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ABSTRACT
Concrete is the most widely used engineered material in the world
with more than 10 billion tons produced annually. Unfortunately,
with that scale comes a significant burden in terms of energy, water,
and release of greenhouse gases and other pollutants; indeed 8%
of worldwide carbon emissions are attributed to the production
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of cement, a key ingredient in concrete. As such, there is interest
in creating concrete formulas that minimize this environmental
burden, while satisfying engineering performance requirements in-
cluding compressive strength. Specifically for computing, concrete
is a major ingredient in the construction of data centers.

In this work, we use conditional variational autoencoders (CVAEs),
a type of semi-supervised generative artificial intelligence (AI)
model, to discover concrete formulas with desired properties. Our
model is trained just using a small open dataset from the UCI Ma-
chine Learning Repository joined with environmental impact data
from standard lifecycle analysis. Computational predictions demon-
strate CVAEs can design concrete formulas with much lower carbon
requirements than existing formulations while meeting design re-
quirements. Next we report laboratory-based compressive strength
experiments for five AI-generated formulations, which demonstrate
that the formulations exceed design requirements. The resulting
formulations were then used by Ozinga Ready Mix—a concrete
supplier—to generate field-ready concrete formulations, based on
local conditions and their expertise in concrete design. Finally, we
report on how these formulations were used in the construction of
buildings and structures in a Meta data center in DeKalb, IL, USA.
Results from field experiments as part of this real-world deploy-
ment corroborate the efficacy of AI-generated low-carbon concrete
mixes.
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• Applied computing → Engineering; • Computing method-
ologies →Machine learning.
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1 INTRODUCTION
Is it possible to formulate concrete mixtures with standard ingredi-
ents so that they have half as much embodied carbon as traditional
formulations, yet are just as strong? We answer this question affir-
matively, through generative artificial intelligence (AI) algorithms,
lab testing, and field trials at Meta’s data center in DeKalb, IL, USA.

The building sector accounts for a significant fraction of overall
energy consumption and pollution worldwide, including residential,
commercial, and infrastructural structures such as the construction
of computing infrastructure like data centers. Concrete—including
its key ingredient, cement—is one of the most energy-intensive and
polluting building materials to fabricate, but is also the most widely
used engineered material in the world with more than 10 billion
tons produced annually. Unfortunately, with that scale comes a sig-
nificant burden in terms of energy, water, and release of greenhouse

gases and other pollutants; indeed 8% of worldwide carbon emis-
sions are attributed to the production of cement [2, 10]. As part of
larger efforts to usemachine learning to address problems in climate
change [33], here we approach the design of low-carbon concrete
using generative machine learning (ML) algorithms. But we do not
just stop at the algorithm stage; rather we further demonstrate the
efficacy of our approach via laboratory experiments, translation
to industrial practice, and field tests in a real data center location,
which confirms the practicality of our approach. Figure 2 depicts
how we move from stage to stage of our research.

Although concrete has been designed, developed, and optimized
for more than 7000 years across numerous civilizations, yielding
famous structures such as the Pantheon in Rome, the Willis Tower
in Chicago, and the Burj Khalifa in Dubai [5, 17, 29], there are still
numerous open questions regarding its properties. As a material,
concrete is primarily composed of water, fine/coarse aggregate,
cement, and other cementitious materials such as slag and fly ash,
which are industrial byproducts. Slag is a stony material that is
waste from steel production, whereas fly ash is composed of partic-
ulates that remain from coal combustion. Only very recent work
in computational statistical mechanics and theory has started to
reveal how cement cohesion happens at the nanoscale level to give
concrete its strength over time [14], but physics-based models are
unable to accurately predict mechanical properties of concrete. As
such, there is a growing scientific literature on using supervised
machine learning to predict concrete strength based on its composi-
tion [4, 41, 42]. Most such extant ML predictors draw on ensemble
methods such as random forests, which have limited scientific in-
terpretability [3] and so it is unclear how to directly use insights
from predictive algorithms to design novel concrete formulations
with particular desired properties.

Since the first presentation of our work in 2019 on generating
novel concrete formulations [13]—which was restricted to just the
algorithmic stage—there have been several papers that put multi-
objective optimization procedures around predictive ML for design
of concrete formulations. All resort to meta-heuristics for global
optimization [6, 8, 16, 26, 32, 35, 43, 44], an approach that is not only
very inefficient computationally, but may also use predictive ML
algorithms well-outside the domain of their training data where
their accuracy is quite limited [24, 28]. These recent works do
not perform laboratory or field experiments to validate the results
of the algorithms. We take an alternative approach and develop
generative ML models rather than predictive ones: such models
directly generate new concrete formulations rather than requiring
an outer optimization loop and make as best use of training data as
they can.

Indeed, recent advances in machine learning and artificial in-
telligence have enabled machines to generate very high-quality
artifacts, such as images of realistic looking faces with certain de-
sired properties [40], or natural language with certain desired topics
and styles [19]. In this work, we use an extension of the popular
generative modeling framework of variational autoencoders (VAEs)
[22] that allows control of attributes. This extension is conditional
variational autoencoders (CVAEs) [34], a type of semi-supervised
generative model [21], which we can use to generate concrete for-
mulas with desired properties. Note that although deep generative

https://doi.org/10.1145/3530190.3534817
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Figure 2: Schematic of the accelerated design and deployment process we undertook, going from training a generative algo-
rithm to full deployment in the field.

models have been applied in materials and molecules discovery—
[15] uses VAEs based on recurrent neural networks for chemical
design in which molecules are encoded as strings and [31] uses
VAEs to improve the accuracy of drug response predictions—they
have not previously been used in the context of aggregate materi-
als. In fact, the field of ML-based accelerated materials discovery
is oriented away from aggregate materials such as concrete [25],
e.g. the Materials Genome Initiative [18] is focused on inorganic
compounds, nonporous materials, and electrodes.

We demonstrate CVAEs can design concrete formulas with lower
emissions and natural resource usage while meeting design require-
ments, computationally and also in laboratory and field experiments.
In the computational phase before experimental testing, we also
train regression models to predict the environmental impacts and
strength of generated formulas. This provides initial insight to civil
engineers in creating formulas that meet structural needs and best
addresses local environmental concerns.

To assess environmental impacts, the Cement Sustainability Ini-
tiative (CSI) developed the Environmental Product Declaration
(EPD) tool to facilitate the generation of sector-specific EPDs for
cement, concrete, clinker, lime, and plaster. EPD is a voluntary
declaration that provides quantitative information about the envi-
ronmental impact of a product, using life-cycle assessment (LCA)
methodology and verified by an independent third party. The cloud-
based tool was designed to be easy-to-use, to facilitate the process
overall, and to reduce the costs of preparing cement and concrete
EPDs. In this work, we join this with open, historical concrete
formulation and strength data from the UCI Machine Learning
Repository [41].

1.1 Sustainable Data Centers
Much of the conversation on sustainable computing infrastructure,
such as data centers, focuses on operational sustainability [12, 27]
by ensuring facilities use as little power as possible, use renew-
able energy sources, and have minimal impacts on local areas via
co-generation and related techniques. Yet, besides communication,
computation, and storage of digital information that operational ef-
ficiency captures, there is also the expressly material infrastructure
in buildings and structures [11]. This is also starting to get atten-
tion [23], with a particular focus on embodied carbon in building
infrastructure such as concrete. Embodied carbon includes emis-
sions caused by extraction, manufacture, transportation, assembly,
maintenance, replacement, deconstruction, disposal, and end of life

Figure 3: CVAE model structure

aspects of the materials and systems that make up a building. As
such, we conduct our field deployment in the context of a new data
center being built in DeKalb, IL, USA, see Figure 1.

1.2 Paper Organization
The remainder of the paper is organized as follows. We first de-
scribe the data set and the CVAEmodel details. Next we give results,
first showing the average percentage reduction environmental im-
pact achieved by generated better-performing concrete formulas.
We then show strength spectrum plots in the 3D environmental
impact space which could be turned into a visualization tool for
concrete designers. Third, we evaluate the performance of strength
conditioned generation of the trained model. After detailing the
computational phase of our research, we then present results from
laboratory experiments and from full field deployments.

2 GENERATIVE MACHINE LEARNING
2.1 Training Data
We train our model using the Concrete Compressive Strength Data
Set [41] openly available from the UCI Machine Learning Reposi-
tory. It has 1,030 training examples, with seven continuous features
describing the amount of constituent material such as cement, ag-
gregates, and water. Compressive strength, after a particular curing
time (age), of each concrete formula is also given. In addition, we
use the CSI EPD tool to estimate the environmental impact of each
concrete formula. The EPD tool produces 12 continuous features
characterizing the concrete environmental impact. Among these,
we largely focus on global warming potential (GWP) measured
using embodied CO2, acidification potential (AP) measured using
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embodied SO2, and concrete batching water (CBW) consumption.
Future work could more explicitly focus on the other nine environ-
mental impacts.1

2.2 Generative Model
Our model is based on a variant of the VAE [22] called CVAE [34]
as shown in Figure 3. Like other generative models, the goal is to
estimate the data distribution p(y) and to generate realistic new
samples from that distribution [9]. What makes CVAE different
from VAE is that instead of merely generating realistic samples
from the data distribution p(y) randomly, we generate from the
conditional distribution p(y |x) which give us control over the un-
derlying properties of generated data by conditioning on different
values of x .

We interpret the variables in the conditional generative model
as follows: x represents the side information of a formula including
the strength, age, and environmental impacts, y represents the con-
stituent material amount of a formula, and z represents the latent
variables. Like the VAE, a CVAE consists of an encoder qϕ (z |x ,y)
that maps the data points to latent codes and a decoder pθ (y |x , z)
that reconstructs the data points from latent codes. The decoder and
encoder are implemented as neural networks where ϕ and θ are the
respective network parameters. Since the goal is to generate realis-
tic concrete samples with desired properties, we want to maximize
the log-likelihood of the data distribution model logpθ (y(i) |x (i)).
Since the data distribution pθ (y |x) and the posterior distribution
pθ (z |x ,y) are both intractable, we maximize the Evidence Lower
Bound (ELBO), L, instead. The loss function of CVAE is therefore:

logpθ (y(i) |x (i)) ≥ Ez∼qϕ (z |x,y)[logpθ (y
(i) |z,x (i))] (1)

− DKL(qϕ (z |x
(i),y(i)) | | pθ (z |x

(i))) = L,

where DKL(· | | ·) is the Kullback-Leibler divergence.

2.3 Implementation Details
In our model, the encoder network consists of four fully-connected
layers with 25 neurons on the first layer, 20 neurons on the sec-
ond layer, followed by two parallel layers with two neurons on
each which represent the mean and log variance respectively. The
prior is set to be an isotropic Gaussian distribution with zero mean
and unit variance p(z) = N(0,I). The reparameterization trick
is performed to make the sampling step differentiable and enable
backpropagation for training. The decoder network consists of two
fully-connected layers with 20 neurons on the first layer and 25
neurons on the second layer. Rectified linear unit (ReLU) activation
functions are applied to all layers except the output layer of the
decoder, where we use sigmoid activation since we scale our data to
[0, 1]. The model is trained end-to-end with a version of stochastic
gradient descent: the Adam optimizer with learning rate of 0.001
and batch size of 10 [20].

1The other nine metrics are eutrophication potential (EP), formation potential of
tropospheric ozone photochemical oxidants (POCP), depletion potential of the strato-
spheric ozone layer (ODP), total primary energy consumption (PEC), depletion of
non-renewable energy (NRE), use of renewable primary energy (RE), depletion of
non-renewable material resource (NRM), use of renewable material resources (RM),
concrete hazardous waste (CHW), and concrete non-hazardous waste (CNHW).

Figure 4: Generating new concrete formulas and evaluating
their properties

Metric GWP AP CBW
(kg CO2 eq./m3) (kg SO2 eq./m3) (m3)

MAE 7.187 0.019 0.003
RMSE 9.374 0.040 0.006

R2 0.979 0.974 0.881
Table 1: Environmental Impacts Predictor Performance

2.4 Property Predictors
We also trained neural network-based regression models as shown
in Figure 4 using the dataset that we described above to predict
the environmental impact and strength of concrete formulas. Since
the compressive strength is dependent on the age of concrete, we
trained separate compressive strength predictors for each age group.
The purpose of the predictors is twofold. First, we can measure
how well the properties of generated samples match the desired
properties given as conditioning variables during data generation.
Second, we can make fair comparisons between extant and gen-
erated concrete formulas in terms of the environmental impact.
We experimented with three different types of regression mod-
els, namely linear regression, decision tree regression, and neural
network regression. Although linear regression can achieve compa-
rable performance with decision tree regression and neural network
regression, it often predicts far-out-of-range values for newly gener-
ated concrete formulas. The neural network regression has slightly
better performance than the decision tree regression and therefore
we use the former for prediction tasks. The performance of the
neural network regression models for global warming potential
(GWP), acidification potential (AP), and concrete batching water
(CBW) consumption are shown in Table 1. The performance of
the strength predictors are shown in Table 2, where compressive
strength is measured in megapascals (MPa) for several different
ages.

3 COMPUTATIONAL RESULTS
3.1 Concrete Formulas with Reduced

Environmental Impact
To demonstrate that the generative algorithm discovers new con-
crete formulas with reduced environmental impacts, we compared
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Predictor Performance (MPa)

≤3 days 7 days 14 days 28 days 56 days ≥90 days

MAE 2.985 3.850 3.378 6.015 5.093 4.457
RMSE 0.222 0.201 0.163 0.227 0.124 0.125

R2 0.819 0.870 0.703 0.679 0.795 0.789
Table 2: Strength Predictor Performance

Average Reduction (%)

Age Strength GWP AP CBW
(day) (MPa) (kg CO2 eq./m3) (kg SO2 eq./m3) (m3)

≤3 30±1 0.80 1.83 5.47
40±1 7.74 1.59 0.26

7 30±1 19.69 3.94 7.58
40±1 25.45 11.33 5.03

14 20±1 2.20 5.72 10.64
60±1 42.45 21.09 5.17

28 70±1 21.62 6.66 3.32
80±1 27.44 8.40 4.15

56 40±1 4.38 2.95 7.04
50±1 14.38 3.23 3.64
70±1 30.26 23.75 1.32
80±1 5.88 1.33 3.46

≥90 80±1 30.58 6.91 4.11
Table 3: Average environmental impact reduction achieved
by better performing generated samples

Strength (MPa) 30±1 40±1

Constituent Material Amount (kg perm3)

Cement 186.4 259.0
Blast Furnace Slag 236.7 288.6

Fly Ash 107.1 58.8
Water 142.3 142.5

Superplasticizer 22.3 26.1
Coarse Aggregate 901.4 868.6

Fine Aggregate 717.2 763.0
Table 4: Sample concrete formula with reduced environmen-
tal impact

the GWP, AP, and CBW values between existing concrete formulas
in the training set [41] and generated formulas with the same age
and similar strength. For each concrete age group, we generate
60,000 concrete formulas. Both the strength and the environmental
impact inputs to the generator are produced by randomly sampling
from the standard uniform distribution whereas the latent code in-
put is produced by randomly sampling from the standard bivariate
normal distribution. We then use the trained environmental impact

(a)

(b)

Figure 5: Approximated hull of generated samples from ar-
chetypal analysis, training samples, and all generated sam-
ples for specific curing time and strength level. (a) Curing
time = 7 days, Strength = 30±1 MPa. (b) Curing time = 7 days,
Strength = 40±1 MPa.

predictor and strength predictor for the corresponding age group to
evaluate environmental impact and strength of the newly generated
formulas. We count the number of generated samples having lower
environmental impact than the best observed values for extant
samples in all 3 dimensions. We also measured the average percent-
age reduction in environmental impact for the better-performing
samples as compared to extant samples in the training set.

Notice that this performance metric of conditional average im-
provement is quite conservative, as it is not just considering the best
generated formulations but the whole ensemble of formulations
that are better than formulations in the training dataset along all
three environmental performance dimensions.

Results in Table 3 show significant improvements in environ-
mental impact. Taking 14-day strength around 60 MPa, notice that
the conditional average reduction for carbon (GWP) can be as high
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as 42%, while also achieving conditional reduction for sulfur (AP) as
high as 21%. As noted, conditional average improvement/reduction
are very conservative performance metrics. When we look at some
of the best specific formulations that emerge from the generative
algorithm, we will see more than 50% reduction in carbon. An
example is given in Table 4.

We constructed an approximated convex hull that encloses a
majority of the better performing points in the three-dimensional
environmental metric space as shown in Figure 5. From the diagram
we can also see that there is an opportunity to trade off different
types of environmental impact. In Table 4, we show one specific
generated concrete formula that is nearest neighbor to one of the
extremal points used to construct the convex hull, for strength of
30±1 MPa and 40±1 MPa respectively.

3.2 Extrapolative Generation
A key hallmark of creativity is novelty: the ability to generate
ideas or artifacts that are beyond the training dataset. Given the
concrete formulations in the training data do not meet our desired
sustainability performance metrics, we need creativity. We aim for
generative algorithms that are extrapolative rather than simply
interpolative in the training data [7]. To see that our generated
formulations are indeed novel, consider a visualization based on
the isomap dimensionality reduction technique [38] in Figure 6
for Mix 4 from Table 5 (chosen arbitrarily) together with 38 mixes
from the training data [41] that have similar 28-day compressive
strength. The isomap spatial layout aims to preserve distances
among points in the high-dimensional space as closely as possible in
the low-dimensional space and is based on all ingredients {cement,
slag, fly ash, water, superplasticizer, coarse aggregate, and fine
aggregate}, whereas the embedded “pie charts as markers” only
show the fractions of the first three ingredients {cement, slag, fly
ash} for ease of understanding.

As can be observed, whether considering only the first three
ingredients, or considering all of the ingredients, the new formula-
tion (marked by an arrow) is distinct from the others and therefore
novel. In this sense, this new formulation is pushing the boundary
of human creativity. The design principle that the AI-generated
formulations follow is to considerably decrease cement by replacing
with other cementitious materials such as fly ash and slag. This
is much beyond current worldwide practices that restrict cement
replacement to 20–25% [39] and is therefore quite novel.

3.3 Visualization for Concrete Design
On top of the three-dimensional environmental impact design space
that wementioned earlier, we also color each data point based on the
predicted strength of the corresponding formula. Figure 7 shows the
strength spectrum of the newly generated concrete formulas plotted
in the environmental impact space for each concrete curing time
group. These plots could serve as a visualization tool for concrete
designers to quickly select newly generated formulas that meet the
design requirements.

Figure 6: Isomap embedding of a novel AI-generated con-
crete formulation (marked by arrow), together with 38 for-
mulations from the training data having similar 28-day
strength. Placement is governed by all 7 ingredient dimen-
sions but pie chart markers only show the cementitious in-
gredients. Note that isomap dimensions are unsupervised
and must be interpreted in post hoc manner.

3.4 Strength-Conditioned Progression
Generation

Attribute-conditioned generative progression has been considered
by [34]. In the context of face image generation there, one of
the attribute dimension values such as gender, facial expression,
or hair color is modified by interpolating between the minimum
and maximum attribute value, i.e. x = [xα ,xr est ], where xα =
(1 − α) · xmin + α · xmax . Indeed, one can visualize that the at-
tribute of generated images change progressively with the change
in conditioning attribute values.

To further demonstrate our concrete formulation generator can
produce concrete designs with desired properties, we perform simi-
lar experiments. For the purpose of illustration, we limit our con-
ditioning variables to strength and curing time of the concrete.
We again generate 10,000 samples for each curing time group, by
uniformly sampling from [xmin ,xmax ]. Figure 8 shows how well
the predicted strength of generated formulations match with the
desired strength given as conditioning variable during generation.
The performance varies across different curing time groups. The
RMSE is computed to evaluate the performance quantitatively. The
better performing model should have the contour of the scattered
dots to cover the diagonal line. The result shows that the generator
seems to work the best for concrete curing time of 7 days.

4 LABORATORY EXPERIMENTS
Five concrete formulations were generated using the CVAE ap-
proach, aiming to minimize environmental impacts under given
compressive strength targets. Since the nature of superplasticizer
has changed since the training dataset was developed, human adjust-
ment of superplasticizer proportion was made to improve rheology
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(a) (b) (c)

(d) (e) (f)

Figure 7: Strength spectrum of generated concrete formulas for different concrete curing time plotted in 3D environmental
impacts space, where color indicates strength. (a) ≤ 3 days. (b) 7 days. (c) 14 days. (d) 28 days. (e) 56 days. (f) ≥90 days.

(a) (b) (c)

(d) (e) (f)

Figure 8: Strength-conditioned progression for different concrete curing times. (a) ≤ 3 days. (b) 7 days. (c) 14 days. (d) 28 days.
(e) 56 days. (f) ≥90 days.
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(and address this drift from historical data); in particular, all super-
plasticizer quantities were set to 1/4 of their AI-generated values.
Proportions for the concrete mixes that were made for laboratory
experiments are listed in Table 5.

To manufacture the concrete mixes, ordinary Portland cement
(OPC), blast furnace slag, fly ash, and potable water were used for
making the cement paste. Limestone and natural sand were used
as coarse and fine aggregate, respectively. Both these aggregates
meet the particle size distribution requirements from the ASTM
standards. An industrial pan mixer was used for the mixing process.

4.1 Mixing Procedure
The properties of fresh concrete were investigated with concrete
that was mixed in accordance with the ASTM C192 standard. First,
the pan was wet with water, and the excess water was wiped out
with a towel. Next, coarse aggregate, fine aggregate, and half of the
water were mixed for 30 seconds. After 30 seconds, the mixer was
stopped, and the cementitious materials were added to the pan. The
mixer was restarted, and the remaining water was added carefully
to the pan. The concrete was mixed for 3 minutes, rested for 1
minute in which the superplasticizer was added, and then mixed
for an additional 2 minutes, as specified by the ASTM standards.

4.2 Slump Test
A slump test for fresh concrete was then conducted. The test was
conducted in accordance with the ASTM C143 standard. First, the
slump cone was placed on the mat and secured to the floor by
stepping on the foothold of the cone. The cone was filled with fresh
concrete up to 1/3 of its total volume and rodded 25 times with the
5/8-inch (15.8 mm) tamping rod. These steps were repeated two
more times until the slump cone was entirely filled with concrete.
The top of the slump cone was leveled with the trowel. Finally, the
slump cone was carefully pulled directly upward in a period of 3 to
7 seconds, and the slump value was measured using a scale.

4.3 Preparation of Concrete Cylinders
Cylindrical specimens were prepared with a diameter of 4 inches
(101.6 mm) and a length of 8 inches (203.2 mm) to be used for the
compressive strength tests, according to ASTM C31. A total of 6
cylindrical specimens were made for each mix, three to be tested for
compressive strength after 7 days, and the other three to be tested
after 28 days. To prepare the cylinders, the cylindrical molds were
first oiled to assist in demolding. Any excess oil was then wiped
out with a towel to ensure there was only a thin layer of form oil.
The first half of the cylinder was filled with concrete, rodded 25
times with a small tamping rod, then the outside of the mold was
tapped 10 to 15 times to eliminate the air voids. The second half
of the mold was then filled, tamped, and tapped in the same exact
manner as the first half. The top of the mold was then finished with
the trowel, and the cylinders were covered with a plastic sheet and
left for 24 hours to harden. After hardening, the specimens were
demolded and left at a temperature of 68°F (20°C) in the moist cure
room.

Figure 9: Photographs of some concrete cylinders made ac-
cording to novel formulations, undergoing laboratory test-
ing for compressive strength.

4.4 Compressive Strength Tests
A Forney machine was used to conduct compressive strength tests
on the concrete cylinders after 7 and 28 days of curing and in
accordance with the ASTM C39 standard. To perform the test, the
cylindrical specimen was first capped with sulfur-based capping
compound on the top and bottom and placed on the center of the
loading platen. The load was applied at a constant rate of 27,000
lb/min (12,240 kg/min) until the specimen failed, and the ultimate
load was recorded. Also, the fracture pattern was noted.

Figure 9 shows some of the concrete cylinders, whereas Figure 10
shows compressive testing results. These results are further quan-
tified in Table 6. Note that all five tested mixes exceed the target
28-day strength already at 7 days and that the 28-day measured
strength was double or more than the target. Table 6 shows results
from the slump test.

4.5 Global Warming Potential
Table 6 also shows the lifecycle analysis-based computations for
the GWP, AP, and CBW environmental metrics. Table 7 explic-
itly demonstrates that these formulations roughly halve the global
warming potential as compared to the average of similar 28-day
compressive strength formulations. To make this comparison, we
used the achieved strength numbers from Table 6 against similar
achieved numbers from the UCI Machine Learning Repository [41].

Further comparison could be made against the industry standard
given in [1], which gives regional performance benchmarks. Impor-
tantly, this provides an external comparison beyond the training
dataset that was used in our work. For the Great Lakes region that
the field test associated with this paper belongs to, this report gives
the following benchmarks, against which our numbers compare
favorably:

• 3000 psi: 281.33 kg CO2/m3

• 4000 psi: 334.87 kg CO2/m3

5 INDUSTRIAL TESTING AND FIELD TESTS
5.1 Industrial Testing and Adjustments for

Logistical and Environmental Factors
The lab-tested formulations—in particular Mix 1 with 28-day com-
pressive strength target of 4000 psi—were provided to concrete
supplier Ozinga Ready Mix of Chicago, IL. Further industrial lab
testing was done, and life cycle analysis was re-performed using
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mix cement
[kg/m3]

blast furnace
slag [kg/m3]

fly ash
[kg/m3]

water (used)
[kg/m3]

superplasticizer
(used) [kg/m3]

coarse
aggregate
[kg/m3]

fine ag-
gregate
[kg/m3]

1 131.46 201.21 119.67 180.70 1.1 950.72 780.48
2 128.59 197.46 124.24 184.31 1.0 954.48 787.47
3 134.89 182.74 113.78 179.43 0.9 953.22 785.28
4 132.25 184.37 119.74 181.03 1.8 954.10 786.55
5 129.02 210.60 122.80 184.63 1.0 953.50 780.11

Table 5: Concrete mixes that underwent laboratory testing.

Figure 10: Experimental compressive strength results for five AI-generated concrete mixes. Error bars correspond to three
cylinders each.

mix 28 day strength
target [psi]

7 day strength
[psi]

28 day strength
[psi]

slump
[in]

global warming
potential [kg
CO2 eq./m3]

acidification
potential [kg
SO2 eq./m3]

batch
water
[m3]

1 4000 4949 ± 507 8013 ± 871 5 1/2 154.111 0.534 0.181
2 3000 4025 ± 217 7764 ± 610 3 1/4 152.284 0.530 0.183
3 3000 4431 ± 66 9136 ± 656 6 3/4 157.294 0.547 0.180
4 3000 4967 ± 673 9938 ± 1453 5 3/4 155.157 0.549 0.167
5 3500 5443 ± 417 8836 ± 801 3 3/4 152.149 0.524 0.169

Table 6: Laboratory testing and lifecycle analysis results.

mix 1 2 3 4 5
Estimated GWP (kg CO2 eq./m3) 154.11 152.28 157.29 155.16 152.15
Average of industry standard of similar
28-day compressive strength (kg CO2
eq./m3)

282.36 280.31 318.75 302.45 279.78

Table 7: Comparing global warming potential of AI-generated mixes to average of industry standard mixes of similar 28-day
compressive strength.

the Athena/NRMCA EPD tool,2 which is an alternative to the CSI
EPD tool used by them. Under this life cycle analysis, Mix 1 has
GWP of 171 kg CO2/m3.

2https://www.nrmca.org/wp-content/uploads/2020/02/AMSI_EPDtool.pdf

Changes were made to the original formula to take two factors
into account:

(1) Logistical considerations, for example the availability of fly
ash and slag in large quantities.
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(2) Potentially cold weather conditions at the Meta Data Center
construction site, which will reduce curing speed, especially
with fly ash and slag as cementitious material [30, 36].

Since Mix 1 contained significant amounts of fly ash and slag as
cementitious material, the formula was adjusted by Ozinga to ad-
dress these two factors (with the expectation that field tests would
be under cold conditions), as given in Table 8, for two separate field
tests. Although the adjusted formulation had less slag and fly ash
than the AI-derived formula, the GWP remained very close. The
GWP of the revised Ozinga formula under the Athena life cycle
analysis was 174 kg CO2/m3.

5.2 Deployment in Field Tests
After internal testing and adjustments by Ozinga, the formulations
were deployed in two separate pours of slab-on-grade applications.
A slab-on-grade is a type of shallow foundation in which a con-
crete slab rests directly on the ground below it. A slab-on-grade
foundation usually consists of a thin layer of concrete across the
entire area of the foundation with thickened footings at the edges.

In Pour 1, the concrete was used for an office building used for
the construction crew. This slab-on-grade foundation of size 40,000
square feet, see Figure 11, was done in March 2021 during cold days,
with temperatures in (42°F–52°F). In Pour 2, the concrete was used
for a guard house. This slab-on-grade foundation of size 450 square
feet, see Figure 12, was done in June 2021 during hot days, with
temperatures in (80°F–98°F).

The quantitative results from these field deployments are given
in Tables 9–11. As can be observed, all specifications were met,
despite the variability in weather and other environmental con-
ditions. The only concern raised by the contractor was the slow
curing time of Pour 1 in cold weather, in missing the unspecified,
but still desirable, 5-day strength at 75% of 28-day target. Early
strength performance at 1, 3, or 5-day may be needed specifically
for slab-on-grade applications to allow further activities such as
saw cutting and other finishing. The qualitative results, such as
visual aesthetics, were also acceptable.

6 CONCLUSION
We have demonstrated end-to-end accelerated design and deploy-
ment of low-carbon concrete, based on a CVAE model that dis-
covers new concrete formulations with reduced environmental
impact, including embodied carbon, without sacrificing strength.
The resulting formulations were then further optimized based on
environmental and logistical constraints.

However, there is still room for improving our model and broader
approach. Our data contains both continuous and categorical values,
but CVAE may not be the best for capturing such mixed categorical
and continuous data. The VAE-ROC model proposed by [37] is said
to be better at handling mixed data. We hope by modifying the
CVAE model in line with specifics of the VAE-ROC, the genera-
tor would synthesize more realistic concrete designs and achieve
better performance in attribute-conditioned generation. Faster cur-
ing of concrete formulations in cold weather is also desired as an
additional property. This includes 1, 3, and 5-day curing perfor-
mance which are important for mission-critical applications such
as slab-on-grade.

(a)

(b)

Figure 11: Pictures of Pour 1 on day of deployment. (a) first
half. (b) second half.

Finally, as we have noted, the availability of cement replacement
materials such as fly ash and slag vary with location and time.
Therefore there is an opportunity to directly optimize for such
logistical considerations. Moreover, predicted weather conditions
can be taken into account. Further, there is need to identify and
discover novel materials that could be used in addition to, or in
replacement of, such cementitious materials.
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