
REFACTOR GNNS: Revisiting Factorisation-based
Models from a Message-Passing Perspective

Yihong Chenàá Pushkar Mishraá Luca Franceschiâ Pasquale Minervinià
Pontus Stenetorpà Sebastian Riedelàá

à UCL Centre for Artificial Intelligence, London, United Kingdom
á Meta AI, London, United Kingdom

â Amazon Web Services, Berlin, Germany
{yihong.chen, p.minervini, p.stenetorp, s.riedel}@cs.ucl.ac.uk

pushkarmishra@fb.com franuluc@amazon.de

Abstract

Factorisation-based Models (FMs), such as DistMult, have enjoyed enduring suc-
cess for Knowledge Graph Completion (KGC) tasks, often outperforming Graph
Neural Networks (GNNs). However, unlike GNNs, FMs struggle to incorporate
node features and to generalise to unseen nodes in inductive settings. Our work
bridges the gap between FMs and GNNs by proposing REFACTOR GNNS. This
new architecture draws upon both modelling paradigms, which previously were
largely thought of as disjoint. Concretely, using a message-passing formalism,
we show how FMs can be cast as GNNs by reformulating the gradient descent
procedure as message-passing operations, which forms the basis of our REFACTOR
GNNS. Across a multitude of well-established KGC benchmarks, our REFACTOR
GNNS achieve comparable transductive performance to FMs, and state-of-the-art
inductive performance while using an order of magnitude fewer parameters.

1 Introduction

In recent years, machine learning on graphs has attracted significant attention due to the abun-
dance of graph-structured data and developments in graph learning algorithms. Graph Neural
Networks (GNNs) have shown state-of-the-art performance for many graph-related problems, such as
node classification [12] and graph classification [6]. Their main advantage is that they can easily be
applied in an inductive setting: generalising to new nodes and graphs without re-training. However,
despite many attempts at applying GNNs for multi-relational link prediction such as Knowledge
Graph Completion (KGC) [20], there are still few positive results compared to factorisation-based
models (FMs) [37, 32]. As it stands, GNNs either – after resolving reproducibility concerns – deliver
significantly lower performance [17, 29] or yield negligible performance gains at the cost of highly
sophisticated architecture designs [35]. A notable exception is NBFNet [41], but even here the
advance comes at the price of a high computational inference cost compared to FMs. Furthermore,
it is unclear how NBFNet could incorporate node features, which – as we will see in this work –
leads to remarkably lower performance in an inductive setting. On the flip side, FMs, despite being
a simpler architecture, have been found to be very accurate for knowledge graph completion when
coupled with appropriate training strategies [23] and training objectives [13, 2]. However, they also
come with shortcomings in that they, unlike GNNs, can not be applied in an inductive setting.

Given the respective strengths and weaknesses of FMs and GNNs, can we bridge these two seemingly
different model categories? While exploring this question, we make the following contributions:

Preprint. Under review.

1. By reformulating gradient descent on node embeddings using message-passing primitives,
we show a practical connection between FMs and GNNs, in that: FMs can be treated as a
special instance of GNNs, but with infinite neighbourhood and layer-wise training with a
global normaliser. 1

2. Based on this connection, we propose a new family of architectures, which we refer to
as REFACTOR GNNS, that interpolates between FMs and GNNs. In essence, REFAC-
TOR GNNS inductivise FMs by using a finite number of message-passing layers, and
incorporating node features.

3. Through an empirical investigation across 15 well-established inductive and transductive
benchmarks, our REFACTOR GNNS achieve state-of-the-art inductive performance across
the board and comparable transductive performance performance to FMs – despite using an
order of magnitude fewer parameters.

2 Background

Knowledge Graph Completion [KGC, 19] is a canonical task of multi-relational link prediction.
The goal is to predict missing edges given the existing edges in the knowledge graph. Formally, a
knowledge graph contains a set of entities (nodes) E = {1, . . . , |E|}, a set of relation (or edge) types
R = {1, . . . , |R|}, and a set of typed edges between the entities T = {(vi, ri, wi)}|T |

i=1, where each
triplet (vi, ri, wi) indicates a relationship of type ri ∈ R between the subject vi ∈ E and the object
wi ∈ E of the triplet. Given a node v, we denote its outgoing 1-hop neighbourhood as the set of
relation-object pairs N 1

+[v] = {(r, o) | (v, r, o) ∈ T }, its incoming 1-hop neighbourhood as the set
of subject-relation pairs N 1

−[v] = {(r, s) | (s, r, v) ∈ T }, and N 1[v] = N 1
+[v] ∪ N 1

−[v] the union
of the two. We denote the neighbourhood of v under a specific relation r as N 1

±[r, v]. Entities may
come with features X ∈ R|E|×K for describing them, such as textual encodings of their names and/or
descriptions. Given a (training) knowledge graph, the KGC task consists in learning a model capable
of identifying missing links by learning a scoring function over possible triplets [20].

Multi-relational link prediction models can be trained via maximum likelihood, by fitting a parame-
terized conditional categorical distribution Pθ(w | v, r) over the candidate objects of a relation, given
the subject v and the relation type r:

Pθ(w|v, r) =
expΓθ(v, r, w)∑
u∈E expΓθ(v, r, u)

= Softmax(Γθ(v, r, ·))[w], (1)

where Γθ : E ×R× E → R is a scoring function that, given a triplet (v, r, w), returns the likelihood
that the corresponding edge appears in the graph. In this paper, we illustrate our derivations using
DistMult [37] as the score function Γ and defer extensions to general score functions, e.g. Com-
plEx [32] to the appendix. In DistMult, the score function Γθ is defined as the tri-linear dot product
of the embeddings of the subject, relation type, and object of the triplet:

Γθ(v, r, w) = ⟨fϕ(v), fϕ(w), gψ(r)⟩ =
K∑
i=1

fϕ(v)ifϕ(w)igψ(r)i, (2)

where fϕ : E → RK and gψ : R → RK are learnable maps parameterised by ϕ and ψ that encode
entities and relation types into K-dimensional representations, and θ = (ϕ, ψ). We will refer to f
and g as the entity and relational encoders, respectively.

We can learn the model parameters θ by minimising the expected negative log-likelihood L(θ) of the
ground-truth entities for the queries (v, r, ?) obtained from T :

argmin
θ

L(θ) where L(θ) = − 1

|T |
∑

(v,r,w)∈T

logPθ(w|v, r). (3)

During inference, we use the distribution Pθ for ranking missing links.

1We note that the traditional viewpoint is that the transductive nature of FMs stem from their need to retrain
on new nodes, a view which we underpin by also observing that FMs are not inductive due to the need for infinite
layers of message-passing.

2

2.1 Factorisation-based Models for KGC

In factorisation-based models, which we assume to be DistMult, fϕ and gψ are simply parameterised
as look-up tables, associating each entity and relation with a continuous distributed representation:

fϕ(v) = ϕ[v], ϕ ∈ R|E|×K and gψ(r) = ψ[r], ψ ∈ R|R|×K . (4)

2.2 GNN-based Models for KGC

GNNs were originally proposed for node or graph classification tasks [7, 25]. To adapt them to
KGC, previous work has explored two different paradigms: node-wise entity representations [26]
and pair-wise entity representations [30, 41]. Though the latter paradigm has shown promising
results, it requires computing an embedding representation for any pair of nodes, which can be too
computationally expensive for large-scale graphs with millions of entities. Additionally, node-wise
representations allow for using a single evaluation of fϕ(v) for multiple queries involving v.

Models based on the first paradigm differ from pure FMs only in the entity encoder and lend
themselves well for a fairer comparison with pure FMs. We will therefore focus on this class and
leave investigation of pair-wise representations to future work.

Let qϕ : G × X →
⋃
S∈N+ RS×K be a GNN encoder, where G = {G | G ⊆ E × R × E} is

the set of all possible multi-relational graphs defined over E and R, and X is the input feature
space, respectively. Then we can set fϕ(v) = qϕ(T , X)[v]. Following the standard message-passing
framework [6, 8] used by the GNNs, we view qϕ = qL ◦ ... ◦ q1 as the recursive composition of
L ∈ N+ layers that compute intermediate representations hl for l ∈ {1, . . . , L} (and h0 = X) for all
entities in the KG. Each layer is made up of the following three functions:

1. A message function qlM : RK × R × RK → RK that computes the message along each
edge. Given an edge (v, r, w) ∈ T , qlM not only makes use of the node states hl−1[v] and
hl−1[w] (as in standard GNNs) but also uses the relation r; denote the message as

ml[v, r, w] = qlM
(
hl−1[v], r, hl−1[w]

)
;

2. An aggregation function qlA :
⋃
S∈N RS×K → RK that aggregates all messages from the

1-hop neighbourhood of a node; denote the aggregated message as

zl[v] = qlA
(
{ml[v, r, w] | (r, w) ∈ N 1[v]}

)
;

3. An update function qlU : RK × RK → RK that produces the new node states hl by
combining previous node states hl−1 and the aggregated messages zl:

hl[v] = qlU(h
l−1[v], zl[v]).

Different parameterisations of qlM, qlA, and qlU lead to different GNNs. For example, R-GCNs [26]
define the qlM function using per-relation the linear transformations ml[v, r, w] = 1

N 1[r,v]W
l
rh
l−1[w];

qlA is implemented by a summation and qlU is a non-linear transformation hl[v] = σ(zl[v] +
W l

0h
l−1[v]), where σ is the sigmoid function. For each layer, the learnable parameters are {W l

r}r∈R
and W l

0, all of which are matrices in RK×K .

3 Implicit Message-Passing in FMs

The sharp difference in analytical forms might give rise to the misconception that GNNs incorporate
message-passing over the neighbourhood of each node (up to L-hops), while FMs do not. In this work,
we show that by explicitly considering the training dynamics of FMs, we can uncover and analyse the
hidden message-passing mechanism within FMs. In turn, this will lead us to the formulation of a
novel class of GNNs well suited for multi-relational link prediction tasks (Section 4). Specifically,
we propose to interpret the FMs’ optimisation process of their objective (3) as the entity encoder. If
we consider, for simplicity, a gradient descent training dynamic, then

fϕt(v) = ϕt[v] = GDt(ϕt−1, T)[v] = GDt ◦...GD1︸ ︷︷ ︸
t

(ϕ0, T)[v], (5)

3

where ϕt is the embedding vector at the t-th step, t ∈ N+ is the total number of iterations and ϕ0 is a
random initialisation. GD is the gradient descent operator:

GD(ϕ, T) = ϕ− α∇ϕL = ϕ+ α
∑

(v,r,w)∈T

∂ logP (w|v, r)
∂ϕ

, (6)

where α = β |T |−1, with a η > 0 learning rate. We now dissect Equation (6) in two different (but
equivalent) ways. In the first, which we dub the edge view, we separately consider each addend of
the gradient ∇ϕL. In the second, we aggregate the contributions from all the triplets to the update
of a particular node. With this latter decomposition, which we call the node view, we can explicate
the message-passing mechanism at the core of the FMs. While the edge view suits a vectorised
implementation better, the node view further exposes the information flow among nodes, allowing us
to draw an analogy to message-passing GNNs.

3.1 The Edge View

Each addend of Equation (6) corresponds to a single edge (v, r, w) ∈ T and contributes to the update
of the representation of all nodes. The update on the representation of the subject ϕ[v] is:

GD(ϕ, {(v, r, w)})[v] = ϕ[v] + α

g(r)⊙ ϕ[w]︸ ︷︷ ︸
w→v

−
∑
u∈E

Pθ(u|v, r)g(r)⊙ ϕ[u]︸ ︷︷ ︸
u→v

 .

The w → v term indicates information flow from w (a neighbour of v) to v, increasing the score of
the gold triplet (v, r, w). The u→ v term indicates information flow from global nodes that decreases
the scores of all triplets (v, r, ?) having v as subject and r as predicate. Similarly, for the object w,

GD(ϕ, {(v, r, w)})[w] = ϕ[w] + α(1− Pθ(w|v, r)) g(r)⊙ ϕ[v]︸ ︷︷ ︸
v→w

,

where, again, the v → w term indicates information flow from the neighbouring node v. Finally, for
the nodes other than v and w, we have

GD(ϕ, {(v, r, w)})[u] = ϕ[u] + α

−Pθ(u|v, r)ϕ[v]⊙ g(r)︸ ︷︷ ︸
v→u

 .

3.2 The Node View

To fully uncover the message-passing mechanism of FMs, we now focus on the gradient descent
operation over a single node v ∈ E , referred to as the central node in the GNN literature. Recalling
Equation (6), we have:

GD(ϕ, T)[v] = ϕ[v] + α
∑

(v,r,w)∈T

∂ logP (w̄ | v̄, r̄)
∂ϕ[v]

, (7)

which aggregates the information stemming from the updates presented in the edge view. The next
theorem describes how this total information flow to a particular node can be recast as an instance of
message passing (cf. Section 2.2). We defer the proof to the appendix.
Theorem 3.1 (Message passing in FMs). The gradient descent operator GD (Equation (7)) on
the node embeddings of a DistMult model (Equation (4)) with the maximum likelihood objective
in Equation (3) and a multi-relational graph T defined over entities E induces a message-passing
operator whose composing functions are:

qM(ϕ[v], r, ϕ[w]) =

{
ϕ[w]⊙ g(r) if (r, w) ∈ N 1

+[v],
(1− Pθ(v|w, r))ϕ[w]⊙ g(r) if (r, w) ∈ N 1

−[v];
(8)

qA({m[v, r, w] : (r, w) ∈ N 1[v]}) =
∑

(r,w)∈N 1[v]

m[v, r, w]; (9)

qU(ϕ[v], z[v]) = ϕ[v] + αz[v]− βn[v], (10)

4

where, defining the sets of triplets T −v = {(s, r, o) ∈ T : s ̸= v ∧ o ̸= v},

n[v] =
|N 1

+[v]|
|T |

EPN1
+

[v]
Eu∼Pθ(·|v,r)g(r)⊙ ϕ[u] +

|T −v|
|T |

EPT −vPθ(v|s, r)g(r)⊙ ϕ[s], (11)

where PN 1
+[v] and PT −v are the empirical probability distributions associated to the respective sets.

What emerges from the equations is that each gradient step contains an explicit information flow
from the neighbourhood of each node, which is then aggregated with a simple summation. Through
this direct information path, t steps of gradient descent cover the t-hop neighbourhood of v. As t
goes towards infinity – or in practice – as training converges, FMs capture the global graph structure.
The update function (16) somewhat deviates from classic message passing frameworks as n[v] of
Equation (17) involves global information. However, we note that we can interpret this mechanism
under the framework of augmented message passing [34] and, in particular, as an instance of graph
rewiring.

Based on Theorem 3.1 and Equation (5), we can now view ϕ as the transient node states h (cf.
Section 2.2) and GD on node embeddings as a message-passing layer. This dualism sits at the core
of the ReFactor GNN model, which we describe next.

4 REFACTOR GNNs

FMs are trained by minimising the objective (3), initialising both sets of parameters (ϕ and ψ) and
performing GD until approximate convergence (or until early stopping terminates the training). The
implications are two fold: i) the initial value of the entity lookup table ϕ does not play any major role
in the final model after convergence; and ii) if we introduce a new set of entities, the conventional
wisdom is to retrain2 the model on the expanded knowledge graph. This is computationally rather
expensive compared to the “inductive” models that require no additional training and can leverage
node features like entity descriptions. However, as we have just seen in Theorem 3.1, the training
procedure of FMs may be naturally recast as a message-passing operation, which suggests that
it is possible to use FMs for inductive learning tasks. In fact, we envision that there is an entire
novel spectrum of model architectures interpolating between pure FMs and (various instantiations
of) GNNs. Here we propose one simple implementation of such an architecture which we dub
REFACTOR GNNS. Figure 1 gives an overview of REFACTOR GNNs.

The ReFactor Layer A REFACTOR GNN contains L REFACTOR layers, that we derive from
Theorem 3.1. Aligning with the GNN notations we introduced in Section 2.2, given a KG T and
entity representations hl−1 ∈ R|E|×K , the REFACTOR layer computes the representation of a node v
as follows:

hl[v] = ql(T , hl−1)[v] = hl−1[v]− βnl[v] + α
∑

(r,w)∈N 1[v]

qlM (hl−1[v], r, hl−1[w]), (12)

where the terms nl and qlM derive from Equation (17) and Equation (14), respectively. Differing
from the R-GCN, the first GNN on multi-relational graphs, where the incoming and outgoing neigh-
bourhoods are treated equally [26], REFACTOR GNNS treat incoming and outgoing neighbourhoods
differently. As we will show in the experiments, this allows REFACTOR GNNS to achieve good
performances also on datasets containing non-symmetric relationships. In fact, the REFACTOR layer
is built upon DistMult, which, despite being a symmetric operator, induces asymmetry into the final
representation.

Equation (12) describes the full batch setting, which can be expensive if the KG contains many
edges. Therefore, in practice, whenever the graph is big, we adopt a stochastic evaluation of the
REFACTOR layer by decomposing the evaluation into several mini-batches. We partition T into a set
of computationally tractable mini-batches. For each of them, we restrict the neighbourhoods to the
subparagraph induced by it and readjust the computation of nl[v] to include only entities and edges
present in it. We leave the investigation of other stochastic strategies (e.g. by taking Monte Carlo
estimations of the expectations in Equation (17)) to future work. Finally, we cascade the mini-batch
evaluation to produce one full layer evaluation.

2Typically until convergence, possibly by partially warm-starting θ.

5

v1

1 − P(v2 ∣ v1, r1)
ϕ[v2] ⊙ g(r1)

v2 v3

v4
1 − P(v3 ∣ v1, r2)

ϕ[v3] ⊙ g(r2)

ϕ[v4] ⊙ g(r3)

r1 r2

r3

w r

Γ

v

Softmax

P(v ∣ w, r)

Figure 1: ReFactor GNN architecture – the left figure describes the messages (coloured edges) used
to update the representation of node v1, which depend on the type of relationship between the sender
nodes and v1 in the graph G = {(v2, r1, v1), (v3, r2, v1), (v1, r3, v4)}; the right figure describes
the computation graph for calculating P (v | w, r), where v, w ∈ E and r ∈ R: the embedding
representations of w, r, and v are used to score the edge (w, r, v) via the scoring function Γ, which is
then normalised via the Softmax function.

Training The learnable parameters of REFACTOR GNNS are the relation embeddings ψ. Inspired
by [38], we learn ψ by layer-wise (stochastic) gradient descent. This is in contrast to conventional
GNN training, where we need to backpropagate through all the layers. A (full-batch) GD training dy-
namic for ψ can be written as ψt+1 = ψt−η∇Lt(ψt), where Lt(ψt) = −|T |−1

∑
T logPψt

(w|v, r),
with:

Pψt
(w|v, r) = Softmax(Γ(v, r, ·))[w], Γ(v, r, w) = ⟨ht[v], ht[w], gψt

(r)⟩
and the node state update as

ht =

{
X if t mod L = 0
qt mod L(T , ht−1) otherwise (13)

Implementation-wise, such a training dynamic equals to using an external memory for storing
historical node states ht−1 akin to the procedure introduced in [5]. The cached node states can then
be queried to compute ht using Equation (12). Under this perspective, we periodically clear the node
state cache every L full batches to force the model to predict based on on-the-fly L-layer message-
passing. After training, we obtain ψ∗ and do the inference by running L-layer message-passing with
ψ∗.

5 Experiments

We perform experiments to answer the following questions regarding REFACTOR GNNS:

• Q1. REFACTOR GNNS are derived from a message-passing reformulation of FMs: do they
also inherit their predictive accuracy in transductive KGC tasks? Section 5.1

• Q2. Are REFACTOR GNNS more statistically accurate than other GNN baselines in
inductive KBC tasks? Section 5.2

• Q3. Can we simplify REFACTOR GNNS by removing the term n[v], which involves nodes
not in the 1-hop neighbourhood? Section 5.3

For transductive experiments, we used three well-established KGC datasets: UMLS [11], CoDEx-
S [24], and FB15K237 [31]. For inductive experiments, we used the inductive KGC benchmarks
introduced by GraIL [30], which include 12 datasets, or rather 12 pairs of knowledge graphs:
(FB15K237_vi, FB15K237_vi_ind), (WN18RR_vi, WN18RR_vi_ind), and (NELL_vi, NELL_vi_ind),
where i ∈ [1, 2, 3, 4], and (_vi, _vi_ind) represents a pair of graphs with a shared relation vocabulary
and non-overlapping entities. We follow the standard KGC evaluation protocol by fully ranking
all the candidate entities and computing two metrics using the ranks of the ground-truth entities:
Mean Reciprocal Ranking (MRR) and Hit Ratios at Top K (Hits@K) with K ∈ [1, 3, 10]. For the
inductive KGC, we additionally consider the partial-ranking evaluation protocol used by GraIL for
fair comparison. Empirically, we find full ranking more difficult than partial ranking, and thus more
suitable for reflecting the differences among models on GraIL datasets – we would like to call for
future work on GraIL datasets to also adopt full ranking protocol on these datasets.

6

Entity Encoder UMLS CoDEx-S FB15K237
Lookup (FM, specif. DistMult) 0.90 0.43 0.30

REFACTOR GNNS (L = ∞) 0.93 0.44 0.33
Table 1: Test MRR for transductive KGC tasks.

We grid-searched over the hyper-parameters, and selected the best configuration based on validation
MRR. Since training deep GNNs with full-graph message passing might be slow for large knowledge
graphs, we follow the literature [9, 42, 39] to sample sub-graphs for training GNNs. Considering that
sampling on-the-fly often prevents high utilisation of GPUs, we resort to a two-stage process: we
first sampled and serialised sub-graphs around the target edges in the mini-batches; we then trained
the GNNs with the serialised sub-graphs. To ensure we have sufficient sub-graphs for training the
models, we sampled for 20 epochs for each knowledge graph, i.e. 20 full-passes over the full graph.
The sub-graph sampler we currently used is LADIES [42].

5.1 REFACTOR GNNS for Transductive Learning (Q1)

REFACTOR GNNS are derived from the message-passing reformulation of FMs. We expect them
to have roughly the same performance as FMs for transductive KGC tasks. To verify this, we
run experiments on the datatsets UMLS, CoDEx-S, and FB15K237. For fair comparison, we use
Equation (2) as the decoder and consider i) lookup embedding table as the entity encoder, which
forms the FM when combined with the decoder (Section 2.1), and ii) REFACTOR GNNS as the entity
encoder. REFACTOR GNNS are trained with L = ∞, i.e. we never clear the node state cache. Since
transductive KGC tasks do not involve new entities, the node state cache in REFACTOR GNNS can be
directly used for link prediction. Table 1 summarises the result. We observe that REFACTOR GNNS
achieve a similar or slightly better performance compared to the FM. This shows that REFACTOR
GNNS are able to capture the essence of FMs and thus maintain strong at transductive KGC.

5.2 REFACTOR GNNS for Inductive Learning (Q2)

Despite FMs’ good empirical performance on transductive KGC tasks, they fail to be inductive as
GNNs. According to our reformulation, this is due to the infinite message-passing layers hidden
in FMs’ optimisation. Discarding infinite message-passing layers, REFACTOR GNNS enable FMs
to perform inductive reasoning tasks by learning to use a finite set of message-passing layers for
prediction similarly to GNNs.

Here we present experiments to verify REFACTOR GNNS’s capability for inductive reasoning.
Specifically, we study the task of inductive KGC and investigate whether REFACTOR GNNS can
generalise to unseen entities. Following [30], on GraIL datasets, we trained models on the original
graph, and run 0-shot link prediction on the _ind test graph. Similar as the transductive experiments,
we use Equation (2) as the decoder and vary the entity encoder. We denote three-layer REFACTOR
GNNS as ReFactor GNNs (3) and six-layer REFACTOR GNNS as ReFactor GNNs (6). We
consider several baseline entity encoders: i) no-pretrain, models without any pretraining on the
original graph; ii) GAT(3), three-layer graph attention network [33]; iii) GAT(6), six-layer graph
attention network; iv) GraIL, a sub-graph-based relational GNN [30]; v) NBFNet, a path-based
GNN [41], current SoTA on GraIL datasets. In addition to randomly initialised vectors as the node
features, we also use as node features RoBERTa Encodings of the entity descriptions, which are
produced by SentenceBERT [22]. Due to space reason, we present the results on (FB15K237_v1,
FB15K237_v1_ind) in Figure 2. Results on other datasets are similar and can be found in the
appendix. We can see that without RoBERTa Embeddings as node features, REFACTOR GNNS
perform better than GraIL (+23%); with RoBERTa Embeddings as node features, REFACTOR GNNS
outperform both GraIL (+43%) and NBFNet (+10%), achieving new SoTA results on inductive KGC
tasks.

Performance vs Parameter Efficiency as #Message-Passing Layers Increases Usually, as the
number of message-passing layers increases in GNNs, the over-smoothing issue occurs while the
computational cost also increases exponentially. REFACTOR GNNS avoid this by layer-wise training
and sharing the weights across layers. Here we compare REFACTOR GNNS with {1, 3, 6, 9}

7

Model

H
its

@
10

, 5
0

N
eg

at
iv

e

0.00

0.25

0.50

0.75

1.00

No Pretrain GAT(3) GAT(6) ReFactor(3) ReFactor(6) Neural-LP DRUM RuleN GraIL
(Teru 2020)

NBFNet
(Zhu 2021)

Frozen Random Vector Roberta Encoding

Figure 2: Inductive KGC Performance. Models are trained on the KG FB15K237_v1 and tested on
another KG FB15K237_v1_ind, where the entities are completely new. The results of GraIL and
NBFNet are taken from [41]. It is unclear how to incorporate node features in GraIL and NBFNet.

#Message-Passing Layers

Te
st

 M
R

R

#P
ar

am
s

(M
)

0.0

0.2

0.4

0.6

0

2

4

6

1 2 3 6 9

GAT ReFactorGNN -- #Params GAT 　 -- #Params ReFactorGNN

Figure 3: Performance vs Parameter Efficiency as #Layers Increases on FB15K237_v1. The left axis
is Test MRR while the right axis is #Parameters. The solid lines and dashed lines indicate the changes
of Test MRR and the changes of #Parameters.

8

Test MRR Frozen Random Representations RoBERTa Encodings
with n[v] 0.425 0.486

without n[v] 0.418 0.452
Table 2: Ablation on n[v] for REFACTOR GNNS (6) trained on FB15K237_v1.

message-passing layer(s) with same-depth GATs – results are summarised in Figure 3. We observe
that increasing the number of message-passing layers in GATs does not necessarily improve the
predictive accuracy – the best results were obtained with 3 message-passing layers on FB15K237_v1
while using 6 and 9 layers leads to performance degradation. On the other hand, REFACTOR GNNS
obtain consistent improvements when increasing #Layers from 1 to 3, 6, and 9. REFACTOR GNNS
(6, 6) and (9, 9) clearly outperform their GAT counterparts. Most importantly, REFACTOR GNNS
are more parameter-efficient than GATs, with a constant #Parameters as #Layers increases.

5.3 Beyond Message-Passing (Q3)

As shown by Theorem 3.1, REFACTOR GNNS contain not only terms capturing information flow
from the 1-hop neighbourhood, which falls into the classic message-passing framework, but also
a term n[v] that involve nodes outside the 1-hop neighbourhood. The term n[v] can be treated
as augmented message-passing on a dynamically rewired graph [34]. Here we perform ablation
experiments to measure the impact of the n[v] term. Table 2 summarises the ablation results: we
can see that, without the term n[v], REFACTOR GNNS with random vectors as node features yield
a 2% lower MRR, while REFACTOR GNNS with RoBERTa encodings as node features produce
a 7% lower MRR. This suggests that augmented message-passing also plays a significant role in
REFACTOR GNNS’ generalisation properties in downstream link prediction tasks. Future work might
gain more insights by further dissecting the n[v] term.

6 Related Work

Multi-Relational Graph Representation Learning Previous work on multi-relational graph
representation learning focused either on FMs [21, 32, 37, 13, 20, 3, 18, 2] or on GNN-based
models [26, 36, 40, 14]. Recently, FMs were found to be significantly more accurate than GNNs
in KGC tasks, when coupled with specific training strategies [23, 10, 13]. While more advanced
GNNs [41] for KBC are showing promise at the cost of extra algorithm complexity, little effort has
been devoted to establish the links between plain GNNs and FMs, which are strong multi-relational
link predictors despite their simplicity. Our work aims to align GNNs with FMs so that we can
combine the strengths from both families of models.

Relationships between FMs and GNNs We would like to clarify our scope, by highlighting that
our “FM” refers to factorisation-based models used for KGC, different from matrix factorisation,
where there are no relational parameters. Similarly, our “GNN” refers to GNNs developed for KGC,
which incorporate (positional) node features as elaborated in Section 2.2. We recognise that a very
recent work [28] builds a theoretical link between structural GNNs and node (positional) embeddings,
where the second model category encompasses not only FMs but also many practical GNNs. Both
our FMs and GNNs fall into the second model category. Therefore, we consider our work building a
more fine-grained connection between positional node embeddings produced by FMs and positional
node embeddings produced by GNNs, while at the same time focusing on KGC. Beyond FMs in KGC,
using graph signal processing theory, [27] show that matrix factorisation (MF) based recommender
models correspond to ideal low-pass graph convolutional filters. Coincidentally, they also find infinite
neighbourhood coverage in MF although using a completely different approach and focusing on a
different domain in contrast to our work.

Message Passing in GNNs Message passing allows to recursively decompose a global function
into simple local, parallelisable computations [16]. Recently, [6] provided a unified message-passing
reformulation for various GNN architectures, including Graph Attention Networks [33], Gated Graph
Neural Networks [15], and Graph Convolutional Networks [12]. In this work, we show that FMs
can also be cast as a special type of GNNs, by considering SGD updates [1] over node embeddings

9

as message-passing operations between nodes. To the best of our knowledge, our work is the
first to provide such connections between FMs and GNNs. In our work, we show that FMs can
be seen as instances of GNNs, with a characteristic feature being in the nodes being considered
during the message-passing process: our REFACTOR GNNS can be seen as using an Augmented
Message-Passing process on a dynamically re-wired graph [34].

7 Conclusion & Future Work

Our work establishes a link between FMs and GNNs on the task of multi-relational link prediction.
The reformulation of FMs as GNNs addresses the question why FMs are stronger multi-relational
link predictors compared to plain GNNs. Guided by the reformulation, we further propose a new
variant of GNNs, REFACTOR GNNS, which combine the strengths from both FMs and classic GNNs.
Empirical experiments show that REFACTOR GNNS produce significantly more accurate results than
our GNN baselines on link prediction tasks.

Limitations Since we adopt a two-stage (sub-graph serialisation and model training) approach
instead of online sampling, there can be side-effects from the low sub-graph diversity. In our
experiments, we only used LADIES [42] for sub-graph sampling. We plan to experiment with
different sub-graph sampling algorithms, such as GraphSaint [39], and see how this affect the
downstream link prediction results. Furthermore it would be interesting to analyse decoders other
than DistMult, as well as additional optimisation schemes beyond SGD and AdaGrad.

References
[1] Léon Bottou. Stochastic Gradient Descent Tricks, pages 421–436. Springer Berlin Heidelberg,

Berlin, Heidelberg, 2012.

[2] Yihong Chen, Pasquale Minervini, Sebastian Riedel, and Pontus Stenetorp. Relation prediction
as an auxiliary training objective for improving multi-relational graph representations. In 3rd
Conference on Automated Knowledge Base Construction, 2021.

[3] Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. Convolutional 2d
knowledge graph embeddings. In AAAI, pages 1811–1818. AAAI Press, 2018.

[4] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine Learning Research, 12(61):2121–2159, 2011.

[5] Matthias Fey, Jan Eric Lenssen, Frank Weichert, and Jure Leskovec. Gnnautoscale: Scalable
and expressive graph neural networks via historical embeddings. In ICML, 2021.

[6] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning,
pages 1263–1272. PMLR, 2017.

[7] Marco Gori, Gabriele Monfardini, and Franco Scarselli. A new model for learning in graph
domains. Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.,
2:729–734 vol. 2, 2005.

[8] William L. Hamilton. Graph representation learning. Synthesis Lectures on Artificial Intelligence
and Machine Learning, 14(3):1–159.

[9] William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Proceedings of the 31st International Conference on Neural Information Processing
Systems, pages 1025–1035, 2017.

[10] Prachi Jain, Sushant Rathi, Mausam, and Soumen Chakrabarti. Knowledge base completion:
Baseline strikes back (again). CoRR, abs/2005.00804, 2020.

[11] Charles Kemp, Joshua B. Tenenbaum, Thomas L. Griffiths, Takeshi Yamada, and Naonori Ueda.
Learning systems of concepts with an infinite relational model. In AAAI, pages 381–388. AAAI
Press, 2006.

10

[12] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016.

[13] Timothée Lacroix, Nicolas Usunier, and Guillaume Obozinski. Canonical tensor decomposition
for knowledge base completion. In ICML, volume 80 of Proceedings of Machine Learning
Research, pages 2869–2878. PMLR, 2018.

[14] Ren Li, Yanan Cao, Qiannan Zhu, Guanqun Bi, Fang Fang, Yi Liu, and Qian Li. How does
knowledge graph embedding extrapolate to unseen data: a semantic evidence view. CoRR,
abs/2109.11800, 2021.

[15] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard S. Zemel. Gated graph sequence
neural networks. In ICLR (Poster), 2016.

[16] David JC MacKay. Information theory, inference and learning algorithms. Cambridge university
press, 2003.

[17] Deepak Nathani, Jatin Chauhan, Charu Sharma, and Manohar Kaul. Learning attention-based
embeddings for relation prediction in knowledge graphs. In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics, pages 4710–4723, 2019.

[18] Dai Quoc Nguyen, Tu Dinh Nguyen, Dat Quoc Nguyen, and Dinh Q. Phung. A novel embedding
model for knowledge base completion based on convolutional neural network. In NAACL-HLT
(2), pages 327–333. Association for Computational Linguistics, 2018.

[19] Maximilian Nickel, Kevin Murphy, Volker Tresp, and Evgeniy Gabrilovich. A review of
relational machine learning for knowledge graphs. Proc. IEEE, 104(1):11–33, 2016.

[20] Maximilian Nickel, Lorenzo Rosasco, and Tomaso A. Poggio. Holographic embeddings of
knowledge graphs. In AAAI, pages 1955–1961. AAAI Press, 2016.

[21] Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. A three-way model for collective
learning on multi-relational data. In ICML, pages 809–816. Omnipress, 2011.

[22] Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing. Association for Computational Linguistics, 11 2019.

[23] Daniel Ruffinelli, Samuel Broscheit, and Rainer Gemulla. You can teach an old dog new
tricks! on training knowledge graph embeddings. In International Conference on Learning
Representations, 2020.

[24] Tara Safavi and Danai Koutra. Codex: A comprehensive knowledge graph completion bench-
mark. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 8328–8350, 2020.

[25] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE Trans. Neural Networks, 20(1):61–80, 2009.

[26] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov, and Max
Welling. Modeling relational data with graph convolutional networks. In European semantic
web conference, pages 593–607. Springer, 2018.

[27] Yifei Shen, Yongji Wu, Yao Zhang, Caihua Shan, Jun Zhang, Khaled B Letaief, and Dongsheng
Li. How powerful is graph convolution for recommendation? arXiv preprint arXiv:2108.07567,
2021.

[28] Balasubramaniam Srinivasan and Bruno Ribeiro. On the equivalence between positional node
embeddings and structural graph representations. In International Conference on Learning
Representations, 2020.

[29] Zhiqing Sun, Shikhar Vashishth, Soumya Sanyal, Partha Talukdar, and Yiming Yang. A
re-evaluation of knowledge graph completion methods. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, pages 5516–5522, Online, July 2020.
Association for Computational Linguistics.

11

[30] Komal K. Teru, Etienne G. Denis, and William L. Hamilton. Inductive relation prediction by
subgraph reasoning. In ICML, volume 119 of Proceedings of Machine Learning Research,
pages 9448–9457. PMLR, 2020.

[31] Kristina Toutanova and Danqi Chen. Observed versus latent features for knowledge base and
text inference. In Proceedings of the 3rd workshop on continuous vector space models and their
compositionality, pages 57–66, 2015.

[32] Théo Trouillon, Johannes Welbl, Sebastian Riedel, Eric Gaussier, and Guillaume Bouchard.
Complex embeddings for simple link prediction. In Maria Florina Balcan and Kilian Q.
Weinberger, editors, Proceedings of The 33rd International Conference on Machine Learning,
volume 48 of Proceedings of Machine Learning Research, pages 2071–2080, New York, New
York, USA, 20–22 Jun 2016. PMLR.

[33] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018.

[34] Petar Veličković. Message passing all the way up, 2022.

[35] Xiaoran Xu, Wei Feng, Yunsheng Jiang, Xiaohui Xie, Zhiqing Sun, and Zhi-Hong Deng.
Dynamically pruned message passing networks for large-scale knowledge graph reasoning. In
International Conference on Learning Representations, 2020.

[36] Xiaoran Xu, Wei Feng, Yunsheng Jiang, Xiaohui Xie, Zhiqing Sun, and Zhi-Hong Deng.
Dynamically pruned message passing networks for large-scale knowledge graph reasoning. In
ICLR. OpenReview.net, 2020.

[37] Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding entities and
relations for learning and inference in knowledge bases. In ICLR (Poster), 2015.

[38] Yuning You, Tianlong Chen, Zhangyang Wang, and Yang Shen. L2-gcn: Layer-wise and learned
efficient training of graph convolutional networks. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 2127–2135, 2020.

[39] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna.
GraphSAINT: Graph sampling based inductive learning method. In International Conference
on Learning Representations, 2020.

[40] Zhao Zhang, Fuzhen Zhuang, Hengshu Zhu, Zhi-Ping Shi, Hui Xiong, and Qing He. Relational
graph neural network with hierarchical attention for knowledge graph completion. In AAAI,
pages 9612–9619. AAAI Press, 2020.

[41] Zhaocheng Zhu, Zuobai Zhang, Louis-Pascal A. C. Xhonneux, and Jian Tang. Neural
bellman-ford networks: A general graph neural network framework for link prediction. CoRR,
abs/2106.06935, 2021.

[42] Difan Zou, Ziniu Hu, Yewen Wang, Song Jiang, Yizhou Sun, and Quanquan Gu. Few-shot
representation learning for out-of-vocabulary words. In Advances in Neural Information
Processing Systems 32: Annual Conference on Neural Information Processing Systems, NeurIPS,
2019.

12

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] , in Section 7
(c) Did you discuss any potential negative societal impacts of your work? [Yes] , in the

appendix
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] , in the appendix

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [Yes] , in the appendix
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

13

A Theorem 1 Proof

In this section, we prove Theorem 1, which we restate here for convenience.
Theorem A.1 (Message passing in FMs). The gradient descent operator GD (7) on the node
embeddings of a DistMult model (Equation (4)) with the maximum likelihood objective in Equation (3)
and a multi-relational graph T defined over entities E induces a message-passing operator whose
composing functions are:

qM(ϕ[v], r, ϕ[w]) =

{
ϕ[w]⊙ g(r) if (r, w) ∈ N 1

+[v],
(1− Pθ(v|w, r))ϕ[w]⊙ g(r) if (r, w) ∈ N 1

−[v];
(14)

qA({m[v, r, w] : (r, w) ∈ N 1[v]}) =
∑

(r,w)∈N 1[v]

m[v, r, w]; (15)

qU(ϕ[v], z[v]) = ϕ[v] + αz[v]− βn[v], (16)

where, defining the sets of triplets T −v = {(s, r, o) ∈ T : s ̸= v ∧ o ̸= v},

n[v] =
|N 1

+[v]|
|T |

EPN1
+

[v]
Eu∼Pθ(·|v,r)g(r)⊙ ϕ[u] +

|T −v|
|T |

EPT −vPθ(v|s, r)g(r)⊙ ϕ[s], (17)

where PN 1
+[v] and PT −v are the empirical probability distributions associated to the respective sets.

Proof. Remind that we assume there are no triplets where the source and the target node are the same
(i.e. (v, r, v), with v ∈ E and r ∈ R), and let v ∈ E be a node in E . First, let us consider the gradient
descent operator GD over v’s node embedding ϕ[v]:

GD(ϕ, T)[v] = ϕ[v] + α
∑

(v̄,̄r,w̄)∈T

∂ logP (w̄ | v̄, r̄)
∂ϕ[v]

.

The gradient is a sum over components associated with the triplets (v̄, r̄, w̄) ∈ T ; based on whether
the corresponding triplet involves v in the subject or object position, or does not involve v at all, these
components can be grouped into three categories:

1. Components corresponding to the triplets where v̄ = v ∧ w̄ ̸= v. The sum over all these
components is given by:∑
(v,̄r,w̄)∈T

∂ logP (w̄ |v, r̄)
∂ϕ[v]

=
∑

(v,̄r,w̄)∈T

[
∂Γ(v, r̄, w̄)

∂ϕ[v]
−
∑
u

P (u|v, r̄)∂Γ(v, r̄, u)
∂ϕ[v]

]

=
∑

(r̄,w̄)∈N 1
+[v]

ϕ[w̄]⊙ g(r̄)−
∑

(v,̄r,w̄)∈T

∑
u

P (u|v, r̄)g(r̄)⊙ ϕ[u].

2. Components corresponding to the triplets where v̄ ̸= v ∧ w̄ = v. The sum over all these
components is given by:∑

(v̄,̄r,v)∈T

∂ logP (v| v̄, r̄)
∂ϕ[v]

=
∑

(v̄,̄r,v)∈T

[
∂Γ(v̄, r̄, v)

∂ϕ[v]
−
∑
u

P (u| v̄, r̄)∂Γ(v̄, r̄, u)
∂ϕ[v]

]

=
∑

(v̄,̄r)∈N 1
−[v]

g(r̄)⊙ ϕ[v̄] (1− P (v| v̄, r̄)).

3. Components corresponding to the triplets where v̄ ̸= v ∧ w̄ ̸= v. The sum over all these
components is given by:∑

(v̄,̄r,w̄)∈T

∂ logP (w̄ | v̄, r̄)
∂ϕ[v]

=
∑

(v̄,̄r,w̄)∈T

[
0−

∑
u

P (u| v̄, r̄)∂Γ(v̄, r̄, u)
∂ϕ[v]

]

=
∑

(v̄,̄r,w̄)∈T

−P (v| v̄, r̄)∂Γ(v̄, r̄, v)
∂ϕ[v]

.

=
∑

(v̄,̄r,w̄)∈T

−P (v| v̄, r̄)g(r̄)⊙ ϕ[v̄].

14

Collecting all these three categories together, the GD operator over ϕ[v], or rather the node represen-
tation update in DistMult, can be rewritten as:

GD(ϕ, T)[v] = ϕ[v] + α
∑

{(r̄,w̄)∈N 1
+[v]}

ϕ[w̄]⊙ g(r̄) +
∑

(r̄,v̄)∈N 1
−[v]

ϕ[v̄]⊙ g(r̄) (1− P (v| v̄, r̄))

︸ ︷︷ ︸
v’s neighbourhood→v

(18)

−α
∑

(v̄,̄r,w̄)∈T ,v̄ ̸=v,w̄ ̸=v

P (v| v̄, r̄)g(r̄)⊙ ϕ[v̄]− α
∑

(v,̄r,w̄)∈T

∑
u

P (u|v, r̄)g(r̄)⊙ ϕ[u]

︸ ︷︷ ︸
beyond neighbourhood→v

.

(19)
Note that the component “v’s neighbourhood → v” (highlighted in red) in Equation (18) is a sum
over v’s neighbourhood – gathering information from positive neighbours ϕ[w̄], (·, w̄) ∈ N 1

+[v] and
negative neighbours ϕ[v̄], (·, v̄) ∈ N 1

−[v]. Hence, each atomic term of the sum can be seen as a
message vector between v and v’s neighbouring node. Formally, letting w be v’s neighbouring node,
the message vector can be put down as follows

m[v, r, w] = qM(ϕ[v], r, ϕ[w]) =

{
ϕ[w]⊙ g(r), if (r, w) ∈ N 1

+[v],

ϕ[w]⊙ g(r)(1− P (v|w, r)), if (r, w) ∈ N 1
−[v],

(20)

which induces a bi-directional message function qM . On the other hand, the summation over these
atomic terms (message vectors) induces the aggregate function qA:

z[v] = qA({m[v, r, w] : (r, w) ∈ N 1[v]})

=
∑

(r̄,w̄)∈N 1
+[v]

ml[v, r̄, w̄] +
∑

(r̄,v̄)∈N 1
−[v]

ml[v̄, r̄, v] =
∑

(r,w)∈N 1[v]

m[v, r, w]. (21)

Finally, the component “beyond neighbourhood → v” (highlighted in blue) is a term that contains
dynamic information flow from global nodes to v. If we define:

n[v] =
1

|T |
∑

(v,̄r,w̄)∈T

∑
u

P (u|v, r̄)g(r̄)⊙ ϕ[u] +
1

|T |
∑

(v̄,̄r,w̄)∈T ,v̄ ̸=v,w̄ ̸=v

P (v| v̄, r̄)g(r̄)⊙ ϕ[v̄],

the GD operator over ϕ[v] then boils down to an update function which utilises previous node state
ϕ[v], aggregated message z[v] and a global term n[v] to produce the new node state:

GD(ϕ, T)[v] = qU(ϕ[v], z[v]) = ϕ[v] + αz[v]− βn[v]. (22)
Furthermore, n[v] can be seen as a weighted sum of expectations by recasting the summations over
triplets as expectations:

n[v] =
|N 1

+[v]|
|T |

E(v,̄r,w̄)∼PN1
+

[v]
Eu∼P (·|v,̄r)g(r̄)⊙ ϕ[u] +

|T −v|
|T |

E(v̄,̄r,w̄)∼PT −v
P (v| v̄, r̄,)g(r̄)⊙ ϕ[v̄]

(23)

where T −v = {(v̄, r̄, v̄′) ∈ T | v̄ ̸= v ∧ v̄′ ̸= v} is the set of triplets that do not contain v.

A.1 Extension to AdaGrad and N3 Regularisation

State-of-the-art FMs are often trained with appropriate training strategies. For example, using N3
regularizer [13] and AdaGrad optimiser [4]. Our results can be extended to these settings. For N3
regularizer, we need to add a gradient term induced by the regularised loss:

∂L

∂ϕ[v]
=

∂Lfit

∂ϕ[v]
+ λ

∂Lreg

∂ϕ[v]
=

∂Lfit

∂ϕ[v]
+ λsign(ϕ[v])ϕ[v]2

where Lfit is the training loss, Lreg is the regularisation term, sign(·) is a element-wise sign function,
and λ ∈ R+ is a hyper-parameter specifying the regularisation strength. The added component
relative to this regularizer fits into the message function as follows:

qM(ϕ[v], r, ϕ[w]) =

{
ϕ[w]⊙ g(r)− λsign(ϕ[w])ϕ[w]2, if (r, w) ∈ N 1

+[v],

ϕ[w]⊙ g(r)(1− P (v|w, r))− λsign(ϕ[w])ϕ[w]2, if (w, r) ∈ N 1
−[v];

(24)

15

Our derivation in Section 3 focuses on (stochastic) gradient descent as the optimiser for training
FMs. Going beyond this, complex gradient-based optimisers like AdaGrad use running statistics
of the gradients to further calibrate the gradient. For example, for AdaGrad optimiser, the gradient
is element-wisely re-scaled by 1√

sv+ϵ
∇ϕ[v]L where s is the running sum of squared gradients and

ϵ > 0 is a hyper-parameter added to the denominator to improve numerical stability. Such re-scaling
can be absorbed into the update equation:

AdaGrad(ϕ, T)[v] = ϕ[v] + (αz[v]− βn[v]) ∗ 1√
s[v] + ϵ

.

B Additional Results on Inductive KGC Tasks

In this paper, we describe the results on FB15K237_v1_ind under some random seed. To double-
check the significance and sensitivity, we further experiment with another 5 random seeds. Due to
computational budget, for this experiment, we resorted to a much coarser grid when doing the hyper-
parameters sweeps. Following standard evaluation protocols, we report the mean values and standard
deviations of the filtered Hits@10 over 5 random seeds. Numbers for Neural-LP, DRUM, RuleN,
GraIL and NBFNet are taken from the literature [30, 41]. “-” means the numbers are inapplicable.
Table 3 summarises the results. REFACTOR GNNS are able to use well both types of input features
while textual features benefit both GAT and REFACTOR GNNS on most datasets. Increasing depth
helps WN18RR_vi_ind (i ∈ [1, 2, 3, 4]) most. Future work could consider the impact of textual
node features provided by different pretrained language models. Another interesting direction is
to investigate the impact of depth GNNs for datasets like WN18RR, where lots of hierarchies are
observed in the data.

In addition to the partial ranking evaluation protocol, where the ground-truth subject/object entity is
ranked against 50 sampled entities 3, we also consider the full ranking evaluation protocol, where the
ground-truth subject/object entity is ranked against all the entities. Table 4 summarises the results.
Empirically, we observe full ranking is more suitable for reflecting the differences among models
than partial ranking. It also bears less variance than partial ranking since it requires no sampling
from the candidate entities. Hence, we would like to call for the community to use full ranking on
these datasets in the future.

C Additional Results on Using A Different Number of Message-Passing
Layers at Test Time

We study how models perform when there is a train-test discrepany in terms of numbers of message-
passing layers (different Ls for train and test). We perform experiments on ...dataset... WN18RRv1

fixed lr, no reg, no weight decay

with node features

full ranking metrics

C.1 Train and Test with the same set of entities (transductive)

Take a model trained with 6-hop and test it with 1, 2, 3, 6, 9, 27 message-passing

infer with many message-passing layers no matter how frequent you clear the node state cache, the
result will be good infer with few message-passing layers training with more message-passing layers
doesn’t always bring good results training with many messgae-passing layers can be very bad if you
only infer with a small number of message-passing layers training with few message-passing layers
might be good if you infer with a large number of message-passing layers

C.2 Train and Test with different sets of entities (inductive)

Take a model trained with 6-hop and test it with 1, 2, 3, 6, 9, 27 message-passing
3One implementation for such evaluation can be found in https://github.com/kkteru/grail/blob/

master/test_ranking.py#L448.

16

https://github.com/kkteru/grail/blob/master/test_ranking.py#L448
https://github.com/kkteru/grail/blob/master/test_ranking.py#L448

1 2 3 6 9
#Message-Passing Layers at Inference Time

9
6

3
2

1
#M

es
sa

ge
-P

as
sin

g
La

ye
rs

 a
t T

ra
in

in
g

Ti
m

e

0.275 0.491 0.567 0.599 0.601

0.33 0.493 0.554 0.6 0.601

0.365 0.515 0.574 0.603 0.602

0.367 0.493 0.58 0.601 0.596

0.364 0.487 0.579 0.601 0.601 0.30

0.35

0.40

0.45

0.50

0.55

0.60

Figure 4: Hits@1 with varying L for training and inference time. The training and test are on the
same set of entities.

17

Ta
bl

e
3:

H
its

@
10

w
ith

Pa
rt

ia
lR

an
ki

ng
ag

ai
ns

t5
0

N
eg

at
iv

e
Sa

m
pl

es
.“

[T
]”

in
di

ca
te

s
us

in
g

te
xt

ua
le

nc
od

in
gs

of
en

tit
y

de
sc

ri
pt

io
ns

[2
2]

as
in

pu
t(

po
si

tio
na

l)
no

de
fe

at
ur

es
;“

[R
]”

in
di

ca
te

s
us

in
g

fr
oz

en
ra

nd
om

ve
ct

or
s

as
in

pu
t(

po
si

tio
na

l)
no

de
fe

at
ur

e.

W
N

18
R

R
FB

15
k-

23
7

N
E

L
L

-9
95

v1
v2

v3
v4

v1
v2

v3
v4

v1
v2

v3
v4

N
o

Pr
et

ra
in

[R
]

0.
22

0
±
0.
04

8
0
.2
26

±
0.
01

3
0
.2
4
4
±
0.
0
20

0.
2
18

±
0
.0
50

0
.2
15

±
0.
01

9
0
.2
07

±
0.
00

8
0
.2
11

±
0
.0
02

0
.2
0
5
±
0.
0
08

0.
5
43

±
0.
02

2
0
.2
07

±
0
.0
08

0
.2
1
6
±
0.
0
0
4

0.
1
98

±
0.
00

6
N

o
Pr

et
ra

in
[T

]
0
.2
6
7±

0.
0
2
0

0
.2
36

±
0
.0
20

0.
2
92

±
0.
02

5
0.
2
5
3±

0.
0
22

0
.2
4
2
±
0
.0
18

0
.2
2
7
±
0.
0
07

0.
24

0
±
0.
01

1
0
.2
44

±
0.
00

3
0
.5
3
8±

0.
07

9
0.
23

4±
0
.0
1
7

0
.2
42

±
0.
02

0
0.
1
9
1±

0.
0
36

N
eu

ra
l-

L
P

0.
74

4
0.
6
89

0.
46

2
0.
6
71

0.
5
29

0.
58

9
0.
52

9
0.
5
59

0.
4
08

0.
78

7
0.
8
27

0.
8
06

D
R

U
M

0.
7
4
4

0.
6
89

0.
4
62

0.
67

1
0.
52

9
0.
5
87

0.
5
29

0.
5
59

0.
19

4
0.
78

6
0.
8
2
7

0.
80

6
R

ul
eN

0.
80

9
0.
78

2
0.
53

4
0.
7
16

0.
49

8
0.
7
7
8

0.
8
77

0.
85

6
0.
53

5
0.
8
18

0.
77

3
0.
61

4
G

A
T

(3
)[

R
]

0.
58

3
±
0.
02

2
0
.7
97

±
0.
00

2
0
.5
6
0
±
0.
0
05

0.
6
60

±
0
.0
15

0
.3
33

±
0.
04

2
0
.3
12

±
0.
03

6
0
.4
07

±
0
.0
72

0
.3
6
3
±
0.
0
50

0.
9
06

±
0.
00

4
0
.3
03

±
0
.0
31

0
.3
5
1
±
0.
0
0
9

0.
1
87

±
0.
09

8
G

A
T

(6
)[

R
]

0
.8
5
0±

0.
0
1
4

0
.8
41

±
0
.0
01

0.
6
31

±
0.
02

0
0.
8
0
2±

0.
0
04

0
.4
0
1
±
0
.0
2
0

0.
4
45

±
0.
01

8
0.
46

1±
0.
0
48

0
.4
0
6
±
0
.1
4
3

0
.8
1
1±

0.
03

9
0.
67

0±
0
.0
5
5

0
.3
41

±
0.
04

2
0.
3
0
1±

0.
0
02

G
A

T
(3

)[
T

]
0
.9
7
0
±
0
.0
0
2

0.
9
8
0±

0
.0
01

0.
8
97

±
0.
00

5
0
.9
60

±
0.
00

1
0
.8
06

±
0
.0
03

0
.9
4
2
±
0.
0
01

0.
94

1
±
0.
00

2
0
.9
54

±
0
.0
01

0.
93

8±
0.
0
05

0.
8
39

±
0.
00

1
0
.9
62

±
0
.0
01

0
.3
5
4
±
0.
0
02

G
A

T
(6

)[
T

]
0
.9
6
5
±
0.
0
02

0.
98

6
±
0.
00

1
0
.9
2
0
±
0
.0
0
2

0
.9
7
0
±
0.
0
03

0.
8
26

±
0.
0
04

0
.9
4
3
±
0.
00

1
0
.9
2
7±

0.
0
03

0.
92

7
±
0
.0
0
1

0.
90

4±
0.
0
00

0.
81

1±
0.
0
01

0
.8
8
0
±
0
.0
0
1

0
.2
9
7±

0.
0
03

G
ra

IL
0.
82

5
0.
78

7
0.
5
84

0.
73

4
0.
6
42

0.
8
18

0.
82

8
0.
8
93

0.
5
9
5

0.
9
33

0.
9
14

0.
7
3
2

N
B

FN
et

0.
9
4
8

0.
90

5
0.
8
9
3

0.
8
90

0.
83

4
0.
9
49

0.
9
51

0.
9
6
0

-
-

-
-

R
eF

ac
to

rG
N

N
(3

)[
R

]
0.
89

9
±
0.
00

3
0
.8
42

±
0.
00

4
0
.6
0
5
±
0.
0
00

0.
8
01

±
0
.0
02

0
.6
73

±
0.
00

0
0
.8
12

±
0.
00

2
0
.8
33

±
0
.0
03

0
.8
7
7
±
0.
0
02

0.
9
13

±
0.
00

0
0
.9
13

±
0
.0
11

0
.8
9
3
±
0.
0
0
0

0.
8
38

±
0.
00

2
R

eF
ac

to
rG

N
N

(6
)[

R
]

0
.8
8
5±

0.
0
0
0

0
.8
54

±
0
.0
03

0.
7
38

±
0.
00

6
0.
8
1
7±

0.
0
04

0
.7
8
7
±
0
.0
07

0
.9
0
3
±
0.
0
03

0.
90

3
±
0.
00

2
0
.9
20

±
0.
00

2
0
.9
7
1±

0.
00

7
0.
95

7±
0
.0
0
3

0
.9
35

±
0.
00

3
0.
9
2
7±

0.
0
01

R
eF

ac
to

rG
N

N
(3

)[
T

]
0
.9
18

±
0.
0
0
2

0.
9
7
3±

0
.0
01

0.
9
10

±
0.
00

3
0
.9
34

±
0.
00

1
0
.9
00

±
0
.0
04

0
.9
5
9
±
0.
0
01

0.
95

2
±
0.
00

2
0
.9
68

±
0
.0
01

0
.9
5
5
±
0
.0
0
4

0.
9
31

±
0.
00

1
0
.9
78

±
0
.0
01

0
.9
2
9
±
0.
0
01

R
eF

ac
to

rG
N

N
(6

)[
T

]
0
.9
7
0
±
0
.0
0
2

0
.9
8
8
±
0
.0
0
1

0
.9
4
4
±
0
.0
0
2

0
.9
8
7
±
0
.0
0
0

0
.9
2
0
±
0
.0
0
1

0
.9
6
3
±
0
.0
0
1

0
.9
6
2
±
0
.0
0
2

0
.9
7
0
±
0
.0
0
2

0
.9
4
9±

0.
0
11

0
.9
6
3
±
0
.0
0
1

0
.9
9
4
±
0
.0
0
0

0
.9
5
5
±
0
.0
0
2

Ta
bl

e
4:

H
its

@
10

w
ith

Fu
ll

R
an

ki
ng

ag
ai

ns
tA

ll
C

an
di

da
te

E
nt

iti
es

.“
[T

]”
in

di
ca

te
s

us
in

g
te

xt
ua

le
nc

od
in

gs
of

en
tit

y
de

sc
ri

pt
io

ns
[2

2]
as

in
pu

t(
po

si
tio

na
l)

no
de

fe
at

ur
es

;“
[R

]”
in

di
ca

te
s

us
in

g
fr

oz
en

ra
nd

om
ve

ct
or

s
as

in
pu

t(
po

si
tio

na
l)

no
de

fe
at

ur
e.

W
N

18
R

R
FB

15
k-

23
7

N
E

L
L

-9
95

v1
v2

v3
v4

v1
v2

v3
v4

v1
v2

v3
v4

N
o

Pr
et

ra
in

[R
]

0.
02

0
±
0.
00

6
0
.0
04

±
0.
00

1
0
.0
0
4
±
0.
0
03

0.
0
03

±
0
.0
01

0
.0
13

±
0.
00

3
0
.0
12

±
0.
00

1
0
.0
04

±
0
.0
01

0
.0
0
2
±
0.
0
01

0.
2
55

±
0.
02

1
0
.0
04

±
0
.0
01

0
.0
0
1
±
0.
0
0
1

0.
0
03

±
0.
00

1
N

o
Pr

et
ra

in
[T

]
0
.0
2
7±

0.
0
0
9

0
.0
07

±
0
.0
03

0.
0
06

±
0.
00

1
0.
0
0
5±

0.
0
01

0
.0
1
4
±
0
.0
01

0
.0
1
0
±
0.
0
01

0.
00

7
±
0.
00

1
0
.0
06

±
0.
00

1
0
.2
6
2±

0.
03

1
0.
00

6±
0
.0
0
2

0
.0
06

±
0.
00

2
0.
0
0
3±

0.
0
01

G
A

T
(3

)[
R

]
0.
17

1
±
0.
00

8
0
.5
04

±
0.
02

6
0
.2
6
0
±
0.
0
22

0.
0
89

±
0
.0
17

0
.0
74

±
0.
00

3
0
.0
50

±
0.
01

4
0
.0
51

±
0
.0
19

0
.0
2
3
±
0.
0
12

0.
8
06

±
0.
01

9
0
.0
03

±
0
.0
02

0
.0
0
8
±
0.
0
0
7

0.
0
08

±
0.
00

4
G

A
T

(6
)[

R
]

0
.5
7
5±

0.
0
0
5

0
.6
98

±
0
.0
03

0.
3
12

±
0.
00

0
0.
6
0
6±

0.
0
02

0
.0
4
8
±
0
.0
0
4

0.
0
28

±
0.
00

4
0.
03

3±
0.
0
18

0
.0
1
5
±
0
.0
2
6

0
.4
9
1±

0.
11

2
0.
11

0±
0
.0
4
8

0
.0
31

±
0.
01

0
0.
0
3
1±

0.
0
02

G
A

T
(3

)[
T

]
0
.7
94

±
0.
0
0
0

0.
8
2
6±

0
.0
00

0.
4
68

±
0.
00

0
0
.7
05

±
0.
00

0
0
.3
31

±
0
.0
00

0
.5
8
5
±
0.
0
00

0.
50

5
±
0.
00

0
0
.4
49

±
0
.0
00

0.
85

6±
0.
0
00

0.
2
45

±
0.
00

0
0
.3
45

±
0
.0
00

0
.0
7
8
±
0.
0
00

G
A

T
(6

)[
T

]
0
.8
1
5
±
0.
0
00

0.
80

8
±
0.
00

0
0
.4
6
9
±
0
.0
0
0

0
.7
0
1
±
0.
0
00

0.
4
16

±
0.
0
00

0
.4
8
3
±
0.
00

0
0
.3
9
1±

0.
0
00

0.
38

8
±
0
.0
0
0

0.
85

1±
0.
0
00

0.
18

9±
0.
0
00

0
.1
3
7
±
0
.0
0
0

0
.0
2
3±

0.
0
00

R
eF

ac
to

rG
N

N
(3

)[
R

]
0.
82

6
±
0.
00

0
0
.7
58

±
0.
00

2
0
.3
7
4
±
0.
0
04

0.
7
07

±
0
.0
00

0
.4
55

±
0.
01

0
0
.6
03

±
0.
00

8
0
.5
56

±
0
.0
03

0
.5
8
7
±
0.
0
03

0.
9
07

±
0.
00

4
0
.7
00

±
0
.0
01

0
.6
3
0
±
0.
0
0
1

0.
5
11

±
0.
00

1
R

eF
ac

to
rG

N
N

(6
)[

R
]

0
.8
2
6±

0.
0
0
1

0
.7
69

±
0
.0
05

0.
4
40

±
0.
00

1
0.
7
3
1±

0.
0
00

0
.5
5
8
±
0
.0
07

0
.6
9
4
±
0.
0
06

0.
63

9
±
0.
00

6
0
.6
40

±
0.
00

0
0
.9
6
7
±
0
.0
0
5

0
.7
6
4
±
0
.0
0
9

0.
6
97

±
0.
00

5
0
.7
0
3
±
0
.0
0
1

R
eF

ac
to

rG
N

N
(3

)[
T

]
0
.8
0
5
±
0.
00

0
0
.7
9
6
±
0
.0
0
3

0
.4
8
3
±
0.
0
0
0

0.
6
82

±
0.
0
00

0
.5
89

±
0
.0
01

0
.6
72

±
0.
00

1
0.
6
10

±
0.
00

1
0.
61

1±
0
.0
0
1

0
.9
18

±
0.
00

0
0.
6
29

±
0.
00

1
0
.6
3
4±

0.
0
00

0
.3
0
5
±
0.
0
00

R
eF

ac
to

rG
N

N
(6

)[
T

]
0
.8
4
4
±
0
.0
0
4

0
.8
4
8
±
0
.0
0
3

0
.5
2
2
±
0
.0
0
1

0
.7
8
1
±
0
.0
0
1

0
.6
1
9
±
0
.0
0
0

0
.7
2
1
±
0
.0
0
1

0
.6
6
3
±
0
.0
0
0

0
.6
6
0
±
0
.0
0
0

0
.9
1
3±

0.
0
00

0.
73

3±
0.
0
00

0
.7
1
1
±
0
.0
0
0

0
.4
1
7±

0.
0
00

18

Depth 3 6 ∞
∆ Test MRR 0.060 0.045 0.016

Table 5: The Impact of Meaningful Node Feature on FB15K237_v1. ∆ Test MRR is computed
by test mrr (Roberta Encodings as node features) − test mrr(Random vectors as node
features). Larger ∆ means meaningful node features bring more benefit.

D Additional Results on The Impact of Meaningful Node Features

To understand how much impact meaningful node features have on REFACTOR GNNS for the task
of knowledge graph completion, we compare REFACTOR GNNS trained with Roberta Encodings
(one example of meaningful node features) and REFACTOR GNNS trained with Random Vectors
(not meaningful node features). We perform experiments on FB15K237_v1. We vary the number
of message-passing layers: L ∈ {3, 6,∞}. Table 5 summarises the differences. We can see that
meaningful node features are extremely beneficial if REFACTOR GNNS are only allowed with a
small number of message-passing layers, which is usually true when it comes to inductive on-the-fly
predictive service. As more message-passing layers are allowed, the benefit of REFACTOR GNNS
diminishes. The extreme case would be L = ∞, where the benefit of meaningful node features
becomes negligible. We guess this might be why meaningful node features haven not been found
useful to transductive knowledge graph completion in practice.

Full ranking metrics

E Additional Results on Parameter Efficiency

Figure 5 shows the parameter efficiency on the dataset FB15K237_v2.

F Experimental Details: Setup, Hyper-Parameters, and Implementation

As we stated in the experiments section, we resorted to a two-stage process. In stage one, we sample
subgraphs around query links and serialise them. In stage two, we load the serialised subgraphs and
train the GNNs. For transductive knowledge graph completion, we test the model on the same graph
(but different splits). For inductive knowledge graph completion, we test the model on the new graph,
where the relation vocabulary is shared with the training graph while the entities are completely
new. We use the validation split for selecting the best hyper-parameter configurationg and report the
corresponding test perforamnce. We include reciprocal triplets into the training triplets following the
standard practice [13].

For subgraph serialisation, we first sample a mini-batch of triplets and then use these nodes as seed
nodes for sampling subgraphs. We also randomly draw a node globally and add it to the seed nodes.
The training batch size is 256 while the valid/test batch size is 8. We use LADIES algorithm [42] and
sample subgraphs with depths in [1, 2, 3, 6, 9] and a width of 256. For each graph, we keep sampling
for 20 epochs, i.e. roughly 20 full passes over the graph.

For general model training, we consider hyper-parameters including learning rates in [0.01, 0.001],
weight decay values in [0, 0.1, 0.01], and dropout values in [0, 0.5]. For GATs, we use 768 as the
hidden size and 8 as the number of attention heads. We train GATs of 3 layers and 6 layers. We
also consider whether or not to combine the outputs from all the layers. For REFACTOR GNNS, we
use the same hidden size as GAT. We consider whether the ReFactor Layer is induced by a SGD
operator or by a AdaGrad operator. Within a ReFactor Layer, we also consider the N3 regulariser
strength values [0, 0.005, 0.0005], the α values [0.1, 0.01] and the option of removing the n[v], where
the message-passing layer only involves information flow within 1-hop neighbourhood as most the
classic message-passing GNNs do.

We use grid search to find the best hyper-parameter configuration based on the validation MRR. Each
training run is done on two Tesla V100 (16GB) GPU with, where data parallelism was implemented
via the DistributedDataParallel component of pytorch-lightning. For inductive learning experiments,
inference for all the validation and test queries on small datasets like FB15K237_v1 takes about
1-5 seconds, while on medium datasets it takes approximately 20 seconds, and on big datasets like

19

#Message-Passing Layers

Te
st

 M
R

R

#P
ar

am
s

(M
)

0.0

0.1

0.2

0.3

0.4

0.5

0

2

4

6

1 2 3 6 9

GAT ReFactorGNN -- #Params GAT 　 -- #Params ReFactorGNN

Figure 5: Performance vs Parameter Efficiency as #Layers Increases FB15K237_v2. The left axis is
Test MRR while the right axis is #Parameters. The solid lines and dashed lines indicate the changes
of Test MRR and the changes of #Parameters.

WN18RR_v4 it requires approximately 60 seconds. For most training runs, the memory footprint is
less than 40% (13GB). The training time for 20 full passes over the graph is about 1min, 7min and
21min respectively for small, medium and large datasets.

We adapt the LADIES code base for sampling on knowledge graphs 4. No licence is found for this
code base. We thus consider it suitable for academic usages. The datasets we use can be down-
loaded from https://github.com/villmow/datasets_knowledge_embedding and https:
//github.com/kkteru/grail. We implement REFACTOR GNNS using the MessagePassing
API 5 in PyG. Specially, we consider using message_and_aggregate function 6 to compute the
aggregated messages. PyG is released under MIT license.

G Potential Negative Societal Impact

Our work focus on efficient reasoning over knowledge graphs. A potential negative societal impact is
that some people might use the methods for inferring private information using their own collected
knowledge graphs. However, this issue is also commonly faced by any other research work on
knowledge graph reasoning.

4https://github.com/acbull/LADIES
5https://pytorch-geometric.readthedocs.io/en/latest/notes/create_gnn.html
6https://pytorch-geometric.readthedocs.io/en/latest/notes/sparse_tensor.html

20

https://github.com/villmow/datasets_knowledge_embedding
https://github.com/kkteru/grail
https://github.com/kkteru/grail
https://github.com/acbull/LADIES
https://pytorch-geometric.readthedocs.io/en/latest/notes/create_gnn.html
https://pytorch-geometric.readthedocs.io/en/latest/notes/sparse_tensor.html

	Introduction
	Background
	Factorisation-based Models for KGC
	GNN-based Models for KGC

	Implicit Message-Passing in FMs
	The Edge View
	The Node View

	ReFactor GNNs
	Experiments
	ReFactor GNNs for Transductive Learning (Q1)
	ReFactor GNNs for Inductive Learning (Q2)
	Beyond Message-Passing (Q3)

	Related Work
	Conclusion & Future Work
	Theorem 1 Proof
	Extension to AdaGrad and N3 Regularisation

	Additional Results on Inductive KGC Tasks
	Additional Results on Using A Different Number of Message-Passing Layers at Test Time
	Train and Test with the same set of entities (transductive)
	Train and Test with different sets of entities (inductive)

	Additional Results on The Impact of Meaningful Node Features
	Additional Results on Parameter Efficiency
	Experimental Details: Setup, Hyper-Parameters, and Implementation
	Potential Negative Societal Impact

