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Figure 1: A variety of two-character interactions animated using on our method.

ABSTRACT
We present a method for reproducing complex multi-character
interactions for physically simulated humanoid characters using
deep reinforcement learning. Our method learns control policies
for characters that imitate not only individual motions, but also
the interactions between characters, while maintaining balance
and matching the complexity of reference data. Our approach uses
a novel reward formulation based on an interaction graph that
measures distances between pairs of interaction landmarks. This
reward encourages control policies to efficiently imitate the char-
acter’s motion while preserving the spatial relationships of the
interactions in the reference motion. We evaluate our method on a
variety of activities, from simple interactions such as a high-five
greeting to more complex interactions such as gymnastic exercises,
Salsa dancing, and box carrying and throwing. This approach can
be used to “clean-up” existing motion capture data to produce phys-
ically plausible interactions or to retarget motion to new characters
with different sizes, kinematics or morphologies while maintaining
the interactions in the original data.
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1 INTRODUCTION

Physical interactions between people are important elements in
daily life. For example, we can imagine a simple scenario where peo-
ple greet each other by shaking hands, and a more complex scenario
where two people perform physical activities together such as Yoga
or Salsa dancing. A virtual character capable of reproducing such
interactions with either autonomous or user-controlled characters
in a believable manner would provide an immersive experience in
applications such as computer games, movies, or AR/VR platforms.

In this paper, we are interested in transferring complex multi-
character interactions from reference motions to physically sim-
ulated characters. Those characters need to be carefully coordi-
nated in both spatial and temporal domains. Interactions among
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physically simulated characters have been studied far less than
single characters, in part because it is very challenging to learn con-
trollers for multiple characters interacting with each other. As with
a single character, balance must be maintained, but the interaction
constraints also have to be solved simultaneously. Although some
breakthrough results were demonstrated in recent studies [Haworth
et al. 2020; Liu et al. 2022; Won et al. 2021], the complexity of the
demonstrated interactions are still far from what people routinely
perform in daily life.

We demonstrate a novel learning-based method that provides
a physics-based retargeting of complex interactions for multiple
characters. More specifically, given reference motions that capture
interactions between people, we learn control policies (a.k.a. con-
trollers) of simulated characters via deep reinforcement learning
that imitate not only the motion of the individuals but also the
interactions between them. Our learned policies can produce plau-
sible and semantically equivalent interactions when the sizes and
kinematics of the characters are varied significantly. If the size of
the simulated characters match those in the original motion capture
data, the resulting motion is almost indistinguishable from the refer-
ence data and any errors from the capture process are eliminated by
ensuring that the interactions are now physically plausible. To solve
the challenges in learning multi-character interactions, we develop
new rewards based on an interaction graph (IG) which measures
distances between pairs of specified locations on the characters, and
in particular reflects between-character distances. Rewards based
on the IG enable control policies to efficiently deploy complex in-
teractions for physically simulated characters while preserving the
semantics of the interactions (i.e. spatial relationship) included in
the reference data. In our formulation, manual annotation of the
interaction in each motion is not necessary except for choosing
a set of general interaction landmarks that work for a variety of
scenarios.

To show the effectiveness of our method, we record motions that
include multi-person interactions at varying levels of difficulty, and
test our method with motions that are composed of simple inter-
actions such as a high-five or other greetings, as well as complex
interactions such as gymnastic exercises, Salsa dancing, and box
moving/throwing. We demonstrate the generality of our system
by reproducing interactions not only for simulated characters with
different body dimensions than the motion capture subjects, but
also for a robot with a different kinematic structure. Finally, we
run comparison and ablation studies that justify each choice in the
system design.

2 RELATEDWORK
We first review papers synthesizing multi-character interaction for
kinematic approaches, which inspired our dynamic formulation.
We then review recent progress in control of physically simulated
characters via deep reinforcement learning.

2.1 Multi-character Interactions for Kinematic
Characters

Most approaches for creating or editing multi-character interac-
tions among kinematic characters are data-driven methods, which

means that appropriate motion capture data should be obtained in
advance. A popular line of work is based on optimization, where
the basic idea is to optimize individual character motions with
spatio-temporal constraints [Kwon et al. 2008; Liu et al. 2006], game
theory [Shum et al. 2007, 2008a; Shum et al. 2012; Wampler et al.
2010] so that the optimized motions have newly synthesized in-
teractions. These methods are suitable for synthesizing motions
having sparse interactions, however, the optimization quickly be-
comes intractable as the complexity of the interactions increases,
so it is not suitable for synthesizing dense and complex interactions.
Another approach is patch-based methods, where a patch includes
a short interaction of multiple characters [Hyun et al. 2013; Lee
et al. 2006; Shum et al. 2008b; Won et al. 2014; Yersin et al. 2009]. For
this work, motion capture data where multiple actors are recorded
simultaneously is required. New motions can be synthesized by
connecting boundaries of multiple patches, thus creating multiple
interactions that were not performed together in the original data.

Methods for adapting existing interactions to new environments
and characters have also been studied [Al-Asqhar et al. 2013; Ho
et al. 2014, 2010; Jin et al. 2018; Kim et al. 2021, 2014, 2009]. The
key idea is to define an interaction descriptor that encodes the
spatial and temporal relationship, then to edit the motions while
minimizing the semantic difference between the original motion
and the edited motions where the difference is measured by the
descriptor. This idea has also been used to synthesize hands inter-
acting with objects [Zhang et al. 2021]. Our state representation
and reward function for deep reinforcement learning are inspired
by one of these descriptor-based approaches [Ho et al. 2010], where
they construct an interaction graph by connecting edges among
pre-specified markers on the body surface. By utilizing deep rein-
forcement learning and a novel formulation to measure interaction
graph similarities, our method can be applied to dynamic charac-
ters having different body shapes instead of generating kinematic
interaction motions as was done in [Ho et al. 2010].

2.2 Physically Simulated Characters and
Interactions

In many cases, what we refer to as interaction between different
characters means physical interaction where physical forces oc-
cur between the characters at contacts. By incorporating physics
simulation into the motion of the characters, those physical inter-
actions can be synthesized in a plausible manner. Multi-character
interactions have been created by solving a quadratic programming
problem where the equations of motion for the entire dynamical
system are used as either hard or soft constraints [Mordatch et al.
2012; Otani and Bouyarmane 2017; Vaillant et al. 2017]. Although
cooperative multi-character interactions could be synthesized by
these methods without using reference data, the generated motions
are typically slow and less-dynamic due to the quasi-static assump-
tion in their optimization formulation, and they require frame-level
specification of all interactions in advance. Combining deep rein-
forcement learning (DRL) and motion capture data has allowed
several breakthroughs in learning imitation controllers [Bergamin
et al. 2019; Chentanez et al. 2018; Fussell et al. 2021; Park et al. 2019;
Peng et al. 2018, 2021; Won et al. 2020], learning reusable motor
skills [Merel et al. 2019; Peng et al. 2019, 2022; Won et al. 2022; Yao
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et al. 2022], and motion tracking [Winkler et al. 2022; Ye et al. 2022].
Although there also have been some studies synthesizing dynamic
interactions with objects or other characters [Haworth et al. 2020;
Liu et al. 2022; Merel et al. 2020; Won et al. 2021], the complexity
of the demonstrated interactions are still not comparable to what
people routinely perform in daily life. In addition, each of these
works developed a task-specific reward function to enforce interac-
tions between multiple entities. In this paper, we aim to synthesize
various types of spatially and temporally dense interactions for
full-body humanoid characters that are physically simulated. This
problem is especially challenging because the motor skills must be
sophisticated enough to perform those complex interactions while
remaining robust enough to maintain balance.

3 METHOD
Our goal is to build controllers that enable physically simulated
characters to perform complex physical interactions with each
other. For each behavior, we take a reference motion capture clip
representing the desired multi-character interaction and produce
controllers that enable the simulated characters to mimic those
interactions. Our goal is to generate character interactions that are
semantically similar to those present in the reference motions. To
achieve this, we use multi-agent deep reinforcement learning where
the states and rewards are designed based on spatial descriptors
inspired by [Ho et al. 2010]. Different from [Ho et al. 2010] where
only kinematic motions are generated, our method can be applied
to dynamic characters having dramatically different body shapes
from the captured actors.

3.1 Environment
Our characters are modeled as articulated rigid body objects by
following [Won et al. 2020]. Each character has 22 links and 22 joints,
where each joint has three degree-of-freedom and is actuated by
stable-PD servos [Tan et al. 2011] given target joint angles. We
used an open-source framework [Won et al. 2020] to implement
and simulate our characters.

3.2 Problem Formulation
We formulate the problem as a multi-agent Markov Decision Pro-
cess (MDP). Consider 𝑘 controllable agents, we define the tuple
{𝑆,𝑂1 · · ·𝑂𝑘 , 𝐴1 · · ·𝐴𝑘 , 𝑅1 · · ·𝑅𝑘 ,𝑇 , 𝜌} where 𝑆 is the entire state of
our environment, 𝑂𝑖 and 𝐴𝑖 are the observation and action of 𝑖-th
agent, respectively. The reward function 𝑅𝑖 : 𝑂𝑖 ×𝐴𝑖 → R evaluates
the quality of the current state and action of 𝑖-th agent, the environ-
ment is updated by the transition function𝑇 : 𝑆×𝐴1×· · ·×𝐴𝑘 → 𝑆

given a set of actions performed by all the agents, and 𝜌 : 𝑆 → [0, 1]
is the probability distribution of the initial states. We aim to learn a
set of optimal control policies {𝜋𝑖 |𝑖 = 1 · · ·𝑘} that maximizes aver-
age expected return E

[∑𝑇
𝑡=0 𝛾

𝑡𝑟𝑖,𝑡
]
for each agent, where 𝛾 ∈ (0, 1)

is the discount factor that prevents the sum from being infinity.

3.3 Interaction Graph
To better describe the semantics of the interaction happening be-
tween agents (or between an agent and an object) during themotion,
we define the notion of an Interaction Graph (IG), a graph-based
spatial descriptor where the information on interactions is stored

in its vertices and edges. This idea is inspired by [Ho et al. 2010]. To
construct an interaction graph, we first place a collection of mark-
ers on salient locations on each character (see Figure 2). Fifteen
markers are placed in total for each character, where three mark-
ers are on each limb in the vicinity of joint locations, one on the
pelvis, one on the torso, and one on the head. These markers will
be considered as the nodes of the graph, each of which is associated
with a 6-dimensional vector 𝑛𝑖 = (𝑝𝑖 , 𝑣𝑖 ) ∈ R6, where 𝑝𝑖 ∈ R3 is
the position of the vertex and 𝑣𝑖 ∈ R3 is the velocity of the vertex.
For example, a total of 30 vertices will be used for interactions as-
sociated with two characters (see Figure 2). On every time step, we
perform a Delauney Tetrahedralization over all the vertices based
on the spatial distances between pairs of markers to get a compact
collection of edges connecting the vertices. Each edge is assigned a
feature vector 𝑒𝑖 𝑗 = (𝑝𝑖 𝑗 , 𝑣𝑖 𝑗 ) ∈ R6 that encodes the relative rela-
tionship between the two vertices, where 𝑝𝑖 𝑗 = 𝑝 𝑗 − 𝑝𝑖 ∈ R3 and
𝑣𝑖 𝑗 = 𝑣 𝑗 − 𝑣𝑖 ∈ R3 are the positional and velocity components of
the edge features.

The example interaction graph in Figure 2 includes both edges
connecting nodes on a single character and edges connecting nodes
on different characters. The edges within the character help main-
tain the motion quality of an individual character, while the edges
between the characters act as guides for maintaining the relative po-
sition of the body parts of the two characters. Details are discussed
later in section 3.4.

There is a major difference between how we compare two spatial
descriptors in the interaction graph and how they are compared
in the Interaction Mesh (IM) in [Ho et al. 2010]. We perform edge-
level (i.e. distance) computation whereas IM computes volumetric
deformation on a tetrahedron. We further augment the state of an
edge with velocities as they are crucial for a physics simulation.
Given the input reference motions clips, we build and store such an
IG to capture the spatial relationship across the agents and object
at each time-step.

3.4 Reward Design
We choose to measure the interaction similarity in two ways: an
edge-weighting function that highlights the importance of inter-
action regions in the graph and an edge-similarity function that
measures the similarity between two IGs with the same connectiv-
ity.

For the following similarity measurement, we make use of two
interaction graphs 𝐺𝑠𝑖𝑚 and 𝐺𝑟𝑒 𝑓 with the same connectivity, one
from the simulated environment, the other from the reference mo-
tion clips. The connectivity of both graphs is the same as computed
on the reference motions using the above mentioned method. The
interaction graph we defined is a set of spatial descriptors that
encode the relative formation among the vertices in the graph.

3.4.1 Edge Weighting Function. We are guided by the intuition that
instances where two body parts are close or in contact with each
other are particularly important for multi-character interactions.
We define a function that dynamically assigns different weights for
each edge according to its relative importance to the others. More
specifically, for an edge connecting vertices 𝑖 and 𝑗 , the weight for
the edge𝑤𝑖 𝑗 is defined as:
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𝑤𝑖 𝑗 = 0.5 ∗
exp

(
−𝑘𝑤 ∥𝑝𝑠𝑖𝑚

𝑖 𝑗
∥
)

∑
𝑖 𝑗 exp

(
−𝑘𝑤 ∥𝑝𝑠𝑖𝑚

𝑖 𝑗
∥
) + 0.5 ∗

exp
(
−𝑘𝑤 ∥𝑝𝑟𝑒 𝑓

𝑖 𝑗
∥
)

∑
𝑖 𝑗 exp

(
−𝑘𝑤 ∥𝑝𝑟𝑒 𝑓

𝑖 𝑗
∥
) ,
(1)

where 𝑘𝑤 controls how sensitive the weighting function is with
respect to the distance of the edges. The first term gives more
attention to an edge if the two nodes in the simulation are close to
each other, the second term makes sure an edge in the reference
motion getsmore attentionwhen its nodes stay close. In practice, we
found the second term alone is enough for most of our experiments,
and we only use the first term for a few examples where it improves
the performance.

Normalizing the weights allows our reward function to adapt to
various interaction scenarios. For example, when two characters
are far away from each other, the edges connecting those two
characters do not contribute much to the reward while the edges
connecting vertices within individual characters become important.
On the other hand, when the two characters are close to each other,
some of the connections between their body parts will have large
weights. This adjustment based on proximity allows the body parts
that are not associated with the close interactions to remain close
to the original motion.

Figure 2: Interaction Graph of the reference characters.
Higher opacity on an edge indicates a higher weight for the
edge when computing the reward.

3.4.2 Edge Similarity Function. Given two interaction graphs 𝐺
and 𝐺 ′, we design a distance function measuring their differences.
Our distance function measures position and velocity similarity of
the two different formations by comparing all corresponding edges
in the two graphs.

3.4.3 Positional Graph Similarity. To compare the positional graph
similarity between two graphs, we separately consider the simi-
larity of the two graph edges connecting each individual charac-
ter 𝐸𝑠𝑒𝑙 𝑓 (self-connections) and between characters 𝐸𝑐𝑟𝑜𝑠𝑠 (cross-
connections). The discrepancy of each edge is computed as follows:

𝑒𝑟𝑟𝑠𝑒𝑙 𝑓 ,𝑖 𝑗 = ∥
𝑝𝑠𝑖𝑚
𝑖 𝑗

− 𝑝𝑠𝑖𝑚
𝑇,𝑖 𝑗

∥𝑝𝑠𝑖𝑚
𝑇,𝑖 𝑗

∥
−
𝑝
𝑟𝑒 𝑓

𝑖 𝑗
− 𝑝

𝑟𝑒 𝑓

𝑇 ,𝑖 𝑗

∥𝑝𝑟𝑒 𝑓
𝑇 ,𝑖 𝑗

∥
∥ (2)

where 𝑝𝑠𝑖𝑚
𝑇,𝑖 𝑗

and 𝑝
𝑟𝑒 𝑓

𝑇 ,𝑖 𝑗
are edges computed from the first frame of

the motion sequence for both simulation and reference motions. In

all the reference motion sequences, the motion capture actors are
instructed to start in a T-pose. In other words, we first compute the
deviation of an edge from its corresponding T-pose edge, it is then
normalized by the length of the T-pose edge. Finally, we compute
the difference between the two deviations, one for the simulated
characters and the other for the reference motion clips. Note that
this similarity measurement is not sensitive to specific body sizes
and proportions due to the normalization of the deviations. This
formulation is also similar to measuring the Laplacian coordinate
difference of all graph nodes between simulation and reference in
that they both try to maintain the similarity of the local structure
between two graphs, but our formulation gives direct measure to
the edge similarity that captures the interaction.

It is challenging to define a reference edge length for the cross-
connections because the variance can be extremely high. For exam-
ple, imagine that the two characters are standing 10m apart versus
0.1m. Instead, we directly penalize the difference in the edge length
and direction so that the same cross-connection similarity can be
applied to various motions:

𝑒𝑟𝑟𝑐𝑟𝑜𝑠𝑠,𝑖 𝑗 = 0.5 ∗
∥𝑝𝑠𝑖𝑚

𝑖 𝑗
− 𝑝

𝑟𝑒 𝑓

𝑖 𝑗
∥

∥𝑝𝑠𝑖𝑚
𝑖 𝑗

∥
+ 0.5 ∗

∥𝑝𝑠𝑖𝑚
𝑖 𝑗

− 𝑝
𝑟𝑒 𝑓

𝑖 𝑗
∥

∥𝑝𝑟𝑒 𝑓
𝑖 𝑗

∥
(3)

where we normalize the difference by the lengths in the simulation
and the reference clips, respectively, then average them so that
the similarity becomes symmetric. This symmetry also enables the
error to be used for characters having different body shapes. The
total error for positional graph similarity is then the sum of the two
error terms from all edges:

𝑒𝑟𝑟𝑝𝑜𝑠_𝑔𝑟𝑎𝑝ℎ =
∑︁

𝑖 𝑗∈𝐸𝑐𝑟𝑜𝑠𝑠
𝑤𝑖 𝑗𝑒𝑟𝑟𝑐𝑟𝑜𝑠𝑠,𝑖 𝑗 +

∑︁
𝑖 𝑗∈𝐸𝑠𝑒𝑙 𝑓

𝑤𝑖 𝑗𝑒𝑟𝑟𝑠𝑒𝑙 𝑓 ,𝑖 𝑗 (4)

3.4.4 Velocity Graph Similarity. To measure the velocity discrep-
ancy between graphs, we simply measure the difference of velocity
of all edges in simulation and reference as:

𝑒𝑟𝑟𝑣𝑒𝑙_𝑔𝑟𝑎𝑝ℎ =
∑︁

𝑖 𝑗∈𝐸𝑐𝑟𝑜𝑠𝑠∪𝐸𝑠𝑒𝑙 𝑓
𝑤𝑖 𝑗 ∥𝑣𝑠𝑖𝑚𝑖 𝑗 − 𝑣

𝑟𝑒 𝑓

𝑖 𝑗
∥ (5)

In contrast to the positional similarities, we observed that the ve-
locities of the graph vertices do not vary much when modifying
the body size/proportion of the simulated characters. Thus we do
not perform any velocity normalization. We also do not separate
the velocity similarities by edge type because we did not find any
benefit in doing so.

3.4.5 Final Reward Design. We define our reward function based
on the errors computed from the interaction graphs. In addition,
we add two more error terms measuring the tracking of the root
joint and center-of-mass, which are frequently used in learning
imitation controllers for physically simulated characters. As a result,
our reward function is composed of four terms

𝑟 = 𝑟𝑝𝑜𝑠_𝑔𝑟𝑎𝑝ℎ · 𝑟𝑣𝑒𝑙_𝑔𝑟𝑎𝑝ℎ · 𝑟𝑟𝑜𝑜𝑡 · 𝑟𝑐𝑜𝑚 (6)
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𝑟𝑝𝑜𝑠_𝑔𝑟𝑎𝑝ℎ = exp(−𝑘1 ∗ 𝑒𝑟𝑟𝑝𝑜𝑠_𝑔𝑟𝑎𝑝ℎ)
𝑟𝑣𝑒𝑙_𝑔𝑟𝑎𝑝ℎ = exp(−𝑘2 ∗ 𝑒𝑟𝑟𝑣𝑒𝑙_𝑔𝑟𝑎𝑝ℎ)

𝑟𝑟𝑜𝑜𝑡 = exp(−𝑘3 ∗ 𝑒𝑟𝑟𝑟𝑜𝑜𝑡 )
𝑟𝑐𝑜𝑚 = exp(−𝑘4 ∗ 𝑒𝑟𝑟𝑐𝑜𝑚)

(7)

where 𝑟𝑝𝑜𝑠_𝑔𝑟𝑎𝑝ℎ , 𝑟𝑣𝑒𝑙_𝑔𝑟𝑎𝑝ℎ measure the difference between the
two interaction graphs and 𝑟𝑟𝑜𝑜𝑡 , 𝑟𝑐𝑜𝑚 encourage the tracking of
the root joint and the center-of-mass projected on the ground,
𝑘1, · · · , 𝑘4 are the sensitivities of the terms, respectively. The errors
for the tracking are defined as follows:

𝑒𝑟𝑟𝑟𝑜𝑜𝑡 = 𝑤𝑝 ∥𝑝𝑠𝑖𝑚 − 𝑝𝑟𝑒 𝑓 ∥2 +𝑤𝑞 ∥𝑙𝑜𝑔(𝑞−1
𝑠𝑖𝑚 · 𝑞𝑟𝑒 𝑓 )∥2+

𝑤𝑣 ∥𝑣𝑠𝑖𝑚 − 𝑣𝑟𝑒 𝑓 ∥2 +𝑤𝜔 ∥𝜔𝑠𝑖𝑚 − 𝜔𝑟𝑒 𝑓 ∥2 (8)

𝑒𝑟𝑟𝑐𝑜𝑚 = 𝑤𝑐𝑜𝑚,𝑥 ∥𝑥𝑠𝑖𝑚 − 𝑥𝑟𝑒 𝑓 ∥ +𝑤𝑐𝑜𝑚, ¤𝑥 ∥𝑥𝑠𝑖𝑚 − ¤𝑥𝑟𝑒 𝑓 ∥ (9)

where 𝑝, 𝑣 are the position and velocity of the root joint excluding
the height components, and 𝑞,𝜔 are the orientation and angular ve-
locity of the root joint, respectively, 𝑥 and ¤𝑥 are the center-of-mass
position and velocity of the simulated character excluding their
height components. 𝑤𝑝 , 𝑤𝑞 , 𝑤𝑣 , 𝑤𝑤 , 𝑤𝑐𝑜𝑚,𝑥 , and 𝑤𝑐𝑜𝑚, ¤𝑥 are the
relative weights of the terms. Note that we ignore the height com-
ponents of the linear positions and velocities so that the relevant
errors are not directly affected by the absolute size of the character.
In contrast to [Ho et al. 2010], where tetrahedron volumes are used
to measure similarities of meshes, our edges-based reward is more
sensitive to point-to-point physical interactions. In addition, it is
not trivial to design an adaptive weight function in a volume-based
setting, which makes sure that individual characters motion quality
is preserved, even when characters are staying far apart, making
our reward a good substitute for motion imitation.

3.5 Observation and Action Spaces
The observation space of our environment is inspired by the design
from prior work [Won et al. 2020, 2021] where the observation of
an agent 𝑜𝑖 = (𝑜𝑠𝑖𝑚, 𝑜𝑟𝑒 𝑓 ) consists of the states of the simulated
characters and objects, which are computed from the simulation
and the reference motion clips. For simulated observation space
𝑜𝑠𝑖𝑚 = (𝑜𝑠𝑖𝑚,𝑠𝑒𝑙 𝑓 , 𝑜𝑠𝑖𝑚,𝑜𝑡ℎ𝑒𝑟 , 𝑜𝑠𝑖𝑚,𝑜𝑏 𝑗𝑒𝑐𝑡 ), we include the position,
orientation, linear and angular velocity for each link of the charac-
ters and the objects. To make sure the state is invariant to the global
position and orientation of the agent, all values are transformed to
the facing frame of the controlled character. The facing frame of
the character is computed by projecting the global transformation
of the character root to the ground.

The reference observation 𝑜𝑟𝑒 𝑓 = (𝑜0
𝑟𝑒 𝑓

, 𝑜0.05
𝑟𝑒 𝑓

, 𝑜0.15
𝑟𝑒 𝑓

) contains
the reference information 0, 0.05, and 0.15 seconds in the future
to the current time. For each future reference observation frame
𝑜∗
𝑟𝑒 𝑓

= (𝑜∗
𝑟𝑒 𝑓 ,𝑠𝑒𝑙 𝑓

, 𝑜∗
𝑟𝑒 𝑓 ,𝑜𝑡ℎ𝑒𝑟

, 𝑜∗
𝑟𝑒 𝑓 ,𝑜𝑏 𝑗𝑒𝑐𝑡

), we include the position,
orientation, linear and angular velocity for each link of the charac-
ters and the objects in the facing frame of the reference character.

Our action 𝑎 is the change of pose Δ𝑞 from the pose 𝑞𝑟𝑒 𝑓 given
the reference frame at each time-step. A new reference pose 𝑞𝑟𝑒 𝑓 +
Δ𝑞 (i.e. a set of joint angles) is given to the stable PD servos attached
to our simulated character and then joint torques are computed
accordingly.

4 RESULTS
In this section, we show that our formulation is robust enough to
be applied to a variety of motions with multiple characters and
objects. The dynamically adjusting weights of our method focus
the adjustments to the motion on the physical interactions. This
approach results in higher quality motion than existing work in sce-
narios with complex interactions. Further, our formulation is able to
preserve interaction when the body sizes, kinematics, and skeletons
of the characters differ from the reference motion sequences.

4.1 Experiment Setup
The structure of our policy follows a encoder-decoder style as pre-
sented in [Won et al. 2021], where the encoder is a fully connected
neural network with two hidden layers with 256 and 128 units
respectively. The encoder takes the full observation and projects
it onto a 32 dimensional latent vector 𝑧. The decoder is another
fully connected network with two hidden layers with 256 units, and
it takes as input the concatenated vector 𝑧𝑑𝑒𝑐𝑜𝑑𝑒𝑟 = (𝑜𝑠𝑖𝑚,𝑠𝑒𝑙 𝑓 , 𝑧)
and outputs the action of the policy. To speed up the learning for
all the experiments below, we pre-train an imitation policy of a
single character on sequences that can be done alone (e.g. high
five, greetings, and push ups). When training an interaction-graph
based policy, we reuse the pre-trained decoder and allow its weights
to be updated during the training. Note that the encoder trained
simultaneously with the pre-trained decoder is not reusable due to
differences in input dimensions. The decoder is reusable because
the latent dimensions are unchanged. This design makes it easier
for the policy to maintain balance at the initial phase of learning,
and hence results in faster training. The training time of a policy
varies based on the difficulty of the sequence. For easier sequences,
it takes about 300 million to 500 million samples to train one policy.
For harder sequences, it could take more than 2 billion samples to
train a policy. All experiments are run using 640 CPUs, and it could
take from 3 days to 9 days to train a policy based on the sequence
difficulty. We demonstrate the success of our method over several
different scenarios.

4.2 Human-Human Interaction
In the human-human interaction scenarios, we aim to show that
our method is capable of reproducing imitation policies with sim-
ilar motion quality as existing works such as [Fussell et al. 2021;
Won et al. 2020; ?] while the interaction is better preserved. We
show a variety of scenarios ranging from sparsely interacting mo-
tions to continuously interacting motions between the two human
characters.

4.2.1 Light Interaction. Figure 3a and 3b shows light physical
interactions. In Rapper-Style Greetings, the two characters touch
their hands, elbows, shoulders, and legs in sequence to greet each
other, an action which has been shown in many hip-hop music
videos [sinestesia3000 2012]. In Jumpover, one character jumps
over the other character. In these scenarios, physical interactions
are of short duration with little physical forces, and the interactions
are well-preserved semantically when the interacting body parts
are close enough at the right timing.
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4.2.2 Heavy Interaction. Figure 9a, 9b, and 9c shows physical inter-
actions where significant forces occur between the two characters.
The Lift-Pushup example includes interactions where one character
needs to lift the other character’s legs while that character is per-
forming a push-up exercise. In the first salsa dancing motion (Salsa
Grasping), two character’s hands are grasped together to form a
loop for one character to go under. In another salsa dancing motion
(Salsa Support), one character needs to support the other while
they lean backward. This type of interaction is more challenging
than the light interactions because the two simulated characters
need to perform highly coordinated motions with force exchange.
For example, the character performing a push-up would not be
able to imitate the reference motions successfully unless his legs
are grasped by the other character. Furthermore, these heavy in-
teractions make maintaining balance difficult because significant
forces are transferred between the two characters. Our method was
able to imitate these challenging motions successfully as shown in
Figure 9a. Because our characters do not have fingers, we mimic the
grasp by adding weld constraints in the physics simulation. More
specifically, we examine the reference motion and label a sequence
of grasping windows to identify when grasping should be presented
on specified body pairs at certain moment. During simulation, when
a character’s hand is close to a body part it should grasp at that
moment, weld constraints between the two body parts are made
temporarily. The constraints is removed when the grasping win-
dow is over, representing the character releasing their hands. Other
than hand grasping, we did not use any additional weld constraints,
all the complex physical interactions emerged during the learning
process.

These results show that our formulation is capable for the control
policies to be aware of the relative formation among various body
parts that are close enough in the reference motions regardless
of the interacting duration, and those relative formations will be
preserved in the simulation.

4.3 Human-Object Interaction
We further demonstrate that our formulation can also handle human-
object interactions where objects are passively simulated. Figure 6a
and 6b show the two motions: One includes interactions where two
persons are throwing and catching a small box repeatedly, the other
includes interactions where two persons are lifting and moving a
large box. For both motion sequences, we place an extra marker on
every vertex of the box (i.e. 8 markers in total) when constructing
the interaction graph. For the edges connecting between charac-
ters and the box, we use the same reward formulation following
Equation 3 to measure the discrepancy between simulation and
reference. In addition, we choose to remove all edges connecting
the markers on the box because their relative distances will stay
constant throughout the motion. The resulting graph is shown in
Figure 12. The control policies learned with those additional mark-
ers successfully reproduce both hand-object interaction scenarios,
which shows the generality of our method.

4.4 Retageting to different body sizes
Our graph-based formulation is robust to the change in body con-
ditions because we compute features in a normalized manner. As

a result, the interactions in the same reference motions can also
be applied to simulated characters that have completely different
body dimensions from the actors in the reference motions.

Figure 3c, 3d demonstrates motion that include light interac-
tion. In both sequences, we scale all limbs of the yellow and blue
characters by a factor of 1.3 and 0.5, respectively, so the yellow
character is almost 2 times taller than the blue character. The scaled
characters are trained using our framework to track the reference
motion. In the Rapper-style Greeting motion, for example, we see
the taller character deliberately bends down to reach their hand,
elbow, and shoulder to the shorter character when the interaction
happens, and they straighten their back after they finish the inter-
action. Similarly, the taller character lowers their waist when the
shorter character jumps over their back in the Jumpover motion.

Learning how to transfer forces via physical interactions is
crucial to imitate motions including heavy interaction as in Fig-
ure 9d,9e,and 9f. For the Lift-Pushup motion (Figure 9d), we give
a 0.5 scaling factor to all limbs of the blue character, for the Salsa
Grasping motion (Figure 9e), we scale the yellow character’s limbs
by 0.5, and for Salsa Support motion (9f), we scale the yellow char-
acter’s limbs by 0.8. For this type of motion, our method enables
the scaled characters to adjust their motions to preserve the interac-
tions rather than simply mimicking the original reference motions,
which means that the semantics of the interaction are transferred
successfully to the scaled characters. For example, the taller char-
acters in the Lift-Pushup motions learned to bend down and reach
the target grasping region to form the grasp.

Finally, we also scale the characters and objects for human-object
interaction scenarios. Figure 6 shows the control policies learned
successfully for the small box throwing-catching and the large box
lifting-moving. For both human-object interaction motions, we
scale the yellow character’s limbs by 0.7.

4.5 Non-human Characters
Our method can also transfer interactions in the reference motions
to characters with different kinematic configurations. For example,
if we use robots with fewer DoFs than the reference character, our
method can still make the robots mimic the interactions existing
in the reference motions. As shown in Figure 4, we replace one
of the characters by a Baxter robot composed of two industrial
manipulators.

Because the robot has a fixed base, we place the robot at the
location where the greeting motion is conducted and place a total
of eight markers on the upper body of the robot on its head, torso,
upper arms, lower arms, and end-effectors to match those of the
human character. For the human character, we keep the same 15
markers as described earlier on the human body. We then use the to-
tal of 23 markers to construct the interaction graph for the training.
During the training, we use two separate reward functions for the
character and robot independently. The character will receive the
same reward terms as described above, the robot will only receive
a reward from 𝑟𝑝𝑜𝑠_𝑔𝑟𝑎𝑝ℎ and 𝑟𝑣𝑒𝑙_𝑔𝑟𝑎𝑝ℎ because it is not mobile.

In addition, we found that including the first term in Equation 1
become helpful when the robot is immobile. It highlights the edge
error when the robot body parts are staying close but the reference
characters’ body are far away.
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Because the kinematic structure of the robot is completely differ-
ent that of the actor in the reference character/motion, we ask the
policy to directly output the absolute target joint angles 𝑞 instead
of learning the deviation (i.e. Δ𝑞) from the reference 𝑞𝑟𝑒 𝑓 for both
the human character and the robot. Our framework can success-
fully generate animations of the Baxter robot performing greetings
with a human character (Figure 5a), and perform a highfive with
another Baxter robot (Figure 5b). These examples demonstrates the
potential of our method as an option to reproduce human-robot
interactions.

4.6 Comparison
We conduct comparison and ablation studies to show the effec-
tiveness of our graph-based formulation to reproduce complex
interaction for physically simulated characters.

4.6.1 Joint-based Reward. To highlight the necessity of formulat-
ing the interaction-graph-based reward, we compare our method
with the commonly used joint-based reward formulation for mo-
tion imitation. For the sequences that use a joint-based reward,
we apply a similar formulation as described in [Peng et al. 2018;
Won et al. 2020]. That formulation asks the policy to minimize the
positional and angular differences of the joints and links between
the simulation and the reference motion. In this formulation, no
reward term exists to evaluate the quality of interactions between
multiple characters or characters to objects. As a result, when the
simulated character has a different body configuration from the
reference motion, the characters will only learn to mimic the poses
in the reference motion instead of learning to adapt to the other
characters (or object) to correctly perform the interaction. Figure 7
shows a comparison for the greeting motions. The control policies
trained using a joint-based reward fail to cause the taller character
to bend down to meet the shorter character. Similar behaviors are
observed in the other motions for the control policies trained using
the joint-based reward only.

We further contrast the performance for the dense interaction
example between the interaction graph and joint-based rewards.
Figure 8 shows such a comparison on Lift-Pushup sequence with
a scaled character. When using the interaction graph reward, the
taller character actively bends forward to reach its hands to the
shorter character’s lower leg to form the grasping constraints and
lift the shorter character. When using a joint-based reward, on the
other hand, there is no reward based on the relative poses between
the two characters and the taller character cannot grasp the shorter
character’s leg and the interaction semantics is not preserved.

Furthermore, we show that a joint-based reward also produces
lower quality motions when re-targeting motions for human-object
interactions. Figure 10 shows a comparison for a small box throw
and catch motion trained with the interaction graph reward and
Joint-based reward. The two characters are able to perform the
throw and catch motion sequence in the joint-based reward because
of the presence of the additional object observation and reward
as described above. However, it fails to preserve the interaction
semantics because the shorter character should catch the box by
holding on two opposite faces of the box instead of supporting the
box on its bottom.

4.6.2 Edge Weighting Function. We do an ablation on the edge
weighting function (Equation 1) to understand how this helps the
training selectively pay attention to more important edges and ig-
nore irrelevant edges. Our experiments demonstrate that this design
can help generating more natural-looking motions. In Figure 11, we
compare the resulting policy trained with (left) and without (right)
the weighting function for the greeting motion. When the edge
weighting function is present, the taller character learns to bend
its waist to reduce its height when greeting the shorter character.
However, when all the edges have the same weight during training,
the taller character instead learns to walk and complete all the
greetings with the legs bent at an unnatural angle. This unnatural
behavior is created because the policy tries to get a low error on
every edge of the graph regardless of the distances of the nodes.

5 DISCUSSION
We demonstrated a method of simulating and retargeting of com-
plex multi-Character interactions by using deep reinforcement
learning where novel state and rewards that are character-agnostic
are developed based on an Interaction Graph. Our formulation is
applicable to a variety of interactions among people ranging from
sparse interactions (e.g. greeting, jumpover) to complex ones (e.g.
exercise motion, Salsa dancing) regardless of whether body sizes,
kinematics or skeletons of the simulated characters are the same
as that of the actors who recorded the reference motions. Those
interactions even also able to be transferred to a robot to generate
human-robot interactions.

While we demonstrate many successful examples, there are some
limitations to our method. First, there are some limitations of our
reward function design. Because the action space of our policy is
not directly associated with the reward function, our training usu-
ally requires more samples to converge compared to the joint-based
reward function. In addition, due to the lack of supervision on the
joint angles, the motion generated from our policy could contain
artifacts on joints that have little impact to the interaction. For
example, sometimes the character may tilt the head or the waist
at an unnatural angle because this deviation from the reference
will not affect the positions of the interaction graph’s node, and
therefore it does not decrease the reward. Adding more markers
would be an immediate remedy but this would also increase com-
putational cost. Another limitation is that our controllers are still
imitation controllers which cannot perform interactions that do not
exist in the reference motions. Further the controllers only work
for the specific body configuration that it was trained on, so one
policy cannot easily be generalized to work on a character with a
different body configuration. We also observe that the variability
of our result is limited by the dissimilarity of the character and
the difficulty of the task. The characters scaled extremely or with
drastically different body plans could fail to imitate the interactions
due to their physical limits. For example, in challenging interaction
scenarios such as box throwing compared to the greeting motions,
our method could only work with slight scaling on the characters
but will fail when replacing one human character with a robot to
perform the task with another human character.

We envision several future directions to improve the limitations.
For better variability, we can build a stronger motion prior that
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contains a larger variation of motion types. Further training on top
of the motion prior could be more sample efficient, and allow the
policy to explore better in the motion space to find a valid solution
when trained character shapes undergo extreme scalings. To im-
prove the generalization of our method, better observation space
would be helpful. Currently we are still using the commonly used
joint-based observation space for the policy to account for the en-
vironmental context. A better formulation of the observation space
that directly interprets the interaction graph (instead of joint angles)
would be a first step towards a universal policy. A good candidate
would be utilizing a Graph Neural Network to directly observe the
interaction graph in the simulation to better understand the spatial
relationship of different objects in the scene. After the creation of a
comprehensive model that can better understand the interaction
observations, a subsequent future direction would be building a in-
teraction prior model that can sense the surrounding environment
and create motions to complete general interactions without requir-
ing specific reference motions as demonstrated in [Peng et al. 2022;
Won et al. 2022] for a single character motion. We believe that our
method has made it possible to generate complex multi-character
interactions of simulated characters for many behaviors and will
serve as a stepping stone for future research.
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(a) Rapper-Style Greeting (b) Jumpover

(c) Scaled Rapper-Style Greet-
ing (d) Scaled Jumpover

Figure 3: Light Interaction

Figure 4: Baxter robot with markers

(a) Human-Baxter Greeting (b) Baxter-Baxter Highfive

Figure 5: Robot Interaction

(a) Box Throw and Catch (b) Box Carry

(c) ScaledBoxThrowandCatch (d) Scaled Box Carry

Figure 6: Human-Object Interaction

(a) Joint-based Reward (b) Interaction Graph Reward

Figure 7: Reward comparison for Greetings.

(a) Joint-based Reward (b) Interaction Graph Reward

Figure 8: Reward comparison for Lift Pushup.
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(a) Lift Pushup (b) Salsa Grasping (c) Salsa Support

(d) Scaled Lift Pushup (e) Scaled Salsa Grasping (f) Scaled Salsa Support

Figure 9: Heavy Interaction

(a) Joint-based Reward (b) Interaction Graph Reward

Figure 10: Box Throw comparison

(a) Without Edge Weights (b) With Edge Weights

Figure 11: Comparison showing the effect of edge weights

Figure 12: An Interaction Graph that includes an object (the
top box) as well as the characters.


	Abstract
	1 Introduction
	2 Related work
	2.1 Multi-character Interactions for Kinematic Characters
	2.2 Physically Simulated Characters and Interactions

	3 Method
	3.1 Environment
	3.2 Problem Formulation
	3.3 Interaction Graph
	3.4 Reward Design
	3.5 Observation and Action Spaces

	4 Results
	4.1 Experiment Setup
	4.2 Human-Human Interaction
	4.3 Human-Object Interaction
	4.4 Retageting to different body sizes
	4.5 Non-human Characters
	4.6 Comparison

	5 Discussion
	Acknowledgments
	References

