
Scaling and Benchmarking Self-Supervised Visual Representation Learning

Priya Goyal Dhruv Mahajan Abhinav Gupta∗ Ishan Misra∗
Facebook AI Research

Abstract

Self-supervised learning aims to learn representations
from the data itself without explicit manual supervision.
Existing efforts ignore a crucial aspect of self-supervised
learning - the ability to scale to large amount of data be-
cause self-supervision requires no manual labels. In this
work, we revisit this principle and scale two popular self-
supervised approaches to 100 million images. We show that
by scaling on various axes (including data size and problem
‘hardness’), one can largely match or even exceed the per-
formance of supervised pre-training on a variety of tasks
such as object detection, surface normal estimation (3D)
and visual navigation using reinforcement learning. Scal-
ing these methods also provides many interesting insights
into the limitations of current self-supervised techniques
and evaluations. We conclude that current self-supervised
methods are not ‘hard’ enough to take full advantage of
large scale data and do not seem to learn effective high
level semantic representations. We also introduce an exten-
sive benchmark across 9 different datasets and tasks. We
believe that such a benchmark along with comparable eval-
uation settings is necessary to make meaningful progress.
Code is at: https://github.com/facebookresearch/
fair_self_supervision_benchmark.

1. Introduction
Computer vision has been revolutionized by high ca-

pacity Convolutional Neural Networks (ConvNets) [43]
and large-scale labeled data (e.g., ImageNet [12]). Re-
cently [46, 69], weakly-supervised training on hundreds of
millions of images and thousands of labels has achieved
state-of-the-art results on various benchmarks. Interest-
ingly, even at that scale, performance increases only log-
linearly with the amount of labeled data. Thus, sadly, what
has worked for computer vision in the last five years has
now become a bottleneck: the size, quality, and availability
of supervised data.

One alternative to overcome this bottleneck is to use
the self-supervised learning paradigm. In discriminative
self-supervised learning, which is the main focus of this
∗Equal contribution

work, a model is trained on an auxiliary or ‘pretext’ task
for which ground-truth is available for free. In most cases,
the pretext task involves predicting some hidden portion of
the data (for example, predicting color for gray-scale im-
ages [13, 41, 79]). Every year, with the introduction of new
pretext tasks, the performance of self-supervised methods
keeps coming closer to that of ImageNet supervised pre-
training. The hope around self-supervised learning outper-
forming supervised learning has been so strong that a re-
searcher has even bet gelato [2].

Yet, even after multiple years, this hope remains unful-
filled. Why is that? In attempting to come up with clever
pretext tasks, we have forgotten a crucial tenet of self-
supervised learning: scalability. Since no manual labels
are required, one can easily scale training from a million to
billions of images. However, it is still unclear what happens
when we scale up self-supervised learning beyond the Ima-
geNet scale to 100M images or more. Do we still see per-
formance improvements? Do we learn something insightful
about self-supervision? Do we surpass the ImageNet super-
vised performance?

In this paper, we explore scalability which is a core
tenet of self-supervised learning. Concretely, we scale two
popular self-supervised approaches (Jigsaw [52] and Col-
orization [79]) along three axes:

1. Scaling pre-training data: We first scale up both meth-
ods to 100× more data (YFCC-100M [70]). We observe
that low capacity models like AlexNet [39] do not show
much improvement with more data. This motivates our
second axis of scaling.

2. Scaling model capacity: We scale up to a higher capac-
ity model, specifically ResNet-50 [31], that shows much
larger improvements as the data size increases. While
recent approaches [16, 37, 77] used models like ResNet-
50 or 101, we explore the relationship between model
capacity and data size which we believe is crucial for
future efforts in self-supervised learning.

3. Scaling problem complexity: Finally, we observe that
to take full advantage of large scale data and higher ca-
pacity models, we need ‘harder’ pretext tasks. Specifi-
cally, we scale the ‘hardness’ (problem complexity) and
observe that higher capacity models show a larger im-
provement on ‘harder’ tasks.

1

https://github.com/facebookresearch/fair_self_supervision_benchmark
https://github.com/facebookresearch/fair_self_supervision_benchmark

Task Datasets Description
Image classification

§ 6.1 Places205 Scene classification. 205 classes.
(Linear Classifier) VOC07 Object classification. 20 classes.

COCO2014 Object classification. 80 classes.
Low-shot image classification

§ 6.2 VOC07 ≤ 96 samples per class
(Linear Classifier) Places205 ≤ 128 samples per class
Visual navigation
§ 6.3 (Fixed ConvNet) Gibson Reinforcement Learning for navigation.

Object detection
§ 6.4 VOC07 20 classes.

(Frozen conv body) VOC07+12 20 classes.
Scene geometry (3D)
§ 6.5 (Frozen conv body) NYUv2 Surface Normal Estimation.

Table 1: 9 transfer datasets and tasks used for Benchmarking in §6.

Another interesting question that arises is: how does one
quantify the visual representation’s quality? We observe
that due to the lack of a standardized evaluation method-
ology in self-supervised learning, it has become difficult
to compare different approaches and measure the advance-
ments in the area. To address this, we propose an exten-
sive benchmark suite to evaluate representations using a
consistent methodology. Our benchmark is based on the
following principle: a good representation (1) transfers to
many different tasks, and, (2) transfers with limited super-
vision and limited fine-tuning. We carefully choose 9 differ-
ent tasks (Table 1) ranging from semantic classification/de-
tection to 3D and actions (specifically, navigation).

Our results show that by scaling along the three axes,
self-supervised learning can outperform ImageNet super-
vised pre-training using the same evaluation setup on non-
semantic tasks of Surface Normal Estimation and Naviga-
tion. For semantic classification tasks, although scaling
helps outperform previous results, the gap with supervised
pre-training remains significant when evaluating fixed fea-
ture representations (without full fine-tuning). Surprisingly,
self-supervised approaches are quite competitive on object
detection tasks with or without full fine-tuning. For exam-
ple, on the VOC07 detection task, without any bells and
whistles, our performance matches the supervised Ima-
geNet pre-trained model.

2. Related Work
Visual representation learning without supervision is an

old and active area of research. It has two common mod-
eling approaches: generative and discriminative. A gen-
erative approach tries to model the data distribution di-
rectly. This can be modeled as maximizing the probability
of reconstructing the input [47, 55, 72] and optionally esti-
mating latent variables [32, 63] or using adversarial train-
ing [17, 48]. Our work focuses on discriminative learning.

One form of discriminative learning combines clustering
with hand-crafted features to learn visual representations
such as image-patches [15, 67], object discovery [62, 68].
We focus on discriminative approaches that learn repre-
sentations directly from the the visual input. A large por-

tion of such approaches are grouped under the term ‘self-
supervised’ learning [11] in which the key principle is to au-
tomatically generate ‘labels’ from the data. The label gener-
ation can either be domain agnostic [7, 9, 56, 77] or exploit
structural properties of the domain, e.g., spatial structure of
images [14]. We explore the ‘pretext’ tasks [14] that ex-
ploit structural information of the visual data to learn rep-
resentations. These approaches can broadly be divided into
two types - methods that use multi-modal information, e.g.
sound [57] and methods that use only the visual data (im-
ages, videos). Multi-modal information such as depth from
a sensor [19], sound in a video [4, 5, 25, 57], sensors on
an autonomous vehicle [3, 33, 84] etc. can be used to auto-
matically learn visual representations without human super-
vision. One can also use the temporal structure in a video
for self-supervised methods [23, 30, 45, 50, 51]. Videos
can provide information about how objects move [58], the
relation between viewpoints [74, 75] etc.

In this work, we choose to scale image-based self-
supervised methods because of their ease of implementa-
tion. Many pretext tasks have been designed for images
that exploit their spatial structure [14, 52–54], color infor-
mation [13, 41, 42, 79], illumination [18], rotation [26] etc.
These pretext tasks model different properties of images
and have been shown to contain complementary informa-
tion [16]. Given the abundance of such approaches to use, in
our work, we focus on two popular approaches that are sim-
ple to implement, intuitive, and diverse: Jigsaw from [52]
and Colorization from [79]. A concurrent work [37] also
explores multiple self-supervised tasks but their focus is on
the architectural details which is complementary to ours.

3. Preliminaries

We briefly describe the two image based self-supervised
approaches [53, 79] that we study in this work and refer the
reader to the original papers for detailed explanations. Both
these methods do not use any supervised labels.

3.1. Jigsaw Self-supervision

This approach by Noroozi et al. [52] learns an image rep-
resentation by solving jigsaw puzzles created from an input
image. The method divides an input image I into N = 9
non-overlapping square patches. A ‘puzzle’ is then cre-
ated by shuffling these patches randomly and a ConvNet is
trained to predict the permutation used to create the puzzle.
Concretely, each patch is fed to a N -way Siamese ConvNet
with shared parameters to obtain patch representations. The
patch representations are concatenated and used to predict
the permutation used to create the puzzle. In practice, as the
total number of permutations N ! can be large, a fixed sub-
set P of the total N ! permutations is used. The prediction
problem is reduced to classification into one of |P| classes.

1.0 10.0 50.0 100.0
Number of images | | (106)

46

50

54

58

62

66

70

74

m
AP

Jigsaw VOC07 Linear SVM

ResNet50
AlexNet

1.0 10.0 50.0 100.0
Number of images | | (106)

46

50

54

58

62

66

70

74

m
AP

Colorization VOC07 Linear SVM

ResNet50
AlexNet

Figure 1: Scaling the Pre-training Data Size: The transfer learning per-
formance of self-supervised methods on the VOC07 dataset for AlexNet
and ResNet-50 as we vary the pre-training data size. We keep the prob-
lem complexity and data domain (different sized subsets of YFCC-100M)
fixed. More details in § 4.1.

3.2. Colorization Self-supervision
Zhang et al. [79] learn an image representation by pre-

dicting color values of an input ‘grayscale’ image. The
method uses the CIE Lab color space representation of an
input image I and trains a model to predict the ab colors
(denoted by Y) from the input lightness L (denoted by X).
The output ab space is quantized into a set of discrete bins
Q = 313 which reduces the problem to a |Q|-way classifi-
cation problem. The target ab image Y is soft-encoded into
|Q| bins by looking at the K-nearest neighbor bins (default
value K=10). We denote this soft-encoded target explic-
itly by ZK . Thus, each |Q|-way classification problem has
K non-zero values. The ConvNet is trained to predict ZK

from the input lightness image X .

4. Scaling Self-supervised Learning
In this section, we scale up current self-supervised ap-

proaches and present the insights gained from doing so. We
first scale up the data size to 100× the size commonly used
in existing self-supervised methods. However, observations
from recent works [35, 46, 69] show that higher capacity
models are required to take full advantage of large datasets.
Therefore, we explore the second axis of scaling: model ca-
pacity. Additionally, self-supervised learning provides an
interesting third axis: the complexity (hardness) of pretext
tasks which can control the quality of the learned represen-
tations.

Finally, we observe the relationships between these three
axes: whether the performance improvements on each of
the axes are complementary or they encompass one other.
To study this behavior, we introduce a simple investigation
setup. Note that this setup is different from the extensive
evaluation benchmark we propose in §6.

Investigation Setup: We use the task of image classifica-
tion on PASCAL VOC2007 [21] (denoted as VOC07). We
train linear SVMs [8] (with 3-fold cross validation to se-
lect the cost parameter) on fixed feature representations ob-

Symbol Description

YFCC-XM Images from the YFCC-100M [70] dataset.
We use subsets of size X ∈ [1M, 10M, 50M, 100M].

ImageNet-22k The full ImageNet dataset (22k classes, 14M images) [12].
ImageNet-1k ILSVRC2012 dataset (1k classes, 1.28M images) [61].

Table 2: A list of self-supervised pre-training datasets used in this work.
We train AlexNet [39] and ResNet-50 [31] on these datasets.

tained from the ConvNet (setup from [57]). Specifically, we
choose the best performing layer: conv4 layer for AlexNet
and the output of the last res4 block (notation from [28])
for ResNet-50. We train on the trainval split and report
mean Average Precision (mAP) on the test split.

4.1. Axis 1: Scaling the Pre-training Data Size
The first premise in self-supervised learning is that it re-

quires ‘no labels’ and thus can make use of large datasets.
But do the current self-supervised approaches benefit from
increasing the pre-training data size? We study this for both
the Jigsaw and Colorization methods. Specifically, we
train on various subsets (see Table 2) of the YFCC-100M
dataset - YFCC-[1, 10, 50, 100] million images. These sub-
sets were collected by randomly sampling respective num-
ber of images from the YFCC-100M dataset. We specifi-
cally create these YFCC subsets so we can keep the data do-
main fixed. Further, during the self-supervised pre-training,
we keep other factors that may influence the transfer learn-
ing performance such as the model, the problem complexity
(|P| = 2000, K = 10) etc. fixed. This way we can isolate
the effect of data size on performance. We provide training
details in the supplementary material.

Observations: We report the transfer learning performance
on the VOC07 classification task in Figure 1. We see that
increasing the size of pre-training data improves the transfer
learning performance for both the Jigsaw and Coloriza-
tion methods on ResNet-50 and AlexNet. We also note
that the Jigsaw approach performs better compared to Col-
orization. Finally, we make an interesting observation
that the performance of the Jigsaw model saturates (log-
linearly) as we increase the data scale from 1M to 100M.

4.2. Axis 2: Scaling the Model Capacity
We explore the relationship between model capacity and

self-supervised representation learning. Specifically, we
observe this relationship in the context of the pre-training
dataset size. For this, we use AlexNet and the higher capac-
ity ResNet-50 [31] model to train on the same pre-training
subsets from § 4.1.

Observations: Figure 1 shows the transfer learning per-
formance on the VOC07 classification task for Jigsaw and
Colorization approaches. We make an important ob-
servation that the performance gap between AlexNet and
ResNet-50 (as a function of the pre-training dataset size)
keeps increasing. This suggests that higher capacity models

100 701 2000 5000 10000
Number of permutations | |

46

50

54

58

62

66

m
AP

Jigsaw VOC07 Linear SVM

ResNet50
AlexNet

2 5 10 20 40 80 160 313
Number K in soft-encoding

46

50

54

58

62

66

m
AP

Colorization VOC07 Linear SVM

ResNet50
AlexNet

Figure 2: Scaling Problem Complexity: We evaluate transfer learning
performance of Jigsaw and Colorization approaches on VOC07 dataset
for both AlexNet and ResNet-50 as we vary the problem complexity. The
pre-training data is fixed at YFCC-1M (§ 4.3) to isolate the effect of prob-
lem complexity.

are needed to take full advantage of the larger pre-training
datasets.

4.3. Axis 3: Scaling the Problem Complexity

We now scale the problem complexity (‘hardness’) of the
self-supervised approaches. We note that it is important to
understand how the complexity of the pretext tasks affects
the transfer learning performance.

Jigsaw: The number of permutations |P| (§ 3.1) determines
the number of puzzles seen for an image. We vary the num-
ber of permutations |P| ∈ [100, 701, 2k, 5k, 10k] to con-
trol the problem complexity. Note that this is a 10× in-
crease in complexity compared to [52].

Colorization: We vary the number of nearest neighbors K
for the soft-encoding (§ 3.2) which controls the hardness of
the colorization problem.

To isolate the effect of problem complexity, we fix the pre-
training data at YFCC-1M. We explore additional ways of
increasing the problem complexity in the supplementary
material.

Observations: We report the results on the VOC07 clas-
sification task in Figure 2. For the Jigsaw approach, we
see an improvement in transfer learning performance as the
size of the permutation set increases. ResNet-50 shows a
5 point mAP improvement while AlexNet shows a smaller
1.9 point improvement. The Colorization approach ap-
pears to be less sensitive to changes in problem complexity.
We see ∼2 point mAP variation across different values of
K. We believe one possible explanation for this is in the
structure encoded in the representation by the pretext task.
For Colorization, it is important to represent the relation-
ship between the semantic categories and their colors, but
fine-grained color distinctions do not matter as much. On
the other hand, Jigsaw encodes more spatial structure as
the problem complexity increases which may matter more
for downstream transfer task performance.

100 701 2000 5000 10000
Number of permutations | |

50

54

58

62

66

70

74

m
AP

YFCC
Jigsaw VOC07 Linear SVM

AlexNet YFCC-100M
AlexNet YFCC-1M

ResNet50 YFCC-100M
ResNet50 YFCC-1M

100 701 2000 5000 10000
Number of permutations | |

50

54

58

62

66

70

74

m
AP

ImageNet
Jigsaw VOC07 Linear SVM

AlexNet ImageNet-22k
AlexNet ImageNet-1k

ResNet50 ImageNet-22k
ResNet50 ImageNet-1k

Figure 3: Scaling Data and Problem Complexity: We vary the pre-
training data size and Jigsaw problem complexity for both AlexNet and
ResNet-50 models. We pre-train on two datasets: ImageNet and YFCC
and evaluate transfer learning performance on VOC07 dataset.

4.4. Putting it together
Finally, we explore the relationship between all the three

axes of scaling. We study if these axes are orthogonal and
if the performance improvements on each axis are comple-
mentary. We show this for Jigsaw approach only as it out-
performs the Colorization approach consistently. Fur-
ther, besides using YFCC subsets for pretext task training
(from § 4.1), we also report self-supervised results for Im-
ageNet datasets (without using any labels). Figure 3 shows
the transfer learning performance on VOC07 task as func-
tion of data size, model capacity and problem complexity.

We note that transfer learning performance increases on
all three axes, i.e., increasing problem complexity still gives
performance boost on ResNet-50 even at 100M data size.
Thus, we conclude that the three axes of scaling are comple-
mentary. We also make a crucial observation that the perfor-
mance gains for increasing problem complexity are almost
negligible for AlexNet but significantly higher for ResNet-
50. This indicates that we need higher capacity models to
exploit hardness of self-supervised approaches.

5. Pre-training and Transfer Domain Relation
Thus far, we have kept the pre-training dataset and the

transfer dataset/task fixed at YFCC and VOC07 respec-
tively. We now add the following pre-training and transfer
dataset/task to better understand the relationship between
pre-training and transfer performance.

Pre-training dataset: We use both the ImageNet [12]
and YFCC datasets from Table 2. Although the ImageNet
datasets [12, 61] have supervised labels, we use them (with-
out labels) to study the effect of the pre-training domain.

Transfer dataset and task: We further evaluate on the
Places205 scene classification task [82]. In contrast to the
object centric VOC07 dataset, Places205 is a scene centric
dataset. Following the investigation setup from §4, we keep
the feature representations of the ConvNets fixed. As the
Places205 dataset has >2M images, we follow [80] and

1.0 10.0 50.0 100.0
Number of images | | (106)

50

54

58

62

66

70

74

m
AP

Jigsaw VOC07 - Linear SVM

ImageNet
YFCC

1.0 10.0 50.0 100.0
Number of images | | (106)

35

39

43

47

to
p-

1
ac

c

Jigsaw Places205 - Linear Classifier

ImageNet
YFCC

1.0 10.0 50.0 100.0
Number of images | | (106)

50

54

58

62

66

70

74

m
AP

Colorization VOC07 - Linear SVM

ImageNet
YFCC

1.0 10.0 50.0 100.0
Number of images | | (106)

35

39

43

47

to
p-

1
ac

c

Colorization Places205 - Linear Classifier

ImageNet
YFCC

(a) (b) (c) (d)
Figure 4: Relationship between pre-training and transfer domain: We vary pre-training data domain - (ImageNet-[1k, 22k], subsets of YFCC-100M)
and observe transfer performance on the VOC07 and Places205 classification tasks. The similarity between the pre-training and transfer task domain shows
a strong influence on transfer performance.

train linear classifiers using SGD. We use a batchsize of
256, learning rate of 0.01 decayed by a factor of 10 after
every 40k iterations, and train for 140k iterations. Full de-
tails are provided in the supplementary material.

Observations: In Figure 4, we show the results of using
different pre-training datasets and transfer datasets/tasks.
Comparing Figures 4 (a) and (b), we make the following
observations for the Jigsaw method:
• On the VOC07 classification task, pre-training on

ImageNet-22k (14M images) transfers as well as pre-
training on YFCC-100M (100M images).

• However, on the Places205 classification task, pre-
training on YFCC-1M (1M images) transfers as well as
pre-training on ImageNet-22k (14M images).
We note a similar trend for the Colorization problem

wherein pre-training ImageNet, rather than YFCC, provides
a greater benefit when transferring to VOC07 classification
(also noted in [9, 14, 35]). A possible explanation for this
benefit is that the domain (image distribution) of ImageNet
is closer to VOC07 (both are object-centric) whereas YFCC
is closer to Places205 (both are scene-centric). This moti-
vates us to evaluate self-supervised methods on a variety of
different domain/tasks and we propose an extensive evalua-
tion suite next.

6. Benchmarking Suite for Self-supervision
We evaluate self-supervised learning on a diverse set of 9

tasks (see Table 1) ranging from semantic classification/de-
tection, scene geometry to visual navigation. We select this
benchmark based on the principle that a good representation
should generalize to many different tasks with limited su-
pervision and limited fine-tuning. We view self-supervised
learning as a way to learn feature representations rather
than an ‘initialization method’ [38] and thus perform lim-
ited fine-tuning of the features. We first describe each of
these tasks and present our benchmarks.

Consistent Evaluation Setup: We believe that having a
consistent evaluation setup, wherein hyperparameters are

Method layer1 layer2 layer3 layer4 layer5
ResNet-50 ImageNet-1k Supervised 14.8 32.6 42.1 50.8 52.5
ResNet-50 Places205 Supervised 16.7 32.3 43.2 54.7 62.3
ResNet-50 Random 12.9 16.6 15.5 11.6 9.0
ResNet-50 (NPID) [77]/ 18.1 22.3 29.7 42.1 45.5
ResNet-50 Jigsaw ImageNet-1k 15.1 28.8 36.8 41.2 34.4
ResNet-50 Jigsaw ImageNet-22k 11.0 30.2 36.4 41.5 36.4
ResNet-50 Jigsaw YFCC-100M 11.3 28.6 38.1 44.8 37.4
ResNet-50 Coloriz. ImageNet-1k 14.7 27.4 32.7 37.5 34.8
ResNet-50 Coloriz. ImageNet-22k 15.0 30.5 37.8 44.0 41.5
ResNet-50 Coloriz. YFCC-100M 15.2 30.4 38.6 45.4 41.5

Table 3: ResNet-50 top-1 center-crop accuracy for linear classification
on Places205 dataset (§ 6.1). Numbers with / use a different fine-tuning
procedure. All other models follow the setup from Zhang et al. [80].

set fairly for all methods, is important for easier and mean-
ingful comparisons across self-supervised methods. This is
crucial to isolate the improvements due to better represen-
tations or better transfer optimization1.

Common Setup (Pre-training, Feature Extraction and
Transfer): The common transfer process for the bench-
mark tasks is as follows:
• First, we perform self-supervised pre-training using a

self-supervised pretext method (Jigsaw or Coloriza-
tion) on a pre-training dataset from Table 2.

• We extract features from various layers of the network.
For AlexNet, we do this after every conv layer; for
ResNet-50, we extract features from the last layer of ev-
ery residual stage denoted, e.g., res1, res2 (notation
from [28]) etc. For simplicity, we use the term layer.

• We then evaluate quality of these features (from dif-
ferent self-supervised approaches) by transfer learning,
i.e., benchmarking them on various transfer datasets and
tasks that have supervision.
We summarize these benchmark tasks in Table 1 and dis-

cuss them in the subsections below. For each subsection, we
provide full details of the training setup: model architecture,
hyperparameters etc. in the supplementary material.

1We discovered inconsistencies across previous methods (different im-
age crops for evaluation, weights re-scaling, pre-processing, longer fine-
tuning schedules etc.) which affects the final performance.

Places205
Method layer1 layer2 layer3 layer4 layer5
AlexNet ImageNet-1k Supervised 22.4 34.7 37.5 39.2 38.0
AlexNet Places205 Supervised 23.2 35.6 39.8 43.5 44.8
AlexNet Random 15.7 20.8 18.5 18.2 16.6
AlexNet (Jigsaw) [52] 19.7 26.7 31.9 32.7 30.9
AlexNet (Colorization) [79] 16.0 25.7 29.6 30.3 29.7
AlexNet (SplitBrain) [80] 21.3 30.7 34.0 34.1 32.5
AlexNet (Counting) [53] 23.3 33.9 36.3 34.7 29.6
AlexNet (Rotation) [26]/ 21.5 31.0 35.1 34.6 33.7
AlexNet (DeepCluster) [9] 17.1 28.8 35.2 36.0 32.2
AlexNet Jigsaw ImageNet-1k 23.7 33.2 36.6 36.3 31.9
AlexNet Jigsaw ImageNet-22k 24.2 34.7 37.7 37.5 31.7
AlexNet Jigsaw YFCC-100M 24.1 34.7 38.1 38.2 31.6
AlexNet Coloriz. ImageNet-1k 18.1 28.5 30.2 31.3 30.3
AlexNet Coloriz. ImageNet-22k 18.9 30.3 33.4 34.9 34.2
AlexNet Coloriz. YFCC-100M 18.4 30.0 33.4 34.8 34.6

Table 4: AlexNet top-1 center-crop accuracy for linear classification on
Places205 dataset (§ 6.1). Numbers for [52, 79] are from [80]. Numbers
with / use a different fine-tuning schedule.

Method layer1 layer2 layer3 layer4 layer5
ResNet-50 ImageNet-1k Supervised 24.5 47.8 60.5 80.4 88.0
ResNet-50 Places205 Supervised 28.2 46.9 59.1 77.3 80.8
ResNet-50 Random 9.6 8.3 8.1 8.0 7.7
ResNet-50 Jigsaw ImageNet-1k 27.1 45.7 56.6 64.5 57.2
ResNet-50 Jigsaw ImageNet-22k 20.2 47.7 57.7 71.9 64.8
ResNet-50 Jigsaw YFCC-100M 20.4 47.1 58.4 71.0 62.5
ResNet-50 Coloriz. ImageNet-1k 24.3 40.7 48.1 55.6 52.3
ResNet-50 Coloriz. ImageNet-22k 25.8 43.1 53.6 66.1 62.7
ResNet-50 Coloriz. YFCC-100M 26.1 42.3 53.8 67.2 61.4

Table 5: ResNet-50 Linear SVMs mAP on VOC07 classification (§ 6.1).

6.1. Task 1: Image Classification

We extract image features from various layers of a self-
supervised network and train linear classifiers on these fixed
representations. We evaluate performance on the classi-
fication task for three datasets: Places205, VOC07 and
COCO2014. We report results for ResNet-50 in the main
paper; AlexNet results are in the supplementary material.

Places205: We strictly follow the training and evalua-
tion setup from Zhang et al. [80] so that we can draw
comparisons to existing works (and re-evaluate the model
from [9]). We use a batchsize of 256, learning rate of 0.01
decayed by a factor of 10 after every 40k iterations, and
train for 140k iterations using SGD on the train split. We
report the top-1 center-crop accuracy on the val split for
ResNet-50 in Table 3 and AlexNet in Table 4.

VOC07 and COCO2014: For smaller datasets that fit in
memory, we follow [57] and train linear SVMs [8] on
the frozen feature representations using LIBLINEAR pack-
age [22]. We train on trainval split of VOC07 dataset,
and evaluate on test split of VOC07. Table 5 shows results
on VOC07 for ResNet-50. AlexNet and COCO2014 [44]
results are provided in the supplementary material.

Observations: We see a significant accuracy gap between
self-supervised and supervised methods despite our scaling
efforts. This is expected as unlike self-supervised meth-
ods, both the supervised pre-training and benchmark trans-

1 2 4 8 16 32 64 96
Num. Labeled samples

0

20

40

60

80

m
AP

Jigsaw ImageNet-22k

Jigsaw YFCC-100M

Random

ImageNet-1k Supervised

VOC07

1 2 4 8 16 32 64 128
Num. Labeled samples

0

20

40

60

to
p-

1
ac

c

Jigsaw ImageNet-22k

Jigsaw YFCC-100M

Random

Places205 Supervised

Places-205

Figure 5: Low-shot Image Classification on the VOC07 and Places205
datasets using linear SVMs trained on the features from the best perform-
ing layer for ResNet-50. We vary the number of labeled examples (per
class) used to train the classifier and report the performance on the test
set. We show the mean and standard deviation across five runs (§ 6.2).

fer tasks solve a semantic image classification problem.

6.2. Task 2: Low-shot Image Classification

It is often argued that a good representation should not
require many examples to learn about a concept. Thus, fol-
lowing [76], we explore the quality of feature representation
when per-category examples are few (unlike § 6.1).
Setup: We vary the number k of positive examples (per
class) and use the setup from § 6.1 to train linear SVMs
on Places205 and VOC07 datasets. We perform this
evaluation for ResNet-50 only. For each combination of
k/dataset/method, we report the mean and standard devia-
tion of 5 independent samples of the training data evalu-
ated on a fixed test set (test split for VOC07 and val split
for Places205). We show results for the Jigsaw method in
Figure 5; Colorization results are in the supplementary
material as we draw the same observations.

Observations: We report results for the best performing
layer res4 (notation from [28]) for ResNet-50 on VOC07
and Places205 in Figure 5. In the supplementary material,
we show that for the lower layers, similar to Table 3, the
self-supervised features are competitive to their supervised
counterpart in low-shot setting on both the datasets. How-
ever, for both VOC07 and Places205, we observe a signif-
icant gap between supervised and self-supervised settings
on their ‘best’ performing layer. This gap is much larger at
lower sample size, e.g., at k=1 it is 30 points for Places205,
whereas at higher values (full-shot in Table 3) it is 20 points.

6.3. Task 3: Visual Navigation

In this task, an agent receives a stream of images as in-
put and learns to navigate to a pre-defined location to get a
reward. The agent is spawned at random locations and must
build a contextual map in order to be successful at the task.

Setup: We use the setup from [64] who train an agent using
reinforcement learning (PPO [65]) in the Gibson environ-
ment [78]. The agent uses fixed feature representations from
a ConvNet for this task and only updates the policy network.

Method VOC07 VOC07+12
ResNet-50 ImageNet-1k Supervised∗ 66.7 ± 0.2 71.4 ± 0.1
ResNet-50 ImageNet-1k Supervised 68.5 ± 0.3 75.8 ± 0.2
ResNet-50 Places205 Supervised 65.3 ± 0.3 73.1 ± 0.3
ResNet-50 Jigsaw ImageNet-1k 56.6 ± 0.5 64.7 ± 0.2
ResNet-50 Jigsaw ImageNet-22k 67.1 ± 0.3 73.0 ± 0.2
ResNet-50 Jigsaw YFCC-100M 62.3 ± 0.2 69.7 ± 0.1

Table 6: Detection mAP for frozen conv body on VOC07 and
VOC07+12 using Fast R-CNN with ResNet-50-C4 (mean and std com-
puted over 5 trials). We freeze the conv body for all models. Numbers
with ∗ use Detectron [28] default training schedule. All other models use
slightly longer training schedule (see § 6.4).

We evaluate the representation of layers res3, res4, res5
(notation from [28]) of a ResNet-50 by separately training
agents for these settings. We use the training hyperparam-
eters from [64], who use a rollout of size 512 and optimize
using Adam [36].

Observations: Figure 6 shows the average training reward
(and variance) across 5 runs. Using the res3 layer fea-
tures, we observe that our Jigsaw ImageNet model gives
a much higher training reward and is more sample effi-
cient (higher reward with fewer steps) than its supervised
counterpart. The deeper res4 and res5 features perform
similarly for the supervised and self-supervised networks.
We also observe that self-supervised pre-training on the Im-
ageNet domain outperforms pre-training on the YFCC do-
main.

6.4. Task 4: Object Detection
Setup: We use the Detectron [28] framework to train
the Fast R-CNN [27] object detection model using Se-
lective Search [71] object proposals on the VOC07 and
VOC07+12 [20] datasets. We provide results for Faster R-
CNN [60] in the supplementary material. We note that we
use the same training schedule for both the supervised and
self-supervised methods since it impacts final object detec-
tion performance significantly. We report mean and stan-
dard deviation result of 5 independent runs for ResNet-50
only as Detectron does not support AlexNet.

We freeze the full conv body of Fast R-CNN and only
train the RoI heads (last ResNet-50 stage res5 onwards).
We follow the same setup as in Detectron and only change
the training schedule to be slightly longer. Specifically,
we train on 2 GPUS for 22k/8k schedule on VOC07 and
for 66k/14k schedule on VOC07+12 (compared to origi-
nal 15k/5k schedule on VOC07 and 40k/15k schedule on
VOC07+12). This change improves object detection perfor-
mance for both supervised and self-supervised methods.

Observations: We report results in Table 6 and note that
the self-supervised initialization is competitive with the Im-
ageNet pre-trained initialization on VOC07 dataset even
when fewer parameters are fine-tuned on the detection task.
We also highlight that the performance gap between super-
vised and self-supervised initialization is very low.

6.5. Task 5: Surface Normal Estimation
Setup: We use the surface normal estimation task [24], with
the evaluation, and dataset splits as formulated in [6, 49,
73]. We use the NYUv2 [66] dataset which consists of in-
door scenes and use the surface normals calculated by [40].
We use the state-of-the-art PSPNet [81] architecture (im-
plementation [83]). This provides a much stronger baseline
(our scratch model outperforms the best numbers reported
in [75]). We fine-tune res5 onwards and train all the models
with the same hyperparameters for 150 epochs. The scratch
model (initialized randomly) is trained for 400 epochs. We
use the training hyperparameters from [83], i.e., batchsize
of 16, learning rate of 0.02 decayed polynomially with a
power of 0.9 and optimize using SGD.

Observations: We report the best test set performance for
Jigsaw in Table 7 and results for Colorization are pro-
vided in the supplementary material. We use the metrics
from [24] which measure the angular distance (error) of the
prediction as well as the percentage of pixels within t◦ of
the ground truth. We note that our Jigsaw YFCC-100M
self-supervised model outperforms both the supervised
models (ImageNet-1k and Places205 supervised) across all
the metrics by a significant margin, e.g., a 5 point gain com-
pared to the Places205 supervised model on the number of
pixels within t◦=11.5 metric. We, thus, conclude that self-
supervised methods provide better features compared to su-
pervised methods for 3D geometric tasks.

Angle Distance Within t◦

Initialization Mean Median 11.25 22.5 30
(Lower is better) (Higher is better)

ResNet-50 ImageNet-1k supervised 26.4 17.1 36.1 59.2 68.5
ResNet-50 Places205 supervised 23.3 14.2 41.8 65.2 73.6
ResNet-50 Scratch 26.3 16.1 37.9 60.6 69.0
ResNet-50 Jigsaw ImageNet-1k 24.2 14.5 41.2 64.2 72.5
ResNet-50 Jigsaw ImageNet-22k 22.6 13.4 43.7 66.8 74.7
ResNet-50 Jigsaw YFCC-100M 22.4 13.1 44.6 67.4 75.1

Table 7: Surface Normal Estimation on the NYUv2 dataset. We train
ResNet-50 from res5 onwards and freeze the conv body below (§ 6.5).

7. Legacy Tasks and Datasets
For completeness, we also report results on the evalua-

tion tasks used by previous works. As we explain next, we
do not include these tasks in our benchmark suite (§6).

Full fine-tuning for transfer learning: This setup fine-
tunes all parameters of a self-supervised network and views
it as an initialization method. We argue that this view eval-
uates not only the quality of the representations but also the
initialization and optimization method. For completeness,
we report results for AlexNet and ResNet-50 on VOC07
classification in the supplementary material.

VOC07 Object Detection with Full Fine-tuning: This
task fine-tunes all the weights of a network for the object
detection task. We use the same settings as in § 6.4 and

0 1024 2048 3072 4096
Number of steps (102)

5

3

1

1

3

5

7

Av
er

ag
e

Tr
ai

n
Re

wa
rd

res3

0 1024 2048 3072 4096
Number of steps (102)

5

3

1

1

3

5

7

res4

0 1024 2048 3072 4096
Number of steps (102)

5

3

1

1

3

5

7

res5
Jigsaw ImageNet-22k Jigsaw YFCC-100M ImageNet-1k Supervised Random

Figure 6: Visual Navigation. We train an agent on the navigation task in the Gibson environment. The agent is trained using reinforcement learning and
uses fixed ConvNet features. We show results for different layers features of ResNet-50 trained on both supervised and self-supervised settings (§ 6.3).

Method VOC07 VOC07+12
ResNet-50 ImageNet-1k Supervised∗ 69.1 ± 0.4 76.2 ± 0.4
ResNet-50 ImageNet-1k Supervised 70.5 ± 0.4 76.2 ± 0.1
ResNet-50 Places205 Supervised 67.2 ± 0.2 74.5 ± 0.4
ResNet-50 Jigsaw ImageNet-1k 61.4 ± 0.2 68.3 ± 0.4
ResNet-50 Jigsaw ImageNet-22k 69.2 ± 0.3 75.4 ± 0.2
ResNet-50 Jigsaw YFCC-100M 66.6 ± 0.1 73.3 ± 0.4

Table 8: Detection mAP for full fine-tuning on VOC07 and VOC07+12
using Fast R-CNN with ResNet-50-C4 (mean and std computed over 5
trials) (§7). Numbers with ∗ use Detectron [28] default training schedule.
All other models use a slightly longer training schedule.

report results for supervised and Jigsaw self-supervised
methods in Table 8. Without any bells and whistles, our
self-supervised model initialization matches the perfor-
mance of the supervised initialization on both VOC07 and
VOC07+12. We note that self-supervised pre-training on
ImageNet performs better than YFCC (similar to §5).

ImageNet Classification using Linear Classifiers: While
the task itself is meaningful, we do not include it in our
benchmark suite for two reasons:
1. For supervised representations, the widely used baseline

is trained on ImageNet-1k dataset. Hence, evaluating
also on the same dataset (ImageNet-1k) does not test
generalization of the supervised baseline.

2. Most existing self-supervised approaches [14, 80] use
ImageNet-1k for pre-training and evaluate the represen-
tations on the same dataset. As observed in §5, pre-
training and evaluating in the same domain biases evalu-
ation. Further, the bias is accentuated as we pre-train the
self-supervised features and learn the linear classifiers
(for transfer) on identical images.

To compare with existing methods, we report results on
ImageNet-1k classification for AlexNet in Table 9 (setup
from § 6.1). We report results on ResNet-50 in the supple-
mentary material.

8. Conclusion
In this work, we studied the effect of scaling two self-

supervised approaches along three axes: data size, model
capacity and problem complexity. Our results indicate that
transfer performance increases log-linearly with the data
size. The quality of the representations also improves with
higher capacity models and problem complexity. More in-
terestingly, we observe that the performance improvements

ImageNet-1k
Method layer1 layer2 layer3 layer4 layer5
AlexNet ImageNet-1k Supervised 19.4 37.1 42.5 48.0 49.6
AlexNet Places205 Supervised 18.9 35.5 38.9 40.9 37.3
AlexNet Random 11.9 17.2 15.2 14.8 13.5
AlexNet (Jigsaw) [52] 16.2 23.3 30.2 31.7 29.6
AlexNet (Colorization) [79] 13.1 24.8 31.0 32.6 31.8
AlexNet (SplitBrain) [80] 17.7 29.3 35.4 35.2 32.8
AlexNet (Counting) [53] 23.3 33.9 36.3 34.7 29.6
AlexNet (Rotation) [26]/ 18.8 31.7 38.7 38.2 36.5
AlexNet (DeepCluster) [9] 13.4 28.5 37.4 39.2 35.7
AlexNet Jigsaw ImageNet-1k 20.2 32.9 36.5 36.1 29.2
AlexNet Jigsaw ImageNet-22k 20.2 33.9 38.7 37.9 27.5
AlexNet Jigsaw YFCC-100M 20.2 33.4 38.1 37.4 25.8
AlexNet Coloriz. ImageNet-1k 14.1 27.5 30.6 32.1 31.1
AlexNet Coloriz. ImageNet-22k 15.0 30.5 35.5 37.9 37.4
AlexNet Coloriz. YFCC-100M 14.4 28.8 33.2 35.3 34.0

Table 9: AlexNet top-1 center-crop accuracy for linear classification
on ImageNet-1k. Numbers for [52, 79] are from [80]. Numbers with /

use a different fine-tuning schedule.

on the the three axes are complementary (§4). We obtain
state-of-the-art results on linear classification using the
ImageNet-1k and Places205 datasets. We also propose a
benchmark suite of 9 diverse tasks to evaluate the quality
of our learned representations. Our self-supervised learned
representation: (a) outperforms supervised baseline on
task of surface normal estimation; (b) performs competi-
tively (or better) compared to supervised-ImageNet base-
line on navigation task; (c) matches the supervised object
detection baseline even with little fine-tuning; (d) performs
worse than supervised counterpart on task of image classi-
fication and low-shot classification. We believe future work
should focus on designing tasks that are complex enough to
exploit large scale data and increased model capacity. Our
experiments suggest that scaling self-supervision is crucial
but there is still a long way to go before definitively surpass-
ing supervised pre-training.

Acknowledgements: We would like to thank Richard Zhang, Mehdi
Noroozi, and Andrew Owens for helping understand the experimental
setup in their respective works. Rob Fergus and Léon Bottou for help-
ful discussions and valuable feedback. Alexander Sax, Bradley Emi, and
Saurabh Gupta for helping with the Gibson experiments; Aayush Bansal
and Xiaolong Wang for their help in the surface normal experiments. Ross
Girshick and Piotr Dollár for helpful comments on the manuscript.

References
[1] CSAILVision Segmentation. https://github.com/

CSAILVision/semantic-segmentation-pytorch. Ac-
cessed: 2019-03-20. 14

[2] The Gelato Bet. https://people.eecs.berkeley.edu/
˜efros/gelato_bet.html. Accessed: 2019-03-20. 1

[3] P. Agrawal, J. Carreira, and J. Malik. Learning to see by
moving. In ICCV, 2015. 2

[4] R. Arandjelovic and A. Zisserman. Look, listen and learn. In
ICCV, 2017. 2

[5] R. Arandjelovic and A. Zisserman. Objects that sound. In
ECCV, 2018. 2

[6] A. Bansal, B. Russell, and A. Gupta. Marr revisited: 2d-3d
alignment via surface normal prediction. In CVPR, pages
5965–5974, 2016. 7

[7] P. Bojanowski and A. Joulin. Unsupervised learning by pre-
dicting noise. In ICML, 2017. 2

[8] B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training al-
gorithm for optimal margin classifiers. In Proceedings of
the fifth annual workshop on Computational learning theory,
pages 144–152. ACM, 1992. 3, 6

[9] M. Caron, P. Bojanowski, A. Joulin, and M. Douze. Deep
clustering for unsupervised learning of visual features. In
ECCV, 2018. 2, 5, 6, 8, 20

[10] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau,
F. Bougares, H. Schwenk, and Y. Bengio. Learning phrase
representations using rnn encoder-decoder for statistical ma-
chine translation. arXiv preprint arXiv:1406.1078, 2014. 14

[11] V. R. de Sa. Learning classification with unlabeled data. In
NIPS, 1994. 2

[12] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei.
Imagenet: A large-scale hierarchical image database. 2009.
1, 3, 4

[13] A. Deshpande, J. Rock, and D. Forsyth. Learning large-scale
automatic image colorization. In ICCV, 2015. 1, 2

[14] C. Doersch, A. Gupta, and A. A. Efros. Unsupervised vi-
sual representation learning by context prediction. In ICCV,
pages 1422–1430, 2015. 2, 5, 8, 20

[15] C. Doersch, S. Singh, A. Gupta, J. Sivic, and A. Efros. What
makes paris look like paris? ACM Transactions on Graphics,
31(4), 2012. 2

[16] C. Doersch and A. Zisserman. Multi-task self-supervised
visual learning. In ICCV, 2017. 1, 2

[17] J. Donahue, P. Krähenbühl, and T. Darrell. Adversarial fea-
ture learning. arXiv preprint arXiv:1605.09782, 2016. 2

[18] A. Dosovitskiy, P. Fischer, J. T. Springenberg, M. Riedmiller,
and T. Brox. Discriminative unsupervised feature learn-
ing with exemplar convolutional neural networks. TPAMI,
38(9):1734–1747, 2016. 2

[19] D. Eigen and R. Fergus. Predicting depth, surface normals
and semantic labels with a common multi-scale convolu-
tional architecture. In ICCV, 2015. 2

[20] M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I.
Williams, J. Winn, and A. Zisserman. The pascal visual ob-
ject classes challenge: A retrospective. International Journal
of Computer Vision, 111(1):98–136, Jan. 2015. 7

[21] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and
A. Zisserman. The pascal visual object classes (voc) chal-
lenge. IJCV, 88(2), 2010. 3

[22] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J.

Lin. LIBLINEAR: A library for large linear classification.
JMLR, 9:1871–1874, 2008. 6, 13, 15

[23] B. Fernando, H. Bilen, E. Gavves, and S. Gould. Self-
supervised video representation learning with odd-one-out
networks. In CVPR, 2017. 2

[24] D. F. Fouhey, A. Gupta, and M. Hebert. Data-driven 3d prim-
itives for single image understanding. In ICCV, 2013. 7, 14

[25] R. Gao, R. Feris, and K. Grauman. Learning to separate
object sounds by watching unlabeled video. In ECCV, 2018.
2

[26] S. Gidaris, P. Singh, and N. Komodakis. Unsupervised rep-
resentation learning by predicting image rotations. arXiv
preprint arXiv:1803.07728, 2018. 2, 6, 8, 20

[27] R. Girshick. Fast r-cnn. In ICCV, 2015. 7
[28] R. Girshick, I. Radosavovic, G. Gkioxari, P. Dollár, and

K. He. Detectron, 2018. 3, 5, 6, 7, 8, 14, 16
[29] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis,

L. Wesolowski, A. Kyrola, A. Tulloch, Y. Jia, and K. He.
Accurate, large minibatch sgd: Training imagenet in 1 hour.
arXiv preprint arXiv:1706.02677, 2017. 11

[30] R. Hadsell, S. Chopra, and Y. LeCun. Dimensionality re-
duction by learning an invariant mapping. In CVPR, 2006.
2

[31] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In CVPR, 2016. 1, 3, 17, 18, 19

[32] F. J. Huang, Y.-L. Boureau, Y. LeCun, et al. Unsupervised
learning of invariant feature hierarchies with applications to
object recognition. In CVPR, 2007. 2

[33] D. Jayaraman and K. Grauman. Learning image representa-
tions tied to ego-motion. In ICCV, 2015. 2

[34] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-
shick, S. Guadarrama, and T. Darrell. Caffe: Convolu-
tional architecture for fast feature embedding. arXiv preprint
arXiv:1408.5093, 2014. 11

[35] A. Joulin, L. van der Maaten, A. Jabri, and N. Vasilache.
Learning visual features from large weakly supervised data.
In ECCV, 2016. 3, 5

[36] D. Kingma and J. Ba. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980, 2014. 7, 15

[37] A. Kolesnikov, X. Zhai, and L. Beyer. Revisiting self-
supervised visual representation learning. arXiv preprint
arXiv:1901.09005, 2019. 1, 2, 15, 19

[38] P. Krähenbühl, C. Doersch, J. Donahue, and T. Darrell. Data-
dependent initializations of convolutional neural networks.
arXiv preprint arXiv:1511.06856, 2015. 5

[39] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
NIPS, 2012. 1, 3

[40] L. Ladickỳ, B. Zeisl, and M. Pollefeys. Discriminatively
trained dense surface normal estimation. In ECCV, 2014.
7, 14

[41] G. Larsson, M. Maire, and G. Shakhnarovich. Learning rep-
resentations for automatic colorization. In ECCV, 2016. 1,
2

[42] G. Larsson, M. Maire, and G. Shakhnarovich. Colorization
as a proxy task for visual understanding. In CVPR, 2017. 2

[43] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E.
Howard, W. Hubbard, and L. D. Jackel. Backpropagation
applied to handwritten zip code recognition. Neural compu-
tation, 1, 1989. 1

[44] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-

https://github.com/CSAILVision/semantic-segmentation-pytorch
https://github.com/CSAILVision/semantic-segmentation-pytorch
https://people.eecs.berkeley.edu/~efros/gelato_bet.html
https://people.eecs.berkeley.edu/~efros/gelato_bet.html

manan, P. Dollár, and C. L. Zitnick. Microsoft coco: Com-
mon objects in context. In ECCV. 2014. 6

[45] P. Luc, N. Neverova, C. Couprie, J. Verbeek, and Y. LeCun.
Predicting deeper into the future of semantic segmentation.
In ICCV, 2017. 2

[46] D. Mahajan, R. Girshick, V. Ramanathan, K. He, M. Paluri,
Y. Li, A. Bharambe, and L. van der Maaten. Exploring the
limits of weakly supervised pretraining. In ECCV, 2018. 1,
3

[47] J. Masci, U. Meier, D. Cireşan, and J. Schmidhuber. Stacked
convolutional auto-encoders for hierarchical feature extrac-
tion. In International Conference on Artificial Neural Net-
works, pages 52–59. Springer, 2011. 2

[48] L. Mescheder, S. Nowozin, and A. Geiger. Adversarial vari-
ational bayes: Unifying variational autoencoders and gener-
ative adversarial networks. In ICML, 2017. 2

[49] I. Misra, A. Shrivastava, A. Gupta, and M. Hebert. Cross-
stitch networks for multi-task learning. In CVPR, 2016. 7

[50] I. Misra, C. L. Zitnick, and M. Hebert. Shuffle and learn:
unsupervised learning using temporal order verification. In
ECCV, 2016. 2

[51] H. Mobahi, R. Collobert, and J. Weston. Deep learning from
temporal coherence in video. In ICML, 2009. 2

[52] M. Noroozi and P. Favaro. Unsupervised learning of visual
representations by solving jigsaw puzzles. In ECCV, 2016.
1, 2, 4, 6, 8, 11, 12, 15, 21

[53] M. Noroozi, H. Pirsiavash, and P. Favaro. Representation
learning by learning to count. In ICCV, 2017. 2, 6, 8, 20

[54] M. Noroozi, A. Vinjimoor, P. Favaro, and H. Pirsiavash.
Boosting self-supervised learning via knowledge transfer. In
CVPR, 2018. 2

[55] B. A. Olshausen and D. J. Field. Emergence of simple-cell
receptive field properties by learning a sparse code for natu-
ral images. Nature, 381(6583):607, 1996. 2

[56] A. v. d. Oord, Y. Li, and O. Vinyals. Representation
learning with contrastive predictive coding. arXiv preprint
arXiv:1807.03748, 2018. 2

[57] A. Owens, J. Wu, J. H. McDermott, W. T. Freeman, and
A. Torralba. Ambient sound provides supervision for visual
learning. In ECCV, 2016. 2, 3, 6

[58] D. Pathak, R. Girshick, P. Dollár, T. Darrell, and B. Hariha-
ran. Learning features by watching objects move. In CVPR,
2017. 2

[59] C. Peng, T. Xiao, Z. Li, Y. Jiang, X. Zhang, K. Jia, G. Yu,
and J. Sun. Megdet: A large mini-batch object detector. In
CVPR, 2018. 14

[60] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards
real-time object detection with region proposal networks. In
NIPS, 2015. 7

[61] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual
Recognition Challenge. IJCV, 115, 2015. 3, 4

[62] B. C. Russell, W. T. Freeman, A. A. Efros, J. Sivic, and
A. Zisserman. Using multiple segmentations to discover ob-
jects and their extent in image collections. In CVPR, 2006.
2

[63] R. Salakhutdinov and G. Hinton. Deep boltzmann machines.
In Artificial intelligence and statistics, pages 448–455, 2009.
2

[64] A. Sax, B. Emi, A. R. Zamir, L. Guibas, S. Savarese, and

J. Malik. Mid-level visual representations improve general-
ization and sample efficiency for learning active tasks. arXiv
preprint arXiv:1812.11971, 2018. 6, 7, 14

[65] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and
O. Klimov. Proximal policy optimization algorithms. arXiv
preprint arXiv:1707.06347, 2017. 6, 15

[66] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. Indoor
segmentation and support inference from rgbd images. In
ECCV. Springer, 2012. 7

[67] S. Singh, A. Gupta, and A. A. Efros. Unsupervised discovery
of mid-level discriminative patches. In ECCV. 2012. 2

[68] J. Sivic, B. C. Russell, A. A. Efros, A. Zisserman, and W. T.
Freeman. Discovering objects and their location in images.
In ICCV, 2005. 2

[69] C. Sun, A. Shrivastava, S. Singh, and A. Gupta. Revisiting
unreasonable effectiveness of data in deep learning era. In
ICCV, 2017. 1, 3

[70] B. Thomee, D. A. Shamma, G. Friedland, B. Elizalde, K. Ni,
D. Poland, D. Borth, and L.-J. Li. Yfcc100m: The new data
in multimedia research. arXiv preprint arXiv:1503.01817,
2015. 1, 3

[71] J. R. Uijlings, K. E. Van De Sande, T. Gevers, and A. W.
Smeulders. Selective search for object recognition. IJCV,
104(2):154–171, 2013. 7

[72] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol.
Extracting and composing robust features with denoising au-
toencoders. In ICML. ACM, 2008. 2

[73] X. Wang, D. Fouhey, and A. Gupta. Designing deep net-
works for surface normal estimation. In CVPR, 2015. 7, 14

[74] X. Wang and A. Gupta. Unsupervised learning of visual rep-
resentations using videos. In ICCV, 2015. 2

[75] X. Wang, K. He, and A. Gupta. Transitive invariance for self-
supervised visual representation learning. In ICCV, pages
1329–1338, 2017. 2, 7

[76] Y.-X. Wang and M. Hebert. Learning to learn: Model re-
gression networks for easy small sample learning. In ECCV,
2016. 6

[77] Z. Wu, Y. Xiong, S. X. Yu, and D. Lin. Unsupervised fea-
ture learning via non-parametric instance discrimination. In
CVPR, 2018. 1, 2, 5, 16, 19

[78] F. Xia, A. R. Zamir, Z. He, A. Sax, J. Malik, and S. Savarese.
Gibson env: Real-world perception for embodied agents. In
CVPR, 2018. 6

[79] R. Zhang, P. Isola, and A. A. Efros. Colorful image coloriza-
tion. In ECCV, 2016. 1, 2, 3, 6, 8, 11, 13, 15, 16

[80] R. Zhang, P. Isola, and A. A. Efros. Split-brain autoen-
coders: Unsupervised learning by cross-channel prediction.
In CVPR, 2017. 4, 5, 6, 8, 15, 16, 19, 20

[81] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia. Pyramid scene
parsing network. In CVPR, 2017. 7, 14

[82] B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva.
Learning deep features for scene recognition using places
database. In NIPS, 2014. 4

[83] B. Zhou, H. Zhao, X. Puig, T. Xiao, S. Fidler, A. Barriuso,
and A. Torralba. Semantic understanding of scenes through
the ade20k dataset. IJCV, 2018. 7

[84] T. Zhou, M. Brown, N. Snavely, and D. G. Lowe. Unsu-
pervised learning of depth and ego-motion from video. In
CVPR, 2017. 2

Supplementary Material
The supplementary material is organized as follows

• Section A provides architecture details for all the self-
supervised networks.

• Section B provides architecture details for all the trans-
fer tasks.

• Section C lists the hyperparameters for the self-
supervised pre-training step.

• Section D lists the hyperparameters for the benchmark
tasks used in Section 6 of the main paper.

• Section E lists the hyperparameters for the legacy tasks
used in Section 7 of the main paper.

• Section F shows results using additional ways of in-
creasing problem complexity for the self-supervised
tasks.

• Section G shows additional results on object detection,
surface normal estimation and image classification.

A. Model architectures for pretext tasks
We describe the exact architecture we use for pre-

training on Jigsaw and Colorization pretext tasks below.

A.1. AlexNet Jigsaw Pretext

We describe the AlexNet architecture used for Jigsaw
model training. We use the same architecture as [52]. Full
details in Table 10.

A.2. AlexNet Colorization Pretext

We use the same architecture setup as [79] and recom-
mend the reader to consult their implementation. Every
conv layer is followed by SpatialBN+ Relu combination.
Full details in Table 11.

A.3. AlexNet Supervised

We follow the CaffeNet BVLC exact architecture and di-
rectly use the pre-trained model weights. We refer reader
to [34] for exact architecture details. We did not train our
AlexNet supervised model to avoid introducing any differ-
ences in results.

A.4. ResNet-50 Jigsaw Pretext

The ResNet-50 architecture used to train Jigsaw model
is described below. The jigsaw model is trained using N -
way Siamese ConvNet with shared weights. We describe
the one siamese branch only in Table 12. Also note that, af-
ter the N -way siamese branches are concatenated, we have
single branch left.

A.5. ResNet-50 Colorization Pretext
The ResNet-50 architecture used to train Colorization

model is described in Table 13. We closely follow the ar-
chitecture as in A.4.

A.6. ResNet-50 Supervised
We strictly follow the same ResNet architecture as in

[29] and refer the reader to the work.

B. Model architectures for Transfer tasks
In this section, we describe the exact model architecture

we use for various evaluation tasks (including benchmark
suite as described in Section 6 of the main paper).

B.1. AlexNet Colorization Transfer
We use the same architecture setup as [79] and recom-

mend the reader to consult their implementation. Every
conv layer is followed by SpatialBN + Relu combina-
tion. For evaluation, we downsample conv layers so that
the resulting feature map has dimension 9k. Full details in
Table 14.

B.2. AlexNet Jigsaw Transfer
For evaluation, we downsample conv layers by apply-

ing an avgpool layer so that the resulting feature map has
dimension 9k. Full details in Table 15.

B.3. AlexNet Supervised Transfer
We follow the CaffeNet BVLC exact architecture and di-

rectly use the pre-trained model weights. We refer reader
to [34] for exact architecture details.

B.4. ResNet-50 Jigsaw Transfer
Table 16 shows the exact architecture used.

B.5. Colorization ResNet-50 Transfer
Table 17 shows the exact architecture used.

B.6. ResNet-50 Supervised Transfer
We strictly follow the same ResNet architecture as in

[29] and refer the reader to the work.

C. Pre-training Hyperparameters
In this section, we describe the pre-training hyperparam-

eters used to pre-train self-supervised methods (Jigsaw and
Colorization) for both AlexNet and ResNet-50 models.

C.1. AlexNet Jigsaw
For training AlexNet on Jigsaw, we follow the hyperpa-

rameters setting from [52]. For the jigsaw problem, we read
the original image from the data source, scale the shorter

side to 256 and randomly crop out 255 × 255 image. We
make the images grayscale randomly with 50% probability
and we apply color projection with 50% probability (if the
image is still colored). We further divide the image into 3x3
grid with each cell of size 85x85. Next, we randomly crop
out a patch of size 64x64 from the 85x85 cell. This patch
becomes a piece in jigsaw puzzle. Further, following [52],
we apply bias decay for the bias parameter of the model
and we also do not apply weight decay to the scale and
bias parameter of SpatialBN layers. We train the model
on 8-gpus, use minibatch size of 256, initial learning rate
(LR) of 0.01 with the learning rate dropped by factor of 10
at certain interval. We use momentum of 0.9, weight decay
5e-4 and SpatialBN weight decay 0. We use nesterov SGD
for optimization. The number of training iterations depends
on the dataset size we are training on. We describe that next
for each different dataset used and also corresponding to the
best models reported in the main paper.
Model training iterations for Scaling Data size analysis
(Section 4.1 of main paper):

• ImageNet-1k permutation 2k: Train for 70 epochs with
LR schedule: 100k/100k/100k/50k.

• ImageNet-22k permutation 2k: Train
for 100 epochs with LR schedule:
1584343/1584343/1584343/792171.

• YFCC-1M permutation 2k: Train for 70 epochs with
LR schedule: 100k/100k/100k/50k.

• YFCC-10M permutation 2k: Train for 70 epochs with
LR schedule: 781250/781250/781250/390625.

• YFCC-50M permutation 2k: Train for 10 epochs only
with LR schedule: 558036/558036/558036/279017.

• YFCC-100M permutation 2k: Train
for 25 epochs with LR schedule:
2790178/2790178/2790178/1395089.

For the best models (Section 6 of main paper), the training
schedule is as follows:

• ImageNet-1k permutation 2k: Train for 70 epochs with
LR schedule: 100k/100k/100k/50k.

• ImageNet-22k permutation 2k: Train
for 100 epochs with LR schedule:
1584343/1584343/1584343/792171.

• YFCC-100M permutation 2k: Train
for 25 epochs with LR schedule:
2790178/2790178/2790178/1395089.

C.2. ResNet-50 Jigsaw
For training ResNet-50 on Jigsaw, we closely follow the

hyperparameters setting from [52]. Specifically, we read
the original image from the data source, scale the shorter
side to 256 and randomly crop out 255 × 255 image. We
make the images grayscale randomly with 50% probability
and we apply color projection with 50% probability (if the
image is still colored). We further divide the image into 3x3
grid with each cell of size 85x85. Next, we randomly crop
out a patch of size 64x64 from the 85x85 cell. This patch
becomes a piece in jigsaw puzzle. Further, following [52],
we apply bias decay for the bias parameter of the model. We
train the model on 8-gpus, use minibatch size of 256, initial
learning rate (LR) of 0.1 with the learning rate dropped by
factor of 10 after certain steps. We use momentum of 0.9,
weight decay 1e-4 and SpatialBN weight decay 0. We use
Nesterov SGD for optimization. The number of training
iterations depends on the dataset size we are training on.
We describe that next for each different dataset used and
also corresponding to the best models reported in the main
paper. We report the total number of epochs and the steps
at which the learning rate is decayed.

Model training iterations for Scaling Data size analysis
(Section 4.1 of main paper):

• ImageNet-1k permutation 2k: Train for 90 epochs with
LR schedule: 150150/150150/100100/50050.

• ImageNet-22k permutation 2k: Train
for 90 epochs with LR schedule:
1663874/1663874/1109249/554673.

• YFCC-1M permutation 2k: Train for 90 epochs with
LR schedule: 150150/150150/100100/50050.

• YFCC-10M permutation 2k: Train for 90 epochs with
LR schedule: 1171875/1171875/781250/390625.

• YFCC-50M permutation 2k: Train for 10 epochs only
with LR schedule: 651042/651042/434028/217013.

• YFCC-100M permutation 2k: Train
for 10 epochs only with LR schedule:
1302083/1302083/868055/434027.

The training schedule for the best models (Section 6 of main
paper) is as follows:

• ImageNet-1k permutation 5k: Train for 90 epochs with
LR schedule: 150150/150150/100100/50050.

• ImageNet-22k permutation 5k: Train
for 90 epochs with LR schedule:
1663874/1663874/1109249/554673.

• YFCC-100M permutation 10k: Train
for 10 epochs with LR schedule:
1302083/1302083/868055/434027.

C.3. AlexNet Colorization

We closely follow the implementation from [79] and
use the 313 bins and priors provided for training the mod-
els. Specifically, we read the original image from the data
source, convert the image to Lab, scale the shorter side to
256, randomly crop out 180× 180 image and randomly flip
the image horizontally. Further, following [79], we apply no
bias decay for the bias parameter of the model and we also
do not apply weight decay to the scale and bias parame-
ter of SpatialBN layers. We train the model on 8-gpus, use
a minibatch size of 640, initial learning rate (LR) of 24e-5
with the learning rate dropped by 0.34 at certain interval.
We use weight decay 1e-3 and SpatialBN weight decay 0.
We use Adam for optimization and beta1 0.9, beta2 0.999
and epsilon 1e-8. The number of training iterations depend
on the dataset size we are training on. We describe that next
for each different dataset used and also corresponding to the
best models reported in the main paper.

Model training iterations used for Colorization models in
the main paper:

• ImageNet-1k: Train for 28 epochs with LR schedule:
30027/8008/12011/6205.

• ImageNet-22k: Train for 112 epochs with LR sched-
ule: 1341749, 347861, 521791, 273319.

• YFCC-1M: Train for 28 epochs with LR schedule:
30027/8008/12011/6205.

• YFCC-10M: Train for 56 epochs with LR schedule:
468750/125000/187500/93750.

• YFCC-50M: Train for 10 epochs only with LR sched-
ule: 1046317/279018/418527/209263.

• YFCC-100M: Train for 15 epochs only with LR sched-
ule: 1265625/328125/492188/257812.

C.4. ResNet-50 Colorization

We closely follow the same setup as for AlexNet de-
scribed above. We use the 313 bins and priors provided for
training the models from [79]. We read the original image
from the data source, convert the image to Lab, scale the
shorter side to 256, randomly crop out 180x180 image and
randomly flip the image horizontally. Further, we apply no
bias decay for the bias parameter of the model and we also
do not apply weight decay to the scale and bias parame-
ter of SpatialBN layers. We train the model on 8-gpus, use
a minibatch size of 640, initial learning rate (LR) of 24e-5
with the learning rate dropped by 0.34 at certain interval.
We use weight decay 1e-3 and SpatialBN weight decay 0.
We use Adam for optimization and beta1 0.9, beta2 0.999
and epsilon 1e-8. The number of training iterations depends
on the dataset size we are training on. We describe that next

for each different dataset used and also corresponding to the
best models reported in the main paper.

Model training iterations used for ResNet-50 Coloriza-
tion models in the main paper:

• ImageNet-1k: Train for 28 epochs with LR schedule:
30027/8008/12011/6205.

• ImageNet-22k: Train for 84 epochs with LR schedule:
1006312/260896/391343/204989.

• YFCC-1M: Train for 28 epochs with LR schedule:
30027/8008/12011/6205

• YFCC-10M: Train for 56 epochs with LR schedule:
468750/125000/187500/93750.

• YFCC-50M: Train for 30 epochs only with LR sched-
ule: 3138951/837054/1255581/627789.

• YFCC-100M: Train for 15 epochs only with LR sched-
ule: 1265625/328125/492188/257812.

D. Hyperparameters used in Benchmark Tasks
In this section, we describe hyperparameter settings for

various benchmark tasks described in the main paper.

D.1. Image Classification

VOC07 and COCO2014: We train Linear SVMs on frozen
feature representations using LIBLINEAR package [22].
We train a linear SVM per class (20 for VOC07 and 80
for COCO2014) for the cost values C ∈ 2[−19,−4] ∪
10[−7,2] (i.e. 26 C values). We use 3-fold cross-validation
to choose the cost parameter per class and then further
calculate the mean average precision. To train SVM,
we first normalize the features of shape (N, 9k) (where
N is number of samples in data and 9k is the resized
feature dimension) to have norm=1 along feature dimen-
sion. We apply the same normalization step on evalua-
tion data as well. We use the following hyperparameter
setting for training using LinearSVC sklearn class. We
use class weight ratio as 2:1 for positive/negative classes,
penalty=l2, loss=squared hinge, tol=1e-4, dual=True
and max iter=2000.

Places205: We train linear classifiers on frozen feature rep-
resentations using Nesterov SGD (in D.6, we discuss the
reason for this choice). We freeze the feature representa-
tions of various self-supervised networks, resize the fea-
tures to have dimension 9k and then train linear classifiers.
We describe the hyperparameters used for AlexNet and
ResNet-50 on both Jigsaw and Colorization approaches.

1. AlexNet Colorization: We strictly follow [79].
Specifically, we train on 8-gpus, use minibatch size of
256, initial learning rate (LR) of 0.01 with the learning

rate dropped by factor of 10 at certain interval. We use
momentum of 0.9, weight decay 5e-4 and SpatialBN
weight decay 0. We do not apply bias decay for the
bias parameter of the model and we also do not apply
weight decay to the scale and bias parameter of Spa-
tialBN layers. We train for 140k iterations total and
use the learning rate schedule of 40k/40k/40k/20.
We read the input image, convert it to Lab, resize the
shorter side to 256, randomly crop 227x227 image and
apply horizontal flip with 50% probability.

2. AlexNet Jigsaw: We follow the settings above and
train on 8-gpus, use minibatch size of 256, initial learn-
ing rate (LR) of 0.01 with the learning rate dropped by
factor of 10 at certain interval. We use momentum of
0.9, weight decay 5e-4 and SpatialBN weight decay
0. We apply bias decay for the bias parameter of the
model and we do not apply weight decay to the scale
and bias parameter of SpatialBN layers. We train for
140k iterations total and use the learning rate schedule
of 40k/40k/40k/20. We read the input image, con-
vert it to Lab space, resize the shorter side to 256, ran-
domly crop 227x227 image and apply horizontal flip
with 50% probability.

3. ResNet-50 Colorization: We closely follow the hy-
perparameter setting above and train on 8-gpus, use
minibatch size of 256, initial learning rate (LR) of 0.01
with the learning rate dropped by factor of 10 at certain
interval. We use momentum of 0.9, weight decay 1e-4
and SpatialBN weight decay 0. We do not apply bias
decay for the bias parameter of the model. We train for
140k iterations total and use the learning rate sched-
ule of 40k/40k/40k/20k. We read the input image,
convert it to Lab, resize the shorter side to 256, ran-
domly crop 224x224 image and apply horizontal flip
with 50% probability.

4. ResNet-50 Jigsaw: We closely follow the hyperpa-
rameter setting above and train on 8-gpus, use mini-
batch size of 256, initial learning rate (LR) of 0.01
with the learning rate dropped by factor of 10 at cer-
tain interval. We use momentum of 0.9, weight de-
cay 1e-4 and SpatialBN weight decay 0. We apply
bias decay for the bias parameter of the model and
we do not apply weight decay to the scale and bias
parameter of SpatialBN layers. We train for 140k
iterations total and use the learning rate schedule of
40k/40k/40k/20k. We read the input image, convert
it to Lab, resize the shorter side to 256, randomly crop
224x224 image and apply horizontal flip with 50%
probability.

D.2. Low-shot Image Classification
We train Linear SVMs on VOC07 and Places205 dataset

using the exact same setup as in D.1. The data sampling

technique for various low-shot settings are described in the
main paper.

D.3. Object Detection
We follow the same settings as [28]. We train on 2-

gpus with initial learning rate of 2e-3. For Fast R-CNN,
we fine-tune for 22k/8k on VOC07 and for 66k/14k on
VOC07+12. For Faster R-CNN, we fine-tune for 38k/12k
on VOC07 and for 65k/35k on VOC07+12. All other hy-
perparameters are defaults set in Detectron. Note that
Detectron default settings use single scale inference with
scale value 600.

D.4. Surface Normal Estimation
We use the NYUv2 dataset with the surface normals

computed by [40]. We use the evaluation metrics from [24]
and the problem formulation from [73].
Problem Setup: Following [73], we reduce the problem
of surface normal estimation to a classification task. We
construct a codebook of size 40 by clustering the surface
normals in the train split of NYUv2. We then quantize all
the surface normals using the codebook and pick the index
of the nearest cluster center. This reduces the problem to
a 40-way classification problem which we optimize using
a multinomial cross-entropy loss. At test time, we predict
the distribution over the 40 classes at each pixel location.
We convert these per-class distributions into a continuous
surface normal prediction by a weighted averaging of the
codebook centers with the per-class distribution predictions.
Architecture: We use the PSPNet [81] implementation
from [1]. Specifically we use the ResNet50-dilated back-
bone encoder and the C1 decoder from their implementa-
tion. We only train from res5 onwards. We use a learning
rate of 2e-2 with a polynomial decay schedule using a power
of 0.9 and a batchsize of 16 across 8 GPUs with Synchro-
nized BatchNorm [59]. We train all models for 150 epochs
and report the best test set performance. The scratch model
is trained for 400 epochs and all parameters are updated
only for this model. We resize the image with a minimum
side of [300, 375, 450, 525, 600] pixels for data augmenta-
tion during training (and no left-right flipping).

D.5. Visual Navigation
Image Features: We use the implementation and the opti-
mization parameters from [64]. We modify their implemen-
tation to use the self-supervised and the supervised ResNet-
50 ConvNets to extract features from the images. As their
implementation uses an 8 channel feature, we use a random
projection of the features from a ResNet-50. For example,
we use a random projection to take the 2048 channel res5
features to a 8 channel features. We do not train the Con-
vNet or the random projection matrix.
Agent network architecture: The Agent uses a recurrent
network (GRU [10]) with a state size of 512 dimensions.

Optimization: We use the ADAM [36] optimizer with a
fixed learning rate of 1e− 4, clipping the l2 norm of the
gradient at 0.5, a rollout size of 512. We use the PPO al-
gorithm [65] with a replay buffer size of 10000, value loss
weight 1e−3, entropy co-efficient 1e−4, and a clipping value
of 0.1 for the trust region.

D.6. Note on Using SGD based Linear Classifiers
vs. DCD

Although, using SGD based Linear Classifiers is a com-
mon practice [80] to evaluate representations, we found that
optimization hyperparameters can lead to signficantly dif-
ferent results. The SGD based classifiers solve a convex
optimization problem, but as also noted in [37], they can
demonstrate a very slow convergence. Thus, fine-tuning for
larger number of iterations or using a different learning rate
decay method (at fixed number of fine-tuning iterations) etc.
can give significantly different results. We obtained more
robust results using Dual Coordinate Descent (DCD) as im-
plemented in the LIBLINEAR package [22]. Although, this
changes the classifier from a logistic regressor to a linear
SVM, we believe this setting provides an easy, robust, and
fair comparison of image representations and use this set-
ting for the smaller VOC07 and COCO2014 datasets.

E. Hyperparameters used in Legacy Tasks
In this section, we describe hyperparameter settings for

various legacy tasks described in Section 7 main paper.

E.1. ImageNet classification using Linear Classi-
fiers

We use the exact same setting as described in Section D.1
for Places205 dataset.

E.2. VOC07 full fine-tuning
We use the self-supervised weights to initialize the net-

work and fine-tune the full network on VOC07 classifica-
tion task. We use Nesterov SGD for optimization. We de-
scribe hyperparameters used in fine-tuning next.

1. AlexNet Jigsaw: We strictly follow [79]. Specifically,
we train for 80k iterations on 1-gpu using minibatch
size of 16, initial learning rate (LR) of 0.001 with the
learning rate dropped by factor of 10 after 10K itera-
tions. We use momentum of 0.9, weight decay 1e-6
and SpatialBN weight decay 1e-4. We do not apply
bias decay for the bias parameter of the model and we
also do not apply weight decay to the scale and bias
parameter of SpatialBN layers. We read the input im-
age, randomly crop 227x227 image and apply horizon-
tal flip with 50% probability.

2. AlexNet Colorization: We follow settings above
and train for 80k iterations on 1-gpu using minibatch

size of 16, initial learning rate (LR) of 0.005 with the
learning rate dropped by factor of 10 after 10K itera-
tions. We use momentum of 0.9, weight decay 1e-6
and SpatialBN weight decay 0. We do not apply bias
decay for the bias parameter of the model. We read the
input image, convert it to Lab, randomly crop 227x227
image and apply horizontal flip with 50% probability.

3. ResNet-50 Jigsaw: We train for 3000 iterations on 4-
gpus using minibatch size of 128, initial learning rate
(LR) of 0.01 with the learning rate dropped by factor
of 10 after 1600 iterations. We use momentum of 0.9,
weight decay 1e-6 and SpatialBN weight decay 0. We
do not apply bias decay for the bias parameter of the
model and we also do not apply weight decay to the
scale and bias parameter of SpatialBN layers. We
read the input image, randomly crop 224x224 image
and apply horizontal flip with 50% probability.

4. ResNet-50 Colorization: We train for 3000 iter-
ations on 4-gpus using minibatch size of 128, ini-
tial learning rate (LR) of 0.15 with the learning rate
dropped by factor of 10 after 1600 iterations. We use
momentum of 0.9, weight decay 1e-6 and SpatialBN
weight decay 0. We do not apply bias decay for the
bias parameter of the model. We read the input image,
convert it to Lab, randomly crop 224x224 image and
apply horizontal flip with 50% probability.

F. Alternative ways of scaling problem com-
plexity

In the main paper (Section 4.3), we showed how to in-
crease the problem complexity for the Jigsaw task by in-
creasing the size of the permutation set |P|, and for the Col-
orization task by changing the number of nearest neigh-
bors K for the soft-encoding. We explore additional ways to
increase the problem complexity for the Jigsaw and Col-
orization methods.

F.1. Jigsaw: Number of patches N

We increase the number of patches N from 9 (default
in [52]) to 16. We use |P| = 2000. The input image is re-
sized to 300× 300 which is divided into a 4× 4 tiles of size
75×75. A 64×64 patch is then extracted from each tile ran-
domly to get 16 patches total. We use the same investigation
setup as in Section 4 of the main paper - train linear SVMs
on the fixed representations for the VOC07 image classifi-
cation task. Our results, shown in Table 26, indicate that
increasing the number of patches does not result in a higher
quality representation. Thus, we only performed further ex-
periments in increasing problem complexity by varying the
size of the permutation set |P|.

F.2. Colorization: Number of color bins |Q|

We increase the size of the color bins |Q| that are used to
quantize the color space (see Section 3.2 of the main paper).
This increases the number of colors the ConvNet predicts
for the Colorization problem. We evaluate the quality of
the features by transfer learning on the Places205 dataset
(same setup as in Section 5 of the main paper). As Table 27
shows, using |Q| ∈ [313, 262] gives the best results. Thus,
we use 313 bins in the main paper which is also the default
in [79].

We also experimented with the bandwidth of the Gaus-
sian used to compute the soft-encoding ZK but did not see
any significant improvements.

G. Additional Results
G.1. Image Classification using Linear Classifiers

on ImageNet

Similar to Section 7 of the main paper, we train linear
classifiers on frozen representations from different layers of
a ResNet-50 model in Table 18. We strictly follow the setup
from Zhang et al. [80] and compare against earlier works
that also use ResNet-50 for self-supervised pre-training.

G.2. Image Classification using Linear SVM on
VOC07

Complete results of Section 6.1 in the main paper. We
report results using the AlexNet model on the VOC07
dataset in Table 19.

G.3. Image Classification using Linear SVM on
COCO2014

Complete results of Section 6.1 in the main paper. We
report results on the COCO2014 dataset in Table 20.

G.4. Image Classification using Full fine-tuning on
VOC07

We perform full fine-tuning (hyperparameters in ap-
pendix E.2) of the self-supervised networks for the VOC07
classification task. We provide results for the ResNet-50
model in Table 21 and for AlexNet in Table 22. The ResNet-
50 model matches the performance of a supervised pre-
trained Places205 model on the VOC07 classification task.
We note that obtaining a comparable evaluation setting to
prior work using AlexNet is difficult because of differences
in fine-tuning schedule and weight re-scaling methods.

G.5. Layerwise Results for Low-shot

We report results on low-shot classification (Section 6.2
in the main paper) in Figure 7. We show the results for both
the Colorization and Jigsaw self-supervised methods for
a ResNet-50 model.

G.6. Surface Normal Estimation using a ResNet-50
Colorization model

We report results on the Surface Normal Estimation task
using a ResNet-50 self-supervised model on the Coloriza-
tion method (setup from Section 6.4 of the paper). These
results are in Table 23.

G.7. Faster R-CNN results on VOC07 and
VOC07+12

Similar to Section 6.3 of the main paper, we freeze the
conv body for all the models. We train the ROI-heads and
the classifier (res5 onwards). We report these results in Ta-
ble 24. For all the methods (including supervised and self-
supervised), we use a slightly longer fine-tuning schedule
of 38k/12k for VOC07 and 65k/35k for VOC07+12. All
other parameters are kept the same as in Detectron [28].
Full fine-tuning: We evaluate in the full fine-tuning setting
to draw comparisons with [77]. We use the default param-
eters in Detectron [28] for this setting. Our ResNet-50
Jigsaw ImageNet-22k model fine-tuned on VOC07 train-
val obtains 68.9 mAP on VOC07 test compared to 65.4
reported in [77]. We show full results on this setting in Ta-
ble 25.

Layer X C K S P G D
data 64 27 – – – – –
data split 64 3 – – – – –
conv1 27 96 11 2 0 1 1
pool1 13 96 3 2 0 – 1
conv2 13 256 5 1 2 2 1
pool2 6 256 3 2 0 – 1
conv3 6 384 3 1 1 1 1
conv4 6 384 3 1 1 2 1
conv5 6 256 3 1 1 2 1
pool5 2 256 3 2 0 – 1
fc6 1 1024 1 1 0 – 2
concat 1 9216 1 1 0 – 1
fc7 1 4096 1 1 0 – 1
fc8 1 ∗ 1 1 0 – 1

Table 10: AlexNet architecture used for Jigsaw pretext task. X spatial resolution of layer, C number of channels in layer; K conv or pool kernel size; S
computation stride; D kernel dilation; P padding; G group convolution, last layer is removed during transfer evaluation. Number with * depends on the size
per permutation set used to train jigsaw puzzle.

Layer X C K S P G D
data 180 1 – – – – –
conv1 45 96 11 4 5 1 1
pool1 23 96 3 2 1 – 1
conv2 23 256 5 1 2 2 1
pool2 12 256 3 2 1 – 1
conv3 12 384 3 1 1 1 1
conv4 12 384 3 1 1 2 1
conv5 12 256 3 1 1 2 1
pool5 12 256 3 1 1 – 1
fc6 12 4096 1 1 0 – 2
fc7 12 4096 1 1 0 – 1
fc8 12 ∗ 1 1 0 – 1

Table 11: AlexNet architecture used for Colorization pretext task. X spatial resolution of layer, C number of channels in layer; K conv or pool kernel
size; S computation stride; D kernel dilation; P padding; G group convolution, last layer is removed during transfer evaluation. Number with * depends on
the colorization bin size.

Layer X C K S P G
data 64 27 – – – –
data split 64 3 – – – –
conv1 32 64 7 2 3 1
maxpool 16 64 3 2 1 –
res2 16 256 ∗ ∗ ∗ 1
res3 8 512 ∗ ∗ ∗ 1
res4 4 1024 ∗ ∗ ∗ 1
res5 2 2048 ∗ ∗ ∗ 1
avgpool 1 2048 2 1 0 –
fc1† 1 1024 1 1 0 1
concat 1 9216 – – – –
fc2 1 / 1 1 0 1

Table 12: ResNet-50 architecture used for Jigsaw pretext task. X spatial resolution of layer, C number of channels in layer; K conv or pool kernel size;
S computation stride; D kernel dilation; P padding; G group convolution. Layers denoted with res prefix represent the bottleneck residual block. Number
with * use the original setting as in [31]. Layer with † is implemented as a conv layer. Number with / depend on the size of permutation set used for training
Jigsaw model (see Section 4.3 in main paper)

.

Layer X C K S P G
data 180 1 – – – –
conv1 90 64 7 2 3 1
maxpool 45 64 3 2 1 –
res2 45 256 ∗ ∗ ∗ 1
res3 23 512 ∗ ∗ ∗ 1
res4 12 1024 ∗ ∗ ∗ 1
res5 12 2048 ∗ ∗ ∗ 1
avgpool 12 2048 3 1 1 –
fc1† 12 313 6 1 5 1

Table 13: ResNet-50 architecture used for Colorization pretext task. X spatial resolution of layer, C number of channels in layer; K conv or pool
kernel size; S computation stride; D kernel dilation; P padding; G group convolution. Layers denoted with res prefix represent the bottleneck residual
block. Number with * use the original setting as in [31]. Layer with † is implemented as a conv layer.

Layer X C K S P G D Xd Kd Sd Pd

data 227 1 – – – – – – – – –
conv1 55 96 11 4 0 1 1 10 19 4 0
pool1 27 96 3 2 0 – 1 – – – –
conv2 27 256 5 1 2 2 1 6 12 3 0
pool2 13 256 3 2 0 – 1 – – – –
conv3 13 384 3 1 1 1 1 5 9 1 0
conv4 13 384 3 1 1 2 1 5 9 1 0
conv5 13 256 3 1 1 2 1 6 8 1 0
pool5 6 256 3 1 1 – 1 – – – –
fc6 1 4096 1 1 5 – 2 – – – –
fc7 1 4096 1 1 0 – 1 – – – –
fc8 1 ∗ 1 1 0 – 1 – – – –

Table 14: AlexNet architecture used for Colorization finetuning. X spatial resolution of layer, C number of channels in layer; K conv or pool kernel
size; S computation stride; D kernel dilation; P padding; G group convolution, last layer is removed during transfer evaluation. Number with * depends
on the colorization bin size. For evaluation, we downsample conv layers so that the resulting feature map has dimension 9k. Xd downsampled spatial
resolution; Kd kernel size of downsample avgpool layer; Sd stride of downsample avgpool layer; Pd padding of downsample using avgpool layer.

Layer X C K S P G D Xd Kd Sd Pd

data 227 3 – – – – – – – – –
conv1 109 96 11 2 0 1 1 10 28 9 0
pool1 54 96 3 2 0 – 1 – – – –
conv2 54 256 5 1 2 2 1 6 24 6 0
pool2 26 256 3 2 0 – 1 – – – –
conv3 26 384 3 1 1 1 1 5 14 3 0
conv4 26 384 3 1 1 2 1 5 14 3 0
conv5 26 256 3 1 1 2 1 6 16 2 0
pool5 12 256 3 2 0 – 1 – – – –
fc6 1 4096 1 1 0 – 1 – – – –
fc7 1 4096 1 1 0 – 1 – – – –
fc8 1 ∗ 1 1 0 – 1 – – – –

Table 15: AlexNet architecture used for Jigsaw finetuning. X spatial resolution of layer, C number of channels in layer; K conv or pool kernel size;
S computation stride; D kernel dilation; P padding; G group convolution, last layer is removed during transfer evaluation. Number with * depends on the
colorization bin size. For evaluation, we downsample conv layers so that the resulting feature map has dimension 9k. Xd downsampled spatial resolution;
Kd kernel size of downsample avgpool layer; Sd stride of downsample avgpool layer; Pd padding of downsample avgpool layer.

Layer X C K S P G Xd Kd Sd Pd

data 224 1 – – – – – – – –
conv1 112 64 7 2 3 1 12 10 10 4
maxpool 56 64 3 2 1 – – – – –
res2 56 256 ∗ ∗ ∗ 1 6 16 8 0
res3 28 512 ∗ ∗ ∗ 1 4 13 5 0
res4 14 1024 ∗ ∗ ∗ 1 3 8 3 0
res5 7 2048 ∗ ∗ ∗ 1 2 6 1 0
avgpool 1 2048 7 1 0 – – – – –
fc1 1 † 1 1 0 – – – – –

Table 16: ResNet-50 architecture used for Jigsaw Transfer task. X spatial resolution of layer, C number of channels in layer; K conv or pool kernel
size; S computation stride; D kernel dilation; P padding; G group convolution. Layers denoted with res prefix represent the bottleneck residual block.
Number with * use the original setting as in [31]. Layer with † depend on the number of output classes. For evaluation, we downsample conv layers so that
the resulting feature map has dimension 9k. Xd downsampled spatial resolution; Kd kernel size of downsample avgpool layer; Sd stride of downsample
avgpool layer; Pd padding of downsample using avgpool layer.

Layer X C K S P G Xd Kd Sd Pd

data 224 1 – – – – – – – –
conv1 112 64 7 2 3 1 12 10 10 4
maxpool 56 64 3 2 1 – – – – –
res2 56 256 ∗ ∗ ∗ 1 6 16 8 0
res3 28 512 ∗ ∗ ∗ 1 4 13 5 0
res4 14 1024 ∗ ∗ ∗ 1 3 8 3 0
res5 14 2048 ∗ ∗ ∗ 1 2 12 2 0
avgpool 1 2048 14 1 0 – – – – –
fc1 1 † 1 1 0 – – – – –

Table 17: ResNet-50 architecture used for Colorization Transfer task. X spatial resolution of layer, C number of channels in layer; K conv or pool
kernel size; S computation stride; D kernel dilation; P padding; G group convolution. Layers denoted with res prefix represent the bottleneck residual
block. Number with * use the original setting as in [31]. Layer with † depend on the number of output classes. For evaluation, we downsample conv
layers so that the resulting feature map has dimension 9k. Xd downsampled spatial resolution; Kd kernel size of downsample avgpool layer; Sd stride of
downsample avgpool layer; Pd padding of downsample using avgpool layer.

ImageNet-1k
Method layer1 layer2 layer3 layer4 layer5
ResNet-50 ImageNet-1k Supervised 11.6 33.3 48.7 67.9 75.5
ResNet-50 Places205 Supervised 13.2 31.7 46.0 58.2 51.7
ResNet-50 Random 9.6 13.7 12.0 8.0 5.6
ResNet-50 (Kolesnikov et al.) [37]† – – – 47.7 –
ResNet-50 (NPID) [77]/ 15.3 18.8 24.9 40.6 54.0
ResNet-50 Jigsaw ImageNet-1k 12.4 28.0 39.9 45.7 34.2
ResNet-50 Jigsaw ImageNet-22k 7.9 30.2 39.0 46.3 35.9
ResNet-50 Jigsaw YFCC-100M 7.9 28.2 41.3 48.3 34.7
ResNet-50 Coloriz. ImageNet-1k 10.2 24.1 31.4 39.6 35.2
ResNet-50 Coloriz. ImageNet-22k 10.1 27.0 37.8 49.4 46.2
ResNet-50 Coloriz. YFCC-100M 10.4 25.9 37.7 47.8 41.1

Table 18: ResNet-50 top-1 center-crop accuracy for linear classification on the ImageNet-1k dataset.. Numbers with † are with 10 − 20× longer
fine-tuning and are reported on unofficial ImageNet-1k validation split. Numbers with / use different fine-tuning procedure. All other models follow the
setup from Zhang et al. [80].

Method layer1 layer2 layer3 layer4 layer5
AlexNet ImageNet-1k Supervised 34.9 51.8 59.5 64.6 68.0
AlexNet Places205 Supervised 34.4 51.7 59.4 63.2 65.7
AlexNet Random 8.5 7.9 8.0 7.8 7.9
AlexNet Jigsaw ImageNet-1k 35.6 48.3 53.2 53.5 49.5
AlexNet Jigsaw ImageNet-22k 36.1 49.0 53.9 54.3 48.3
AlexNet Jigsaw YFCC-100M 35.9 49.1 54.7 55.4 49.7
AlexNet Colorization ImageNet-1k 31.7 43.4 47.6 50.3 51.6
AlexNet Colorization ImageNet-22k 31.5 45.6 50.8 54.6 55.7
AlexNet ColorizationJigsaw YFCC-100M 32.7 46.0 51.7 54.3 55.1

Table 19: AlexNet linear SVM classification on the VOC07 dataset.

Method layer1 layer2 layer3 layer4 layer5
ResNet-50 Jigsaw ImageNet-1k 19.6 33.9 41.9 47.3 41.1
ResNet-50 Jigsaw ImageNet-22k 14.7 34.9 43.4 52.1 45.5
ResNet-50 Jigsaw YFCC-100M 14.7 34.2 43.7 52.2 44.4
ResNet-50 ImageNet-1k Supervised 17.5 35.5 45.8 60.5 68.5
AlexNet Jigsaw ImageNet-1k 25.8 35.0 38.7 38.6 34.6
AlexNet Jigsaw ImageNet-22k 25.9 35.6 39.7 39.3 34.1
AlexNet Jigsaw YFCC-100M 25.8 35.8 40.2 40.1 33.9
AlexNet ImageNet-1k Supervised 24.4 37.9 43.4 46.5 47.6

Table 20: Linear SVM classification on the COCO2014 dataset.

Method VOC07
ResNet-50 ImageNet-1k Supervised 90.3
ResNet-50 Places205 Supervised 86.9
ResNet-50 Random∗ 48.4
ResNet-50 Jigsaw ImageNet-1k 73.9
ResNet-50 Jigsaw ImageNet-22k 83.8
ResNet-50 Jigsaw YFCC-100M 82.7
ResNet-50 Coloriz. ImageNet-1k 67.9
ResNet-50 Coloriz. ImageNet-22k 75.0
ResNet-50 Coloriz. YFCC-100M 75.3

Table 21: ResNet-50 Full fine-tuning image classification (mAP scores)
for VOC07. All models are trained using the same setup and we report
center crop numbers. Random initialization baseline (denoted with ∗) is
trained for 4× longer fine-tuning schedule on VOC07.

Method VOC07
AlexNet ImageNet-1k Supervised 79.9
AlexNet Places205 Supervised 75.7
AlexNet Random‡ 53.3
AlexNet (Context) [14]/ 65.3
AlexNet (SplitBrain) [80]/ 67.1
AlexNet (Counting) [53]/ 67.7
AlexNet (Rotation) [26]/,∗ 72.9
AlexNet (DeepCluster) [9]† 70.4
AlexNet Jigsaw ImageNet-1k 58.5
AlexNet Jigsaw ImageNet-22k 63.7
AlexNet Jigsaw YFCC-100M 63.0
AlexNet Coloriz. ImageNet-1k 61.9
AlexNet Coloriz. ImageNet-22k 66.7
AlexNet Coloriz. YFCC-100M 65.5

Table 22: AlexNet Full fine-tuning image classification (mAP scores)
for VOC07: We report 10-crop numbers as in [80]. Method with † uses
a different fine-tuning schedule, / uses weight re-scaling, ∗ we could not
determine exact fine-tuning details. Numbers with ‡ taken from [80]. We
note that drawing consistent comparisons with (and among) prior work
is difficult because of differences in the fine-tuning procedure and thus
present these results only for the sake of completeness.

1 2 4 8 16 32 640

2

4

6

to
p-

1
ac

c
conv1

1 2 4 8 16 32 640

5

10

15
res2

1 2 4 8 16 32 640
5

10
15
20
25

res3

1 2 4 8 16 32 64
Num. labeled samples

0

10

20

30

40

to
p-

1
ac

c

res4

1 2 4 8 16 32 64
Num. labeled samples

0

20

40

60
res5

1 2 4 8 16 32 64
Num. labeled samples

0

20

40

60
best

Random Places-205 Supervised Jigsaw YFCC-100M

1 2 4 8 16 32 640

5

10

15

20

25

m
AP

conv1

1 2 4 8 16 32 640

10

20

30

40
res2

1 2 4 8 16 32 640
10
20
30
40
50

res3

1 2 4 8 16 32 64
Num. labeled samples

0

20

40

60

m
AP

res4

1 2 4 8 16 32 64
Num. labeled samples

0

20

40

60

80
res5

1 2 4 8 16 32 64
Num. labeled samples

0

20

40

60

80
best

Random ImageNet-1k Supervised Jigsaw YFCC-100M

(a) Jigsaw Places205 (b) Jigsaw VOC07

1 2 4 8 16 32 640

2

4

6

to
p-

1
ac

c

conv1

1 2 4 8 16 32 640

5

10

15
res2

1 2 4 8 16 32 640
5

10
15
20
25

res3

1 2 4 8 16 32 64
Num. labeled samples

0

10

20

30

40

to
p-

1
ac

c

res4

1 2 4 8 16 32 64
Num. labeled samples

0

20

40

60
res5

1 2 4 8 16 32 64
Num. labeled samples

0

20

40

60
best

Random Places-205 Supervised Colorization YFCC-100M

1 2 4 8 16 32 640

5

10

15

20

25

m
AP

conv1

1 2 4 8 16 32 640

10

20

30

40
res2

1 2 4 8 16 32 640
10
20
30
40
50

res3

1 2 4 8 16 32 64
Num. labeled samples

0

20

40

60

m
AP

res4

1 2 4 8 16 32 64
Num. labeled samples

0

20

40

60

80
res5

1 2 4 8 16 32 64
Num. labeled samples

0

20

40

60

80
best

Random ImageNet-1k Supervised Colorization YFCC-100M

(a) Colorization Places205 (b) Colorization VOC07

Figure 7: Low-shot Classification (layerwise) results on the using a ResNet-50. These are additional results following the same setup as in Section 6.2 of
the main paper. We train linear classifiers (SVMs) on layer-wise representations.

Angle Distance Within t◦

Initialization Mean Median 11.25 22.5 30
(Lower is better) (Higher is better)

ResNet-50 ImageNet-1k supervised 26.4 17.1 36.1 59.2 68.5
ResNet-50 Places205 supervised 23.3 14.2 41.8 65.2 73.6
ResNet-50 Scratch 26.3 16.1 37.9 60.6 69.0
ResNet-50 Colorization ImageNet-1k 29.3 21.0 30.2 52.4 62.8
ResNet-50 Colorization ImageNet-22k 27.1 19.5 32.4 55.1 65.6
ResNet-50 Colorization YFCC-100M 28.5 22.6 28.1 49.9 61.4

Table 23: Surface Normal Estimation on the NYUv2 dataset. We train
ResNet-50 from res5 onwards and freeze the conv body below.

Method VOC07 VOC07+12
ResNet-50 ImageNet-1k Supervised 67.1 68.3
ResNet-50 ResNet-50 Jigsaw ImageNet-22k 62.7 64.8
ResNet-50 Jigsaw YFCC-100M 56.9 59.8

Table 24: Detection mAP for frozen conv body on VOC07 and
VOC07+12 using Faster R-CNN with ResNet-50-C4. We freeze the conv
body for all models.

Method VOC07 VOC07+12
ResNet-50 ImageNet-1k Supervised 70.9 76.4
ResNet-50 ResNet-50 Jigsaw ImageNet-1k 64.5 67.3
ResNet-50 Jigsaw ImageNet-22k 68.9 75.3
ResNet-50 Jigsaw YFCC-100M 66.4 73.9

Table 25: Detection mAP with full fine-tuning on VOC07 and
VOC07+12 using Faster R-CNN with ResNet-50-C4. We freeze the conv
body for all models.

VOC07
Number of patches (N) layer1 layer2 layer3 layer4 layer5

9 26.7 44.6 53.5 64.1 55.5
16 31.9 42.0 48.1 49.8 37.9

Table 26: Varying number of patches N for a ResNet-50 on Jigsaw.
We increase the problem complexity of the Jigsaw method by increasing
the number of patches from 9 (default in [52]) to 16. We keep the size of
the permutation set fixed at |P| = 2000. We report the performance of
training a linear SVM on the fixed features for the VOC07 image classifi-
cation task. We do not see an improvement by increasing the number of
patches.

Places205
Number of bins (|Q|) layer1 layer2 layer3 layer4 layer5

968 14.5 27.8 32.0 33.1 36.3
313 14.5 27.5 32.8 37.6 34.6
262 14.8 27.9 32.5 38.6 36.5
124 14.5 26.6 30.7 27.7 35.3
76 15.6 28.1 32.7 33.6 36.5

Table 27: Varying number of colorbins |Q| for a ResNet-50 on Col-
orization. We increase the problem complexity for the Colorization
method by increasing the number of colors (|Q|) the ConvNet must pre-
dict. We evaluate the feature representation by training linear classifiers
on the fixed features. We report the top-1 center crop accuracy on the
Places205 dataset.

