
Understanding Data Storage and Ingestion for Large-Scale Deep
Recommendation Model Training

Industrial Product∗

Mark Zhao
†
, Niket Agarwal

†
, Aarti Basant

†
, Buğra Gedik

†
, Satadru Pan

†
, Mustafa Ozdal

†
, Rakesh

Komuravelli
†
, Jerry Pan

†
, Tianshu Bao

†
, Haowei Lu

†
, Sundaram Narayanan

†
, Jack Langman

†
,

Kevin Wilfong
†
, Harsha Rastogi

†
, Carole-Jean Wu

†
, Christos Kozyrakis

‡
, Parik Pol

†

†
Meta,

‡
Stanford University

ABSTRACT

Datacenter-scale AI training clusters consisting of thousands of

domain-specific accelerators (DSA) are used to train increasingly-

complex deep learning models. These clusters rely on a data storage

and ingestion (DSI) pipeline, responsible for storing exabytes of

training data and serving it at tens of terabytes per second. As

DSAs continue to push training efficiency and throughput, the DSI

pipeline is becoming the dominating factor that constrains the over-

all training performance and capacity. Innovations that improve

the efficiency and performance of DSI systems and hardware are

urgent, demanding a deep understanding of DSI characteristics and

infrastructure at scale.

This paper presents Meta’s end-to-end DSI pipeline, composed

of a central data warehouse built on distributed storage and a Data

PreProcessing Service that scales to eliminate data stalls. We char-

acterize how hundreds of models are collaboratively trained across

geo-distributed datacenters via diverse and continuous training

jobs. These training jobs read and heavily filter massive and evolv-

ing datasets, resulting in popular features and samples used across

training jobs. We measure the intense network, memory, and com-

pute resources required by each training job to preprocess samples

during training. Finally, we synthesize key takeaways based on our

production infrastructure characterization. These include identify-

ing hardware bottlenecks, discussing opportunities for heteroge-

neous DSI hardware, motivating research in datacenter scheduling

and benchmark datasets, and assimilating lessons learned in opti-

mizing DSI infrastructure.

CCS CONCEPTS

• Software and its engineering → Distributed systems orga-

nizing principles; • Information systems→ Database manage-

ment system engines; • Computing methodologies→Machine

learning.

∗
This paper is part of the Industry Track of ISCA 2022’s program.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ISCA ’22, June 18–22, 2022, New York, NY, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-8610-4/22/06. . . $15.00

https://doi.org/10.1145/3470496.3533044

KEYWORDS

Machine learning systems, databases, distributed systems, data

ingestion, data storage

ACM Reference Format:

Mark Zhao, Niket Agarwal, Aarti Basant, Buğra Gedik, Satadru Pan, Mustafa

Ozdal, Rakesh Komuravelli, Jerry Pan, Tianshu Bao, Haowei Lu, Sundaram

Narayanan, Jack Langman, Kevin Wilfong, Harsha Rastogi, Carole-Jean

Wu, Christos Kozyrakis, Parik Pol. 2022. Understanding Data Storage and

Ingestion for Large-Scale Deep Recommendation Model Training: Industrial

Product. In The 49th Annual International Symposium on Computer Architec-

ture (ISCA ’22), June 18–22, 2022, New York, NY, USA. ACM, New York, NY,

USA, 16 pages. https://doi.org/10.1145/3470496.3533044

1 INTRODUCTION

Domain-specific accelerators (DSAs) for deep neural networks

(DNNs) have become ubiquitous because of their superior perfor-

mance per watt over traditional general purpose processors [40].

Industry has rapidly embraced DSAs for both DNN training and in-

ference. These DSAs include both traditional technologies, such as

GPUs and FPGAs, as well as application-specific integrated circuits

(ASICs) from, e.g., Habana [37], Graphcore [45], SambaNova [67],

Tenstorrent [74], Tesla [75], AWS [23], Google [40], and others.

DSAs are increasingly deployed in immense scale-out systems to

train increasingly-complex and computationally-demanding DNNs

using massive datasets. For example, the latest MLPerf Training

round (v1.1) [56] contains submissions from Azure and NVIDIA us-

ing 2048 and 4320 A100 GPUs, respectively, whereas Google submit-

ted training results using pods containing up to 4096 TPUv4s [58].

At Meta, we are building datacenter-scale AI training clusters by

both scaling our production datacenters to include thousands of

GPUs using ZionEX nodes [59] and building the AI Research Super-

Cluster (RSC) with over ten thousand GPUs [10]. These DSAs have

been laser-focused on optimizing and scaling compute for training,

namely matrix-heavy computations used during backpropagation.

In reality, DNN training in production involves significantly

more than just backpropagation. Hazelwood et al. noted how “For

many machine learning models at [Meta], success is predicated on

the availability of extensive, high-quality data” [38]. Namely, a data

storage and ingestion (DSI) pipeline, consisting of offline data

generation, dataset storage, and online preprocessing services, must

store and feed exabytes of data to high-performance training nodes

(trainers). The design of the DSI pipeline significantly affects the

overall DNN training capacity and performance, but has received

little consideration compared to model training itself.

https://doi.org/10.1145/3470496.3533044
https://doi.org/10.1145/3470496.3533044

ISCA ’22, June 18–22, 2022, New York, NY, USA M. Zhao, et al.

Figure 1: Percent of storage, preprocessing, and training power re-

quired to train three production DLRMs, with line drawn at 50%. DL-

RMs exhibit diverse DSI resource requirements and can consume

more power than training.

Figure 2: Normalized training dataset size and online data inges-

tion bandwidth across our recommendation models. Storage and

bandwidth is in the exabytes and hundreds of Tbps and has grown

by over 2x and 4x over the past two years, respectively.

This paper focuses on understanding DSI requirements, unique

workload characteristics, and systems for industry-scale, deep learn-

ing recommendation model (DLRM) training. We focus on DLRMs

because DLRMs a) underpin many of Meta’s personalization and

ranking services [18, 35, 36, 38, 54], b) consume the vast majority

of the overall ML training cycles [18] (and DSI capacity) in Meta

datacenters, and c) introduce novel DSI challenges not yet cap-

tured by current ML benchmarks [53] nor considered by existing

systems [41, 47, 49, 57, 61, 87, 88].

Understanding and efficiently scaling the DSI pipeline is essential

in enabling large-scale training for several reasons. First, inefficien-

cies in the pipeline cripple training throughput [57], underutilizing

expensive DSAs. Second, DSI infrastructure competes for valuable

power resources with trainers. Figure 1 shows how storage and

online preprocessing can already consume more power than the ac-

tual GPU trainers themselves in Meta’s datacenters. This directly

constrains training capacity due to fixed datacenter power bud-

gets [24]. Finally, steady innovation in model complexity and DSAs

for training are increasing data storage and bandwidth demands.

Figure 2 shows how industry-scale dataset sizes and online data

ingestion bandwidth requirements have grown by over 2× and 4×
over the past two years, respectively. Barring similar innovation

for DSI, we expect DSI infrastructures to severely limit training

capacity at the datacenter-scale as training DSAs continue to yield

higher performance per watt.

In this paper, we present Meta’s end-to-end DSI pipeline, which

enables large-scale ML model training at scale. Training data is gen-

erated by extract-transform-load (ETL) jobs that transform unstruc-

tured feature data and event logs collected across production fleets

into structured training samples. Petabyte-scale datasets are held in

a centralized data warehouse as Hive tables [76], which are subse-

quently stored as optimized columnar files in Tectonic [64], Meta’s

append-only distributed filesystem. Finally, to handle intense online

preprocessing demands, we present a production-deployed disag-

gregated online preprocessing framework called Data PreProcessing

Service (DPP) that iteratively reads and transforms mini-batches of

training data, scaling from 10s to 100s of preprocessing nodes for

each training job.

A key contribution of this paper lies in the deep system per-

formance characterization for Meta’s production-deployed DSI

pipeline, supporting large-scale DNN training. We describe Meta’s

collaborative feature engineering and model training process for

DLRMs, which reveals key system design requirements and opti-

mizations for Meta’s underlying global DSI infrastructure. Features

for DLRM training evolve rapidly in our datasets, and samples are

constantly generated. This requires us to store and serve massive

and dynamically-changing feature sets, representing exabytes of cu-

mulative storage. Each training job requires an online preprocessing

step, demanding significant compute, network, and memory resources,

in order to extract, transform, and load samples into materialized

tensors for training.

Table 1 summarizes the design principles of our DSI pipeline pre-

sented in Section 3, and key takeaways and open research problems

for the wider community that we present in Section 7. It connects

each to specific system characterization results we present through-

out Sections 4 to 6 for the production-deployed DSI pipeline.

In summary, our primary contributions are:

• We describe and identify the DSI pipeline as a critical and

equally important, yet vastly understudied, component of

datacenter-scale ML training infrastructures.

• We provide an end-to-end description and share the design

rationales behind our production-deployed DSI pipeline ar-

chitecture, tailor-made to meet important requirements of

DLRM training at scale.

• We perform a deep characterization of industry-scale DLRM

training workloads (summarized in Table 1), including co-

ordinated training, data generation and storage, and online

preprocessing, on our production hardware — identifying

critical bottlenecks and key insights.

• We provide our outlook of important and open research

questions for systems and computer architects to design and

scale the DSI pipeline for large-scale training.

We hope that this work distills meaningful architecture and

systems challenges in ML, beyond just DSAs for DNN training, and

will guide the community to identify and focus on DL workloads

that are representative of industry uses.

2 RECOMMENDATION MODEL

BACKGROUND

Personalized recommendation models are used to suggest new,

relevant content to users to provide meaningful interactions. These

models are highly potent across a breadth of tasks. They leverage

features from a user and a potential recommendation, and output

a prediction (e.g., click-through rate) of how likely the user is to

interact with the recommendation. For example, a video hosting

site may use a user’s set of liked videos and candidate videos’ genres

to rank new videos to recommend to the user.

Recommendation models are trained using mini-batch stochastic

gradient descent (SGD) [69], similar to most vision and natural

Understanding Data Storage and Ingestion for Large-Scale Deep Recommendation Model Training ISCA ’22, June 18–22, 2022, New York, NY, USA

Table 1: Summary of key takeaways and research opportunities, motivated by characterization results.

Key Lessons Learned and Takeaways Related Characterization Results (§4-§6)
§3: Data storage and ingestion must be disaggregated to meet the large

dataset capacity and online preprocessing requirements of training jobs.

§4: Diverse training jobs run continuously in geo-distributed datacenters. §5: Datasets
exceed local storage capacity and are heavily filtered during reading. §6: Using trainer CPUs
for expensive online preprocessing results in data stalls.

§7.1: There are significant compute, network, memory, and disk bottle-

necks across storage, preprocessing, and trainer node hardware. These

hardware bottlenecks are key areas of optimization for DSI.

§5.1: Heavy feature filtering requires high IOPS from storage nodes. §6.2: Data loading at

trainers requires considerable front-end trainer host resources. §6.3: Data extraction and

transformation will be increasingly constrained by memory bandwidth.

§7.2: Using and designing heterogeneous hardware for dataset storage

systems and data ingestion can address many hardware bottlenecks,

but require overcoming key challenges that arise in DSI pipelines.

§5.2: Training jobs reuse popular features which can be cached in high IOPS/W storage. §6.2:
Data loading requires expensive “datacenter tax" operations. §6.4:We identified common

transforms, especially feature generation, that are highly-resource intensive on CPUs.

§7.3: Designing datacenters for ML training require carefully provi-

sioning compute, network, and storage capacity based on training jobs’

diverse DSI requirements. Intelligent global training job schedulers can

further improve efficiency across geo-replicated datacenters.

§4.1: Industry-scale training requires a collaborative training process across many models.

§4.2: Each model requires periodic combo jobs with high concurrent compute demands

that must be co-located with storage and scheduled across global regions.

§7.4: Benchmarks are vital for guiding research directions. Current

public datasets are not representative of industry; there is need for

research in developing benchmark datasets. We identify important

characteristics of industrial datasets.

§4.3: Industrial datasets are constantly updated with new data and features. §5.1: They are

PB-sized and stored as structured samples in distributed file systems. §5.1: Training jobs
read one epoch with feature-wise and row-wise filtering.

§7.5: DSI power constrains training capacity — systems efficiency opti-

mizations are vital. Efficiency optimizations must be co-designed across

hardware/software and the end-to-end DSI pipeline. We walk through

recent optimization examples.

Optimizations must consider application characteristics (selective reading - §5.1, feature
popularity - §5.2), hardware performance and bottlenecks (HDD IOPS - §5.1, preprocessing
memory bandwidth - §6.3), and trade-offs across end-to-end DSI pipeline systems (§3).

language processing (NLP) models. SGD generalizes a model to

complex distributions by iteratively updating themodel’s weights to

minimize a loss function, given successive mini-batches of samples.

Each training sample is represented as a preprocessed tensor of

features and a label.

Our production recommendation models are built on the open-

source DLRM architecture [63]. Modern DLRMs are massive, con-

sisting of over 12 trillion parameters to train, requiring≈ 1 zetaFLOPs

of total compute [59]. To meet the compute requirements of DLRM

training, we built the ZionEX hardware platform. Each node con-

tains 8 NVIDIA A100 GPUs connected with NVLink for intra-node

communication. Each GPU has a dedicated 200 Gbps RDMA over

Converged Ethernet (RoCE) NIC for inter-node communication

over a dedicated backend network, connecting thousands of GPUs

to form a datacenter-scale AI training cluster. A node also contains

four CPU sockets, each with a dedicated 100 Gbps NIC connected to

our regular datacenter network for data ingestion. We defer readers

to [59] for more details on ZionEX.

To fully leverage our training hardware, we use data [46] and

model [30] parallelism by replicating and sharding the model across

multiple ZionEX training nodes.We distribute differentmini-batches

to each trainer. Trainer nodes synchronize embeddings, activations,

and gradients with each other using collective communication prim-

itives over the backend network, iterating until a certain model

quality metric (e.g., normalized entropy [39]) is reached. At Meta,

we use hundreds of distinct recommendation models in production

across our services. We continuously train new versions of each

model offline (Section 4), and update production models periodi-

cally [38].

Each training job relies on a data storage and ingestion (DSI)

pipeline to supply each trainer with training data throughout the

duration of the job. The DSI pipeline is thus responsible for generat-

ing training samples, storing them into datasets, and preprocessing

samples into tensors loaded in device memory, i.e., GPU HBMs.

3 DISAGGREGATED DATA STORAGE,

INGESTION, AND TRAINING PIPELINE

In this section, we present our DSI requirements and the stor-

age, preprocessing, and training systems that compose Meta’s DSI

pipeline as shown in Figure 3.

3.1 Data Generation and Storage

Overview and Requirements. Figure 3 shows how fresh training

samples are continuously generated by our model serving frame-

work in order to ensure model accuracy and comply with privacy

requirements [38]. Each sample is created as services evaluate a

user and item using the model serving framework. The framework

first generates an extensive set of features (e.g., a user’s liked pages)

as input to an appropriate model, which outputs a prediction used

for recommendation tasks. The requesting service then monitors

events representing the outcome of each recommendation (e.g., if a

user interacted with a post). These features and events are logged at

serving time to avoid data leakage [44] between model serving and

training. Subsequent streaming and batch extract-load-transform

(ETL) jobs continuously join and label raw feature and event logs

into labeled and schematized samples.

Training samples are placed in a storage solution that must

meet several key requirements. First, individual tables require tens

of thousands of features, with features being constantly added or

removed. Training jobs must be able to dynamically and selectively

read stored features. Second, developer productivity is paramount.

We must allow ranking engineers and the underlying infrastructure

to easily work across hundreds ofmodels and tables via a centralized

data warehouse using a common schema. Furthermore, ranking

engineers frequently run interactive queries using Spark [84] or

Presto [71] as a part of feature engineering in addition to training.

Finally, datasets are continuously updated with fresh samples.

3.1.1 Data Generation. To extract and aggregate billions of fea-

tures and events across the entire fleet each day, we rely on Scribe [43]

— Meta’s global distributed messaging system. Each service re-

sponsible for serving models or handling interactions continuously

passes raw feature and event logs to a Scribe daemon running on

ISCA ’22, June 18–22, 2022, New York, NY, USA M. Zhao, et al.

Hive Data Warehouse Table Partition
Float ID List ID Score List

map<int, float> map<int, list[int]> map<int, map<int, float>>

...

Distributed Pre-Processing

FBLearner Flow
Training Cluster

ML Engineer
Job Config.

Splits

DPP Worker Nodes

Ex
tra

ct

Tr
an

sf
or

m

Se
rv

erRaw Rows Tensors

D
ed

ic
at

ed
 B

ac
ke

nd
 N

et
w

or
k

D
PP

 C
lie

nt

Py
To

rc
h

C
U

D
A

/
G

PU

Training Cluster Nodes

Reader &
Model State

Tensors

DPP Master Node

Training Cluster Master

Blob Store

Checkpointing

Monitoring

Model Serving

Checkpointing Monitoring

Auto-scaling

Streaming ETL

Streaming/Batch ETL

...
Metadata

Stripe

Stripe

Columnar Files

Fe
at

ur
e

St
re

am
s

Tectonic
Filesystem

Sc
rib

e
/

Lo
gD

ev
ic

e

Figure 3: Production data storage and ingestion pipeline architecture. Solid and dashed lines represent data and control flow, respectively.

every host. Scribe then groups logs into record-oriented logical

streams and stores each stream into LogDevice [52] — a reliable

distributed store for append-only, trimmable streams built on top

of RocksDB [13].

To update production models, streaming engines first join and

label raw feature and event logs from Scribe and publish labeled

samples into various Scribe streams used to update in-production

models. Various streaming and batch processing engines, such as

Spark [84], further join, label, and filter samples from Scribe streams

to produce partitioned (e.g., hourly or daily) offline datasets used to

train new production model versions. Because traditional engines

work well to generate training data, require comparatively little

compute and power resources to dataset storage and ingestion, and

are not on the critical path of training, we elide in-depth discussion

here.

3.1.2 Data Storage. We store training samples in a data warehouse

as partitioned Hive [76] tables because of Hive’s compatibility with

both internal systems and open source engines including Spark and

Presto. Samples are represented as structured rows, each containing

features and labels, with features requiring the vastmajority (> 99%)

of stored bytes. To ensure interoperability of the DSI pipeline across

hundreds of models and tens of thousands of features, we store two

types of features, dense and sparse, in map columns. A dense feature

column maps a feature ID to a continuous value (e.g., current time).

A sparse feature columnmaps a feature ID to a variable length list of

categorical values (e.g., page IDs). Some sparse features are stored

in an additional column that further associates each categorical

value with a floating point "score" used for weighing (e.g., page

creation time).

We encode Hive tables in a columnar file format (DWRF), forked

from Apache ORC [4]. Like ORC, rows are stored across multiple

files. Each file contains a set of stripes, representing a number of ta-

ble rows. Stripes are further divided into compressed and encrypted

streams. A key distinction of DWRF is the ability to enable feature

filtering at the storage layer by flattening each feature column and

storing features as thousands of separate logical columns at the

file layer (see Section 7). Each flattened feature column is subse-

quently encoded as one or more streams, depending on its schema

and encoding. Stripes are periodically flushed and appended to the

file. Files are written in Tectonic [64] — Meta’s exabyte-scale dis-

tributed append-only filesystem. Tectonic splits files into durable

blocks distributed across HDD storage nodes.

3.2 Online Preprocessing

Overview and Requirements. Each training job uses an online

(training-time) preprocessing pipeline to continuously transform

raw samples in storage into preprocessed tensors in a trainer’s mem-

ory. Like offline data generation, online preprocessing is commonly

subdivided into ETL phases.

Raw bytes are extracted from storage and decoded into training

samples, a process involving filtering, decryption, decompression,

reconstruction, and other format transformations. Training samples

are next transformed into tensors. Float values may be normalized,

and categorical values may be hashed, clipped, or even sorted. New

features may even be derived from multiple raw features. Once

features are preprocessed, they are batched together into tensors.

The tensors are loaded into trainers, usually in device memory (e.g.,

HBM of GPUs).

Online preprocessing has distinct requirements that differ from

those met by traditional ETL engines. First, transformations for

online preprocessing are localized to each mini-batch, not across

many rows. Second, online preprocessing is on the critical path of

training and must match throughput required by trainers. Right-

sizing online preprocessing throughput is critical to avoid either

over-provisioning resources or introducing data stalls [57] that will

bottleneck and under-utilize expensive trainers. Finally, online pre-

processing runs concurrently alongside each training job, requiring

significant cumulative compute and power resources that scales

with training capacity, unlike offline data generation.

3.2.1 Scalable Preprocessing with DPP. Data PreProcessing Service

(DPP) is our disaggregated service that provides online preprocess-

ing for training jobs across the datacenter fleet. DPP is responsible

for reading raw training data from storage, preprocessing it into

ready-to-load tensors, and supplying the tensors to each training

node’s PyTorch [65] runtime. We designed DPP to both scale to

right-sized resources and eliminate data stalls across disparate jobs,

as well as enable vital productivity mechanisms for developers and

ML engineers. We meet these requirements by dividing DPP into a

data and control plane, which are designed to enable application

Understanding Data Storage and Ingestion for Large-Scale Deep Recommendation Model Training ISCA ’22, June 18–22, 2022, New York, NY, USA

throughput and ease-of-use, respectively. The control plane con-

sists of a DPP Master, and the data plane consists of DPP Workers

and Clients. As shown in Figure 3, ML engineers launch training

jobs via FBLearner Flow [32], which then launches a DPPMaster

and at least one DPPWorker on general-purpose compute nodes.

DPP Control Plane. At the beginning of each training job, the

DPPMaster receives a session specification (a PyTorch DataSet)

that reflects the preprocessing workload, containing the dataset

table, specific partitions, required features, and transformation op-

erations for each feature. The DPP Master enables scalable work

distribution by breaking down the entire preprocessing workload,

across petabytes of data, into independent and self-contained work

items for the data plane called splits that represent successive rows

of the entire dataset. The Master serves splits to DPPWorkers upon

request and tracks progress as splits are completed.

In addition to work distribution, the DPPMaster is responsible

for fault tolerance and auto-scaling. The DPPMaster periodically

creates a checkpoint which can be used to restore reader state on

failure. The DPPMaster also continuously monitors Worker health,

automatically restarting anyWorkers that have failed without need-

ing a checkpoint restore due to Workers’ stateless design. The DPP

Master itself is replicated to avoid being a single point of failure.

Finally, the DPPMaster implements auto-scaling via a controller.

The controller collects utilization (CPU, memory, and network) sta-

tistics and the number of buffered tensors from each DPPWorker. It

then periodically evaluates scaling decisions, calculating the num-

ber of DPP Workers to either drain or launch with the goal of

maintaining a non-zero number of buffered tensors (indicating that

trainer demand is met) and maximum CPU, network, and memory

utilization. In doing so, the DPP Master eliminates data stalls with

minimal DPP resource requirements.

DPP Data Plane. DPP Workers and Clients are responsible for

data plane operations of DPP. Workers are designed to effortlessly

scale out to eliminate data stalls. Workers are stateless, precluding

any limit to how many Workers can exist in a given DPP session.

They only communicate with the DPPMaster (to fetch work items)

and a limited number of DPP Clients (to serve tensors); all transfor-

mations within a mini-batch are performed locally. On startup, each

Worker pulls a set of transformations from the Master, represented

by a serialized and compiled PyTorch module, that it will use during

preprocessing. Workers then continuously query for and process

splits from the DPPMaster.

As shown in Figure 3, each split requires Workers to extract,

transform, and (partially) load training data. Specifically, Workers

begin by reading, decompressing, and decrypting raw Tectonic

chunks. Sets of raw chunks are then reconstructed into streams

and decoded into raw table rows, filtering out unused features if

necessary. Next, it applies the specified transformations to each

raw feature using high-performance C++ binaries. Once features

are transformed, Workers batch samples together into tensors to be

loaded onto GPU trainers. We ensure that transient delays in the

pipeline do not introduce data stalls by maintaining a small buffer

of tensors in each Worker’s memory.

Trainers. DPP Clients form the other half of the data plane. A

Client runs on each training node, exposing a hook that the PyTorch

runtime can call to obtain preprocessed tensors. These requests

are transparently transformed into a simple RPC request which

returns a batch of tensors from the Worker buffer. By offloading

computationally expensive operations toDPPWorkers and enabling

Client multithreading, Clients do not bottleneck the data ingestion

pipeline. To ensure that Client andWorker network connections can

scale, each Client uses partitioned round robin routing, capping the

number of connections that Clients and Workers need to maintain.

To enable large-scale recommendation model training, we have

built high-performance training clusters [59], enabling individual

jobs to train on hundreds to thousands of GPUs. Each training job is

controlled by a Trainer Master, which manages the overall training

session. On each trainer, a PyTorch runtime manages the local

training workflow, transferring preprocessed tensors between the

DPP Client and GPU device memory. Parameter updates between

trainers occur over a dedicated backend network and do not impact

data ingestion.

4 COORDINATED TRAINING AT SCALE

Next, we explore how DLRMs are trained and deployed at Meta. We

do so because large-scale training deployments require thousands of

training jobs over hundreds of models and datasets, all running on a

shared global infrastructure. Understanding industrial training jobs

highlights important system and infrastructure implications not

found in commonly-studied hyperparameter (HP) tuning or isolated

training jobs.We focus on the three representative recommendation

models (RMs) highlighted in Figure 1, denoted 𝑅𝑀1,2,3, as these

models are the most widely-used and training resource-intensive.

4.1 Collaborative Release Process

Hundreds of recommendation models are deployed in production

at Meta, each continuously developed by many training jobs. Each

training job produces a new model version with the goal of becom-

ing the next production model. Many of our models are supported

by large teams of ranking engineers, requiring the need to allow con-

tinuous experimentation across engineers while avoiding conflicts

between model versions and conserving limited training capacity.

This need naturally arises as model engineering teams mature [66].

We thus adopted a regimented release process which occurs

over three phases. First, ML engineers explore their ideas (e.g., new

features or model architectural improvements) on top of the current

production model through hundreds to thousands of small training

jobs. Exploratory jobs generally require less compute and use a

small fraction (typically < 5%) of its respective table’s total samples.

Next, the most promising ideas are periodically combined in various

permutations to generate tens to hundreds of training jobs. These

combo jobs are large and trained within a short window, demanding

immense parallelism and the majority of the table. Finally, the

most promising release candidates (RCs) are further trained and

evaluated on fresh data, and the most accurate model is deployed

in production. While these jobs are large, there are only a few.

Counter-intuitively, the model release process can result in more

diversity in terms of temporal locality, model architectures, and

feature sets than in isolated or HP tuning jobs [41, 47]. This is be-

cause training capacity is highly-constrained compared to per-job

compute requirements, requiring engineers to combine many archi-

tecture and feature proposals into one combo job. Figure 4 illustrates

how the model design space is explored given compute constraints.

ISCA ’22, June 18–22, 2022, New York, NY, USA M. Zhao, et al.

Figure 4:Chart showing skewed and variable training duration and

status of 82 𝑅𝑀1 combo jobs within one model release iteration.

Figure 5:Normalized daily peak compute utilization over all collab-

orative training jobs over one year, showing peaks corresponding to

combo jobs.

Figure 6: Compute demand over ten most commonly-used models

(A-J), split by global region (R1-R5), normalized to model J.

While individual jobs are long-running and can take over 10 days

to train, many jobs fail or are killed because their performance is

lackluster. Instead of waiting to launch jobs synchronously, engi-

neers will immediately schedule new jobs to maximize the number

of explored ideas within the combo time window, resulting in a

large temporal skew between jobs.

4.2 Global Training Utilization

The aforementioned collaborative training jobs, including exploratory,

combo, and release candidates, run on the global fleet of training

(including DSI) infrastructure, spread across global regions, each

with multiple datacenters [38]. Figure 5 shows a historical utiliza-

tion, in terms of normalized compute, of all collaborative training

jobs across DLRMs over one calendar year across our entire fleet.

We observe distinct peaks in utilization, corresponding to periods

where many models concurrently train combo jobs. Because these

combo jobs are on the critical path of model release, we must explic-

itly architect our datacenters with sufficient storage, preprocessing,

and training capacity to meet the peak utilization of combo jobs.

Furthermore, as we explore in Section 5, each model reads a

distinct dataset. At the same time, cross-region (and often cross-

datacenter) bandwidth is highly-constrained. This requires systems

Table 2: Number of features created for 𝑅𝑀1 dataset within a 6

month window and their status 6 months later.

Beta Experimental Active Deprecated Total

10148 883 1650 1933 14614

and datacenter architects to co-locate DSI resources with train-

ers themselves and provision enough capacity for each. Figure 6

shows a bar chart of the relative compute demand of the ten most

commonly-run models, broken down by the region in which they

ran. Our global scheduler currently balances training jobs for each

model across regions, requiring each region to contain a copy of

all models’ datasets. Bin-packing opportunities can reduce storage

costs, with care to ensure data availability for each model as its

peak compute demand can exceed regional capacity.

4.3 Feature Engineering

The sets of features stored to a dataset and read by training jobs can

also vary heavily, as features also undergo rapid experimentation

and productionization. To understand feature storage variability,

Table 2 shows the total number of new features proposed for 𝑅𝑀1’s

production dataset within a 6-month window and the status of the

feature 6 months later. Beta features are not actively logged, but

may be back-filled or injected (i.e., dynamically joined) for each

exploratory training job. Experimental features are used as a part

of combo or release candidate jobs. If the release candidate job

becomes the next production model, its used features become ac-

tive, while some older features may become deprecated following

a review process or even reaped to protect user privacy. Experi-

mental, active, and deprecated features are actively written to the

dataset. We observe that features are rapidly changing in produc-

tion datasets, with hundreds of new features added and deprecated

each month. Thus, efficient ML data storage infrastructure must

adapt to frequent changes in the feature set.

4.4 Summary of Key Takeaways

Training production models requires a collaborative release pro-

cess across hundreds of engineers. Critically, ideas are periodically

amalgamated in a large number of concurrent combo jobs for each

model, resulting in large peaks in training and DSI resources across

our fleet during this phase. Because combo jobs are on the critical

path of model release, we must design datacenters with sufficient

capacity across global regions for peak demand corresponding to

combo jobs. This capacity required is spread across hundreds of

models with varying compute demand, motivating the need for

efficient co-location and scheduling of jobs and datasets across re-

gions to reduce inter-region storage and network demands. Finally,

we explored how training jobs are temporally skewed and exhibit

diverse model architectures, and datasets are continuously evolving,

inhibiting system optimizations that assume highly-synchronized

and similar training jobs or static datasets, e.g. [41, 47, 57].

5 UNDERSTANDING DATA STORAGE AND

READING

We next explore how datasets are stored in our data warehouse

and read by training jobs, highlighting implications to our storage

hardware and infrastructure.

Understanding Data Storage and Ingestion for Large-Scale Deep Recommendation Model Training ISCA ’22, June 18–22, 2022, New York, NY, USA

Table 3:Compressed sizes of all table partitions, each partition, and

the cumulative partitions used by a representative release candidate

training job for each RM.

Model All Partitions (PB) Each Partition (PB) Used Partitions (PB)

RM1 13.45 0.15 11.95

RM2 29.18 0.32 25.94

RM3 2.93 0.07 1.95

Table 4: Feature characteristics of production models.

Model Class # Dense Features # Sparse Features # Derived Features

RM1 1221 298 304

RM2 1113 306 317

RM3 504 42 1

Table 5: Dataset characteristics for each model.

Dataset

Float

Feats.

Sparse

Feats.

Avg.

Coverage

Avg.

Sparse Feat.

Length

% Feats.

Used

% Bytes

Used

RM1 12115 1763 0.45 25.97 11 37

RM2 12596 1817 0.41 25.57 10 34

RM3 5707 188 0.29 19.64 9 21

5.1 Individual Jobs Read and Filter Large

Datasets

Benchmark datasets are typically re-read multiple times (epochs) to

reach target accuracy [53]. Thus, existingwork focuses on randomly

modifying [19, 26–28, 49] or caching [47, 57, 61, 82] data across

epochs to improve DSI efficiency.

Unlike these benchmarks, production training jobs are not con-

strained by the amount of data. Instead, model size and compute

capacity limits constrain the number of features and samples each

job can use, respectively. Production training jobs do not require

stochastic preprocessing across multiple epochs, but instead can

reach a desired target accuracy with (less than) one epoch contain-

ing many samples. Individual training jobs specify a given table

as its dataset, along with filters that select a subset of data within

the table along two dimensions: a variable number of partitions

(row filter) and a set of features within each sample to read (column

filter).

We begin by analyzing one representative RC training job from

𝑅𝑀1,2,3. Table 3 shows the (compressed) size characteristics of each

model’s respective production training data table. It also shows

the size of each partition in the table (partitioned by date) and the

cumulative size of the partitions used by the training job for each

𝑅𝑀 . Even our largest training jobs often read less than the entire

available dataset and each sample only once. The partitions that are

read still require petabytes of data, which is significantly larger than

the local storage capacity at each trainer node, contrary to prior

assumptions [57]. Furthermore, as shown in Figure 2, dataset sizes

for productionmodels are continuously growing, driven bymultiple

factors such as organic user growth, reduced downsampling, and

an increase in engineered features.

Next, we study how a training job selects data along the fea-

ture (column) dimension. Individual training jobs specify a feature

projection, consisting of a list of desired features to be read from

all rows in the designated partitions. Table 4 shows the number

of dense, sparse, and derived features required by a representa-

tive RC model version for each 𝑅𝑀 . These model versions require

Table 6: I/O Sizes for features read by an RM1 training job.

Mean Std p5 p25 p50 p75 p95

I/O Size (B) 23.2K 117K 18 451 1.24K 3.92K 97.7K

Figure 7: CDF of popular bytes to throughput absorbed, across one

month of each RM’s runs. Popular bytes are reused across runs.

504 − 1221 and 42 − 306 dense and sparse features, respectively.

This is in contrast to Table 5, which shows that significantly more

features are logged in each model’s table. Each training job only

needs to read 9 − 11% of stored features. Even when accounting for

the number of bytes read, Table 5 highlights that 𝑅𝑀1,2,3 only read

between 21 and 37 percent of stored bytes across used partitions.

The relative increase in read bytes is because read features typically

exhibit larger coverage (i.e., fraction of samples logging the feature)

and sparse feature lengths, and thus require more bytes, as these

features contribute stronger signals to model quality and are thus

favored by ML engineers.

While there appears to be room to reduce feature collection,

feature experimentation is essential for ML engineers. We priori-

tize developer productivity and heavily err on the side of keeping

features, even at the cost of storage, to ensure that ML engineers

have access to the features they need.

Selective reading also has further implications for the perfor-

mance of our storage nodes. Table 6 shows the distribution, in bytes,

of a representative 𝑅𝑀1 training job’s I/O sizes from storage. Heavy

filtering and columnar storage of features on disk (Section 3) results

in relatively-small contiguous regions for read features. Further

software-hardware co-design is needed to ensure that disk seeks

do not cripple storage IOPS.

5.2 Data is Reused Across Training Jobs

While individual training jobs require extensive filtering, train-

ing jobs do collectively reuse data. Inter-job data reuse can occur

throughout the model release process because ML engineers do not

develop an entirely new model architecture and feature set each

iteration, but instead largely build upon a common baseline (e.g.,

the current production model version).

Figure 7 shows that, based on training runs for 𝑅𝑀1,2,3 over one

month, training runs for each model tend to favor specific bytes.

The x-axis shows a CDF of bytes within the model’s used set of table

partitions. The y-axis shows the percent of all I/O from storage that

the most-popular 𝑥 percent of stored bytes contribute to. To serve

80% of traffic from storage, we only require the most commonly-

used 39, 37, and 18 percent of 𝑅𝑀1’s, 𝑅𝑀2’s, and 𝑅𝑀3’s datasets,

respectively. Combined with Table 5, Figure 7 also highlights how

used features and bytes vary across training jobs. RM3 exhibits

little variance in features — Table 5 and Figure 7 show that both

individual and collective models read roughly 21% of the stored

ISCA ’22, June 18–22, 2022, New York, NY, USA M. Zhao, et al.

Table 7: Insufficient GPU trainer host resources for preprocessing

introduces significant data stalls for 𝑅𝑀1.

% of GPU Stall Time % CPU Utilization % Memory BW Utilization

56 92 54

Table 8: RMs drive large and diverse throughput at each GPU train-

ing node.

RM1 RM2 RM3

GPU Trainer Throughput (GB/s, per 8-GPU Node) 16.50 4.69 12.00

bytes. Meanwhile, 𝑅𝑀1 and 𝑅𝑀2 show high variance; individual

jobs only read 37% and 34% of the stored bytes, respectively, while

jobs collectively read over 60% of the stored bytes.

5.3 Summary of Key Takeaways

In this section, we explored how features are stored in petabyte-

scale datasets that greatly exceed local storage capacities, requiring

training jobs to read samples from a centralized data warehouse

(Section 3.1). Furthermore, each training job requires extensive fil-

tering both in the number of samples (rows) and features extracted

from each sample (columns). Column-wise filtering results in small

reads from storage because features are stored in columnar files. Fi-

nally, across training jobs for a givenmodel, we observed significant

reuse in commonly-used features, with 40% of bytes contributing

to over 80% of read throughput.

6 UNDERSTANDING ONLINE

PREPROCESSING

Distributed trainers drive strict data ingestion bandwidth require-

ments. Data stalls result when online preprocessing throughput

is less than the aggregate throughput of the trainers themselves,

underutilizing GPU resources [57].

Current preprocessing solutions, which perform preprocessing

on the CPUs of each training node, can cause data stalls. To demon-

strate this, we ran a training job for 𝑅𝑀1 on a training node con-

sisting of two 28-core x86 CPU sockets, two 100 Gbps frontend

NICs for data ingestion, and a total of 8 NVIDIA V100 GPUs. The

trainer read from distributed storage, preprocessed each mini-batch

using the production PyTorch [65] stack, and performed training

on the same machine. Table 7 shows that 56% of GPU cycles were

spent stalled waiting for training data. The high CPU utilization

shows that the trainer’s CPUs cannot preprocess data fast enough

to serve the GPUs, motivating us to build DPP to eliminate data

stalls (Section 3.2.1).

We next seek to understand the preprocessing bottlenecks of

our production DSI pipeline in detail. To do so, we analyzed the

preprocessing throughput demanded by GPUs across RMs. We then

traced through data loading resource requirements at GPU trainers,

and data extraction and transformation resource requirements at

DPP Workers.

6.1 GPU Training Throughput

We measured the online preprocessing throughput required by

each 𝑅𝑀 by running a production training job for each 𝑅𝑀 on

a training node, ensuring that GPUs were not stalled by serving

tensors from an in-memory buffer. Table 8 shows the per-trainer

Figure 8: CPU and memory bandwidth utilization at trainer fron-

tend as data loading throughput scales. Vertical lines show the net-

work utilization of each RM.

node GPU throughput requirements (i.e., tensor ingestion rate) for

each representative 𝑅𝑀 . GPU throughput requirements are not

only significant, but vary by over 6× across models. The difference

in throughput across the models is due to the variations in opera-

tional intensity (i.e., compute per sample) across models, as well as

synchronization overheads between GPUs during each iteration.

Furthermore, we project the online preprocessing throughput

requirement to increase by 3.5× within the next two years due

to larger training samples, improved hardware accelerators, and

software optimizations. We cannot simply over-provision resources

for preprocessing at each trainer for the worst-case model; doing so

would waste large amounts of capacity and power across our fleet.

The DSI pipeline must instead scale online preprocessing resources

tomeet intense and increasing GPU throughput demands, and adapt

to the diverse requirements across models.

6.2 Data Loading at GPU Trainers

Section 3 described how our DSI pipeline allows training jobs to

scale online preprocessing resources by loading preprocessed ten-

sors from distributed DPPWorkers. We now show that data loading

over the network at GPU trainers, even without extraction or trans-

formations, still requires significant trainer CPU, network, and

memory bandwidth.

Figure 8 shows the memory bandwidth and CPU utilization on

the 2-socket, 8-GPU training node as we increase the rate at which

preprocessed tensors are loaded from a set of DPPWorkers. Vertical

lines represent the required GPU throughput across each 𝑅𝑀 , as

measured in Table 8. High training data throughput demands driven

by the GPUs directly translate to considerable front-end resource

requirements for data loading. Production-scale model training is

approaching NIC saturation, even with significant reduction in data

sizes due to transformation operations (see Section 6.3). Second,

even without expensive extraction or transformation operations,

production models require up to 40% of CPU cycles (almost a full

socket) and 55% of memory bandwidth to load training data. This

demand is due to network stack and memory management require-

ments in addition to the necessary "datacenter tax" [42] operations

such as TLS decryption and Thrift deserialization that are required

in our production environment. Considering memory bandwidth

saturates at ≈ 70% utilization, data loading constrains trainers’

compute, memory bandwidth, and network resources.

Understanding Data Storage and Ingestion for Large-Scale Deep Recommendation Model Training ISCA ’22, June 18–22, 2022, New York, NY, USA

Table 9: DPP Worker throughput across RMs and the resulting

Workers required to meet trainer demands. Storage RX is com-

pressed and transform RX/TX is uncompressed.

Model kQPS

Storage

RX (GB/s)

Transform

RX (GB/s)

Transform

TX (GB/s)

DPP Workers Req.

per GPU Training Node

RM1 11.623 0.8 1.37 0.68 24.16

RM2 7.995 1.2 0.96 0.50 9.44

RM3 36.921 0.8 1.01 0.22 55.22

6.3 Extracting & Transforming Data at DPP

Workers

Data extraction and transformation requires strikingly more re-

sources than are available on trainers and must be distributed.

Table 9 shows the maximum data extraction and transformation

throughput achieved by each DPP Worker, running on a general

purpose server (C-v1, Table 10). We need large and highly-variable

throughput across models to meet the GPU demands in Table 8

— between 9 and 55 servers per trainer node. Unlike traditional

distributed query executors [55, 60, 83, 84], which rely on large

clusters to produce a result as fast as possible, online preprocessing

requires continuous throughput guided by GPU demands; allo-

cating more preprocessing workers will not improve end-to-end

training time. On the other hand, using trainer hosts for prepro-

cessing is also insufficient, as our online preprocessing demands

represent considerably more network, compute, and memory band-

width resources than available locally, especially when factoring

in data loading. Not only do models require large and diverse data

loading throughput, achievable extract and transform throughput,

given fixed compute, varies across models, emphasizing the need

to right-size preprocessing resources to each model.

To understand the implications of these results in more detail,

we observe that preprocessing significantly reduces data sizes, espe-

cially considering storage bytes are compressed in Table 9. This is

due to a combination of filtering, over reading features from storage

(see Section 7), and size reduction during transformations. This has

implications on network throughput requirements, as 1.18 to 3.64×
more network bandwidth is required to extract raw samples from

storage than to load preprocessed tensors. Thus, performing data

extraction at the trainers would further amplify the network band-

width requirements beyond the per-model requirements shown in

Figure 8, resulting in data stalls. Table 9 shows how DPP Work-

ers are bound on ingress NIC bandwidth for 𝑅𝑀2, requiring ≈ 10

Gbps of our current 12.5 Gbps NICs (Table 10), reaching practical

NIC throughput limits. Even given higher NIC bandwidth limits,

the datacenter network can pose potential bottlenecks, as upper

datacenter network links are often oversubscribed [24, 34, 68, 72].

Furthermore, network bandwidth is not the only limiting factor.

Figure 9 shows DPP CPU and memory bandwidth utilization at

saturation. Each model exhibits diverse resource requirements. 𝑅𝑀1

is bottlenecked on memory bandwidth and CPU utilization. This

is because 𝑅𝑀1 requires significantly more CPU cycles for prepro-

cessing due to its computationally expensive transformations. 𝑅𝑀3

is bound on memory capacity, forcing us to limit the worker thread

pool size to avoid OOM exceptions.

While models are constrained on various hardware currently,

these bottlenecks will change as future generations of compute

Figure 9: CPU, memory, andmemory bandwidth utilization at pre-

processing workers across RMs. CPU utilization is broken down

into transformation, extraction, and miscellaneous cycles.

Table 10:Hardware specifications across three versions of compute

servers, plus a hypothetical state-of-the-art server.

Node

Num.

Physical

Cores

NIC

(Gbps)

Memory

(GB)

Peak

Mem. BW

(GB/s)

Peak Mem.

BW / Core

(GB/s)

NIC BW

/ Core

(Gbps)

C-v1 18 12.5 64 75 4.2 0.69

C-v2 26 25.0 64 92 3.5 0.96

C-v3 36 25.0 64 83 2.3 0.69

C-vSotA 64 100.0 1024 205 3.2 1.56

Table 11: Description of common preprocessing transformations.

Op Name Description

Cartesian Compute Cartesian product between two sparse features

Bucketize Shard features based on bucket borders

ComputeScore Arithmetic operations on sparse features

Enumerate Similar to Python enumerate()

PositiveModulus Compute positive modulus on sparse features

IdListTransform Performs intersection of two sparse feature lists

BoxCox BoxCox transform for normalization

Logit Logit transform for normalization

MapId Maps feature IDs to fixed values

FirstX List truncation of sparse features for normalization

GetLocalHour Compute local timestamp

SigridHash Compute hash value to normalize list of sparse features

NGram Compute an n-gram between multiple sparse features

Onehot Apply one hot encoding to normalize dense features

Clamp Same as std::clamp

Sampling Randomly sample training data samples

nodes provide a different balance of compute, memory, and net-

work. Table 10 shows the hardware characteristics of our current

(C-v1) and upcoming versions of compute nodes used by DPP. To

discount for the multifaceted and potentially non-technical factors

impact the final specification of future compute nodes, we also show

a hypothetical compute node (C-vSotA) based on state-of-the-art

hardware (e.g., AMD Milan with 8 channels of DDR4-3200 [11],

and a 100G NIC). We observe an increased scaling in the num-

ber of cores and NIC bandwidth compared to memory bandwidth;

we thus expect memory bandwidth to become the bottleneck as

per-core memory bandwidth decreases compared to per-core NIC

bandwidth. To demonstrate this, we ran preprocessing for 𝑅𝑀2 on

the C-v2 node in Table 10 and observed that memory bandwidth,

not network, was the bottleneck. We further studied where memory

bandwidth is going, and observed that 50.4%, 24.9%, 16.4%, and 4.7%

of LLC misses were due to transformations, extraction, network re-

ceive, and network send, respectively, highlighting areas for future

optimization.

ISCA ’22, June 18–22, 2022, New York, NY, USA M. Zhao, et al.

6.4 Transformation Operations

Accelerating transformation operations (e.g., via GPUs [1]) are

promising, but requires more research as our transformations can

be distinctly different from the matrix-heavy operations used in

training and may contend cycles with training. Table 11 provides

a list of important (but not exhaustive) preprocessing transforma-

tions that are needed by our production DLRMs. These operations

are distinctly different from the image-centric operations used in

many preprocessing libraries [6], such as crops, resizing, and color

augmentations.

DLRM transformation operations can be split into three classes:

feature generation, sparse feature normalization, and dense fea-

ture normalization. Dense feature normalization (Logit, BoxCox,

Onehot) and sparse feature normalization (SigridHash, FirstX) nor-

malize features based on dataset statistics. Feature generation oper-

ations (commonly-used ones include Bucketize, NGram, andMapId)

derive new dense and sparse features from raw dataset features.

Feature generation is especially expensive — dense normaliza-

tion, sparse normalization, and feature generation typically require

around 5%, 20%, and 75% of transformation cycles, respectively. We

are actively open-sourcing these operations in TorchArrow [15].

6.5 Summary of Key Takeaways

DLRM training jobs require online preprocessing that can induce

data stalls on GPU trainers due to limited host compute, memory,

and network resources. We built DPP, a disaggregated online pre-

processing service, to completely eliminate data stalls by offloading

data extraction and transformation operations. Nevertheless, train-

ers must be provisioned with enough host resources to handle data

loading rates driven by the GPUs. At disaggregated DPPWorkers,

we expect memory bandwidth to become the primary bottleneck,

largely due to transformations. Finally, we identified how DLRM

transformation operations differ from image models, and feature

generation dominates transformation compute.

7 KEY INSIGHTS AND RESEARCH

OPPORTUNITIES

This section assimilates and explores key insights we learned while

architecting and profiling Meta’s DSI pipeline and important re-

search challenges we continue to face. As DSAs for ML continue

to improve, the DSI pipeline is becoming an increasingly resource-

intensive component of the end-to-end ML training pipeline. We

argue that similar attention to DSI is warranted in order to continue

scaling datacenter-scale training.

7.1 Hardware Bottlenecks in DSI

Storage layer. Cross-datacenter bandwidth is constrained (Sec-

tion 4.2). Thus, we must provision sufficient storage capacity and

IOPS bandwidth within our production storage layer (i.e., Tec-

tonic [64]) in each datacenter. Storage capacity requirements are

driven by the industry-scale dataset sizes (Table 3). IOPS bandwidth

requirements are driven by the overall trainer node throughput

(Table 8) and scaled by data volume changes due to preprocessing.

We must also factor in how I/O size characteristics (Table 6) affect

achievable IOPS of the HDD storage nodes. As it stands, we observe

an over 8× throughput-to-storage gap even after accounting for

triplicate replication for durability. In order to meet IOPS demands,

we must provision significantly more storage capacity per data-

center than is required to store datasets, motivating the need for

storage hardware and systems that better balance IOPS and storage

capacity.

Data ingestion layer. Section 6.3 highlighted how the diverse

set of preprocessing requirements across RMs constrained compute,

network, andmemory resources atDPPWorkers. However, Table 10

shows the expected growth of network bandwidth and compute

capacity will outpace memory bandwidth for the next generations

of our general-purpose compute nodes. We expect data ingestion to

be heavily constrained by memory bandwidth, warranting further

research in methods to reduce memory bandwidth demand during

preprocessing.

Trainers. The goal of the DSI pipeline is to avoid data stalls,

ensuring that trainers (and specifically DSAs) are fully utilized and

dictate the throughput demands of the end-to-end training pipeline.

Section 6 explains how without DPP, trainers are constrained on

both front-end network and host memory and compute resources

due to online preprocessing. After disaggregating DPP, we can

achieve our goal of ensuring that the accelerators are fully fed by

simply provisioning enough host compute, memory bandwidth,

network resources for data loading when designing our training

nodes. For example, our next-generation ZionEX nodes contain 4

CPU sockets, each with a 100 Gbps dedicated front-end NIC, to

ensure that all GPUs are fully fed [59].

7.2 Heterogeneous Hardware for DSI

The bottlenecks above allude to ample opportunity to leverage

heterogeneous hardware across data storage and ingestion.

Balancing storage throughput and capacity. We noted how

ourHDD-based storage nodes presented≈ 8× throughput-to-storage

gap, requiring us to provision datacenters with excess storage ca-

pacity to meet IOPS demand. We can improve the power efficiency

of our storage layer by balancing storage throughput and capacity

by leveraging heterogeneous storage media with a higher IOPS per

watt. For example, our SSD-based storage nodes can provide 326%

IOPS per watt, but trades off storage capacity with only 9% capacity

per watt, compared to HDDs within our fleet. At the same time,

simply placing training data on SSDs would result in an unfavorable

storage-to-throughput gap due to our large datasets.

Storage layers for DSI should balance storage throughput and ca-

pacity for optimal power efficiency. There are further software and

hardware optimization opportunities, such as placing commonly-

used features (Figure 7) on SSD-based caches, or leveraging non-

volatile memory. These solutions must consider important charac-

teristics of industry-scale DSI pipelines characterized in Sections 4

and 5. Datacenter architects must balance storage and IOPS capacity

in each datacenter while reasoning about highly-variable training

demand, shared capacity across multiple datasets, and dynamic

scheduling behavior across geo-distributed datacenters. The stor-

age layer must also accurately predict and place commonly-used

bytes on the appropriate medium, requiring complex predictions on

locality of highly asynchronous training jobs and the reuse patterns

of continuously-evolving feature sets and model architectures.

Understanding Data Storage and Ingestion for Large-Scale Deep Recommendation Model Training ISCA ’22, June 18–22, 2022, New York, NY, USA

Accelerating transformations.We also foresee further oppor-

tunities for acceleration during online preprocessing. For example,

recent efforts have been used to accelerate preprocessing on the

training GPU [1], but risks degrading training throughput. While

we believe preprocessing can be accelerated, there are numerous

challenges to address.

Transformations can be performed on the GPU trainer, host CPU,

disaggregated CPUs, or disaggregated accelerators — deciding the

optimal placement is non-trivial. Many transformation operations

described in Section 6 exhibit diverse amenability for acceleration;

themost efficient hardware platform can vary across operations. For

example, we observed an 11.9× and 1.3× GPU/CPU performance

for SigridHash and Bucketize, respectively, on a V100 GPU and 20

CPU threads. The prevalence of each operation, and thus the most

efficient preprocessing solution, also varies heavily across models.

In fact, each model requires a large graph of many operations

across its feature set. For example, a single feature 𝑋 may require

a DAG of multiple operations that apply Bucketize to feature 𝐴,

apply FirstX to feature 𝐵, compute the Ngram of the intermediate

values, and apply SigridHash to generate feature 𝑋 . Current GPU

hardware and APIs are optimized for large, parallel singular tasks

as opposed to multiple small, diverse operations. Launching a ker-

nel for each feature incurs significant launch and host-to-device

transfer overheads. For example, we observed over three orders of

magnitude throughput speedup by applying a simple kernel on a

tensor combining 1000 sparse features versus applying the same

kernel on each feature separately. Furthermore, transformation

operations produce outputs and intermediate values with variable-

length sequences, requiring complex memorymanagement not well

addressed by current GPUs and ML frameworks [33]. Addressing

these characteristics of preprocessing is critical in order to fully

leverage the acceleration potential of GPUs, FPGAs, or other DSAs.

Accelerating data extraction and loading. Accelerators can

be applied beyond transformation operations. Section 6 showed

how datacenter tax operations further constrain DPP Worker re-

sources. Necessary TLS operations amplify memory bandwidth by

3×, further constraining the limited bandwidth resource. Hardware

such as accelerators for microservices [73] and SmartNICs that

support techniques such as TLS offloading will be needed to further

scale DSI.

7.3 Datacenter Planning and Scheduling

We must intelligently design and provision compute, network, and

storage capacity in each datacenter to ensure both high utiliza-

tion of each DSI system given a fixed power budget and sufficient

capacity to meet peak training demands. To do so, we rely on ex-

tensive models built by continuously profiling DSI workloads on

both storage nodes and DPPWorkers. Designing a datacenter for

ML training thus requires not only understanding compute require-

ments of the models, but also an accurate benchmark of the datasets

and preprocessing requirements (which we discuss next).

We must also consider scheduling as an important component

of ML training systems. We have multiple datacenters in a region

and multiple regions globally. Section 4 explored how our train-

ing workload is spread across regions, requiring datasets to be

replicated and co-located with trainers. We foresee opportunity

for a global scheduler to intelligently route and bin-pack training

jobs to specific regions to reduce storage duplication. Furthermore,

as our datasets continue to grow beyond DC-scale, other paral-

lelism techniques, such as model-hopper parallelism [62] to move

TB-scale models across DCs instead of PB-scale data, will become

increasingly important.

7.4 Representative Benchmark Datasets

Recent advancements in DSAs have largely been driven and mea-

sured by benchmarks. For example, the latest round of MLPerf

Training [53] (v1.1) saw results from 14 organizations with up to

2.3× improvement over the previous round. Unfortunately, these

benchmarks have largely focused on models as opposed to datasets,

leading to rapid innovation in model architectures and training

nodes while largely ignoring the DSI pipeline. Current leading

benchmark datasets, such as ImageNet [31] and COCO [50], were

released in 2010 and 2014 and have been largely unchanged, despite

their ubiquity in academia. The Criteo 1TB Click Logs [8], the Rec-

ommendation dataset used by MLPerf Training [80], was released

in 2013.

Section 5 describes how production recommendation datasets

differ from static benchmark datasets. Understanding how represen-

tative datasets are generated, stored, and read are critical to further

research in DSI for ML training. Specifically, we characterized that

for DLRMs, training samples are a) continuously generated from

real-world events, b) stored as structured samples in a common

data warehouse or feature store which are further stored as colum-

nar files in a distributed filesystem, and c) require petabytes of

storage. Furthermore, when training jobs read the dataset, they

d) perform extensive online preprocessing operations, e) only re-

quire one epoch, and f) require further row-wise and feature-wise

filtering. We are actively working towards more representative

benchmark datasets (e.g., [7]), and we hope this paper motivates

the importance of further work in this area.

7.5 Multi-dimensional System Co-design

Efficiency gains solely via hardware are slow, as hardware refreshes

must be planned years in advance. To continuously improve DSI

efficiency (and increase training capacity), we spend significant

effort optimizing our DSI systems because at scale, small efficiency

gains can translate to MWs of additional trainer capacity. In our

experience, DSI system architects must understand and co-design

optimizations across two dimensions.Top-to-bottom:DSI systems

must leverage characteristics andmeet requirements of applications

(ML models and engineers) while optimizing for the underlying

hardware. End-to-end: Optimizations must be considered across

the DSI components; optimizations can trade-off efficiency across

the entire pipeline. We highlight this through recent examples next.

Feature flattening.Our warehouse tables’ schema, which store

features inmaps, are designed to handle constantly-evolving feature

sets. This required training jobs to read the entire row, resulting

in a large "over read" of bytes from storage as each training job

only requires a small set of features from each row. To maintain

the usability benefits (i.e., rapid feature engineering) of our map

schema for applications while avoiding over reads, we optimized

our DWRF file format with feature flattening. As shown in Figure 10,

ISCA ’22, June 18–22, 2022, New York, NY, USA M. Zhao, et al.

Hive Table
Row idx

1
2

Features (map<str: int>)
A: 1, B:1, C:3, D:1, E:3, F:3
A: 2, B:1, C:2, D:1, E:2, F:6

A: 1, B:1, C:3, D:1, E:3, F:6
A: 2, B:1, C:2, D:1, E:2, F:6

Entire rows are read

Regular Map
Read: A, D

Read: A, D
A
1
2

B
1
1

C
3
2

D
1
1

E
3
2

F
3
6

FF

A and D read, but with
multiple seeks

Disk Seek

A
1
2

D
1
1

Disk Seek

FF + CRA
1
2

B
1
1

C
3
2

D
1
1

E
3
2

F
3
6

Disk Seek

A
1
2

B
1
1

C
3
2

D
1
1

Read: A, D

One seek reads A and D, but
over reads B and C

FF + CR + FRA
1
2

D
1
1

C
3
2

F
3
6

E
3
2

B
1
1

Read: A, D

One seek reads A and D

A
1
2

D
1
1

Disk Seek

Figure 10: Example highlighting which features are read given

regular map, FF=feature flattening, CR=coalesced reads, and

FR=feature reordering.

Table 12: Normalized DPP Worker and storage throughput as a

result of progressive optimizations. FF = Feature Flattening, FM =

In-Memory Flatmap, LO = Localized Optimizations, CR = Coalesced

Reads, FR = Feature Reordering, LS = Large Stripes.

Baseline +FF +FM +LO +CR +FR +LS

DPP Throughput 1.00 2.00 2.30 2.94 2.94 2.94 2.94

Storage Throughput 1.00 0.03 0.03 0.03 0.99 1.84 2.41

feature flattening organizes maps such that values for a given map

key (feature ID), across rows, are stored as separate streams on

disk. Combined with additional metadata for each feature ID in

the DWRF file, readers can selectively read the desired features

from storage. Table 12 shows how feature flattening doubled DPP

Worker throughput (with 12% increase in storage capacity) due to

a reduction in CPU cycles spent extracting unnecessary data.

Coalesced reads. Unfortunately, filtering at the storage layer

reduced I/O sizes from almost 8 MB (Tectonic’s chunk size) to

the small I/O sizes (≈ 20 KB) shown in Table 6, resulting in poor

IOPS on our HDD-based storage nodes due to excessive disk seeks.

This reduced storage throughput by 97%, as shown in Table 12. We

optimized top-to-bottom for our HDDs by coalescing reads. Figure 10

shows how coalesced reads group selected feature streams within

1.25MiB in one I/O, eliminating storage throughput degradation

by amortizing disk seeks.

Feature reordering. Coalesced reads resulted in over reads of

unused features, limiting its effectiveness. These over reads occur

because the offline data generation step effectively orders feature

streams randomly. In the example in Figure 10, reading features

(A, D) with a coalesced read ends up over reading (B, C), squeezed

between (A, D). We applied end-to-end optimization by augmenting

our data generation path to continuously write feature streams in

each file ordered based on features’ popularity in training jobs

launched within a recent window (e.g., 7 days). Feature reordering

leverages the insight that a small set of popular features contribute

to a large percent of storage throughput (Section 5.2), reducing the

amount of unnecessary features in a coalesced read and improving

storage throughput by 84%.

Large stripes, in-memoryflatmaps, and localized optimiza-

tions. Finally, we applied numerous other optimizations across the

DSI pipeline. We used large stripes that increase the number of

rows in each file stripe to increase the average I/O size of each read.

Increasing stripes to ≈ 1 GB further improved storage through-

put by 31%. We also noted how both DWRF and tensor formats

represent each feature’s values contiguously across rows, while

data extraction reconstructs all features in a row-based map for-

mat, requiring costly format changes and copies between colum-

nar and row formats during preprocessing. We changed how DPP

Workers represent samples with in-memory flatmaps to match the

DWRF and tensor formats. This reduced format conversions and

thus reduced constrained memory bandwidth demands, improving

Worker throughput 15%. Finally, even localized optimizations at

DPPWorkers, such as removing unnecessary null checks and using

build-time optimizations like Linker Time Optimization (LTO) and

AutoFDO [25], further improved DPP throughput by 28%.

The optimizations above required us to consider DSI optimiza-

tions top-to-bottom and end-to-end. For example, combining fea-

ture flattening, coalesced reads, and feature reordering considered

ML application characteristics and demands, such as filtering on

evolving feature sets, while addressing seek overheads of our under-

lying HDD hardware (top-to-bottom optimization). Similarly, we

demonstrated how feature flattening trades-off storage capacity for

DPP efficiency, as well as how optimizations such as large stripes,

feature reordering, and in-memory flatmaps are made across the

end-to-end DSI pipeline from dataset generation to online prepro-

cessing.

In total, Table 12 shows how these optimizations increased DPP

and storage throughput by 2.94× and 2.41×, respectively. When

weighed by our provisioned DPP and storage power requirements,

these co-designed optimizations resulted in a 2.59× reduction in

DSI power requirements, allowing us to provision datacenters with

significantly more compute resources for trainers.

We are continuing to explore promising co-designed optimiza-

tion opportunities that aim at improving data extraction and opti-

mizing DPP in-memory formats, such as Velox [16] and TorchAr-

row [15]. We are also exploring other optimization techniques, such

as caching preprocessed tensors and balancing transformations be-

tween offline and online ETL.

8 RELATEDWORK

Data storage and ingestion for ML. We presented Meta’s pro-

duction deployed DSI pipeline.

ETL pipelines.We discussed how we use traditional ETL engines,

such as Spark [84], to generate structured training data from raw

logs. A number of query and streaming engines [21, 55, 60, 83–85]

are used across industry for this task. We characterized how online

data preprocessing demands diverge from traditional ETL, requiring

deep integration into PyTorch, pipelined compute, localized mini-

batch transforms, and right-sizing, highlighting a need for a distinct

online preprocessing framework that optimizes for power efficiency

while eliminating data stalls.

Data storage and warehousing for ML. We characterized how in-

dustrial datasets differ from benchmarks, requiring massive and

evolving datasets, highly selective filtering, and interoperability and

reuse across multiple models and systems. To address these needs,

we store datasets as Hive [76] tables on top of Tectonic [64] using

an optimized Apache ORC [4] like format. Comparable solutions

Understanding Data Storage and Ingestion for Large-Scale Deep Recommendation Model Training ISCA ’22, June 18–22, 2022, New York, NY, USA

exist across industry. Feature stores (e.g., Tecton [9]) and data ware-

houses (e.g., DeltaLake [22] and Snowflake [29]) manage datasets.

These rely on variety of storage and memory formats [2, 3, 5, 14].

Online preprocessing for ML. tf.data [61] presents a runtime and

API for online preprocessing in TensorFlow [17]. While tf.data

Service [12] is an experimental feature to distribute online prepro-

cessing on a user-managed cluster, tf.data focuses on optimizing

preprocessing on the host CPU. DPP similarly presents a runtime

for online preprocessing fully integrated in PyTorch [65]. DPP is

inherently disaggregated and runs as a fully-managed service at

Meta, enabling online preprocessing to automatically scale to meet

the throughput required by training jobs running on hundreds of

GPUs.

Other recent works target key DSI components, focusing on

benchmark vision and NLP models. CoorDL [57], Quiver [47], and

DIESEL [77] are caches that optimize for single-server training, HP

tuning jobs, and small files, respectively. DeepIO [87] and DLFS [88]

leverage hardware (RDMA and NVMeOF) to provide randomized

minibatches from storage. Revamper [49] randomly augments sam-

ples across epochs to reduce online preprocessing costs. Wang et

al. [78] and Kumar et al. [48] mitigate data stalls on TPUs. OneAc-

cess [41] motivates sharing online preprocessing for HP tuning jobs.

Industrial DSI characteristics are markedly different from bench-

marks (Section 7), limiting the impact of such systems in industrial

settings.

Understanding Large-Scale Training. tf.data [61] characterized

online preprocessing at Google, highlighting similar findings such

as prevalent data reuse and demanding compute requirements. Xin

et al. [81] characterized howMLmodels are trained and deployed at

Google, focusing on model lifecycle management. Pulkit et al. [20]

presented MLdp, a data management platform at Apple, focusing

on industrial data lifecycle management requirements including

versioning, provenance, and access control. Hazelwood et al. [38]

presented how Meta trains and serves ML models at scale. To the

best of our knowledge, our work represents the first characteriza-

tion of the end-to-end DSI workloads, systems, and infrastructure

in a large-scale training deployment, noting key research opportu-

nities.

Recommendation Models. Gupta et al. [36] analyzed industry-

scale inference models on three different CPU architectures. Deep-

RecSys [35] and RecSSD [79] optimized inference requests across

CPUs and GPUs, and SSDs, respectively. Acun et al. [18] char-

acterized DLRM architectures on GPU trainers, Sethi et al. [70]

presented an optimized embedding sharding strategy for DLRM

training, Maeng et al. [51] explored checkpointing trainer state,

and AIBox [86] optimized training using hierarchical memory for

parameters. However, these prior works do not discuss the DSI

pipeline, a critical part of ML training.

9 CONCLUSION

DSI infrastructure will dominate large-scale training resource and

power capacity without further innovation and optimization. This

paper presented Meta’s end-to-end data storage, ingestion, and

training pipeline used to train our production recommendation

models. We characterized DSI workloads on our fleet, including

coordinated training, dataset storage and reading, and online pre-

processing workloads. To spur further research, we synthesized

key insights and important research directions gleaned from our

characterization and experience.

ACKNOWLEDGMENTS

We would like to thank the many engineers in the numerous infras-

tructure and hardware teams that build, support, and maintain the

systems and hardware that compose Meta’s DSI pipeline. We also

thank Daniel Ford, Dheevatsa Mudigere, Chunqiang Tang, Matei

Zaharia, and the anonymous reviewers for their feedback on this

paper. Christos Kozyrakis is supported by the Stanford Platform

Lab and its affiliate members.

REFERENCES

[1] 2021. NVIDIA Data Loading Library (DALI). https://developer.nvidia.com/dali

[2] 2022. Apache Arrow. https://arrow.apache.org/

[3] 2022. Apache Avro. https://avro.apache.org/

[4] 2022. Apache ORC. https://orc.apache.org/

[5] 2022. Apache Parquet. https://parquet.apache.org/

[6] 2022. DALI Supported Operations. https://docs.nvidia.com/deeplearning/dali/

user-guide/docs/supported_ops.html

[7] 2022. Datasets for the Deep Learning Recommendation Model (DLRM). https:

//github.com/facebookresearch/dlrm_datasets

[8] 2022. Download Criteo 1TB click Logs dataset. https://ailab.criteo.com/download-

criteo-1tb-click-logs-dataset/

[9] 2022. Enterprise feature store for machine learning. https://www.tecton.ai/

[10] 2022. Introducing the AI research SuperCluster - Meta’s cutting-edge AI super-

computer for AI Research. https://ai.facebook.com/blog/ai-rsc/

[11] 2022. Milan - Cores - AMD. https://en.wikichip.org/wiki/amd/cores/milan

[12] 2022. Module: Tf.data.experimental.service : Tensorflow core v2.6.0. https:

//www.tensorflow.org/api_docs/python/tf/data/experimental/service

[13] 2022. A persistent key-value store. http://rocksdb.org/

[14] 2022. TFRecord. https://www.tensorflow.org/tutorials/load_data/tfrecord

[15] 2022. TorchArrow. https://github.com/facebookresearch/torcharrow

[16] 2022. Velox. https://github.com/facebookincubator/velox

[17] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Man-

junath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray,

Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan

Yu, and Xiaoqiang Zheng. 2016. TensorFlow: A System for Large-Scale Ma-

chine Learning. In 12th USENIX Symposium on Operating Systems Design and

Implementation (OSDI 16). USENIX Association, Savannah, GA, 265–283. https:

//www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi

[18] B. Acun, M. Murphy, X. Wang, J. Nie, C. Wu, and K. Hazelwood. 2021. Un-

derstanding Training Efficiency of Deep Learning Recommendation Models at

Scale. In 2021 IEEE International Symposium on High-Performance Computer Ar-

chitecture (HPCA). IEEE Computer Society, Los Alamitos, CA, USA, 802–814.

https://doi.org/10.1109/HPCA51647.2021.00072

[19] Naman Agarwal, Rohan Anil, Tomer Koren, Kunal Talwar, and Cyril Zhang. 2020.

Stochastic Optimization with Laggard Data Pipelines. In Advances in Neural Infor-

mation Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and

H. Lin (Eds.), Vol. 33. Curran Associates, Inc., 10282–10293. https://proceedings.

neurips.cc/paper/2020/file/74dbd1111727a31a2b825d615d80b2e7-Paper.pdf

[20] Pulkit Agrawal, Rajat Arya, Aanchal Bindal, Sandeep Bhatia, Anupriya Gagneja,

Joseph Godlewski, Yucheng Low, Timothy Muss, Mudit Manu Paliwal, Sethu

Raman, Vishrut Shah, Bochao Shen, Laura Sugden, Kaiyu Zhao, and Ming-Chuan

Wu. 2019. Data Platform for Machine Learning. In Proceedings of the 2019 Inter-

national Conference on Management of Data (Amsterdam, Netherlands) (SIGMOD

’19). Association for Computing Machinery, New York, NY, USA, 1803–1816.

https://doi.org/10.1145/3299869.3314050

[21] Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak, Rafael J.

Fernández-Moctezuma, Reuven Lax, Sam McVeety, Daniel Mills, Frances Perry,

Eric Schmidt, and Sam Whittle. 2015. The Dataflow Model: A Practical Approach

to Balancing Correctness, Latency, and Cost in Massive-Scale, Unbounded, out-

of-Order Data Processing. Proc. VLDB Endow. 8, 12 (Aug. 2015), 1792–1803.

https://doi.org/10.14778/2824032.2824076

[22] Michael Armbrust, Tathagata Das, Liwen Sun, Burak Yavuz, Shixiong Zhu, Mukul

Murthy, Joseph Torres, Herman van Hovell, Adrian Ionescu, Alicja Łuszczak,

Michał undefinedwitakowski, Michał Szafrański, Xiao Li, Takuya Ueshin, Mostafa

Mokhtar, Peter Boncz, Ali Ghodsi, Sameer Paranjpye, Pieter Senster, Reynold

Xin, and Matei Zaharia. 2020. Delta Lake: High-Performance ACID Table Storage

https://developer.nvidia.com/dali
https://arrow.apache.org/
https://avro.apache.org/
https://orc.apache.org/
https://parquet.apache.org/
https://docs.nvidia.com/deeplearning/dali/user-guide/docs/supported_ops.html
https://docs.nvidia.com/deeplearning/dali/user-guide/docs/supported_ops.html
https://github.com/facebookresearch/dlrm_datasets
https://github.com/facebookresearch/dlrm_datasets
https://ailab.criteo.com/download-criteo-1tb-click-logs-dataset/
https://ailab.criteo.com/download-criteo-1tb-click-logs-dataset/
https://www.tecton.ai/
https://ai.facebook.com/blog/ai-rsc/
https://en.wikichip.org/wiki/amd/cores/milan
https://www.tensorflow.org/api_docs/python/tf/data/experimental/service
https://www.tensorflow.org/api_docs/python/tf/data/experimental/service
http://rocksdb.org/
https://www.tensorflow.org/tutorials/load_data/tfrecord
https://github.com/facebookresearch/torcharrow
https://github.com/facebookincubator/velox
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://doi.org/10.1109/HPCA51647.2021.00072
https://proceedings.neurips.cc/paper/2020/file/74dbd1111727a31a2b825d615d80b2e7-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/74dbd1111727a31a2b825d615d80b2e7-Paper.pdf
https://doi.org/10.1145/3299869.3314050
https://doi.org/10.14778/2824032.2824076

ISCA ’22, June 18–22, 2022, New York, NY, USA M. Zhao, et al.

over Cloud Object Stores. Proc. VLDB Endow. 13, 12 (Aug. 2020), 3411–3424.

https://doi.org/10.14778/3415478.3415560

[23] AWS. 2022. AWS EC2 Trn1 Instances. https://aws.amazon.com/ec2/instance-

types/trn1/

[24] Luiz André Barroso, Urs Hölzle, and Parthasarathy Ranganathan. 2018. The data-

center as a computer: Designing warehouse-scale machines. Synthesis Lectures

on Computer Architecture 13, 3 (2018), i–189.

[25] Dehao Chen, Tipp Moseley, and David Xinliang Li. 2016. AutoFDO: Auto-

matic feedback-directed optimization for warehouse-scale applications. In 2016

IEEE/ACM International Symposium on Code Generation and Optimization (CGO).

12–23.

[26] Dami Choi, Alexandre Passos, Christopher J. Shallue, and George E. Dahl. 2020.

Faster Neural Network Training with Data Echoing. arXiv:1907.05550 [cs.LG]

[27] E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, and Q. V. Le. 2019. AutoAugment:

Learning Augmentation Strategies From Data. In 2019 IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR). IEEE Computer Society, Los

Alamitos, CA, USA, 113–123. https://doi.org/10.1109/CVPR.2019.00020

[28] Ekin Dogus Cubuk, Barret Zoph, Jon Shlens, and Quoc Le. 2020. Ran-

dAugment: Practical Automated Data Augmentation with a Reduced Search

Space. In Advances in Neural Information Processing Systems, H. Larochelle,

M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin (Eds.), Vol. 33. Curran As-

sociates, Inc., 18613–18624. https://proceedings.neurips.cc/paper/2020/file/

d85b63ef0ccb114d0a3bb7b7d808028f-Paper.pdf

[29] Benoit Dageville, Thierry Cruanes, Marcin Zukowski, Vadim Antonov, Artin

Avanes, Jon Bock, Jonathan Claybaugh, Daniel Engovatov, Martin Hentschel,

Jiansheng Huang, AllisonW. Lee, Ashish Motivala, Abdul Q. Munir, Steven Pelley,

Peter Povinec, Greg Rahn, Spyridon Triantafyllis, and Philipp Unterbrunner. 2016.

The Snowflake Elastic Data Warehouse. In Proceedings of the 2016 International

Conference on Management of Data (San Francisco, California, USA) (SIGMOD

’16). Association for Computing Machinery, New York, NY, USA, 215–226. https:

//doi.org/10.1145/2882903.2903741

[30] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark

Mao, Marc' aurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang, Quoc Le, and

Andrew Ng. 2012. Large Scale Distributed Deep Networks. In Advances in Neural

Information Processing Systems, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q.

Weinberger (Eds.), Vol. 25. Curran Associates, Inc. https://proceedings.neurips.

cc/paper/2012/file/6aca97005c68f1206823815f66102863-Paper.pdf

[31] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Im-

ageNet: A large-scale hierarchical image database. In 2009 IEEE Conference on

Computer Vision and Pattern Recognition. 248–255. https://doi.org/10.1109/CVPR.

2009.5206848

[32] Jeffrey Dunn. 2018. Introducing FBLearner Flow: Facebook’s AI back-

bone. https://engineering.fb.com/2016/05/09/core-data/introducing-fblearner-

flow-facebook-s-ai-backbone/

[33] Jiarui Fang, Yang Yu, Chengduo Zhao, and Jie Zhou. 2021. TurboTransformers: An

Efficient GPU Serving System for Transformer Models. In Proceedings of the 26th

ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (Vir-

tual Event, Republic of Korea) (PPoPP ’21). Association for Computing Machinery,

New York, NY, USA, 389–402. https://doi.org/10.1145/3437801.3441578

[34] Nathan Farrington and Alexey Andreyev. 2013. Facebook’s data center network

architecture. In 2013 Optical Interconnects Conference. Citeseer, 49–50.

[35] U. Gupta, S. Hsia, V. Saraph, X. Wang, B. Reagen, G. Wei, H. S. Lee, D. Brooks,

and C. Wu. 2020. DeepRecSys: A System for Optimizing End-To-End At-Scale

Neural Recommendation Inference. In 2020 ACM/IEEE 47th Annual International

Symposium on Computer Architecture (ISCA). 982–995. https://doi.org/10.1109/

ISCA45697.2020.00084

[36] U. Gupta, C. Wu, X. Wang, M. Naumov, B. Reagen, D. Brooks, B. Cottel, K.

Hazelwood, M. Hempstead, B. Jia, H. S. Lee, A. Malevich, D. Mudigere, M.

Smelyanskiy, L. Xiong, and X. Zhang. 2020. The Architectural Implications

of Facebook’s DNN-Based Personalized Recommendation. In 2020 IEEE Interna-

tional Symposium on High Performance Computer Architecture (HPCA). 488–501.

https://doi.org/10.1109/HPCA47549.2020.00047

[37] Habana. 2022. Habana Homepage. https://habana.ai/

[38] K. Hazelwood, S. Bird, D. Brooks, S. Chintala, U. Diril, D. Dzhulgakov, M. Fawzy,

B. Jia, Y. Jia, A. Kalro, J. Law, K. Lee, J. Lu, P. Noordhuis, M. Smelyanskiy, L. Xiong,

and X. Wang. 2018. Applied Machine Learning at Facebook: A Datacenter Infras-

tructure Perspective. In 2018 IEEE International Symposium on High Performance

Computer Architecture (HPCA). 620–629. https://doi.org/10.1109/HPCA.2018.

00059

[39] Xinran He, Junfeng Pan, Ou Jin, Tianbing Xu, Bo Liu, Tao Xu, Yanxin Shi, Antoine

Atallah, Ralf Herbrich, Stuart Bowers, and Joaquin Quiñonero Candela. 2014.

Practical Lessons from Predicting Clicks on Ads at Facebook. In Proceedings of

the Eighth International Workshop on Data Mining for Online Advertising (New

York, NY, USA) (ADKDD’14). Association for Computing Machinery, New York,

NY, USA, 1–9. https://doi.org/10.1145/2648584.2648589

[40] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,

Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle,

Pierre-luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt

Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati,

William Gulland, Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu,

Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexander

Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen Kumar, Steve

Lacy, James Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle

Lucke, Alan Lundin, Gordon MacKean, Adriana Maggiore, Maire Mahony, Kieran

Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie,

Mark Omernick, Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross,

Amir Salek, Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew Snelham,

Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory Thorson, Bo

Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang,

Eric Wilcox, and Doe Hyun Yoon. 2017. In-Datacenter Performance Analysis of

a Tensor Processing Unit (ISCA ’17). Association for Computing Machinery, New

York, NY, USA, 1–12. https://doi.org/10.1145/3079856.3080246

[41] Aarati Kakaraparthy, Abhay Venkatesh, Amar Phanishayee, and Shivaram

Venkataraman. 2019. The Case for Unifying Data Loading in Machine Learn-

ing Clusters. In USENIX HotCloud. https://www.microsoft.com/en-us/research/

publication/the-case-for-unifying-data-loading-in-machine-learning-clusters/

[42] Svilen Kanev, Juan Pablo Darago, Kim Hazelwood, Parthasarathy Ranganathan,

Tipp Moseley, Gu-YeonWei, and David Brooks. 2015. Profiling aWarehouse-Scale

Computer. In Proceedings of the 42nd Annual International Symposium on Com-

puter Architecture (Portland, Oregon) (ISCA ’15). Association for Computing Ma-

chinery, New York, NY, USA, 158–169. https://doi.org/10.1145/2749469.2750392

[43] Manolis Karpathiotakis, Dino Wernli, and Milos Stojanovic. 2019. Scribe:

Transporting petabytes per hour via a distributed, Buffered queueing system.

https://engineering.fb.com/2019/10/07/data-infrastructure/scribe/

[44] Shachar Kaufman, Saharon Rosset, Claudia Perlich, and Ori Stitelman. 2012.

Leakage in Data Mining: Formulation, Detection, and Avoidance. ACM Trans.

Knowl. Discov. Data 6, 4, Article 15 (Dec. 2012), 21 pages. https://doi.org/10.1145/

2382577.2382579

[45] Simon Knowles. 2021. Graphcore. In 2021 IEEE Hot Chips 33 Symposium (HCS).

1–25. https://doi.org/10.1109/HCS52781.2021.9567075

[46] Alex Krizhevsky. 2014. One weird trick for parallelizing convolutional neural

networks. arXiv:1404.5997 [cs.NE]

[47] Abhishek Vijaya Kumar and Muthian Sivathanu. 2020. Quiver: An Informed

Storage Cache for Deep Learning. In 18th USENIX Conference on File and Storage

Technologies (FAST 20). USENIX Association, Santa Clara, CA, 283–296. https:

//www.usenix.org/conference/fast20/presentation/kumar

[48] Sameer Kumar, James Bradbury, Cliff Young, Yu Emma Wang, Anselm Levskaya,

Blake Hechtman, Dehao Chen, HyoukJoong Lee, Mehmet Deveci, Naveen Kumar,

Pankaj Kanwar, Shibo Wang, Skye Wanderman-Milne, Steve Lacy, Tao Wang,

Tayo Oguntebi, Yazhou Zu, Yuanzhong Xu, and Andy Swing. 2021. Exploring the

limits of Concurrency in ML Training on Google TPUs. arXiv:2011.03641 [cs.LG]

[49] Gyewon Lee, Irene Lee, Hyeonmin Ha, Kyunggeun Lee, Hwarim Hyun, Ahnjae

Shin, and Byung-GonChun. 2021. Refurbish Your TrainingData: Reusing Partially

Augmented Samples for Faster Deep Neural Network Training. In 2021 USENIX

Annual Technical Conference (USENIX ATC 21). USENIX Association, 537–550.

https://www.usenix.org/conference/atc21/presentation/lee

[50] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick,

James Hays, Pietro Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollár.

2015. Microsoft COCO: Common Objects in Context. arXiv:1405.0312 [cs.CV]

[51] Kiwan Maeng, Shivam Bharuka, Isabel Gao, Mark Jeffrey, Vikram Saraph,

Bor-Yiing Su, Caroline Trippel, Jiyan Yang, Mike Rabbat, Brandon Lucia, and

Carole-Jean Wu. 2021. Understanding and Improving Failure Tolerant Train-

ing for Deep Learning Recommendation with Partial Recovery. In Proceed-

ings of Machine Learning and Systems, A. Smola, A. Dimakis, and I. Sto-

ica (Eds.), Vol. 3. 637–651. https://proceedings.mlsys.org/paper/2021/file/

b73ce398c39f506af761d2277d853a92-Paper.pdf

[52] Mark Marchukov. 2017. LogDevice: A distributed data store for logs.

https://engineering.fb.com/2017/08/31/core-data/logdevice-a-distributed-data-

store-for-logs/

[53] Peter Mattson, Christine Cheng, Gregory Diamos, Cody Coleman, Paulius Micike-

vicius, David Patterson, Hanlin Tang, Gu-Yeon Wei, Peter Bailis, Victor Bittorf,

David Brooks, Dehao Chen, Debo Dutta, Udit Gupta, Kim Hazelwood, Andy

Hock, Xinyuan Huang, Daniel Kang, David Kanter, Naveen Kumar, Jeffery Liao,

Deepak Narayanan, Tayo Oguntebi, Gennady Pekhimenko, Lillian Pentecost,

Vijay Janapa Reddi, Taylor Robie, Tom St John, Carole-Jean Wu, Lingjie Xu,

Cliff Young, and Matei Zaharia. 2020. MLPerf Training Benchmark. In Pro-

ceedings of Machine Learning and Systems, I. Dhillon, D. Papailiopoulos, and

V. Sze (Eds.), Vol. 2. 336–349. https://proceedings.mlsys.org/paper/2020/file/

02522a2b2726fb0a03bb19f2d8d9524d-Paper.pdf

[54] Ivan Medvedev, Haotian Wu, and Taylor Gordon. 2019. Powered by AI: Insta-

gram’s Explore recommender system. https://ai.facebook.com/blog/powered-

by-ai-instagrams-explore-recommender-system/

[55] Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shiv-

akumar, Matt Tolton, and Theo Vassilakis. 2010. Dremel: Interactive Analy-

sis of Web-Scale Datasets. Proc. VLDB Endow. 3, 1–2 (Sept. 2010), 330–339.

https://doi.org/10.14778/1920841.1920886

https://doi.org/10.14778/3415478.3415560
https://aws.amazon.com/ec2/instance-types/trn1/
https://aws.amazon.com/ec2/instance-types/trn1/
https://arxiv.org/abs/1907.05550
https://doi.org/10.1109/CVPR.2019.00020
https://proceedings.neurips.cc/paper/2020/file/d85b63ef0ccb114d0a3bb7b7d808028f-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/d85b63ef0ccb114d0a3bb7b7d808028f-Paper.pdf
https://doi.org/10.1145/2882903.2903741
https://doi.org/10.1145/2882903.2903741
https://proceedings.neurips.cc/paper/2012/file/6aca97005c68f1206823815f66102863-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/6aca97005c68f1206823815f66102863-Paper.pdf
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://engineering.fb.com/2016/05/09/core-data/introducing-fblearner-flow-facebook-s-ai-backbone/
https://engineering.fb.com/2016/05/09/core-data/introducing-fblearner-flow-facebook-s-ai-backbone/
https://doi.org/10.1145/3437801.3441578
https://doi.org/10.1109/ISCA45697.2020.00084
https://doi.org/10.1109/ISCA45697.2020.00084
https://doi.org/10.1109/HPCA47549.2020.00047
https://habana.ai/
https://doi.org/10.1109/HPCA.2018.00059
https://doi.org/10.1109/HPCA.2018.00059
https://doi.org/10.1145/2648584.2648589
https://doi.org/10.1145/3079856.3080246
https://www.microsoft.com/en-us/research/publication/the-case-for-unifying-data-loading-in-machine-learning-clusters/
https://www.microsoft.com/en-us/research/publication/the-case-for-unifying-data-loading-in-machine-learning-clusters/
https://doi.org/10.1145/2749469.2750392
https://engineering.fb.com/2019/10/07/data-infrastructure/scribe/
https://doi.org/10.1145/2382577.2382579
https://doi.org/10.1145/2382577.2382579
https://doi.org/10.1109/HCS52781.2021.9567075
https://arxiv.org/abs/1404.5997
https://www.usenix.org/conference/fast20/presentation/kumar
https://www.usenix.org/conference/fast20/presentation/kumar
https://arxiv.org/abs/2011.03641
https://www.usenix.org/conference/atc21/presentation/lee
https://arxiv.org/abs/1405.0312
https://proceedings.mlsys.org/paper/2021/file/b73ce398c39f506af761d2277d853a92-Paper.pdf
https://proceedings.mlsys.org/paper/2021/file/b73ce398c39f506af761d2277d853a92-Paper.pdf
https://engineering.fb.com/2017/08/31/core-data/logdevice-a-distributed-data-store-for-logs/
https://engineering.fb.com/2017/08/31/core-data/logdevice-a-distributed-data-store-for-logs/
https://proceedings.mlsys.org/paper/2020/file/02522a2b2726fb0a03bb19f2d8d9524d-Paper.pdf
https://proceedings.mlsys.org/paper/2020/file/02522a2b2726fb0a03bb19f2d8d9524d-Paper.pdf
https://ai.facebook.com/blog/powered-by-ai-instagrams-explore-recommender-system/
https://ai.facebook.com/blog/powered-by-ai-instagrams-explore-recommender-system/
https://doi.org/10.14778/1920841.1920886

Understanding Data Storage and Ingestion for Large-Scale Deep Recommendation Model Training ISCA ’22, June 18–22, 2022, New York, NY, USA

[56] MLCommons. 2021. MLPerf Training v1.1 Results. https://mlcommons.org/en/

training-normal-11/

[57] Jayashree Mohan, Amar Phanishayee, Ashish Raniwala, and Vijay Chidambaram.

2021. Analyzing and Mitigating Data Stalls in DNN Training. In Proceedings of

the VLDB Endowment. https://www.microsoft.com/en-us/research/publication/

analyzing-and-mitigating-data-stalls-in-dnn-training/

[58] Samuel Moore. 2021. Here’s How Google’s TPU v4 AI Chip Stacked Up in Training

Tests. https://spectrum.ieee.org/heres-how-googles-tpu-v4-ai-chip-stacked-up-

in-training-tests

[59] Dheevatsa Mudigere, Yuchen Hao, Jianyu Huang, Zhihao Jia, Andrew Tulloch,

Srinivas Sridharan, Xing Liu, Mustafa Ozdal, Jade Nie, Jongsoo Park, Liang Luo,

Jie Amy Yang, Leon Gao, Dmytro Ivchenko, Aarti Basant, Yuxi Hu, Jiyan Yang,

Ehsan K. Ardestani, Xiaodong Wang, Rakesh Komuravelli, Ching-Hsiang Chu,

Serhat Yilmaz, Huayu Li, Jiyuan Qian, Zhuobo Feng, Yinbin Ma, Junjie Yang, Ellie

Wen, Hong Li, Lin Yang, Chonglin Sun, Whitney Zhao, Dimitry Melts, Krishna

Dhulipala, KR Kishore, Tyler Graf, Assaf Eisenman, Kiran Kumar Matam, Adi

Gangidi, Guoqiang Jerry Chen, Manoj Krishnan, Avinash Nayak, Krishnaku-

mar Nair, Bharath Muthiah, Mahmoud khorashadi, Pallab Bhattacharya, Petr

Lapukhov, Maxim Naumov, Ajit Mathews, Lin Qiao, Mikhail Smelyanskiy, Bill

Jia, and Vijay Rao. 2022. Software-Hardware Co-design for Fast and Scalable

Training of Deep Learning Recommendation Models. In 2022 ACM/IEEE 49th

Annual International Symposium on Computer Architecture (ISCA).

[60] Derek G. Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham,

and Martín Abadi. 2013. Naiad: A Timely Dataflow System. In Proceedings of

the Twenty-Fourth ACM Symposium on Operating Systems Principles (Farminton,

Pennsylvania) (SOSP ’13). Association for Computing Machinery, New York, NY,

USA, 439–455. https://doi.org/10.1145/2517349.2522738

[61] Derek G. Murray, Jiri Simsa, Ana Klimovic, and Ihor Indyk. 2021. tf.data: A

Machine Learning Data Processing Framework. In Proceedings of the VLDB En-

dowment. https://doi.org/10.14778/3476311.3476374

[62] Supun Nakandala, Yuhao Zhang, and Arun Kumar. 2020. Cerebro: A Data System

for Optimized Deep Learning Model Selection. Proc. VLDB Endow. 13, 12 (jul

2020), 2159–2173. https://doi.org/10.14778/3407790.3407816

[63] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu Huang,

Narayanan Sundaraman, Jongsoo Park, Xiaodong Wang, Udit Gupta, Carole-Jean

Wu, Alisson G. Azzolini, Dmytro Dzhulgakov, Andrey Mallevich, Ilia Cherni-

avskii, Yinghai Lu, Raghuraman Krishnamoorthi, Ansha Yu, Volodymyr Kon-

dratenko, Stephanie Pereira, Xianjie Chen, Wenlin Chen, Vijay Rao, Bill Jia, Liang

Xiong, and Misha Smelyanskiy. 2019. Deep Learning Recommendation Model

for Personalization and Recommendation Systems. CoRR abs/1906.00091 (2019).

https://arxiv.org/abs/1906.00091

[64] Satadru Pan, Theano Stavrinos, Yunqiao Zhang, Atul Sikaria, Pavel Zakharov,

Abhinav Sharma, Shiva Shankar P, Mike Shuey, Richard Wareing, Monika Gan-

gapuram, Guanglei Cao, Christian Preseau, Pratap Singh, Kestutis Patiejunas, JR

Tipton, Ethan Katz-Bassett, and Wyatt Lloyd. 2021. Facebook’s Tectonic Filesys-

tem: Efficiency from Exascale. In 19th USENIX Conference on File and Storage

Technologies (FAST 21). USENIX Association, 217–231. https://www.usenix.org/

conference/fast21/presentation/pan

[65] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-

gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,

Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,

Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and

Soumith Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep

Learning Library. In Advances in Neural Information Processing Systems, H. Wal-

lach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.),

Vol. 32. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2019/file/

bdbca288fee7f92f2bfa9f7012727740-Paper.pdf

[66] Alexander Petrov and Yifei Zhang. 2020. Ai @scale 2020: Master-

cook: Large scale concurrent model development in ADS ranking.

https://atscaleconference.com/videos/ai-scale-2020-mastercook-large-scale-

concurrent-model-development-in-ads-ranking/

[67] Raghu Prabhakar and Sumti Jairath. 2021. SambaNova SN10 RDU:Accelerating

Software 2.0 with Dataflow. In 2021 IEEE Hot Chips 33 Symposium (HCS). 1–37.

https://doi.org/10.1109/HCS52781.2021.9567250

[68] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C. Snoeren.

2015. Inside the Social Network’s (Datacenter) Network. In Proceedings of the

2015 ACM Conference on Special Interest Group on Data Communication (London,

United Kingdom) (SIGCOMM ’15). Association for Computing Machinery, New

York, NY, USA, 123–137. https://doi.org/10.1145/2785956.2787472

[69] Sebastian Ruder. 2017. An overview of gradient descent optimization algorithms.

arXiv:1609.04747 [cs.LG]

[70] Geet Sethi, Bilge Acun, Niket Agarwal, Christos Kozyrakis, Caroline Trippel, and

Carole-Jean Wu. 2022. RecShard: Statistical Feature-Based Memory Optimization

for Industry-Scale Neural Recommendation. In Proceedings of the 27th ACM

International Conference on Architectural Support for Programming Languages and

Operating Systems (Lausanne, Switzerland) (ASPLOS 2022).

[71] Raghav Sethi, Martin Traverso, Dain Sundstrom, David Phillips, Wenlei Xie,

Yutian Sun, Nezih Yegitbasi, Haozhun Jin, Eric Hwang, Nileema Shingte, and

Christopher Berner. 2019. Presto: SQL on Everything. In 2019 IEEE 35th Inter-

national Conference on Data Engineering (ICDE). 1802–1813. https://doi.org/10.

1109/ICDE.2019.00196

[72] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby Armistead, Roy

Bannon, Seb Boving, Gaurav Desai, Bob Felderman, Paulie Germano, Anand

Kanagala, Jeff Provost, Jason Simmons, Eiichi Tanda, Jim Wanderer, Urs Höl-

zle, Stephen Stuart, and Amin Vahdat. 2015. Jupiter Rising: A Decade of Clos

Topologies and Centralized Control in Google’s Datacenter Network. In Sigcomm

’15.

[73] Akshitha Sriraman and Abhishek Dhanotia. 2020. Accelerometer: Understanding

Acceleration Opportunities for Data Center Overheads at Hyperscale. In Pro-

ceedings of the Twenty-Fifth International Conference on Architectural Support for

Programming Languages and Operating Systems (Lausanne, Switzerland) (ASP-

LOS ’20). Association for Computing Machinery, New York, NY, USA, 733–750.

https://doi.org/10.1145/3373376.3378450

[74] TensTorrent. 2022. Tenstorrent. https://tenstorrent.com/

[75] Tesla. 2022. Tesla Artificial Intelligence. https://www.tesla.com/AI

[76] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka,

Suresh Anthony, Hao Liu, Pete Wyckoff, and Raghotham Murthy. 2009. Hive: A

Warehousing Solution over a Map-Reduce Framework. Proc. VLDB Endow. 2, 2

(Aug. 2009), 1626–1629. https://doi.org/10.14778/1687553.1687609

[77] Lipeng Wang, Songgao Ye, Baichen Yang, Youyou Lu, Hequan Zhang, Shengen

Yan, and Qiong Luo. 2020. DIESEL: A Dataset-Based Distributed Storage and

Caching System for Large-Scale Deep Learning Training. In 49th International

Conference on Parallel Processing - ICPP (Edmonton, AB, Canada) (ICPP ’20).

Association for Computing Machinery, New York, NY, USA, Article 20, 11 pages.

https://doi.org/10.1145/3404397.3404472

[78] Yu Wang, Gu-Yeon Wei, and David Brooks. 2020. A Systematic Methodol-

ogy for Analysis of Deep Learning Hardware and Software Platforms. In Pro-

ceedings of Machine Learning and Systems, I. Dhillon, D. Papailiopoulos, and

V. Sze (Eds.), Vol. 2. 30–43. https://proceedings.mlsys.org/paper/2020/file/

c20ad4d76fe97759aa27a0c99bff6710-Paper.pdf

[79] Mark Wilkening, Udit Gupta, Samuel Hsia, Caroline Trippel, Carole-Jean Wu,

David Brooks, and Gu-Yeon Wei. 2021. RecSSD: Near Data Processing for Solid

State Drive Based Recommendation Inference. In Proceedings of the 26th ACM

International Conference on Architectural Support for Programming Languages and

Operating Systems (Virtual, USA) (ASPLOS 2021). Association for Computing Ma-

chinery, New York, NY, USA, 717–729. https://doi.org/10.1145/3445814.3446763

[80] Carole-Jean Wu, Robin Burke, Ed Chi, Joseph A. Konstan, Julian J. McAuley, Yves

Raimond, and Hao Zhang. 2020. Developing a Recommendation Benchmark for

MLPerf Training and Inference. CoRR abs/2003.07336 (2020). https://arxiv.org/

abs/2003.07336

[81] Doris Xin, Hui Miao, Aditya Parameswaran, and Neoklis Polyzotis. 2021. Produc-

tion Machine Learning Pipelines: Empirical Analysis and Optimization Opportu-

nities. Association for Computing Machinery, New York, NY, USA, 2639–2652.

https://doi.org/10.1145/3448016.3457566

[82] Chih-Chieh Yang and Guojing Cong. 2019. Accelerating Data Loading in Deep

Neural Network Training. 2019 IEEE 26th International Conference on High

Performance Computing, Data, and Analytics (HiPC) (Dec 2019). https://doi.org/

10.1109/hipc.2019.00037

[83] Yuan Yu, Michael Isard, Dennis Fetterly, Mihai Budiu, Úlfar Erlingsson,

Pradeep Kumar Gunda, and Jon Currey. 2008. DryadLINQ: A System for General-

Purpose Distributed Data-Parallel Computing Using a High-Level Language.

In Proceedings of the 8th USENIX Conference on Operating Systems Design and

Implementation (San Diego, California) (OSDI’08). USENIX Association, USA,

1–14.

[84] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,

Murphy McCauly, Michael J. Franklin, Scott Shenker, and Ion Stoica. 2012. Re-

silient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Clus-

ter Computing. In 9th USENIX Symposium on Networked Systems Design and

Implementation (NSDI 12). USENIX Association, San Jose, CA, 15–28. https:

//www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia

[85] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker, and

Ion Stoica. 2013. Discretized Streams: Fault-Tolerant Streaming Computation at

Scale. In Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems

Principles (Farminton, Pennsylvania) (SOSP ’13). Association for Computing Ma-

chinery, New York, NY, USA, 423–438. https://doi.org/10.1145/2517349.2522737

[86] Weijie Zhao, Jingyuan Zhang, Deping Xie, Yulei Qian, Ronglai Jia, and Ping Li.

2019. AIBox: CTR Prediction Model Training on a Single Node. In Proceedings of

the 28th ACM International Conference on Information and Knowledge Management

(Beijing, China) (CIKM ’19). Association for Computing Machinery, New York,

NY, USA, 319–328. https://doi.org/10.1145/3357384.3358045

[87] Y. Zhu, F. Chowdhury, H. Fu, A. Moody, K. Mohror, K. Sato, and W. Yu. 2018.

Entropy-Aware I/O Pipelining for Large-Scale Deep Learning on HPC Systems.

In 2018 IEEE 26th International Symposium on Modeling, Analysis, and Simulation

of Computer and Telecommunication Systems (MASCOTS). 145–156. https://doi.

org/10.1109/MASCOTS.2018.00023

https://mlcommons.org/en/training-normal-11/
https://mlcommons.org/en/training-normal-11/
https://www.microsoft.com/en-us/research/publication/analyzing-and-mitigating-data-stalls-in-dnn-training/
https://www.microsoft.com/en-us/research/publication/analyzing-and-mitigating-data-stalls-in-dnn-training/
https://spectrum.ieee.org/heres-how-googles-tpu-v4-ai-chip-stacked-up-in-training-tests
https://spectrum.ieee.org/heres-how-googles-tpu-v4-ai-chip-stacked-up-in-training-tests
https://doi.org/10.1145/2517349.2522738
https://doi.org/10.14778/3476311.3476374
https://doi.org/10.14778/3407790.3407816
https://arxiv.org/abs/1906.00091
https://www.usenix.org/conference/fast21/presentation/pan
https://www.usenix.org/conference/fast21/presentation/pan
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://atscaleconference.com/videos/ai-scale-2020-mastercook-large-scale-concurrent-model-development-in-ads-ranking/
https://atscaleconference.com/videos/ai-scale-2020-mastercook-large-scale-concurrent-model-development-in-ads-ranking/
https://doi.org/10.1109/HCS52781.2021.9567250
https://doi.org/10.1145/2785956.2787472
https://arxiv.org/abs/1609.04747
https://doi.org/10.1109/ICDE.2019.00196
https://doi.org/10.1109/ICDE.2019.00196
https://doi.org/10.1145/3373376.3378450
https://tenstorrent.com/
https://www.tesla.com/AI
https://doi.org/10.14778/1687553.1687609
https://doi.org/10.1145/3404397.3404472
https://proceedings.mlsys.org/paper/2020/file/c20ad4d76fe97759aa27a0c99bff6710-Paper.pdf
https://proceedings.mlsys.org/paper/2020/file/c20ad4d76fe97759aa27a0c99bff6710-Paper.pdf
https://doi.org/10.1145/3445814.3446763
https://arxiv.org/abs/2003.07336
https://arxiv.org/abs/2003.07336
https://doi.org/10.1145/3448016.3457566
https://doi.org/10.1109/hipc.2019.00037
https://doi.org/10.1109/hipc.2019.00037
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia
https://doi.org/10.1145/2517349.2522737
https://doi.org/10.1145/3357384.3358045
https://doi.org/10.1109/MASCOTS.2018.00023
https://doi.org/10.1109/MASCOTS.2018.00023

ISCA ’22, June 18–22, 2022, New York, NY, USA M. Zhao, et al.

[88] Y. Zhu, W. Yu, B. Jiao, K. Mohror, A. Moody, and F. Chowdhury. 2019. Efficient

User-Level Storage Disaggregation for Deep Learning. In 2019 IEEE International

Conference on Cluster Computing (CLUSTER). 1–12. https://doi.org/10.1109/

CLUSTER.2019.8891023

https://doi.org/10.1109/CLUSTER.2019.8891023
https://doi.org/10.1109/CLUSTER.2019.8891023

	Abstract
	1 Introduction
	2 Recommendation Model Background
	3 Disaggregated Data Storage, Ingestion, and Training Pipeline
	3.1 Data Generation and Storage
	3.2 Online Preprocessing

	4 Coordinated Training at Scale
	4.1 Collaborative Release Process
	4.2 Global Training Utilization
	4.3 Feature Engineering
	4.4 Summary of Key Takeaways

	5 Understanding Data Storage and Reading
	5.1 Individual Jobs Read and Filter Large Datasets
	5.2 Data is Reused Across Training Jobs
	5.3 Summary of Key Takeaways

	6 Understanding Online Preprocessing
	6.1 GPU Training Throughput
	6.2 Data Loading at GPU Trainers
	6.3 Extracting & Transforming Data at DPP Workers
	6.4 Transformation Operations
	6.5 Summary of Key Takeaways

	7 Key Insights and Research Opportunities
	7.1 Hardware Bottlenecks in DSI
	7.2 Heterogeneous Hardware for DSI
	7.3 Datacenter Planning and Scheduling
	7.4 Representative Benchmark Datasets
	7.5 Multi-dimensional System Co-design

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

