will decrease the variance of the resulting output
signal. For regression detection, there are competing interests to
consider when setting n andωc . Whereas we do want to filter noise,
it is also important to avoid attenuating too aggressively so as
to diminsh the magnitude of an actual changepoint, which could
translate into a false negative. This resulted in our conservative
default settings of n = 1 and ωc equivalent to one day.

2.3 Deduplication
Functions in a codebase are heavily interdependent, so a regression
in one function can trigger a cascading effect where level shifts
also register on upstream and downstream dependencies. Surfacing
these apparent change points adds little value to the regression
investigation and remediation process. Clustering change points
from similar functions together and attributing them to a single or
small set of functions is helpful to reduce the volume of manual
diagnostic work and address regressions at a faster cadence. We
call this step deduplication as it pares down detected change points
that provide redundant signal. The approach is designed around
stack trace samples obtained from Xenon, Facebook’s open-sourced
HHVM profiling tool.

Change points can be in proximity to each other in two principal
senses, in function-level dependencies and in time. The first stage
of deduplication consists of bucketing proximate change points. In
the current implementation, this is defined as change points that
happen within 10 minutes of each other and that occur in functions
that are included in a common stack trace. Within each bucket, we
construct the dependency graph from the full collection of stack
traces and label each node with the fraction of stack traces that
include a call to the function.

Nodes are iteratively selected for removal based on fraction of
exclusive stack traces in a greedy fashion, the stack traces that con-
tain the removed node are likewise removed, and the change point
magnitudes of the remaining nodes are revised down according
to their membership in the removed stack traces. Nodes and stack
traces are removed iteratively until the fraction of remaining stack
traces falls below a tolerance threshold. All the nodes and stack
traces are then reintroduced, and the procedure is repeated using a
different starting point. After all potential starting points have been
tried, we are left with a list of potential regression sets. The final
regression set is selected based on a weighting taking into account
the relative magnitude of the change points and the number of stack
traces represented by the candidate regressions belonging to the set.
The weighting is designed with the aim to strike a balance between
avoiding attributing regressions to high level function calls (such
as init) as well as very low level functions which might get called



Figure 2: Schematic overview of the deduplication step.
Change points that are close in time and can be connected
via a common dependency structure are grouped together.
Nodes with the largest fraction of exclusive stack traces are
iteratively removed in a greedy fashion, the stack traces they
belong to are also removed, and the magnitudes of the re-
maining nodes are revised down based on the stack traces
that were removed. The procedure is repeated until the frac-
tion of remaining stack traces falls below a tolerance thresh-
old.

more frequently as the result of a regressed parent function (like
accessing a database). A conceptual illustration of the deduplication
step is provided in Figure 2.

2.4 Use Cases
In this section we present some specific use cases to illustrate how
the methodology described above is deployed in practice.

2.4.1 Efficiency Infra. The Efficiency Infra teammonitors global
CPU share (gCPU) for functions and endpoints serving the desktop
site and client apps. Their primary challenge in detecting regres-
sions is noise, which can come in the form of one-off spikes or
temporary excursions that return to the baseline without interven-
tion. Efficiency Infra also places an emphasis on detection speed,
so keeping the their data ingestion footprint as small as possible is
a notable objective.

Input series are smoothed using a Butterworth filter. Based on ad
hoc experimentation, 3 days was selected as a minimum threshold
to establish a reasonable baseline and obtain enough signal to avoid
overfitting. The workflow runs several times a day, and there is
no practical benefit of surfacing the same regression in mutliple
workflow runs. In addition, applying CUSUM on the filtered series
can distort the location of the change point, which can undermine
the deduplication step and complicate any followup triage efforts.
For both of these reasons, we actually run CUSUM twice: once on
the filtered signal over the 3 day window, and if the CUSUM statistic

clears a threshold we run CUSUM on the original signal over the
last 4 hours. The second CUSUM run is primarily for more accurate
reporting of the change point’s time and magnitude, though we do
add a second conservative CUSUM threshold in case the magnitude
of the original change point is an artifact of a mild short-term trend.
The overall procedure is summarized in Figure 3.

An important corner case for Efficiency Infra is when gCPU
drops below the baseline and steadily creeps back up, which could
indicate a remediation effort that turned out to be unsuccessful.
To catch these cases, we first check for large change points in the
negative direction during the first pass of CUSUM. If such a shift is
detected, we truncate the historical data prior to that point, rerun
CUSUM, and proceed with the rest of the analysis as described
above.

2.4.2 Core Data Demand. The Core Data Demand team mon-
itors the volume of queries (QPS) that come into Facebook’s dis-
tributed data store for the social graph (TAO) [5]. Similar to the
Efficiency Infra team, they analyze the global share of TAO queries
for functions and endpoints (gTAO). Due to the cylical patterns of
Facebook user activity which drives data demand, a large portion
of the codebase exhibits strong periodicity in its TAO QPS volume.

We start by computing the Fourier transform of each time series.
For time series with high amplitudes at daily and weekly frequen-
cies, we fit a Fourier regression on two weeks of data and remove
the seasonality as described in Section 2.2.1. Even after controlling
for seasonality many Core Data Demand time series exhibit het-
eroscedasticity, so we uniformally apply a log transform to stabilize
the variance of the time series. The CUSUM algorithm was run
over the last 5 days of the final transformed time series. This time
window was selected by analyzing the tradeoff between detection
accuacy and processing time across past incidents.

2.4.3 Instagram. The Instagram Efficiency and Reliability team
is responsible for monitoring the efficiency of Instagram’s infras-
tructure. Similar to Efficiency Infra and Core Data Demand, the
team monitors gCPU and TAO QPS for the Instagram codebase.
The tracking system is monitoring gCPU currently, with TAO QPS
to be added in the future.

Similar to Core Data Demand, the time series we monitor for
Instagram suffer from strong periodicity. The system setup is cor-
respondingly similar albeit with two notable differences. First, we
did not apply a log transform since it did not show an advantage in
terms of precision and recall. Second, we run the CUSUM algorithm
on a shorter window of 3 days as this struck a reasonable comprise
between false positives and detection speed.

3 MODEL TUNING AND EVALUATION
A significant factor to making the signal from this system actionable
in practice is effective calibration on well-defined performance
metrics. In this section, we define the metrics used to evaluate the
detection system, the process for initial system calibration, and
evaluating the comparative gains of subsequent modeling revisions
following the initial deployment.

3.1 Metrics
We identified three relevant performance metrics for our system:



Figure 3: An illustration of the main steps of the regression detection algorithm as implemented for Efficiency Infra. The
original time series is passed through a Butterworth lowpass filter (top panel). The CUSUM statistic is calculated on the filtered
signal, and we check whether it crosses a threshold in the last 4 hours (middel panels). If the CUSUM statistic does cross the
threshold, we run CUSUM on the original signal over the 4 hour window (bottom panel). If this second CUSUM statistic clears
a tolerance threshold, the magnitude and location of the change point are logged. After all the change points are logged, they
are passed into the deduplication step.

• Precision:What fraction of the alerts we create are actually
efficiency regressions?

• Recall:What fraction of the real efficiency regressions do
we detect?

• Detection Speed: How quickly do we catch a regression
after it happens?

We focus on the first two metrics for a couple of reasons. Due to
the number of the time series we monitor, marginal improvements
to precision have a significant impact on the number of alerts we
create and are reviewedmanually by an engineer. On the other hand,
small undetected regressions as a byproduct of lower recall would,
in the aggregate, lead to a bloated codebase translating into greater
resource requirements to host new users and services as well as a
poor user experience overall. Having a detection framework that
is high in both precision and recall is therefore highly imperative.
The third metric above, while also of interest, introduces a further
labeling challenge in that the exact starting point of a regression
is not always precisely defined and can be open to interpretation.
Some regressions do not manifest themselves as discrete jumps and
instead accumulate over a short time frame, introducing a layer
of ambiguity to the measurement of detection speed which is not
straightforward to overcome.

3.2 Initial Calibration on a Static Training Set
Initial system setup involves determining which time series op-
erators to use, the training window, and tuning various meta-
parameters (e.g. threshold for the CUSUM statistic). This initial
setup relies heavily on analyzing an assorted set of examples from
prior observation. For each individual use case, we collected several
snapshots of time series both with and without efficiency regres-
sions as identified by engineers from the corresponding teams. The
examples with their associated labels and annotations were up-
loaded to a MySQL database through a custom internal web based

UI called Time Series Keeper, designed specifically to assemble a
standardized canonical training set.

We load the examples into a Jupyter notebook and experiment
through several configurations based on the series’ observed at-
tributes. During this stage, we construct Receiver Operating Char-
acteristics (ROC) curves for each candidate setup. Similar to binary
classification models, the area under the ROC curve (AUC) enables
us to easily rank order different candidate setups. We identify the
system configuration that maximizes AUC and deploy it into pro-
duction. In addition to helping us choose the best methodology,
ROC curves also help us visualize the tradeoff between accuracy
and recall. We analyze this tradeoff to determine the target accu-
racy and recall which helps us determine the CUSUM test statistic
threshold we should use in production.

3.3 Performance Monitoring Feedback Loop
The initial calibration detailed in Section 3.2 uses a hand-curated
set of examples. Collecting examples in this way is limited in scale
and liable to not producing a fully representative sample of all cases
that would arise in production. A more reliable indication of how
well the system is performing can be obtained once the detection
system is online and starts producing alerts for engineers to re-
view. The alerting system exposes functionality for the engineers
to provide feedback on whether the incident represents an actual
regression or various potential classes of false positives. Collecting
this feedback over time results in a labeled dataset from the system
output that can be leveraged to understand the performance of the
methodology in practice. Using this dataset, we identify systematic
patterns that generate false positives which motivate follow-up
analyses on avenues to improve the methodology.

While this feedback loop can provide guidance on opportunities
to improve detection precision, it is critical to assure recall is not
negatively impacted in the process. This is especially true since the



positive examples identified through the feedback loop are unlikely
to capture all the regressions that actually transpired in production.
In other words, we are limited by what we do not know, and any
loss in recall we measure in the labeled set is more likely to be
a lower bound on the actual figure. On the other hand, improved
precision can create room to increase the sensitivity of the detection
algorithm, allowing us to surface smaller regressions and improving
the overall recall rate.

3.4 A/B Testing
As alluded to in Section 3.3, the samples produced through the feed-
back loop exhibit bias. While the feedback loop grants us some
flexibility in assessing the impact of proposed revisions to the
methodology or tuning parameters, it cannot indicate whether
new regressions will be caught or additional false positives would
be flagged as well. The only way to check against these questions
is to run the existing methodology against the proposed changes
on the same inputs and compare the outputs side by side.

The productionized detection system runs using Facebook’s dis-
tributed computing platform FBLearner Flow[9]. Flow also enables
functionality to define a workflow that runs the detection system in
production in parallel to a proposed changeset, and apply custom
aggregation procedures on the outputs of each. In this vein, we
collect and compare the algorithm outputs applied over millions
of time series spanning a week of runs, corresponding to a cou-
ple dozen push cycles, and create visualizations for all the change
points detected by the production system but not by the proposed
changeset, and vice versa. Inspecting the output and classifying
them between regressions and false positives drives the discussion
and informs the final determination as to whether a changeset
improves detection overall, and if so the proposed changes are
landed.

4 PERFORMANCE COMPARISON
To evaluate the performance of our system, we compare the output
of our algorithm against a benchmark implementation of CUSUM
based on the one found in the changepoint R package [13], as
well as a commercial machine learning-based anomaly detection
software called Anodot [3]. The main distinctions between the
benchmark CUSUM implementation and the implementation de-
scribed in Section 2 is a normalizing scaling factor and the inclusion
of time series operators to control for noise and seasonality in the
input time series. Anodot is effectively an ensemble model, the
algorithm first performs a multiclass classification on the input
time series and applies the modeling framework assessed to be
most suitable for the given series profile. One of the convenient
aspects of Anodot is it does not expose tuning parameters in the
user-facing API, all parameter tuning is handled internally using
proprietary techniques. Anodot does return a start and end time
as well as a confidence score between 0 and 1 for the anomalies it
detects, allowing for some filtering and latitude in modulating the
sensitivity of the algorithm.

4.1 Data Collection and Testing Setup
The gCPU and gTAO metrics for functions and endpoints are de-
rived from stack trace samples collected through Xenon, a profiling

tool for HHVM. These metrics are logged and stored as time series
in Facebook’s internal distributed monitoring system called the
Operational Data Store (ODS) [1, 4]. The series are queried from
ODS using FBLearner Flow [9]. The time series transformations,
detection logic, and deduplication steps are implemented in Python
3 and likewise applied in the same Flow workflow. Anodot, whose
implementation is in Java, is exposed and called by Flow through
an Apache Thrift API.

The main input parameters to the Flow workflow are the specifi-
cation of an input window and scanning window. The input window
is the full segment of the time series that is available to the algo-
rithms for model fitting, whereas the scanning window is defined
relative to the end of the input window and demarcates where
the detection procedure should scan for regressions. For Efficiency
Infra workflow runs, the input window is 3 days and the scanning
window is the last 4 hours. For Core Data Demand workflow runs,
the input window is 2 weeks and the scanning window is 5 days.
Anodot and our customized CUSUM algorithm are both trained
over the same input window. For Anodot, we automatically filter
out any anomalies that have a start time or an end time that fall
before the scanning window. The CUSUM benchmark does not
have a formal modeling step, as such we only pass it the data in
the scanning window since the rest of the input window is imma-
terial to the outcome. The post-detection actions we perform in
production were applied evenly so as to not systematically favor
any approach. These post-detection actions consist of running the
deduplication step to distill the number of incidents into a small
set of root causes, and discarding detected change points that fall
below a fixed tolerance threshold.

As alluded to in previous sections, a challenge to comparing the
performance of different algorithms in the present context is the
absence of a labeled training set. We do have labeled time series
collected through the feedback loop described in section 3.3, but
these would be biased in favor of the current algorithmwhichwould
have 100% recall on those series by default. Instead, we bootstrap a
test set by running the three algorithms with their default settings
on the same input data and collecting the incidents they identify.
We can then examine these incidents to establish whether they are
regressions or false positives, and in turn produce precision and
recall curves for each algorithm based on which of the test incidents
it identifies.

4.2 Results
Regressions are relatively uncommon events. To include enough
examples of regressions in a bootstrapped test set, it is necessary to
run the detection frameworks across multiple code pushes. To this
end, we collected the outputs for our algorithm, the CUSUM bench-
mark, and Anodot across 103 Efficiency Infra workflow runs corre-
sponding to pushes spanning January 6–9, January 31–February
1, and February 4–7, 2018. For the Core Data Demand workflow,
which has a substantially longer scanning window, we only run
two instances to generate a similar number of incidents. These
instances have scanning windows over January 14–18 and January
29–February 2, 2018, respectively.

The outputs of the three algorithms were aggregated and manu-
ally labeled. We consider an incident to represent a true positive



Use Case Detection System Incident Count Classification PrecisionPre-Dedup Post-Dedup TP FP
Eff. Infra Customized CUSUM 1,701 131 111 20 85%

Benchmark CUSUM 29,956 352 39 92 30%
Anodot 2,120 118 98 20 83%

Core Data Customized CUSUM 1,793 61 53 8 87%
Benchmark CUSUM 989 85 52 33 61%

Anodot 8,789 42 34 8 81%

Table 1: Incidents detected by the customized version of CUSUM, benchmark CUSUM and Anodot under default settings.
Deduplication reduces the number of incidents to be investigated by more than 90%. The accuracy of customized CUSUM and
Anodot on root causes is comparable, with customized CUSUM producing a greater number of true positives.

if it contains an apparent increase in the scanning window that
cannot be explained by periodic behaviors and also shows no indi-
cation of being followed by a proportional decrease. Incidents that
happen close to the end of the scanning window and seem to coin-
cide with the upward phase of a periodic cycle present somewhat
of an ambiguous case. We classify these cases as true positive if
the magnitude of the increase is more than 10% over the highest
periodic peak that has been previously attained.

Table 1 shows the number of incidents, root causes, and num-
ber of true and false positives across the three algorithms with
their default settings for the Efficiency Infra (gCPU) and Core Data
Demand (gTAO) use cases. For customized CUSUM, the default
setting refers to the CUSUM threshold that is currently running
in the production version of the algorithm at Facebook. For An-
odot, the default setting refers to the anomalies that Anodot flags
out-of-the-box without any custom postprocessing logic besides fil-
tering out anomalies outside the scanning window. For benchmark
CUSUM, we set a relatively low threshold for gCPU which returned
nearly 30,000 detected incidents. Since gTAO has a longer scanning
window and therefore produces many more incidents per run, the
default threshold for benchmark CUSUM was raised to bring the
number of detected incidents within more interpretable levels.

For all the algorithms, the deduplication step compresses the
output by more than 90%. The fact that Anodot produces many
more raw incidents yet results in fewer root causes compared with
customized CUSUM demonstrates the utility of deduplication. One
potential explanation of this outcome is that many of the incidents
Anodot detects are artifacts of cascading effects caused by a smaller
set of individual regressions, whereas customized CUSUM on aver-
age flags incidents that are closer to their respective root cause. In
all cases, the lower number of root causes represents a much more
reasonable volume of time series for an engineer to investigate
manually.

Under default settings, the customized CUSUM and Anodot al-
gorithms show comparable accuracy overall. However, customized
CUSUM returns more root causes, translating into a greater number
of true positives. As mentioned in section 2.1, false negatives are
consideredworse than false positives for our application, since a pat-
tern of missed regressions can lead to a slower and more resource-
expensive codebase over the long run. Customized CUSUM com-
pares favorably against Anodot for both gCPU and gTAO from this
perspective. Benchmark CUSUM, on the other hand, has observably
lower accuracy than either of the other two algorithms. Even after

culling the root causes with the highest CUSUM statistic for the
gCPU case, the accuracy of benchmark CUSUM does not go above
30%. Benchmark CUSUM performs somewhat better in the gTAO
case, possibly due to the fact that the Core Data Demand series are
evaluated over a longer scanning window—reducing the likelihood
that false positives are detected close to the end of the scanning
window as explained in section 2.1—and tend to exhibit less noise
overall.

Figure 4: ROC curves comparing the detection quality of
CUSUM, CUSUM with time series operators and normaliza-
tion, and Anodot. Top figure is based on examples from
the Efficiency Infra’s detection system. The bottom figure
is based on examples from Core Data Demand.



For Anodot and the CUSUM algorithms, the degree of certainty
for detected incidents is contextualized by a confidence score and
CUSUM test statistic, respectively. By aggregating the labeled root
causes, obtaining confidence scores and CUSUM statistics for each
of them, and performing a sweep on a threshold applied to these
metrics, we generate the precision-recall plots for the three method-
ologies illustrated in figure 4. In both the gCPU and gTAO cases,
the customized CUSUM implementation is shown to dominate over
the other two methodologies. This implies that for a target level of
precision, we can achieve higher recall with customized CUSUM
compared to the other two algorithms under consideration.

5 CONCLUSION
In this paper, we described the real-time systemwe designed and im-
plemented to detect efficiency regressions in an enterprise codebase.
The algorithm is based on a non-parametric statistical rule-based
method to detect changepoints (CUSUM). By supplementing this
method with signal processing techniques, we are able to achieve
detection rates that are high in accuracy and recall. We described
the processes we used to tune an initial parametrization and test
proposed changes to the methodology. Finally, we demonstrated
that our solution outperforms a simple benchmark and a state-
of-the-art commercial machine learning solution. This system is
currently in production scanning millions of time series multiple
times a day, and serves as the main line of defense against efficiency
regressions at Facebook.

We are scaling the detection framework to monitor other oper-
ational metrics and continue to test ideas to further improve its
detection accuracy. Since the original submission, we have extended
the platform to monitor efficiency metrics for several other teams at
Facebook. In addition, we are working on shortening the onboard-
ing cycle for new use cases by instrumenting automated tuning. By
maintaining an operationally efficient codebase, Facebook is better
able to continue scaling the site to include new users and services.
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