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ABSTRACT
In a sentence, certain words are critical for its seman-

tic. Among them, named entities (NEs) are notoriously
challenging for neural models. Despite their importance,
their accurate handling has been neglected in speech-to-text
(S2T) translation research, and recent work has shown that
S2T models perform poorly for locations and notably person
names, whose spelling is challenging unless known in ad-
vance. In this work, we explore how to leverage dictionaries
of NEs known to likely appear in a given context to improve
S2T model outputs. Our experiments show that we can reli-
ably detect NEs likely present in an utterance starting from
S2T encoder outputs. Indeed, we demonstrate that the current
detection quality is sufficient to improve NE accuracy in the
translation with a 31% reduction in person name errors.

Index Terms— speech translation, named entities

1. INTRODUCTION

Translation is the process to convey the same semantic mean-
ing of a source sentence into a target language. In this process,
named entities (NEs) – which identify real-world people, lo-
cations, organizations, etc. – play a paramount role and their
correct translation is crucial to express the accurate meaning
[1]. On the other end, current neural translation systems are
known to struggle in presence of rare words [2], as NEs often
are. These motivations drove researchers to study dedicated
solutions that exploit additional information available at infer-
ence time, such as bilingual dictionaries [3, 4, 5, 6]. All these
works, however, are targeted for text-to-text (T2T) translation
and assume that the dictionary entities present in the source
sentence can be easily retrieved with pattern matching. This
assumption does not hold for the speech-to-text (S2T) trans-
lation task, where the source modality is audio.

The S2T task was initially accomplished by a cascade of
automatic speech recognition (ASR) and T2T translation sys-
tems. However, end-to-end (or direct) S2T solutions have
recently progressed up to achieve similar translation quality
[7], with the benefits of a simpler architecture and lower la-
tency. Cascade and direct models have been shown to equally
struggle with NEs [8], even more than T2T ones, especially
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regarding person names [9] that are particularly hard to rec-
ognize from speech. Despite this and the importance of NEs,
to the best of our knowledge, no work has so far explored
how to exploit contextual dictionaries of NEs available at in-
ference time in S2T. In addition, existing methods designed
for T2T are not applicable due to the different input modality.

Motivated by the practical relevance of the problem and
the lack of existing solutions, we present the first approach to
exploit contextual information – in the form of a bilingual dic-
tionary of NEs – in direct S2T. Specifically, our main focus is
the detection of the NEs present in an utterance, among those
in a given contextual dictionary. Performing this task allows
us to rely on the existing solutions to inject the correct trans-
lations for the NEs. To showcase that the quality of our NE
detector is sufficient to be useful, we adopt a decoder archi-
tecture similar to Contextual Listen Attend and Spell (CLAS)
[10] and provide it with the list of translated NEs considered
present by our detector module. Experimental results on 3
language pairs (en→es,fr,it) demonstrate that we can improve
NE accuracy by up to 7.1% over a base S2T model, and re-
duce the errors on person names by up to 31.3% over a strong
baseline exploiting the same inference-time contextual data.

2. ENTITY DETECTION FOR S2T TRANSLATION

Two operations are necessary to exploit a dictionary of NEs
likely to appear in an utterance: i) detect the relevant NEs
among those in the dictionary, ii) look at the corresponding
translations to accurately generate them. Accordingly, we add
two modules to the S2T model: i) a detector identifying the
NEs present in the utterance, and ii) a module informing the
decoder about the forms of the NEs in the target language.

2.1. Entity Detection

A recent research direction in S2T consists in training models
that jointly perform S2T and T2T to improve the quality of
direct S2T [11, 12]. These speech/text-to-text (ST2T) models
include auxiliary tasks to force the encoder outputs of differ-
ent modalities to be close when the text/audio content is the
same. Fig. 1 confirms that encoder outputs for text (the text
is actually converted into phonemes before being fed to the



(a) Full sentence. (b) Zoom on Minsk phonemes

Fig. 1: Heatmap of cosine similarities (the lighter, the more
similar) between the encoder outputs of text and speech of the
ST2T model released by [11]. On the x axis, each item is a
phoneme passed to the textual shared encoder; on the y axes
there are frames that correspond to the utterance.

encoder, as per [11]) and audio are indeed similar. Specifi-
cally, there is a strong similarity between the phonemes that
compose a word and the audio frames that correspond to that
word. Based on this, we hypothesize that we can use the en-
coded representation of the textual NEs in a dictionary/list
and the encoded representation of an utterance to determine
whether each NE has been mentioned or not. To this aim, we
train a NE detector module fed with the encoder outputs of
different modalities. Such a module, fed with a NE and an
utterance, should classify whether the NE is present or not.

At training time, we feed a positive sample (i.e. a piece of
text actually present in the utterance) and a negative sample
(i.e. a piece of text not present in the utterance) for each au-
dio to train the NE detector. Positive and negative texts can be
sampled i) from random words in the transcript of the current
utterance and of those of other utterances in the same batch,1

or ii) from automatically-detected NEs. The second approach
is closer to the real goal, but also limits the amount of train-
ing data (ignoring the utterances in the training set that do not
contain NEs), and its variety (risking to overfit to the NEs in
the training set). To avoid this, we adopt a mixed approach,
where in training samples without NEs the first approach is
used, while in training samples with NEs one of the two ap-
proaches is randomly selected (assigning 80% of probability
to choosing automatically-recognized NEs).

Another critical aspect is the design of this detector mod-
ule. We first tested the Speech2Slot architecture [13], a stack
of three layers made of a multi-head attention (MHA) fol-
lowed by a feed-forward network (FFN) without residual con-

1Ensuring they are not present in the examined utterance.

Fig. 2: NE Detector architecture.

nections. The NE textual encoder output is fed as query to the
MHA, while the key and values are built from the speech en-
coder output. Unfortunately, training this architecture turned
out challenging and the networks failed to converge.

In light of this, we resorted to a stack of three Transformer
encoder layers, fed with a concatenation of a CLS token, the
NE textual encoder output, a SEP token, and the utterance
S2T encoder output. From the output of the last layer, we
then select only the first vector, corresponding to the CLS to-
ken, and feed it to a sigmoid (σ) activation function to get the
probability that the NE is present in the utterance. In addition,
we add a trained TXT embedding to all the NE textual encoder
vectors and a trained SPC embedding to all the speech en-
coder vectors, obtaining the architecture represented in Fig.
2. Finally, as a NE should appear in a contiguous and rela-
tively short speech segment, we force the module to focus on
a limited span of speech vectors surrounding the considered
one by an attention masking mechanism. Specifically, as the
amount of speech that should be considered depends on the
NE length, we mask all the speech vectors that are further than
two2 times the number of phonemes of the NE to detect with
respect to the current speech element. For instance, when try-
ing to detect a NE made of 10 phonemes, each speech vector
can attend only to itself, the 20 speech vectors before it, and
the 20 after it, in addition to the textual and the special token
vectors. In other words, each speech vector can attend to the
surrounding ones, to all textual vectors, and the CLS and SEP
embeddings.

2.2. Decoding with Contextual Entities

As we will see in Sec. 4, the entity detector achieves high
recall, but false positives are hard to avoid. Hence, to demon-
strate that our entity detector is useful despite a low precision,
we inject the selected entities into the model with an approach
tolerant to false positives. We adopt an architecture similar to
CLAS [10], where the bias encoder is a trained 3-layer Trans-
former encoder, and the attention between the decoder and

2We also tested 1 and 3, noticing minimal differences and chose 2 due to
its lower loss on the dev set.



the bias encoder outputs is a MHA implemented following
the parallel or sequential methods by [14] (see Fig. 3). Each
NE in the list of those considered likely present (bias-NE) is
encoded with the bias encoder and the encoder outputs are av-
eraged to get a single vector. After repeating this step for all
the bias-NEs, the resulting vectors are concatenated together
with a no-bias learned vector that allows our model to ignore
the information from bias vectors.

Fig. 3: CLAS Transformer decoder layer (parallel method).

3. EXPERIMENTAL SETTINGS

Our baselines are a multilingual direct ST2T and a cascade
system (ASR followed by multilingual MT). ST2T and ASR
models are trained according the recipe in [15], where the
BART text pre-training uses Europarl [16] data,3 and the
joint pre-training uses Libri-Light [17] as unsupervised data,
and MuST-C [18] and Europarl-ST [19] as supervised data.
For the final fine-tuning, the ASR model is fine-tuned on
the en→es section of MuST-C and Europarl-ST (the largest
language direction among the ones we considered), while the
ST2T model is fine-tuned on the en→{es,fr,it} S2T direc-
tions, together with an auxiliary ASR task that is not used
at inference time. Our multilingual MT model is trained on
Europarl. All our models also predict NE tags in the output,
which has been shown to improve NE handling [20].

Our ASR and ST2T models directly process raw wave-
forms using the same hyperparameters of [15]. Encoder lay-
ers are randomly dropped (LayerDrop) at training time with
0.1 probability [21]. The models have in total ∼176M of pa-
rameters. The multilingual MT models have 6 encoder and
decoder layers with 512 features and 1024 FFN hidden fea-
tures, for a total of ∼102M of parameters. When training
CLAS models, we initialize the weights with those of the
pre-trained ST2T model. We freeze encoder weights, and we
also experimented freezing the decoder parameters from the
pre-trained ST2T model: in this case we train only the newly
added components and the output projection layer.

The quality of the NE detectors is assessed with the trade-
off between recall and number of NEs retrieved. We esti-
mate selectivity through the number of NEs retrieved instead

3We filter from Europarl all the data that belongs to the dates of the talks
inside the Europarl-ST test set.

GPE LOC PER Retr.
Cosine Similarities 68.2% 74.3% 53.2% 138.2
Base NE detector 31.4% 6.3% 28.3% 115.5
+ speech masking 31.9% 17.9% 29.4% 54.3

+ layerdrop 57.2% 24.2% 38.0% 3.9
+ layerdrop 66.8% 33.7% 40.2% 4.3

+ train on NE 93.9% 76.8% 79.4% 1.8
+ modality emb. 95.2% 94.7% 78.3% 1.8

+ attn. masking 93.5% 93.7% 90.2% 1.6
+ max word len 5 96.5% 93.7% 89.1% 1.4

+ margin ranking 96.1% 91.6% 88.0% 1.2

Table 1: Recalls on GPE, LOC, and PER, and number of NEs
retrieved on average (Retr.) for each utterance.

of precision, as some NEs may be correctly detected even
though they are not annotated in NEuRoparl-ST [8],4 mak-
ing hard to reliably compute precision. The output of S2T
systems are evaluated with SacreBLEU5 [22] on Europarl-
ST for the translation quality, and with case-sensitive entity
accuracy on NEuRoparl-ST for the ability in handling NEs.
Among NEs, we focus on geopolitical entities (GPE), loca-
tions (LOC), and person (PER) names, as these three types
are the most challenging for S2T systems [8].

4. RESULTS

4.1. NE Detection

Table 1 reports the retrieval results of the NE detector module
described in Sec. 2.1, isolating the contribution of its compo-
nents, and compares it with a simple algorithm based on the
cosine similarities, which is unable to obtain good selectiv-
ity. For each utterance, the NE detectors are fed with all the
distinct GPE, LOC, PER, and organizations (ORG) in the test
set for a total of 294 NEs. A NE is considered detected if the
NE detector assigns a detection probability higher than 86%.
First, we notice that, to achieve meaningful scores, it is es-
sential to introduce LayerDrop when extracting the input fea-
tures using the shared speech/text encoder of the ST2T model.
Otherwise, the results are close to a random predictor. Speech
masking also helps, but results harmful when combined with
LayerDrop. Moreover, feeding automatically-detected NEs
at training time with the mixed approach described in Sec.
2.1, instead of only using random words, greatly improves
both recalls and selectivity. The addition of trained modal-
ity embeddings also proved helpful, especially for LOC and
GPE recall. The attention masking provides significant ben-
efits in terms of PER recall and selectivity, at the cost of a
very limited degradation on GPE and LOC recall. Further
improvements in selectivity were obtained by picking more

4For instance, this happens when a NE is part of a bigger one (e.g. the
NE Lisbon is retrieved in a sentence that contains the NE Treaty of Lisbon).

5case:mixed|eff:no|tok:13a|smooth:exp|v:2.1.0



BLEU GPE LOC PER Avg.
Cascade 37.6 80.0 74.2 51.2 68.5
Base ST2T 38.8 82.2 78.4 49.3 70.0

+ CLM (λ=0.10) 38.8 83.9 76.8 50.8 70.5
+ CLM (λ=0.15) 38.0 83.6 74.9 52.7 70.4
+ CLM (λ=0.20) 37.0 82.5 73.0 53.4 69.6

Parallel CLAS 37.5 84.7 78.4 66.1 76.4
+ freeze decoder 37.0 82.8 78.7 64.6 75.4

Sequential CLAS 35.8 84.5 78.7 68.0 77.1
+ freeze decoder 36.8 82.7 79.9 68.0 76.9

Table 2: Translation quality (BLEU) and accuracy for GPE,
LOC, and PER – as well as the average over the 3 categories
(Avg.) – of the base direct ST2T, cascade, and the test-entities
aware systems (class LM – CLM – and CLAS models). The
results are the average over the 3 language pairs (en→es,fr,it).

than a single random word when training the NE detector (up
to 5 consecutive words), and by adding an auxiliary margin
ranking loss to the binary cross entropy loss. This final mod-
ule achieves recalls higher or close to 90%, retrieving 1.2 NEs
per utterance on average (the test set contains 0.34 NEs from
these 3 categories on average). Excluding the retrieved NEs
present in an utterance but not annotated as such in the test
set,4 we can compute the precision of this module, which is
55.8%. The non-negligible number of false positives is in-
vestigated in Sec. 5, and highlights that the NE detector can
be used to create a short-list of NEs likely present in the sen-
tence, rather than enforce the presence of detected NEs, mo-
tivating the CLAS solution (Sec. 2.2).

4.2. S2T Quality and NE Translation

Our CLAS method leverages additional data available at in-
ference time. Its comparison with a plain S2T model would
hence be unfair, so we introduce a strong baseline that ex-
ploits this additional data. Specifically, we perform a class
language model (LM) rescoring of the S2T model probabili-
ties, using shallow fusion (i.e. adding to the S2T model prob-
abilities the LM probabilities rescored with a weigth λ) [23].
We train the class LM [23] on the test-time NEs, and a generic
LM on the target side of the MT training data. At each decod-
ing step, if we are inside NE tags for the current hypothesis,
we rescore (shallow fusion) the S2T outputs with the class
LM; otherwise, the rescoring is done with the generic LM.

Table 2 compares this strong baseline, the base model,
and our CLAS systems fed with the entities selected by our
NE detector module. We can see that CLAS systems are the
best in NEs accuracy, reducing by up to 31% the number of
errors for person names compared to the best baseline us-
ing the same additional information. The improvements for
other NEs are lower: we argue that the reason lies in the
different representation NEs have in the different languages
(source and target) while person names are mostly the same.

Despite its better NE handling, CLAS suffers from a 1.3-2.0
BLEU degradation with respect to the baseline and future
work should address this weakness. However, comparing our
Parallel CLAS model to the baselines, we notice that the best
baseline for person names (CLM λ=0.20) is significantly in-
ferior on all metrics, including BLEU and person name accu-
racy. Moreover, BLEU is similar to the cascade solution with
significantly higher accuracy on all NE categories.

5. ANALYSIS

As observed in Sec. 4.1, the weakness of the NE detector is
the number of wrongly detected NEs (false positives). To bet-
ter understand why they happen, we conducted a manual anal-
ysis of the false positives, assigning each of them to one of the
following categories: i) similar semantic (13.7%), NEs de-
tected in an utterance where there is a NE with a similar mean-
ing (e.g. Chamber/Parliament) or there is another NE of the
same type (e.g. Pakistan/Afghanistan); ii) similar phonetic
(14.3%), NEs detected in sentences where there is a word that
is similar or sounds similar (e.g. President/Presidency); iii)
partial match (34.0%), NEs detected in utterance where only
part of the NE is present (e.g. Fisheries Committee/Budget
Committee); iv) acronyms (8.4%), these NEs are poorly han-
dled because our text-to-phonemes converter does not han-
dle them properly (e.g. US is converted as the pronoun us
and EU as the pronoun you); v) different form (16.5%), NEs
detected where the same NE is mentioned but in a different
form (e.g. government of Malaysia/Malaysian Government),
so these are not real errors; vi) uninterpretable (13.1%), the
human cannot understand the reason of the error. This inspec-
tion shows that future work should focus on training strategies
that alleviate the detection errors of similar words and partial
matches, creating systems that are more robust to small yet
significant variations between different entities.

6. CONCLUSIONS

In this work, we explored how to leverage dictionaries of NEs
in a specific domain/context to improve the NE accuracy of
S2T systems, mainly focusing on the detection of which NEs
of a domain dictionary are present in an utterance. We pro-
posed an additional module on top of the encoder outputs that
can determine whether each NE is present in an utterance,
achieving a high recall for geopolitical entities, locations, and
person names. We demonstrated that the biggest challenge
regards increasing the selectivity of the model, and reported
a thorough analysis of the most common false positives with
guidelines for future works on the topic. In addition, we pro-
posed a method to inject the selected NEs in the decoding
phase, showing that the proposed detection strategy is already
capable of improving NE handling, with average accuracy
gains up to 14.4% on GPE, LOC, and PER over strong base-
lines leveraging the same inference-time information.
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