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Abstract

In this paper, we propose ELF, an Extensive, Lightweight and Flexible platform
for fundamental reinforcement learning research. Using ELF, we implement a
highly customizable real-time strategy (RTS) engine with three game environ-
ments (Mini-RTS, Capture the Flag and Tower Defense). Mini-RTS, as a minia-
ture version of StarCraft, captures key game dynamics and runs at 40K frame-
per-second (FPS) per core on a laptop. When coupled with modern reinforcement
learning methods, the system can train a full-game bot against built-in AIs end-
to-end in one day with 6 CPUs and 1 GPU. In addition, our platform is flexible in
terms of environment-agent communication topologies, choices of RL methods,
changes in game parameters, and can host existing C/C++-based game environ-
ments like ALE [4]. Using ELF, we thoroughly explore training parameters and
show that a network with Leaky ReLU [17] and Batch Normalization [11] cou-
pled with long-horizon training and progressive curriculum beats the rule-based
built-in AI more than 70% of the time in the full game of Mini-RTS. Strong per-
formance is also achieved on the other two games. In game replays, we show
our agents learn interesting strategies. ELF, along with its RL platform, is open
sourced at https://github.com/facebookresearch/ELF.

1 Introduction

Game environments are commonly used for research in Reinforcement Learning (RL), i.e. how to
train intelligent agents to behave properly from sparse rewards [4, 6, 5, 14, 29]. Compared to the
real world, game environments offer an infinite amount of highly controllable, fully reproducible,
and automatically labeled data. Ideally, a game environment for fundamental RL research is:

• Extensive: The environment should capture many diverse aspects of the real world, such
as rich dynamics, partial information, delayed/long-term rewards, concurrent actions with
different granularity, etc. Having an extensive set of features and properties increases the
potential for trained agents to generalize to diverse real-world scenarios.

• Lightweight: A platform should be fast and capable of generating samples hundreds or
thousands of times faster than real-time with minimal computational resources (e.g., a sin-
gle machine). Lightweight and efficient platforms help accelerate academic research of RL
algorithms, particularly for methods which are heavily data-dependent.

• Flexible: A platform that is easily customizable at different levels, including rich choices
of environment content, easy manipulation of game parameters, accessibility of internal
variables, and flexibility of training architectures. All are important for fast exploration of
different algorithms. For example, changing environment parameters [35], as well as using
internal data [15, 19] have been shown to substantially accelerate training.
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To our knowledge, no current game platforms satisfy all criteria. Modern commercial games (e.g.,
StarCraft I/II, GTA V) are extremely realistic, but are not customizable and require significant re-
sources for complex visual effects and for computational costs related to platform-shifting (e.g., a
virtual machine to host Windows-only SC I on Linux). Old games and their wrappers [4, 6, 5, 14])
are substantially faster, but are less realistic with limited customizability. On the other hand, games
designed for research purpose (e.g., MazeBase [29], µRTS [23]) are efficient and highly customiz-
able, but are not very extensive in their capabilities. Furthermore, none of the environments consider
simulation concurrency, and thus have limited flexibility when different training architectures are
applied. For instance, the interplay between RL methods and environments during training is often
limited to providing simplistic interfaces (e.g., one interface for one game) in scripting languages
like Python.

In this paper, we propose ELF, a research-oriented platform that offers games with diverse prop-
erties, efficient simulation, and highly customizable environment settings. The platform allows for
both game parameter changes and new game additions. The training of RL methods is deeply and
flexibly integrated into the environment, with an emphasis on concurrent simulations. On ELF,
we build a real-time strategy (RTS) game engine that includes three initial environments including
Mini-RTS, Capture the Flag and Tower Defense. Mini-RTS is a miniature custom-made RTS game
that captures all the basic dynamics of StarCraft (fog-of-war, resource gathering, troop building,
defense/attack with troops, etc). Mini-RTS runs at 165K FPS on a 4 core laptop, which is faster than
existing environments by an order of magnitude. This enables us for the first time to train end-to-
end a full-game bot against built-in AIs. Moreover, training is accomplished in only one day using
6 CPUs and 1 GPU. The other two games can be trained with similar (or higher) efficiency.

Many real-world scenarios and complex games (e.g. StarCraft) are hierarchical in nature. Our RTS
engine has full access to the game data and has a built-in hierarchical command system, which
allows training at any level of the command hierarchy. As we demonstrate, this allows us to train
a full-game bot that acts on the top-level strategy in the hierarchy while lower-level commands are
handled using build-in tactics. Previously, most research on RTS games focused only on lower-level
scenarios such as tactical battles [34, 25]. The full access to the game data also allows for supervised
training with small-scale internal data.

ELF is resilient to changes in the topology of the environment-actor communication used for train-
ing, thanks to its hybrid C++/Python framework. These include one-to-one, many-to-one and one-
to-many mappings. In contrast, existing environments (e.g., OpenAI Gym [6] and Universe [33])
wrap one game in one Python interface, which makes it cumbersome to change topologies. Paral-
lelism is implemented in C++, which is essential for simulation acceleration. Finally, ELF is capable
of hosting any existing game written in C/C++, including Atari games (e.g., ALE [4]), board games
(e.g. Chess and Go [32]), physics engines (e.g., Bullet [10]), etc, by writing a simple adaptor.

Equipped with a flexible RL backend powered by PyTorch, we experiment with numerous baselines,
and highlight effective techniques used in training. We show the first demonstration of end-to-
end trained AIs for real-time strategy games with partial information. We use the Asynchronous
Advantagous Actor-Critic (A3C) model [21] and explore extensive design choices including frame-
skip, temporal horizon, network structure, curriculum training, etc. We show that a network with
Leaky ReLU [17] and Batch Normalization [11] coupled with long-horizon training and progressive
curriculum beats the rule-based built-in AI more than 70% of the time in full-game Mini-RTS. We
also show stronger performance in others games. ELF and its RL platform, is open-sourced at
https://github.com/facebookresearch/ELF.

2 Architecture

ELF follows a canonical and simple producer-consumer paradigm (Fig. 1). The producer plays N
games, each in a single C++ thread. When a batch ofM current game states are ready (M < N ), the
corresponding games are blocked and the batch are sent to the Python side via the daemon. The con-
sumers (e.g., actor, optimizer, etc) get batched experience with history information via a Python/C++
interface and send back the replies to the blocked batch of the games, which are waiting for the next
action and/or values, so that they can proceed. For simplicity, the producer and consumers are in
the same process. However, they can also live in different processes, or even on different machines.
Before the training (or evaluation) starts, different consumers register themselves for batches with
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Figure 1: Overview of ELF.

different history length. For example, an actor might need a batch with short history, while an op-
timizer (e.g., T -step actor-critic) needs a batch with longer history. During training, the consumers
use the batch in various ways. For example, the actor takes the batch and returns the probabilties
of actions (and values), then the actions are sampled from the distribution and sent back. The batch
received by the optimizer already contains the sampled actions from the previous steps, and can be
used to drive reinforcement learning algorithms such as A3C. Here is a sample usage of ELF:

1 # We run 1024 games concurrently .
2 num games = 1024
3
4 # Wait for a batch of 256 games.
5 batchsize = 256
6
7 # The return states contain key ’s ’, ’ r ’ and ’ terminal ’
8 # The reply contains key ’a’ to be filled from the Python side .
9 # The definitions of the keys are in the wrapper of the game.

10 input spec = dict (s=’’ , r=’’ , terminal =’’ )
11 reply spec = dict (a=’’ )
12
13 context = Init (num games, batchsize , input spec , reply spec )

Initialization of ELF

1 # Start all game threads and enter main loop .
2 context . Start ()
3 while True:
4 # Wait for a batch of game states to be ready
5 # These games will be blocked, waiting for replies .
6 batch = context .Wait()
7
8 # Apply a model to the game state . The output has key ’pi ’
9 output = model(batch)

10
11 # Sample from the output to get the actions of this batch .
12 reply [ ’a’ ][:] = SampleFromDistribution(output )
13
14 # Resume games.
15 context . Steps ()
16
17 # Stop all game threads .
18 context .Stop()

Main loop of ELF

Parallelism using C++ threads. Modern reinforcement learning methods often require heavy par-
allelism to obtain diverse experiences [21, 22]. Most existing RL environments (OpenAI Gym [6]
and Universe [33], RLE [5], Atari [4], Doom [14]) provide Python interfaces which wrap only sin-
gle game instances. As a result, parallelism needs to be built in Python when applying modern RL
methods. However, thread-level parallelism in Python can only poorly utilize multi-core processors,
due to the Global Interpreter Lock (GIL)1. Process-level parallelism will also introduce extra data
exchange overhead between processes and increase complexity to framework design. In contrast,
our parallelism is achieved with C++ threads for better scaling on multi-core CPUs.

Flexible Environment-Model Configurations. In ELF, one or multiple consumers can be used.
Each consumer knows the game environment identities of samples from received batches, and typi-
cally contains one neural network model. The models of different consumers may or may not share
parameters, might update the weights, might reside in different processes or even on different ma-
chines. This architecture offers flexibility for switching topologies between game environments and
models. We can assign one model to each game environment, or one-to-one (e.g, vanilla A3C [21]),
in which each agent follows and updates its own copy of the model. Similarly, multiple environ-
ments can be assigned to a single model, or many-to-one (e.g., BatchA3C [35] or GA3C [1]), where
the model can perform batched forward prediction to better utilize GPUs. We have also incorporated
forward-planning methods (e.g., Monte-Carlo Tree Search (MCTS) [7, 32, 27]) and Self-Play [27],
in which a single environment might emit multiple states processed by multiple models, or one-to-
many. Using ELF, these training configurations can be tested with minimal changes.

Highly customizable and unified interface. Games implemented with our RTS engine can be
trained using raw pixel data or lower-dimensional internal game data. Using internal game data is

1The GIL in Python forbids simultaneous interpretations of multiple statements even on multi-core CPUs.
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Figure 2: Hierarchical layout of ELF. In the current repository (https://github.com/
facebookresearch/ELF, master branch), there are board games (e.g., Go [32]), Atari learn-
ing environment [4], and a customized RTS engine that contains three simple games.

Enemy base
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Your barracks

Worker

Enemy unit Selected unit

Resource

(a)
Game Name Descriptions Avg Game Length

Mini-RTS Gather resource and build 
troops to destroy 
opponent’s base. 

1000-6000 ticks 

Capture the Flag Capture the flag and bring 
it to your own base

1000-4000 ticks

Tower Defense Builds defensive towers to 
block enemy invasion.

1000-2000 ticks

(b)

Figure 3: Overview of Real-time strategy engine. (a) Visualization of current game state. (b) The
three different game environments and their descriptions.

typically more convenient for research focusing on reasoning tasks rather than perceptual ones. Note
that web-based visual renderings is also supported (e.g., Fig. 3(a)) for case-by-case debugging.

ELF allows for a unified interface capable of hosting any existing game written in C/C++, including
Atari games (e.g., ALE [4]), board games (e.g. Go [32]), and a customized RTS engine, with a
simple adaptor (Fig. 2). This enables easy multi-threaded training and evaluation using existing RL
methods. Besides, we also provide three concrete simple games based on RTS engine (Sec. 3).

Reinforcement Learning backend. We propose a Python-based RL backend. It has a flexible
design that decouples RL methods from models. Multiple baseline methods (e.g., A3C [21], Policy
Gradient [30], Q-learning [20], Trust Region Policy Optimization [26], etc) are implemented, mostly
with very few lines of Python codes.

3 Real-time strategy Games

Real-time strategy (RTS) games are considered to be one of the next grand AI challenges after Chess
and Go [27]. In RTS games, players commonly gather resources, build units (facilities, troops, etc),
and explore the environment in the fog-of-war (i.e., regions outside the sight of units are invisible)
to invade/defend the enemy, until one player wins. RTS games are known for their exponential and
changing action space (e.g., 510 possible actions for 10 units with 5 choices each, and units of each
player can be built/destroyed when game advances), subtle game situations, incomplete information
due to limited sight and long-delayed rewards. Typically professional players take 200-300 actions
per minute, and the game lasts for 20-30 minutes.

Very few existing RTS engines can be used directly for research. Commercial RTS games (e.g.,
StarCraft I/II) have sophisticated dynamics, interactions and graphics. The game play strategies
have been long proven to be complex. Moreover, they are close-source with unknown internal states,
and cannot be easily utilized for research. Open-source RTS games like Spring [12], OpenRA [24]
and Warzone 2100 [28] focus on complex graphics and effects, convenient user interface, stable
network play, flexible map editors and plug-and-play mods (i.e., game extensions). Most of them
use rule-based AIs, do not intend to run faster than real-time, and offer no straightforward interface
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Realistic Code Resource Rule AIs Data AIs RL backend
StarCraft I/II High No High Yes No No
TorchCraft High Yes High Yes Yes No

ORTS, BattleCode Mid Yes Low Yes No No
µRTS, MazeBase Low Yes Low Yes Yes No

Mini-RTS Mid Yes Low Yes Yes Yes
Table 1: Comparison between different RTS engines.

Platform ALE [4] RLE [5] Universe [33] Malmo [13]
Frame per second 6000 530 60 120

Platform DeepMind Lab [3] VizDoom [14] TorchCraft [31] Mini-RTS
Frame per second 287(C)/866(G) ∼ 7,000 2,000 (frameskip=50) 40,000

Table 2: Frame rate comparison. Note that Mini-RTS does not render frames, but save game infor-
mation into a C structure which is used in Python without copying. For DeepMind Lab, FPS is 287
(CPU) and 866 (GPU) on single 6CPU+1GPU machine. Other numbers are in 1CPU core.

with modern machine learning architectures. ORTS [8], BattleCode [2] and RoboCup Simulation
League [16] are designed for coding competitions and focused on rule-based AIs. Research-oriented
platforms (e.g., µRTS [23], MazeBase [29]) are fast and simple, often coming with various baselines,
but often with much simpler dynamics than RTS games. Recently, TorchCraft [31] provides APIs for
StarCraft I to access its internal game states. However, due to platform incompatibility, one docker
is used to host one StarCraft engine, and is resource-consuming. Tbl. 1 summarizes the difference.

3.1 Our approach

Many popular RTS games and its variants (e.g., StarCraft, DoTA, Leagues of Legends, Tower De-
fense) share the same structure: a few units are controlled by a player, to move, attack, gather or cast
special spells, to influence their own or an enemy’s army. With our command hierarchy, a new game
can be created by changing (1) available commands (2) available units, and (3) how each unit emits
commands triggered by certain scenarios. For this, we offer simple yet effective tools. Researchers
can change these variables either by adding commands in C++, or by writing game scripts (e.g.,
Lua). All derived games share the mechanism of hierarchical commands, replay, etc. Rule-based
AIs can also be extended similarly. We provide the following three games: Mini-RTS, Capture the
Flag and Tower Defense (Fig. 3(b)). These games share the following properties:

Gameplay. Units in each game move with real coordinates, have dimensions and collision checks,
and perform durative actions. The RTS engine is tick-driven. At each tick, AIs make decisions
by sending commands to units based on observed information. Then commands are executed, the
game’s state changes, and the game continues. Despite a fair complicated game mechanism, Mini-
RTS is able to run 40K frames-per-second per core on a laptop, an order of magnitude faster than
most existing environments. Therefore, bots can be trained in a day on a single machine.

Built-in hierarchical command levels. An agent could issue strategic commands (e.g., more ag-
gressive expansion), tactical commands (e.g., hit and run), or micro-command (e.g., move a partic-
ular unit backward to avoid damage). Ideally strong agents master all levels; in practice, they may
focus on a certain level of command hierarchy, and leave others to be covered by hard-coded rules.
For this, our RTS engine uses a hierarchical command system that offers different levels of controls
over the game. A high-level command may affect all units, by issuing low-level commands. A
low-level, unit-specific durative command lasts a few ticks until completion during which per-tick
immediate commands are issued.

Built-in rule-based AIs. We have designed rule-based AIs along with the environment. These AIs
have access to all the information of the map and follow fixed strategies (e.g., build 5 tanks and
attack the opponent base). These AIs act by sending high-level commands which are then translated
to low-level ones and then executed.

With ELF, for the first time, we are able to train full-game bots for real-time strategy games and
achieve stronger performance than built-in rule-based AIs. In contrast, existing RTS AIs are either
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Figure 4: Frame-per-second per CPU core (no hyper-threading) with respect to CPUs/threads. ELF
(light-shaded) is 3x faster than OpenAI Gym [6] (dark-shaded) with 1024 threads. CPU involved in
testing: Intel E5-2680@2.50GHz.

rule-based or focused on tactics (e.g., 5 units vs. 5 units). We run experiments on the three games to
justify the usability of our platform.

4 Experiments

4.1 Benchmarking ELF

We run ELF on a single server with a different number of CPU cores to test the efficiency of paral-
lelism. Fig. 4(a) shows the results when running Mini-RTS. We can see that ELF scales well with
the number of CPU cores used to run the environments. We also embed Atari emulator [4] into
our platform and check the speed difference between a single-threaded ALE and paralleled ALE per
core (Fig. 4(b)). While a single-threaded engine gives around 5.8K FPS on Pong, our paralleled ALE
runs comparable speed (5.1K FPS per core) with up to 16 cores, while OpenAI Gym (with Python
threads) runs 3x slower (1.7K FPS per core) with 16 cores 1024 threads, and degrades with more
cores. Number of threads matters for training since they determine how diverse the experiences
could be, with the same number of CPUs. Apart from this, we observed that Python multiprocessing
with Gym is even slower, due to heavy communication of game frames among processes. Note that
we used no hyperthreading for all experiments.

4.2 Baselines on Real-time Strategy Games

We focus on 1-vs-1 full games between trained AIs and built-in AIs. Built-in AIs have access to
full information (e.g., number of opponent’s tanks), while trained AIs know partial information in
the fog of war, i.e., game environment within the sight of its own units. There are exceptions: in
Mini-RTS, the location of the opponent’s base is known so that the trained AI can attack; in Capture
the Flag, the flag location is known to all; Tower Defense is a game of complete information.

Details of Built-in AI. For Mini-RTS there are two rule-based AIs: SIMPLE gathers, builds five
tanks and then attacks the opponent base. HIT N RUN often harasses, builds and attacks. For
Capture the Flag, we have one built-in AI. For Tower Defense (TD), no AI is needed. We tested our
built-in AIs against a human player and find they are strong in combat but exploitable. For example,
SIMPLE is vulnerable to hit-and-run style harass. As a result, a human player has a win rate of 90%
and 50% against SIMPLE and HIT N RUN, respectively, in 20 games.

Action Space. For simplicity, we use 9 strategic (and thus global) actions with hard-coded execution
details. For example, AI may issue BUILD BARRACKS, which automatically picks a worker to
build barracks at an empty location, if the player can afford. Although this setting is simple, detailed
commands (e.g., command per unit) can be easily set up, which bear more resemblance to StarCraft.
Similar setting applies to Capture the Flag and Tower Defense. Please check Appendix for detailed
descriptions.

Rewards. For Mini-RTS, the agent only receives a reward when the game ends (±1 for win/loss).
An average game of Mini-RTS lasts for around 4000 ticks, which results in 80 decisions for a
frame skip of 50, showing that the game is indeed delayed in reward. For Capturing the Flag, we
give intermediate rewards when the flag moves towards player’s own base (one score when the flag
“touches down”). In Tower Defense, intermediate penalty is given if enemy units are leaked.
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Frameskip SIMPLE HIT N RUN

50 68.4(±4.3) 63.6(±7.9)
20 61.4(±5.8) 55.4(±4.7)
10 52.8(±2.4) 51.1(±5.0)

Capture Flag Tower Defense
Random 0.7 (± 0.9) 36.3 (± 0.3)

Trained AI 59.9 (± 7.4) 91.0 (± 7.6)

Table 3: Win rate of A3C models competing with built-in AIs over 10k games. Left: Mini-RTS.
Frame skip of the trained AI is 50. Right: For Capture the Flag, frame skip of trained AI is 10,
while the opponent is 50. For Tower Defense the frame skip of trained AI is 50, no opponent AI.

Game Mini-RTS SIMPLE Mini-RTS HIT N RUN

Median Mean (± std) Median Mean (± std)
ReLU 52.8 54.7 (± 4.2) 60.4 57.0 (± 6.8)

Leaky ReLU 59.8 61.0 (± 2.6) 60.2 60.3 (± 3.3)
BN 61.0 64.4 (± 7.4 ) 55.6 57.5 (± 6.8)

Leaky ReLU + BN 72.2 68.4 (± 4.3) 65.5 63.6 (± 7.9)
Table 4: Win rate in % of A3C models using different network architectures. Frame skip of both
sides are 50 ticks. The fact that the medians are better than the means shows that different instances
of A3C could converge to very different solutions.

4.2.1 A3C baseline

Next, we describe our baselines and their variants. Note that while we refer to these as baseline, we
are the first to demonstrate end-to-end trained AIs for real-time strategy (RTS) games with partial
information. For all games, we randomize the initial game states for more diverse experience and
use A3C [21] to train AIs to play the full game. We run all experiments 5 times and report mean
and standard deviation. We use simple convolutional networks with two heads, one for actions and
the other for values. The input features are composed of spatially structured (20-by-20) abstractions
of the current game environment with multiple channels. At each (rounded) 2D location, the type
and hit point of the unit at that location is quantized and written to their corresponding channels.
For Mini-RTS, we also add an additional constant channel filled with current resource of the player.
The input feature only contains the units within the sight of one player, respecting the properties of
fog-of-war. For Capture the Flag, immediate action is required at specific situations (e.g., when the
opponent just gets the flag) and A3C does not give good performance. Therefore we use frame skip
10 for trained AI and 50 for the opponent to give trained AI a bit advantage. All models are trained
from scratch with curriculum training (Sec. 4.2.2).

Note that there are several factors affecting the AI performance.

Frame-skip. A frame skip of 50 means that the AI acts every 50 ticks, etc. Against an opponent with
low frame skip (fast-acting), A3C’s performance is generally lower (Fig. 3). When the opponent has
high frame skip (e.g., 50 ticks), the trained agent is able to find a strategy that exploits the long-
delayed nature of the opponent. For example, in Mini-RTS it will send two tanks to the opponent’s
base. When one tank is destroyed, the opponent does not attack the other tank until the next 50-
divisible tick comes. Interestingly, the trained model could be adaptive to different frame-rates and
learn to develop different strategies for faster acting opponents. For Capture the Flag, the trained bot
learns to win 60% over built-in AI, with an advantage in frame skip. For even frame skip, trained
AI performance is low.

Network Architectures. Since the input is sparse and heterogeneous, we experiment on CNN ar-
chitectures with Batch Normalization [11] and Leaky ReLU [18]. BatchNorm stabilizes the gradient
flow by normalizing the outputs of each filter. Leaky ReLU preserves the signal of negative linear
responses, which is important in scenarios when the input features are sparse. Tbl. 4 shows that
these two modifications both improve and stabilize the performance. Furthermore, they are compli-
mentary to each other when combined.

History length. History length T affects the convergence speed, as well as the final performance
of A3C (Fig. 5). While Vanilla A3C [21] uses T = 5 for Atari games, the reward in Mini-RTS
is more delayed (∼ 80 actions before a reward). In this case, the T -step estimation of reward
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Figure 5: Win rate in Mini-RTS with respect to the amount of experience at different steps T in
A3C. Note that one sample (with history) in T = 2 is equivalent to two samples in T = 1. Longer
T shows superior performance to small step counterparts, even if their samples are more expensive.

(a) (b) (c) (d) (e)

Trained AI (Blue)

AI_SIMPLE (Red)

Worker

Short-range Tank

Long-range Tank

Figure 6: Game screenshots between trained AI (blue) and built-in SIMPLE (red). Player colors are
shown on the boundary of hit point gauges. (a) Trained AI rushes opponent using early advantage.
(b) Trained AI attacks one opponent unit at a time. (c) Trained AI defends enemy invasion by
blocking their ways. (d)-(e) Trained AI uses one long-range attacker (top) to distract enemy units
and one melee attacker to attack enemy’s base.

R1 =
∑T

t=1 γ
t−1rt + γTV (sT ) used in A3C does not yield a good estimation of the true reward if

V (sT ) is inaccurate, in particular for small T . For other experiments we use T = 6.

Interesting behaviors The trained AI learns to act promptly and use sophisticated strategies (Fig.
6). Multiple videos are available in https://github.com/facebookresearch/ELF.

4.2.2 Curriculum Training

We find that curriculum training plays an important role in training AIs. All AIs shown in Tbl. 3
and Tbl. 4 are trained with curriculum training. For Mini-RTS, we let the built-in AI play the first
k ticks, where k ∼ Uniform(0, 1000), then switch to the AI to be trained. This (1) reduces the
difficulty of the game initially and (2) gives diverse situations for training to avoid local minima.
During training, the aid of the built-in AIs is gradually reduced until no aid is given. All reported
win rates are obtained by running the trained agents alone with greedy policy.

We list the comparison with and without curriculum training in Tbl. 6. It is clear that the performance
improves with curriculum training. Similarly, when fine-tuning models pre-trained with one type
of opponent towards a mixture of opponents (e.g., 50%SIMPLE + 50%HIT N RUN), curriculum
training is critical for better performance (Tbl. 5). Tbl. 5 shows that AIs trained with one built-in AI
cannot do very well against another built-in AI in the same game. This demonstrates that training
with diverse agents is important for training AIs with low-exploitability.

Game Mini-RTS
SIMPLE HIT N RUN Combined

SIMPLE 68.4 (±4.3) 26.6(±7.6) 47.5(±5.1)
HIT N RUN 34.6(±13.1) 63.6 (±7.9) 49.1(±10.5)

Combined(No curriculum) 49.4(±10.0) 46.0(±15.3) 47.7(±11.0)
Combined 51.8(±10.6) 54.7(±11.2) 53.2(±8.5)

Table 5: Training with a specific/combined AIs. Frame skip of both sides is 50. When against
combined AIs (50%SIMPLE + 50%HIT N RUN), curriculum training is particularly important.
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Game Mini-RTS SIMPLE Mini-RTS HIT N RUN Capture the Flag
no curriculum training 66.0(±2.4) 54.4(±15.9) 54.2(±20.0)

with curriculum training 68.4 (±4.3) 63.6 (±7.9) 59.9 (±7.4)
Table 6: Win rate of A3C models with and without curriculum training. Mini-RTS: Frame skip of
both sides are 50 ticks. Capture the Flag: Frame skip of trained AI is 10, while the opponent is
50. The standard deviation of win rates are large due to instability of A3C training. For example in
Capture the Flag, highest win rate reaches 70% while lowest win rate is only 27%.

Game Mini-RTS SIMPLE Mini-RTS HIT N RUN

Random 24.2(±3.9) 25.9(±0.6)
MCTS 73.2(±0.6) 62.7(±2.0)

Table 7: Win rate using MCTS over 1000 games. Both players use a frameskip of 50.

4.2.3 Monte-Carlo Tree Search

Monte-Carlo Tree Search (MCTS) can be used for planning when complete information about the
game is known. This includes the complete state s without fog-of-war, and the precise forward
model s′ = s′(s, a). Rooted at the current game state, MCTS builds a game tree that is biased
towards paths with high win rate. Leaves are expanded with all candidate moves and the win rate
estimation is computed by random self-play until the game ends. We use 8 threads, each with 100
rollouts. We use root parallelization [9] in which each thread independently expands a tree, and are
combined to get the most visited action. As shown in Tbl. 7, MCTS achieves a comparable win rate
to models trained with RL. Note that the win rates of the two methods are not directly comparable,
since RL methods have no knowledge of game dynamics, and its state knowledge is reduced by
the limits introduced by the fog-of-war. Also, MCTS runs much slower (2-3sec per move) than the
trained RL AI (≤ 1msec per move).

5 Conclusion and Future Work

In this paper, we propose ELF, a research-oriented platform for concurrent game simulation which
offers an extensive set of game play options, a lightweight game simulator, and a flexible envi-
ronment. Based on ELF, we build a RTS game engine and three initial environments (Mini-RTS,
Capture the Flag and Tower Defense) that run 40KFPS per core on a laptop. As a result, a full-
game bot in these games can be trained end-to-end in one day using a single machine. In addition
to the platform, we provide throughput benchmarks of ELF, and extensive baseline results using
state-of-the-art RL methods (e.g, A3C [21]) on Mini-RTS and show interesting learnt behaviors.

ELF opens up many possibilities for future research. With this lightweight and flexible platform, RL
methods on RTS games can be explored in an efficient way, including forward modeling, hierarchical
RL, planning under uncertainty, RL with complicated action space, and so on. Furthermore, the
exploration can be done with an affordable amount of resources. As future work, we will continue
improving the platform and build a library of maps and bots to compete with.
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6 Appendix: Detailed descriptions of RTS engine and games

6.1 Overview

On ELF, we thus build three different environments, Mini-RTS, Capture the Flag and Tower De-
fense. Tbl. 8 shows their characteristics.

Game	
ends?

Execute	Commands

All	Bots	Act()

Increase	Tick

Game State

Action/Reply

Enemy base

Your base

Your barracksWorker

Enemy unit Selected unit

Resource

Cmd G:	Durative/Gather
State	0:	Moving	to	resource

Hit	Point

Coordinates	in	
floating	points.

(a) (b) (c)

Figure 7: Overview of Mini-RTS. (a) Tick-driven system. (b) Visualization of game play. (c)
Command system.

Game Name Descriptions Avg game length
Mini-RTS Gather resource/build troops to destroy enemy’s base. 1000-6000 ticks

Capture the Flag Capture the flag and bring it to your own base 1000-4000 ticks
Tower Defence Builds defensive towers to block enemy invasion. 1000-2000 ticks

Table 8: Short descriptions of three different environments built from our RTS engine.

6.2 Hierarchical Commands

Strategic Per-unit Durative Immediate

Environment
command

Top-level

Game state change

Figure 8: Hierarchical command system in our RTS engine. Top-level commands can issue strategic
level commands, which in terms can issue durative and immediate commands to each unit (e.g.,
ALL ATTACK can issue ATTACK command to all units of our side). For a unit, durative commands
usually last for a few ticks until the goal is achieved (e.g., enemy down). At each tick, the durative
command can issue other durative ones, or immediate commands which takes effects by changing
the game situation at the current tick.

The command level in our RTS engine is hierarchical (Fig. 8). A high-level command can issue
other commands at the same tick during execution, which are then executed and can potential issues
other commands as well. A command can also issue subsequent commands for future ticks. Two
kinds of commands exist, durative and immediate. Durative commands (e.g., Move, Attack) last
for many ticks until completion (e.g., enemy down), while immediate commands take effect at the
current tick.
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6.3 Units and Game Dynamics

Mini-RTS. Tbl. 9 shows available units for Mini-RTS, which captures all basic dynamics of RTS
Games: Gathering, Building facilities, Building different kinds of troops, Defending opponent’s
attacks and/or Invading opponent’s base. For troops, there are melee units with high hit point, high
attack points but low moving speed, and agile units with low hit point, long attack range but fast
moving speed. Tbl. 10 shows available units for Capture the Flag.

Note that our framework is extensive and adding more units is easy.

Unit name Description
BASE Building that can build workers and collect resources.
RESOURCE Resource unit that contains 1000 minerals.

WORKER
Worker who can build barracks and gather resource.
Low movement speed and low attack damage.

BARRACKS Building that can build melee attacker and range attacker.

MELEE ATTACKER
Tank with high HP, medium movement speed,
short attack range, high attack damage.

RANGE ATTACKER
Tank with low HP, high movement speed,
long attack range and medium attack damage.

Table 9: Available units in Mini-RTS.

Unit name Description
BASE Building that can produce athletes.
FLAG Carry the flag to base to score a point.
ATHLETE Unit with attack damage and can carry a flag. Moves slowly with a flag.

Table 10: Available units in Capture the Flag.

Capture the Flag. During the game, the player will try to bring the flag back to his own base. The
flag will appear in the middle of the map. The athlete can carry a flag or fight each other. When
carrying a flag, an athlete has reduced movement speed. Upon death, it will drop the flag if it is
carrying one, and will respawn automatically at base after a certain period of time. Once a flag is
brought to a player’s base, the player scores a point and the flag is returned to the middle of the map.
The first player to score 5 points wins.

Tower Defense. During the game, the player will defend his base at top-left corner. Every 200
ticks, increasing number of enemy attackers will spawn at lower-right corner of the map, and travel
towards player’s base through a maze. The player can build towers along the way to prevent enemy
from reaching the target. For every 5 enemies killed, the player can build a new tower. The player
will lose if 10 enemies reach his base, and will win if he can survive 10 waves of attacks.

6.4 Others

Game Balance. We test the game balance of Mini-RTS and Capture the Flag. We put the same AI
to combat each other. In Mini-RTS the win rate for player 0 is 50.0(±3.0) and In Capture the Flag
the win rate for player 0 is 49.9(±1.1).

Replay. We offer serialization of replay and state snapshot at arbitrary ticks, which is more flexible
than many commercial games.
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7 Detailed explanation of the experiments

Tbl. 11 shows the discrete action space for Mini-RTS and Capture the Flag used in the experiments.

Randomness. All games based on RTS engine are deterministic. However, modern RL methods
require the experience to be diverse to explore the game state space more efficiently. When we train
AIs for Mini-RTS, we add randomness by randomly placing resources and bases, and by randomly
adding units and buildings when the game starts. For Capture the Flag, all athletes have random
starting position, and the flag appears in a random place with equal distances to both player’s bases.

7.1 Rule based AIs for Mini-RTS

Simple AI This AI builds 3 workers and ask them to gather resources, then builds a barrack if
resource permits, and then starts to build melee attackers. Once he has 5 melee attackers, all 5
attackers will attack opponent’s base.

Hit & Run AI This AI builds 3 workers and ask them to gather resources, then builds a barrack
if resource permits, and then starts to build range attackers. Once he has 2 range attackers, the
range attackers will move towards opponent’s base and attack enemy troops in range. If enemy
counterattacks, the range attackers will hit and run.

7.2 Rule based AIs for Capture the Flag

Simple AI This AI will try to get flag if flag is not occupied. If one of the athlete gets the flag,
he will escort the flag back to base, while other athletes defend opponent’s attack. If an opponent
athlete carries the flag, all athletes will attack the flag carrier.

Command name Description
IDLE Do nothing.
BUILD WORKER If the base is idle, build a worker.

BUILD BARRACK
Move a worker (gathering or idle) to an
empty place and build a barrack.

BUILD MELEE ATTACKER If we have an idle barrack, build an melee attacker.
BUILD RANGE ATTACKER If we have an idle barrack, build an range attacker.

HIT AND RUN

If we have range attackers, move towards
opponent base and attack. Take advantage of
their long attack range and high movement speed
to hit and run if enemy counter-attack.

ATTACK All melee and range attackers attack the opponent’s base.
ATTACK IN RANGE All melee and range attackers attack enemies in sight.
ALL DEFEND All troops attack enemy troops near the base and resource.

Table 11: Action space used in our trained AI. There are 9 strategic hard-coded global commands.
Note that all building commands will be automatically cancelled when the resource is insufficient.

Command name Description
IDLE Do nothing.
GET FLAG All athletes move towards the flag and capture the flag.
ESCORT FLAG Move the athlete with the flag back to base.
ATTACK Attack the opponent athlete with the flag.
DEFEND Attack the opponent who is attacking you.

Table 12: Action space used in Capture the Flag trained AI.
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