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Abstract

Secure multiparty computations enable the distribution of so-called shares of sensitive data to
multiple parties such that the multiple parties can effectively process the data while being unable
to glean much information about the data (at least not without collusion among all parties to put
back together all the shares). Thus, the parties may conspire to send all their processed results
to a trusted third party (perhaps the data providers) at the conclusion of the computations, with
only the trusted third party being able to view the final results. Secure multiparty computations
for privacy-preserving machine-learning turn out to be possible using solely standard floating-
point arithmetic, at least with a carefully controlled leakage of information less than the loss
of accuracy due to roundoff, all backed by rigorous mathematical proofs of worst-case bounds
on information loss and numerical stability in finite-precision arithmetic. Numerical examples
illustrate the high performance attained on commodity off-the-shelf hardware for generalized
linear models, including ordinary linear least-squares regression, binary and multinomial logistic
regression, probit regression, and Poisson regression.

1 Introduction

Passwords and long account and credit-card numbers are the dominant security measures, not
because they are the most secure, but because they are the most conveniently implemented. Some
data demands the highest levels of security and privacy protections, while for other data processing
efficiency and sheer convenience are paramount — some security is better than none (which tends to
be the alternative). The present paper proposes privacy-preserving, secure multiparty computations
performed solely in the IEEE standard double-precision arithmetic that dominates most platforms
for numerical computations. The scheme amounts to lossy, leaky cryptography, with the loss of
accuracy and leakage of information carefully controlled via mathematical analysis and rigorous
proofs. Information loss balances against roundoff error, providing perfect privacy at a specified
finite precision of computations.

Perfect privacy at a given precision is when the information leakage is less than the specified
precision (precision being limited due to roundoff error). The present paper provides perfect privacy
at a precision of about 10−5 in the IEEE standard double-precision arithmetic of [13]; observing
the encrypted outputs leaks no more than a millionth of a bit per input real number, whereas
roundoff alters the results by around one part in a hundred thousand. In a megapixel image,
the encrypted image would leak at most a single bit — enough information to discern whether the
original image is dim or bright, perhaps, but no more. Performing all computations in floating-point
arithmetic facilitates implementations on existing hardware, including both commodity central-
processing units (CPUs) and graphics-processing units (GPUs), whereas alternative methods based
on integer modular arithmetic could require difficult specialized optimizations to attain performance
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on par with the scheme proposed in this paper (even then, schemes based on integer modular
arithmetic would have to contend with tricky issues of discretization and precision in order to
handle the real numbers required for machine learning and statistics).

The algorithms and analysis consider the traditional honest-but-curious model of threats: we
assume that the multiple parties follow the agreed-upon protocols correctly but may try to glean
information from data they observe; the secure multiparty computations prevent any of the parties
from gleaning much information without all parties conspiring together to break the scheme.

Our analysis provides no guarantees about what information leaks when all parties collude to
reveal encrypted results. If all parties conspire to collect together all their shares or send them to a
collecting agency, then the unified collection will reveal the secrets of whatever results get collected.
If the collected information results from training a machine-learned model, then revealing the
trained model can compromise the confidentiality of the data used to train that model, unless the
model is differentially private. Ensuring privacy even after revealing the results of secure multiparty
computations is complementary to securing the intermediate computations. The present paper only
guarantees the privacy of the intermediate computations, providing no guarantees about what leaks
when all parties collude to reveal the final results of their secure multiparty computations.

The work of [5] has a similar goal, pursued with markedly different methods and alternative
mathematics (see, for example, the proof of Proposition 1 in Subsection 3.2 of the extended ver-
sion at http://eprint.iacr.org/2017/1234.pdf); that work goes beyond ours by considering
Newton-Raphson/Fisher-scoring/iteratively-reweighted-least-squares for logistic regression in the
case when the testing set for testing the accuracy of an optimization for machine learning is iden-
tical to the training set.

This paper has the following structure: Section 2 introduces secure multiparty computations in
floating-point arithmetic, reviewing classical methods such as additive sharing and Beaver multipli-
cation. Section 3 upper-bounds the amount of information that can leak, referring to Appendices A,
B, and C for full, rigorous proofs. Section 4 reviews techniques for efficient, highly accurate poly-
nomial approximations to many real functions of interest (notably those in Table 3). Section 5
validates an implementation on synthetic examples and illustrates its performance on real mea-
sured data, too; the examples apply various generalized linear models, including ordinary linear
least-squares regression, binary and multinomial logistic regression, probit regression, and Poisson
regression. Appendices D, E, and F very briefly review Chebyshev series, minibatched stochastic
gradient descent, and generalized linear models (including link functions), respectively — readers
may wish to refer to those appendices as concise refreshers.

Throughout, all numbers and random variables are real-valued, even when not stated explicitly.

2 Secure multiparty computations

Secure multiparty computations allow holders of sensitive data to securely distribute so-called
shares of their data to multiple parties such that the multiple parties can process the data without
revealing the data and can only reconstruct the data by colluding to put back together (that is, to
sum) all the shares. We briefly review an arithmetic scheme in the present section. The arithmetic
scheme supports addition and multiplication, as discussed in the present section, as well as functions
that polynomials can approximate accurately, as discussed in Section 4 below. To be concrete and
simplify the presentation, we focus first on secure two-party computations, in Subsection 2.1, then
sketch an extension to several parties in Subsection 2.2.
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line source party 1 party 2

1 distributed data U − V V
2 distributed data X − Y Y
3 read from disk P −Q Q
4 read from disk R− S S
5 read from disk PR− T T
6 line 1 − line 3 (U − V )− (P −Q) V −Q
7 line 2 − line 4 (X − Y )− (R− S) Y − S
8 all reduce line 6 U − P U − P
9 all reduce line 7 X −R X −R
10 line 5 + (line 8)(line 4) + (PR− T ) + (U − P )(R− S) + T + (U − P )S +

(line 3)(line 9) + (P −Q)(X −R) + Q(X −R) +
(line 8)(line 9)/2 (U − P )(X −R)/2 (U − P )(X −R)/2

Table 1: Ledgers for two parties in a Beaver multiplication of U and X

2.1 Two-party computations

We can hide a matrix X by masking with a random matrix Y , so that one party holds X − Y and
the other party holds Y . Given other data, say U , and another random matrix V hiding U , so that
one party holds U − V and the other party holds V , the parties can then independently form the
sums (U −V ) + (X −Y ) and V +Y required to reconstruct U +X = (U −V ) + (X −Y ) + (V +Y )
if all these matrices have the same dimensions. This is known as “additive sharing,” as described,
for example, by [3]. Additive sharing thus supports privacy-preserving addition of U and X.

As introduced by [2], used by [3], and reviewed in Table 1, privacy-preserving multiplication
of U and X is also possible whenever U and X are matrices such that their product UX is well-
defined. Summing across the two parties in line 10 of Table 1 would yield PR + (U − P )R +
P (X − R) + (U − P )(X − R) = UX, as desired. Notice that U − P and X − R in lines 8 and 9
of Table 1 are still masked by the random matrices P and R whose values are unknown to the
two parties. The all-reduce in lines 8 and 9 requires the parties to conspire and distribute to each
other the results of summing their respective shares of lines 6 and 7, but does not require the
parties to get shares of any secret distributed data — that was necessary only for the original data
U and X being multiplied (and this “original” data can be the result of prior secure multiparty
computations). Also, all values on lines 3–5 are independent of U and X, so can be precomputed
and stored on disk. As with addition, multiplication via the Beaver scheme never requires securely
distributing secret shares, so long as the input data and so-called Beaver triples (P,R, PR) from
Table 1 have already been securely distributed into shares. The secure distribution of shares is
completely separate from the processing of the resulting distributed data set. Communication
among the parties during processing is solely via the all-reduce in lines 8 and 9.

Table 1’s scheme also works with matrix multiplication replaced by convolution of sequences.
Table 1 simplifies to Table 2 for the case when U and X are scalars such that U = X. Summing

across the two parties in line 6 of Table 2 yields P 2 + 2P (X − P ) + (X − P )2 = X2, as desired.
Notice that this recovers X2 from a sum involving several terms as large as P 2; if |X| ≤ 1 < 3 < γ
and |P | ≤ γ (as well as |T | ≤ γ2, where T cancels when summing across the two parties in line 6),
then we obtain X2 to precision upper-bounded by 6γ2 · ε, where ε denotes the machine precision (ε
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line source party 1 party 2

1 distributed data X − Y Y
2 read from disk P −Q Q
3 read from disk P 2 − T T
4 line 1 − line 2 (X − Y )− (P −Q) Y −Q
5 all reduce line 4 X − P X − P
6 line 3 + (line 2)(line 5) · 2 + (P 2 − T ) + (P −Q)(X − P ) · 2 + T +Q(X − P ) · 2 +

(line 5)2/2 (X − P )2/2 (X − P )2/2

Table 2: Ledgers for two parties in a Beaver squaring of X

is approximately 2.2× 10−16 in the IEEE standard double-precision arithmetic of [13]). Theorem 3
proves that the information leakage may be as large as 6/γ if P , Q, and Y are distributed uniformly
over [−γ, γ] and T is distributed uniformly over [−γ2, γ2] (similarly, P , Q, R, S, V , and Y in Table 1
should be distributed uniformly over [−γ, γ] while T should be distributed uniformly over [−γ2, γ2]).
Balancing the roundoff bound with the information bound requires 6γ2 ·ε = 6/γ, so that γ = 1/ 3

√
ε

(so γ ≈ 105 for IEEE standard double-precision arithmetic).

2.2 Several-party computations

Extending Subsection 2.1 beyond two parties is straightforward. The steps in the algorithms,
summarized in the columns labeled “source” in Tables 1 and 2, stay as they were (the division
by 2 in the last line of Table 1 and in the last line of Table 2 becomes division by the number of
parties). Distributing additive shares of data across several parties works as follows: for each piece
of data to be distributed (in machine learning, a “piece” may naturally be a sample or example from
the collection of all samples or examples), we generate n independent and identically distributed
random matrices Y1, Y2, . . . , Yn, where n is the number of parties (the number of parties need
not relate to the total number of pieces, samples, or examples of data being distributed). We
randomly permute the parties and then distribute to them (in that random order) X + Y1 −
Y2, Y2 − Y3, Y3 − Y4, . . . , Yn−1 − Yn, Yn − Y1, where X is the piece of data being shared. We
generate different independent random variables and random permutations for different pieces of
data. The distribution of the difference between independent random matrices drawn from the
same distribution is the same for each party, making this an especially simple generalization to
the case of several parties. Distributing additive shares to several parties leaks somewhat more
information than limiting to only two parties; the present paper focuses on the case of two parties
for simplicity.

3 Information leakage

This section bounds the amount of information-theoretic entropy that can leak when adding noise
for masking, drawing heavily on canonical concepts from information theory, as detailed, for exam-
ple, by [7].

We denote by X the scalar random variable that we want to hide, and by Y an independent
variate that we add to X to effect the hiding. To simplify the analysis, we assume that the
distribution of Y arises from a probability density function. Then, revealing X + Y leaks the
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following number of bits of information about X:

h(X)− h(X | X + Y ) = I(X; X + Y ) = h(X + Y )− h(X + Y | X) = h(X + Y )− h(Y ). (1)

In the left-hand side of (1), h denotes the Shannon entropy measured in bits if the distribution of
X is discrete, and the differential entropy measured in bits (rather than nats) if the distribution
of X is continuous. In the right-hand sides of (1), h denotes the differential entropy measured in
bits (not nats); I denotes the mutual information. Given a prior on X, Bayes’ Rule yields the full
posterior distribution for X given X +Y ; the information gain (or loss or leakage) defined in (1) is
a summary statistic characterizing the divergence of the posterior from the prior.

Recall that mutual information is the fundamental limit on how much information can be
gleaned from observing the outputs of a noisy channel; in our setting, we purposefully add noise in
order to reveal only the results of communications via a (very) noisy channel, purposefully obscuring
with noise the signal containing data being kept confidential and secure.

The information leakage is at most β/γ bits if |X| ≤ β < γ and Y is distributed uniformly over
[−γ, γ], as stated in the following theorem and proven in Appendix A:

Theorem 1. Suppose that X and Y are independent scalar random variables and β and γ are
positive real numbers such that |X| ≤ β < γ and Y is distributed uniformly over [−γ, γ]. Then, the
information leaked about X from observing X + Y satisfies

I(X;X + Y ) ≤ β

γ
, (2)

where I denotes the mutual information between X and X + Y , measured in bits (not nats); the
mutual information satisfies (1), which expresses I as a change in entropy. The inequality in (2)
is an equality when X is β times a Rademacher variate, that is, X = β with probability 1/2 and
X = −β with probability 1/2.

The following theorem, proven in Appendix B, states that the information leakage from hiding
data multiple times is at most the sum of the information leaking from each individual hiding.

Theorem 2. Suppose that X, Y , and Z are independent scalar random variables. Then,

I(X; X + Y, X + Z) ≤ I(X; X + Y ) + I(X; X + Z), (3)

where I denotes the mutual information.

The procedures of Tables 1 and 2 can also leak information, but not much — consider Table 2:
Party 2 observes nothing about the input data X other than X − P , and Theorem 1 bounds how
much information that reveals about X. Party 1 observes X−Y , P −Q, P 2−T , (X−Y )−(P −Q),
X−P , and (P 2−T )+2(P−Q)(X−P )+(X−P )2/2. The following theorem, proven in Appendix C,
bounds how much information about X these observations reveal.

Theorem 3. Suppose that X, Y , P , Q, and T are independent scalar random variables and γ is
a positive real number such that |X| ≤ 1 < 3 < γ, the random variable T is distributed uniformly
over [−γ2, γ2], and Y , P , and Q are distributed uniformly over [−γ, γ]. Then,

I
(
X; X−Y, P−Q, P 2−T, (X−Y )−(P−Q), X−P, (P 2−T )+2(P−Q)(X−P )+(X−P )2/2

)
≤ 5

γ
+

1

γ2
, (4)

where I denotes the mutual information measured in bits, and its arguments (aside from X) are
the observations in Table 2 under the column for “party 1.”
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Theorem 3 admits a formulation in the more general setting where |X| ≤ β, as in Theorem 1,
but the more specific case |X| ≤ 1 in Theorem 3 suffices for the discussion in the present paper.
The present paper makes no attempt at generality, except when convenient for our applications.
The proof of Theorem 3 relies on the more general formulation (involving β) of Theorem 1 given
above.

The following theorem states the classical data-processing inequality:

Theorem 4. Suppose that random matrices X and Z are conditionally independent given a random
matrix Y . Then,

I(X;Z) ≤ I(X;Y ) (5)

and
I(X;Z) ≤ I(Y ;Z), (6)

where I denotes the mutual information.

The following is a corollary of Theorem 4:

Corollary 5. Suppose that X and Y are random matrices and f is a deterministic function. Then,

I(X; f(Y )) ≤ I(X;Y ), (7)

where I denotes the mutual information.

Combining (1) and (7) shows that even very complicated manipulations such as the iterations
in Section 4 below cause no further information leakage, despite changing the added noise in
some highly nonlinear fashion: (7) guarantees that no information leaks beyond the individual
maskings obeying (2)–(4), so long as the manipulations are deterministic algorithms (or randomized
algorithms with randomization independent of the data being masked).

4 Polynomial approximations

Polynomials can approximate many functions of interest in machine learning, allowing the accurate
approximation of those functions using only additions and multiplications. Section 2 above discusses
schemes that multiple parties can use to perform additions and multiplications securely. The
present section describes polynomial approximations useful in tandem with the schemes of Section 2.
Subsection 4.1 leverages the method of Newton and Raphson. Subsection 4.2 uses Chebyshev series.
Subsection 4.3 utilizes Padé approximation, in the method of scaling and squaring. The method
of Newton and Raphson tends to be the most efficient, while Chebyshev series apply to a much
broader class of functions. The method of scaling and squaring is for exponentiation. Table 3 lists
the functions that each subsection treats.

4.1 Newton iterations

Various iterations derived from the Newton method for finding zeros of functions allow the com-
putation of functions such as sgn(x), 1/x, and 1/

√
x using only additions and multiplications (not

requiring any divisions or square roots); in this subsection, x denotes a real number.
According to [15], the Newton-Schulz iterations for computing sgn(x) are

yk+1 = yk(3− y2k)/2, (8)
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f(x) Name Subsection

sgn(x) sign or signum 4.1
|x| = x sgn(x) absolute value 4.1
1/x reciprocal 4.1
1/
√
x raise to −1/2 power 4.1

x−1/8 raise to −1/8 power 4.1
ReLU(x) = max(x, 0) rectified linear unit 4.1
tanh(x) hyperbolic tangent 4.2
1/(1 + exp(−x)) logistic 4.2∫ x
−∞ exp(−y2/2) dy

/ √
2π CDF of standard normal 4.2

exp(x) exponential 4.3

Table 3: Subsections providing polynomial approximations to various functions

with y0 = x/γ, where |x| ≤ γ (and the desired loss of accuracy relative to the machine precision is
less than a factor of γ).

According to [15], the Schulz (or Newton) iterations for computing 1/x when x > 0 are

yk+1 = yk(2− xyk), (9)

with y0 = 1. Rescaling x (and then adjusting the resulting reciprocal) is important to align with the
domain of convergence and high accuracy illustrated in Figure 1; and similar observations pertain
to the rest of the iterations of the present subsection. In Subsection 4.3 below, x can range from 1
to the number of terms in the softmax (so requires scaling by the reciprocal of the number of terms
in the softmax).

According to [11], the Newton iterations for computing 1/
√
x when x > 0 are

yk+1 = yk(3− xy2k)/2, (10)

with y0 = 1; similarly, the Newton iterations for computing x−1/8 when x > 0 are

yk+1 = yk(9− xy8k)/8, (11)

with y0 = 1.
Figures 1–4 illustrate the errors obtained from (8)–(11); note that the scale of the vertical axes

in Figures 1–3 involve 1e–16. In the figures, the tilde denotes the approximation computed via the

Newton iterations (8)–(11); for example, 1̃/x approximates 1/x. The abscissae for each plot consist
of 20,000 points equispaced on a logarithmic scale.

A common operation in the deep learning of [16] and others is the rectified linear unit

ReLU(x) = max(x, 0) =
x(1 + sgn(x))

2
, (12)

easily obtained from (8).
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Figure 1: Relative error in computation of 1/x with 30 iterations of (9)
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Figure 2: Relative error in computation of 1/
√
x with 26 iterations of (10)
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Figure 3: Relative error in computation of x−1/8 with 24 iterations of (11)
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Figure 4: Absolute error in computation of |x| = x sgn(x) with 60 iterations of (8); the figure
superimposes a black dotted line over a gray curve, where the black curve uses y0 = −x/γ to
start (8) while the gray curve uses y0 = x/γ, both with γ = 105
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4.2 Chebyshev series

Chebyshev series provide efficient approximations to smooth functions using only additions and
multiplications. The approximations are especially efficient for odd functions, such as

f(x) = tanh(x) =
exp(x)− exp(−x)

exp(x) + exp(−x)
, (13)

f(x) =
1

1 + exp(−x)
− 1

2
= tanh(x/2)/2, (14)

and

f(x) =
1√
2π

∫ x

−∞
exp(−y2/2) dy − 1

2
; (15)

in this subsection, x denotes a real number. The function in (13) is the hyperbolic tangent. The
function in (14) is a constant plus the standard logistic function, familiar from logistic regression.
The function in (15) is a constant plus the cumulative distribution function for the standard normal
distribution, familiar from probit regression. Performing logistic regression or probit regression by
maximizing the log-likelihood relies on the evaluation of (14) or (15), respectively, at least when
using a gradient-based optimizer, the method of Newton and Raphson, or the method of scoring.
Details about these functions and regressions are available, for example, in the monograph of [18].

Appendix D reviews algorithms for computing approximations via Chebyshev series of odd
functions, with accuracy determined via two parameters, n and z, where the degree of the (odd)
approximating polynomial is 2n − 1, and [−z, z] is the interval over which the approximation is
valid. Setting n = 50 and z = 10 yields 7-digit accuracy for the approximation of (13); setting
n = 22 and z = 5 yields 4-digit accuracy for the approximation of (14); and setting n = 34 and
z = 10 yields 5-digit accuracy for the approximation of (15). In Section 5 below, we err on the side
of caution, defaulting to n = 60 and z = 20 for (13) and (14) and to n = 50 and z = 20 for (15),
while also discussing the results from other choices.

4.3 Softmax

As reviewed, for example, by [16], a common operation in machine learning is the so-called “soft-
max” transforming n non-positive real numbers x1, x2, . . . , xn into the n positive real numbers
exp(x1)/Z, exp(x2)/Z, . . . , exp(xn)/Z, where Z = Z(x1, x2, . . . , xn) =

∑n
k=1 exp(xk). These are

the probabilities at unit temperature in the Gibbs distribution associated with energies −x1, −x2,
. . . , −xn, where Z is the partition function. Once we have computed the exponentials, summa-
tion yields Z directly; the secure multiparty computations of Section 2 support such summation.
Division by Z is available via the iterations in (9) of Subsection 4.1.

Thus, given real numbers x and β such that −β ≤ x ≤ 0, and a real number ε such that
0 < ε < 1, we would like to calculate exp(x) to precision ε. We use the method of scaling
and squaring, as reviewed, for example, by [12]. If we let n be the least integer that is at least
log2(2β

2/ε), then squaring exp(x/2n) yields exp(x/2n−1), squaring exp(x/2n−1) yields exp(x/2n−2),
and so on, so that n successive squarings will yield exp(x); further, 1+x/2n approximates exp(x/2n):

|exp(x/2n)− 1− x/2n| =
∣∣∣∣∣
∞∑
k=2

(x/2n)k/k!

∣∣∣∣∣ = (x/2n)2

∣∣∣∣∣
∞∑
k=0

(x/2n)k/(k + 2)!

∣∣∣∣∣ ≤ (x/2n)2 exp(x/2n),

(16)
that is,

1 + x/2n = (1 + δ) exp(x/2n), |δ| ≤ (x/2n)2, (17)
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while∣∣(1 + δ)2
n − 1

∣∣ ≤ (1 + (x/2n)2
)2n−1 ≤

(
exp((x/2n)2)

)2n−1 = exp(x2/2n)−1 ≤ 2x2/2n ≤ ε, (18)

so n successive squarings of 1+x/2n yields exp(x) to relative accuracy ε (or better). The penultimate
inequality in (18) follows from the fact that exp(y) − 1 ≤ 2y for 0 ≤ y < 1/2 (needless to say,
y = x2/2n ≤ ε/2 < 1/2). We use n = 20 successive squarings in all numerical experiments of
Section 5 below; this incurs an extra loss in relative accuracy of at most a factor of 220 — about 6
digits — on account of roundoff error from adding 1 to x/2n.

Given a real number γ > 3β, less than 6nβ/γ bits can leak from computing the approximation
to exp(x) if we add to 1 + x/2n a random variable distributed uniformly over [−γ/2n, γ/2n], and
double the width of the added noise upon each of the n squarings, in accord with Theorems 1, 2,
and 3 of Section 3.

Clearly, we can enforce that a real number x be non-positive by applying −ReLU(−x) from (12).
Computing the softmax of real numbers that may not necessarily be non-positive is also possible,
even without risk of leaking any information beyond the case for non-positive numbers. Indeed,
we can replace each real number xj with xj −

∑n
k=1 ReLU(xk), without altering the probability

distribution produced by the softmax; we perform such replacement in our implementation of
multinomial logistic regression. When implementing a softmax for multinomial logistic regression,
we include a negative offset in the bias for the input to the softmax. That is, we adjust the bias
to be a constant amount less, constant over all classes in the classification. Subtracting such a
positive constant C tends to make x1−C, x2−C, . . . , xn−C negative even before replacing each
real number xj −C with xj −C −

∑n
k=1 ReLU(xk−C). Subtracting a constant C reduces the sum∑n

k=1 ReLU(xk − C); without subtracting the constant, the sum
∑n

k=1 ReLU(xk) can adversely
impact accuracy if the sum becomes too large. Subtracting the constant C reduces accuracy by
a factor of up to exp(C); we set C = 5 (so exp(C) ≈ 148 — a tad more than two digits) for our
numerical experiments reported in the following section, Section 5.

5 Numerical examples

Via several numerical experiments, this section illustrates the performance of the scheme proposed
above. All examples reported in the present section use two parties for the private computations.
Subsection 2.2 outlines an extension to several parties. The terminology “in private” refers to
computations fully encrypted via the scheme introduced above, while “in public” refers to compu-
tations in plaintext (meaning unencrypted — not protected or secured, but instead processed in
the clear). Subsection 5.1 validates the scheme on examples for which the correct answer is known
by construction. Subsection 5.2 applies the scheme to classical data sets.

All examples use minibatched stochastic gradient descent to maximize the log-likelihood under
the corresponding generalized linear model, at the constant learning rates specified below (except
where noted for probit regression). Appendix E briefly reviews stochastic gradient descent with
minibatches and weight decay; Appendix F briefly reviews generalized linear models.

In all cases, we learn (that is, fit) not only the vector of weights to which the design matrix
gets applied, but also a constant offset known as the “bias” in the literature on stochastic gradient
descent. Thus, the linear function of the weight (fitted parameter) vector w in the generalized linear
model is actually the affine transform Aw+ c, where A is the design matrix and c is the bias vector
whose entries are all the same constant offset, learned or fitted together with w during the iterations
of stochastic gradient descent (whereas A stays fixed during the iterations). In multinomial logistic
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regression, the entries of the bias vector c are constant for each class (constant over all covariates
and data samples), but the constant may be different for different classes.

In the subsections below, we view linear least-squares regression as a generalized linear model
with the link function being the identity (please see Appendix F for a review of generalized linear
models and link functions); equivalently, we take the parametric family defining the statistical model
to be an affine transform of the vector of weights (parameters) plus independent and identically
distributed normal random variables. The log-likelihood of a such a model summed over all samples
in the design matrix A is simply a constant minus ‖Aw+c−b‖22/2, where ‖·‖2 denotes the Euclidean
norm, w is the vector of weights (parameters), Aw+ c is the affine transform defined by the design
matrix A and bias vector c, and b is the vector of targets. For simplicity, when we report the
“negative log-likelihood” or “loss” in plots, averaged over the m samples in the design matrix A,
we report ‖Aw + c− b‖22/m, ignoring the constant and factor of 2.

The implementation of encrypted computations builds on CrypTen of [10], which in turn builds
on PyTorch. The implementation uses only IEEE standard double-precision arithmetic. All experi-
ments ran on one of Facebook’s computer clusters for research, which enables rapid communication
between the multiple parties. In actual deployments, communications between the multiple parties
are likely to have high latency, dramatically impacting the speed of the multiparty computations.
The speed of such communications would vary significantly between different applications and ar-
rangements, likely requiring separate analyses and characterizations of computational efficiency
for different deployments. Yet, while timings are fairly unique to the particular computational
environment, the accuracies we report below should be fully representative for most applications.

5.1 Validations on synthetic data

For the synthetic examples discussed in the following sub-subsections, we set m = 64 and n = 8 for
the numbers of rows and columns in the design matrices being constructed. Figure 5 displays the
discrepancy of the computed results from the ideal solution (the ideal is known a-priori to two-digit
accuracy by construction in these synthetic examples) as a function of the maximum value γ of
the random variable distributed uniformly over [−γ, γ]. In accordance with the analysis in Subsec-
tion 2.1 above, the figure reports that γ = 105 works well, yielding the roughly two-digit agreement
that would be optimal for the synthetic data sets constructed in the following sub-subsections,
so we set γ = 105 for the remainder of the paper. The logistic and probit regressions reported
below both rely on the Chebyshev approximations reviewed in Subsection 4.2 above, with the ap-
proximations being valid over the interval [−20, 20] (so z = 20 in the notation of Subsection 4.2).
Figure 6 indicates that the approximations whose polynomials have degrees less than 40 suffice for
optimal accuracy, while polynomials with degrees less than 12 produce reasonably accurate results
(accurate enough for most applications in machine learning for prediction, in which only residuals
or matching targets matters). For the remainder of the paper, we use 120 terms in the Chebyshev
approximation of the logistic function (or tanh), and 100 terms in the Chebyshev approximation
of the inverse probit (or the cumulative distribution function of a standard normal variate). About
half these 120 or 100 terms vanish in the Chebyshev approximations, since our Chebyshev ap-
proximations are odd functions. For both Figures 5 and 6, we trained for 10,000 iterations with
8 samples in each iteration’s minibatch, thus sweeping through a random permutation of the full
synthetic data set 1,250 times (each sweep is known as an “epoch”). The following sub-subsections
detail the construction of our synthetic data sets.
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and its computed approximation x/‖x‖2 as a function of the number of terms in the Chebyshev
approximation of Subsection 4.2 (about half the terms vanish, since the polynomial is odd)
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5.1.1 Linear least-squares regression (identity link)

So that we can know a-priori the exact solution and minimal value (namely, 10) for the objective
function being minimized — thus allowing us to check the accuracy of the computed solution
— we form the design matrix A and target vector b as follows. Via Householder reflections,
we orthonormalize the columns of an m × (n + 1) matrix whose entries are all independent and
identically distributed (i.i.d.) standard normal variates to obtain an m×n matrix A whose columns
are orthonormal (A is the leftmost block of n columns) and an m × 1 column vector v that is
orthogonal to all columns of A and such that ‖v‖2 = 1 (v is the remaining column). We define the
ideal weights w to be an n× 1 column vector whose entries are i.i.d. standard normal variates. We
define b to be the m× 1 column vector

b = Aw + 10v (19)

so that by construction

min
x
‖Ax− b‖22 = min

x
‖Ax−Aw‖22 + ‖10v‖22 = ‖10v‖22 = (10)2. (20)

Needless to say, obtaining x = w drives ‖Ax− b‖2 to its minimum, 10.
We now consider some experiments with nontrivial settings of hyperparameters (such as a

reasonably large number of iterations, minibatches with more than a single sample, and a learning
rate that yields decent accuracy). After 10,000 iterations (which is 1,250 epochs) with 8 samples
per minibatch at the learning rate 3 × 10−2, the residuals ‖Ax + c − b‖2 obtained by training in
public and by training in private are both equal to 10.0 to three significant figures. For training in
private, the Euclidean norm of the difference between the ideal w and the computed weight vector
x is 0.025 (the Euclidean norm of the difference between w/‖w‖2 and x/‖x‖2 is 0.004), and all
entries of the vector c are −0.008 (which is −0.003 when divided by the Euclidean norm of x);
that these values are so small certifies the correctness of the training. (After training in public, the
Euclidean norm of the difference between the ideal w and the computed weight vector x is 0.027,
and all entries of the vector c are 0.005, which are similar to those from training in private within
the errors expected due to roundoff.)

5.1.2 Logistic regression (logit link)

Again, we set a-priori the exact solution to the minimization to be performed, letting us check the
accuracy of the computed solution. Specifically, we define the ideal weights w to be the result of
normalizing an n × 1 column vector whose entries are i.i.d. standard normal variates, that is, we
divide the vector whose entries are i.i.d. by its Euclidean norm, ensuring

‖w‖2 = 1. (21)

The construction of the design matrix A and target vector t is more involved; readers interested only
in the results and not the details of the construction may wish to skip to the last two paragraphs
of the present sub-subsection.

We now set up data for binary classification such that there are pairs of points straddling the
ideal decision hyperplane separating classification into class 0 from classification into class 1, with
each pair consisting of one point for class 0 and one point for class 1. We place the points in the
pairs very close to each other, so that these pairs of points determine the decision hyperplane for
classification to reasonably high accuracy. More precisely, for j = 1, 2, . . . , 10, we construct an
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n×1 column vector v(j) whose entries are i.i.d. standard normal variates, project off the component
of v(j) along w to obtain u(j),

u(j) = v(j) − w
n∑
k=1

v
(j)
k wk, (22)

and set
A2j,k = u

(j)
k + 0.02wk (23)

and
A2j+1,k = u

(j)
k − 0.02wk (24)

for k = 1, 2, . . . , n. In addition to these pairs, we sprinkle in some other random points: for the
remaining m−20 rows of A, we use m−20 rows from the result of orthonormalizing via Householder
reflections the columns of an m× n matrix whose entries are all i.i.d. standard normal variates.

We construct the m× 1 column vector

b = Aw (25)

and define the target classes
tj = round(σ(bj)), (26)

for j = 1, 2, . . . , m, where “round” rounds to the nearest integer (0 or 1) and σ is the standard
logistic function

σ(x) =
1

1 + exp(−x)
. (27)

Combining (25), (23), (24), (22), and (21) yields

b2j =

n∑
k=1

A2j,kwk = 0.02 (28)

and

b2j+1 =

n∑
k=1

A2j+1,kwk = −0.02 (29)

for j = 1, 2, . . . , 10. Since, for j = 1, 2, . . . , 10, b2j is slightly positive while b2j+1 is slightly
negative, the target classes t2j and t2j+1 defined in (26) will be 1 and 0, respectively, even though
the difference between the corresponding (2j)th and (2j+1)th rows of A is small — combining (23),
(24), and (21) yields that the Euclidean norm of their difference is 0.04. The decision hyperplane
separating class 0 from class 1 will thus have to pass between 10 pairs of points in n-dimensional
space (n = 8), with the points in each pair very close to each other (albeit on opposite sides of
the decision hyperplane). Classifying all these points correctly hence determines the hyperplane to
reasonably high accuracy.

Needless to say, obtaining x = w and c = 0 produces perfect accuracy for the logistic regression
which classifies by rounding the result of (27) applied to each entry of Ax+c, as then Ax = Aw = b,
and the target classes in t are the result of (27) applied to each entry of b. In fact, obtaining x as
any positive multiple of w together with c = 0 yields perfect accuracy — any positive multiple of
a vector orthogonal to the hyperplane separating the two classes specifies that same hyperplane.

We again consider some experiments with nontrivial settings of hyperparameters (such as a
reasonably large number of iterations, minibatches with more than a single sample, and a learning
rate that yields decent accuracy). After 10,000 iterations (which is 1,250 epochs) with 8 samples per
minibatch at the learning rate 3, training binary logistic regression in private drives the Euclidean
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norm of the difference between x/‖x‖2 and the ideal w/‖w‖2 to 0.006 and drives every entry of
c/‖x‖2 to 0.006, where c is the vector of offsets (whose entries are all the same). That these values
are so small validates the training. The log-likelihood, averaged over all m = 64 samples, changes
from −0.785 to −0.088 over the 10,000 iterations (needless to say, the log-likelihood cannot exceed
0). The accuracy becomes exactly perfect (that is, 1). (Training in public drives the Euclidean norm
of the difference between x/‖x‖2 and the ideal w/‖w‖2 to 0.007 and drives every entry of c/‖x‖2 to
0.007, while the average log-likelihood becomes −0.086 and the accuracy becomes perfectly 1 over
the 10,000 iterations, all results which are similar to the private results to within errors expected
due to roundoff.)

When training multinomial logistic regression for two classes on the same synthetic data set
with the same settings, similar validation attains: for training in private, the Euclidean norm of
the difference between the ideal w/‖w‖2 and the computed x/‖x‖2 becomes 0.008, and every entry
of c/‖x‖2 becomes either −0.037 or −0.033, where c contains the bias offsets. The log-likelihood,
averaged over all m = 64 samples, changes from −0.958 to −0.047 over the 10,000 iterations, and the
accuracy becomes perfect (that is, exactly 1). Of course, using multinomial logistic regression with
a binomial distribution rather than standard logistic regression makes no sense, but these results
certify the correctness of the multinomial logistic regression nonetheless. (Training in public drives
the Euclidean norm of the difference between the ideal w/‖w‖2 and the computed x/‖x‖2 to 0.006,
drives every entry of c/‖x‖2 to −0.039 or −0.033, drives the average log-likelihood to −0.046, and
drives the accuracy to perfectly 1 over the 10,000 iterations, all results which match those from
training in private to within the errors expected due to roundoff.)

5.1.3 Probit regression (probit link)

The design matrix A and target vector t for probit regression will be the same as for logistic
regression, but replacing the sigmoid σ defined in (27) with the inverse probit

σ(x) =
1√
2π

∫ x

−∞
exp(−y2/2) dy, (30)

which is also known as the cumulative distribution function for standard normal variates. An
iteration of stochastic gradient descent involves selecting rows of the design matrix A and collecting
them together into a matrix R, as well as collecting together the corresponding targets from t into
a vector s (the number of rows is the size of the minibatch). One iteration of stochastic gradient
descent for maximizing the log-likelihood in logistic regression updates the weight vector x by
adding to x the learning rate η times the transpose R> applied to the difference between the
corresponding target samples s and σ defined in (27) applied to each entry of Rx+ c; with a minor
abuse of notation, we could write that x updates to x + ηR>(s − σ(Rx + c)). Since the sigmoid
defined in (30) is numerically very similar to the sigmoid defined in (27) (after scaling such that
the variances of the sigmoids are the same), we use the same updating formula for probit regression
as for logistic regression, but using the design matrix A associated with probit regression rather
than that for logistic regression, and using the sigmoid σ associated with probit regression rather
than that for logistic regression. A näıve application of stochastic gradient descent for maximizing
the log-likelihood in probit regression would update the weight vector in the same direction, but
scaled slightly, effectively altering the learning rate a tiny bit from iteration to iteration; we omit
the extra computations required to follow the näıve method exactly.

As with logistic regression, obtaining x = w and c = 0 produces perfect accuracy for the probit
regression which classifies by rounding the result of (30) applied to each entry of Ax+c. And, again,
obtaining x as any positive multiple of w together with c = 0 yields perfect accuracy — any positive
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multiple of a vector orthogonal to the hyperplane separating the two classes specifies that same
hyperplane. Once again we consider some experiments with nontrivial settings of hyperparameters
(such as a reasonably large number of iterations, minibatches with more than a single sample, and
a learning rate that yields decent accuracy). After 10,000 iterations (which is 1,250 epochs) with
8 samples per minibatch at the learning rate 3, training in private drives the Euclidean norm of
the difference between x/‖x‖2 and the ideal w/‖w‖2 to 0.006 and drives every entry of c/‖x‖2 to
0.005, where c is the vector of offsets (whose entries are all the same). That these values are so
small validates the training. The log-likelihood, averaged over all m = 64 samples, changes from
−0.918 to −0.058 over the 10,000 iterations (needless to say, the log-likelihood cannot exceed 0).
The accuracy becomes precisely perfect (that is, 1). (Training in public drives the Euclidean norm
of the difference between x/‖x‖2 and the ideal w/‖w‖2 to 0.007 and drives every entry of c/‖x‖2 to
0.006, while the average log-likelihood becomes −0.056 and the accuracy becomes perfectly 1 over
the 10,000 iterations, all results which match the private results to within errors expected due to
roundoff.)

5.1.4 Poisson regression (log link)

To construct a data set for Poisson regression in which we know a-priori the ideal solution to
reasonably high accuracy (so that we can easily verify the accuracy of a computed solution), we
spread over a substantial range of integers the target counts being fitted in the Poisson regression.
So long as the target counts cover a sufficiently wide range of integers, with most counts not too
small, the discrete spacing of the counts will cause little change from the solution to an undiscretized
(continuous) regression. Thus, if we set up a continuous regression for which we know the exact
solution a-priori, and round the targets (regressands) in that regression, then the solution to the
associated Poisson regression should be the same to reasonably high accuracy. For this purpose, we
construct the ideal solution vector w such that its Euclidean norm is substantial — 10 — and add
an offset of 3 to every entry of the vector b whose entrywise exponentiation is the vector of target
counts (after rounding). The 10 will ensure that the range of targets is sufficiently wide, and the 3
will ensure that most of the target counts are not too small.

More concretely, we obtain the design matrix A by orthonormalizing via Householder reflections
the columns of an m × n matrix whose entries are i.i.d. standard normal variates. We define w
to be 10 times the result of normalizing an n × 1 column vector whose entries are i.i.d. standard
normal variates, that is, we divide the vector whose entries are i.i.d. by its Euclidean norm, and
then multiply by 10, ensuring

‖w‖2 = 10. (31)

We construct the m× 1 column vector

b = Aw + 3, (32)

where “3” indicates the m × 1 column vector whose entries are all 3. We then define the target
counts

tj = round(exp(bj)), (33)

for j = 1, 2, . . . , m, where “round” rounds to the nearest integer (0, 1, 2, . . . ). Using 10 as the
norm of w in (31) ensures that the integers t1, t2, . . . , tm vary over a significant range, while using
3 in the right-hand side of (32) ensures that, on average, half will be greater than exp(3) ≈ 20.
Having targets that vary over a significant range and with many not too small ensures that the
maximum-likelihood estimates of w and 3 in Poisson regression are close to w and 3 with reasonably
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high accuracy — the discretization from the rounding operation in (33) matters little when many
counts are large and spread over a range significantly greater than the discretization spacing.

As in the experiments reported above, we conduct further experiments at nontrivial settings
of hyperparameters (such as a reasonably large number of iterations, minibatches with more than
a single sample, and a learning rate that yields decent accuracy). After 10,000 iterations (which
is 1,250 epochs) with 8 samples per minibatch at the learning rate 3 × 10−3, training in private
drives the Euclidean norm of the difference between x/‖x‖2 and the ideal w/‖w‖2 to 0.003 and
drives every entry of c − 3 to 0.003, where c is the vector of offsets (whose entries are all the
same). That these values are so small certifies the correctness of the training, as does the following
result: the log-likelihood for the obtained weight vector x and offset c, averaged over all m = 64
samples, is −2.349 after the 10,000 iterations, which matches the log-likelihood for the ideal weight
vector w and ideal offset (3) to three-digit precision. (Training in public for 10,000 iterations drives
the average log-likelihood, every entry of c− 3, and the Euclidean norm of the difference between
x/‖x‖2 and the ideal w/‖w‖2 to the same values to three-digit absolute precision as from training
in private.)

5.2 Performance on measured data

The following sub-subsections illustrate the application of the scheme proposed above to several
benchmarks, namely, handwritten digits from the data set known as “MNIST,” forest covers from
the data set known as “covtype,” and the numbers of deaths from horsekicks in corps of the Prussian
army over two decades.

5.2.1 MNIST

We use both binary and multinomial logistic regression, as well as probit regression, to analyze a
classic data set of handwritten digits, created by Yann LeCun, Corinna Cortes, and Christopher J.
C. Burges via merging two sets from the National Institute of Standards and Technology; the mixed
NIST set is available at http://yann.lecun.com/exdb/mnist as a training set of 60,000 samples
and a testing set of 10,000 examples. Each sample is a centered 28-pixel × 28-pixel grayscale image
of one of the digits 0–9, together with a label for which one; pixel values can range from 0 to 1. For
multinomial logistic regression we use all 10 classes (with one class per digit); for binary logistic
and probit regressions, we use the 2 classes corresponding to the digits 0 and 1, for which there
are 12665 samples in the training set, and 2115 samples in the testing set. To mimic common
settings for processing MNIST, we set the number of samples in a minibatch to 50 for training
with all 10 classes, and to 85 for training with only the 2 classes corresponding to the digits 0 and
1. To produce decent accuracy after training, we trained for 20 epochs (that is, 24,000 iterations)
at learning rate 10−2 with all 10 classes, and for 30 epochs (that is, 4,470 iterations) at learning
rate 10−3 with only the 2 classes corresponding to the digits 0 and 1. During training for all 10
classes, we supplemented each iteration of stochastic gradient descent with weight decay of 10−3,
which is equivalent to adding to the objective function being minimized (that is, to the negative
log-likelihood) a regularization term of 10−3 times half the square of the Euclidean norm of the
weights. This weight decay has negligible impact on accuracy yet ensures that the constant 5 we
subtract from the bias in the stochastic gradient descent is sufficient to make almost all inputs of
the softmax be non-positive, as suggested in the last paragraph of Subsection 4.3 above.

Figure 7 plots the results of training and Figure 8 displays the performance of the resulting
trained model when applied to the testing set, both as a function of the maximum value γ of the
random variable distributed uniformly over [−γ, γ]; the figures show that γ = 105 works well, in
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train test train test
link loss loss accuracy accuracy

identity 0.063 0.057
logit 0.039 0.033 0.997 0.999
probit 0.025 0.019 0.997 0.999

Table 4: Values of the negative log-likelihood (the “loss”) and accuracy averaged over the training
samples or testing samples from MNIST, with γ = 105 being the maximal possible value of the
random variable distributed uniformly over [−γ, γ] added to shares of the data; the identity link
does not solve a classification problem, so has no natural notion of accuracy for MNIST

agreement with the analysis in Subsection 2.1 above. Table 4 details the results for γ = 105; training
in public produces the same results at the precision reported in the table. For this application to
machine learning, even γ = 106 produces practically perfect predictions during both training and
testing. Logistic regression corresponds to the logit link; probit regression corresponds to the
probit link. The value of the log-likelihood averaged over the testing set is remarkably similar to
the average value over the training set, showing that training generalizes well to the independent
testing set. Figures 7 and 8 and Table 4 also include the results of using the identity link, just to
check (of course the identity link results in real numbers that may not be limited to the values 0
and 1 corresponding to the digits 0 and 1 — the identity link does not perform a classification,
even though classification is the natural task for this data set). The identity link runs fine, though
the resulting negative log-likelihoods (“loss”) have no obvious interpretation in this scenario.

Figure 9 displays the results of training multinomial logistic regression for all 10 classes (one
class per digit), along with applying the resulting trained model to the testing set, as a function
of the maximum γ of the random variable distributed uniformly over [−γ, γ]; the accuracy exceeds
0.9 from γ = 103 to γ = 106. The generalization from the training set to the testing set is ideal.
At γ = 105, the training loss is 0.318, the testing loss is 0.305, the training accuracy is 0.913, and
the testing accuracy is 0.917; training in public yields the same results to three-digit precision.

5.2.2 Forest cover type

We use both binary and multinomial logistic regression, as well as probit regression, to analyze
standard data on the type of forest cover based on cartographic variates from Jock A. Blackard
of the United States Forest Service, Denis J. Dean of the University of Texas at Dallas, and
Charles W. Anderson of Colorado State University (with copyright retained by Jock A. Blackard
and Colorado State University); the original data is available from the archive of [9] at http://

archive.ics.uci.edu/ml/datasets/covertype and the preprocessed and formatted versions that
we use are available from the work of [6] at http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
datasets/binary.html#covtype.binary (for binary classification) and http://www.csie.ntu.

edu.tw/~cjlin/libsvmtools/datasets/multiclass.html#covtype (for the multinomial logistic
regression).

We predict one of 7 types of forest (or one of 2 for the binarized data) based on 10 integer-valued
covariates (elevation, aspect, slope, horizontal and vertical distances to bodies of water, horizontal
distance to roadways, horizontal distance to fire points, and hillshade at 9am, 12pm, and 3pm), as
well as one-hot encodings of 4 types of wilderness areas and 40 types of soil. Thus, there are 54
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Figure 7: Value of the negative log-likelihood (the “loss”) averaged over the training data from
MNIST, after convergence of the training iterations, as a function of the maximum value γ of the
random variable distributed uniformly on [−γ, γ] added to the shares of the data
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Figure 8: Value of the negative log-likelihood (the “loss”) averaged over the testing data from
MNIST, as a function of the maximum value γ of the random variable distributed uniformly on
[−γ, γ] added to the shares of the data
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Figure 9: Accuracy of multinomial logistic regression averaged over the training or testing data
from MNIST, as a function of the maximum value γ of the random variable distributed uniformly
on [−γ, γ] added to the shares of the data

covariates in all, including the one-hot encodings. (A one-hot encoding is a vector whose entries are
all 0 except for one 1 in the position corresponding to the associated type.) For normalization, we
subtract the mean from each of the integer-valued covariates (not from the one-hot encodings) and
then divide by the maximum absolute value. We randomly permute and then partition the data
into a training set of 500,000 samples and a testing set of the other 81,012 samples. To yield good
accuracy after training, we trained for 20 epochs (that is, 10,000 iterations) with 1,000 samples per
minibatch (the large minibatch was feasible with this particular data set). We adjusted the learning
rate to ensure good accuracy after training, setting the learning rate for the binary classification to
3 (for identity link to 0.1) and for the multi-class (7-class) classification to 1. During training for
all 7 classes, we supplemented each iteration of stochastic gradient descent with weight decay of
10−3, to be consistent with our training for all 10 classes of MNIST in the previous sub-subsection.
This weight decay barely impacts accuracy yet makes the constant 5 that we subtract from the
bias in the stochastic gradient descent shift almost all inputs of the softmax to be non-positive, as
suggested in the last paragraph of Subsection 4.3 above.

Figure 10 displays the results of training and Figure 11 depicts the performance of the resulting
trained model when applied to the testing set, both as a function of the width γ of the random
variable distributed uniformly over [−γ, γ]; the figures show that γ = 105 works well, in accordance
with the analysis in Subsection 2.1 above. Table 5 details the results for γ = 105; training in public
yields the same results to within ±0.001 of those reported in the table. In fact, even γ = 106 works
perfectly fine for this application to machine learning. Logistic regression corresponds to the logit
link; probit regression corresponds to the probit link. The value of the log-likelihood averaged over
the testing set is reassuringly close to the average value over the training set, demonstrating good
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train test train test
link loss loss accuracy accuracy

identity 0.175 0.176
logit 0.515 0.515 0.755 0.758
probit 0.517 0.517 0.755 0.756

Table 5: Values of the negative log-likelihood (the “loss”) and accuracy averaged over the training
samples or testing samples from data on forest cover type, with γ = 105 being the maximal possible
value of the random variable distributed uniformly over [−γ, γ] added to shares of the data; the
identity link does not solve a classification problem, so has no natural notion of accuracy for this
binary classification

generalization from the training set to the testing set. Figures 10 and 11 and Table 5 include in
addition the results of using the identity for the link (needless to say, the identity link results in
real numbers that need not be limited to the values 0 and 1 corresponding to classes 0 and 1 from
the binarized data set — the identity link does not produce a classification, although classification
is the natural task for this data). The identity link runs successfully, though of course the resulting
negative log-likelihoods (“loss”) have no natural interpretation.

Figure 12 displays the results of training multinomial logistic regression for all 7 classes, together
with applying the resulting trained model to the testing set, as a function of the maximum γ of
the random variable distributed uniformly over [−γ, γ]; the accuracy is excellent from γ = 103

to γ = 106. The generalization from the training set to the testing set is perfect. At γ = 105,
the training loss is 0.705, the testing loss is 0.711, the training accuracy is 0.710, and the testing
accuracy is 0.710; training in public produces the same results to within ±0.001.

5.2.3 Deaths from horsekicks

We use Poisson regression to analyze the classical data from Ladislaus Bortkiewicz tabulating the
numbers of deaths from horsekicks in 14 corps of the Prussian army for each of the 20 years from 1875
to 1894, available (with extensive discussion) in the work of [19]. This data is a canonical example
of counts which follow the Poisson distribution. We consider four separate Poisson regressions, for
the following sets of covariates: (0) no covariates, (1) one-hot encodings of the corps, (2) second-
order polynomials of the years, and (3) concatenating the one-hot encodings of the corps and the
second-order polynomials of the years. The one-hot encoding of a corps is a vector with 14 entries,
one of which is 1 and 13 of which are 0; the position of the entry that is 1 corresponds to the
associated corps. The second-order polynomials of the years arise from using as covariate vector
a vector with 3 entries, the entries being the constant 1, the number of years beyond 1875, and
the square of the number of years beyond 1875; Poisson regression considers linear combinations of
these entries, thus forming quadratic functions of the years.

The log-likelihoods of the fully trained models are the same to three-digit precision when com-
paring training in public to training in private; with 14 samples per minibatch (where 14 is the
number of corps, so seemed like a natural choice), convergence of the log-likelihoods required 50,000
iterations (which is 2,500 epochs) with the second-order polynomials of the years in the covariates
but only 10,000 iterations (500 epochs) without, all at a learning rate 2 × 10−2. The negative
log-likelihoods of the trained models for the four sets of covariates converge to (0) 1.124, (1) 1.077,
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Figure 10: Value of the negative log-likelihood (the “loss”) averaged over the training data on forest
cover type, after convergence of the training iterations, as a function of the maximum value γ of
the random variable distributed uniformly on [−γ, γ] added to the shares of the data
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Figure 11: Value of the negative log-likelihood (the “loss”) averaged over the testing data on forest
cover type, as a function of the maximum value γ of the random variable distributed uniformly on
[−γ, γ] added to the shares of the data
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Figure 12: Accuracy of multinomial logistic regression averaged over the training or testing data
on forest cover type, as a function of the maximum value γ of the random variable distributed
uniformly on [−γ, γ] added to the shares of the data

(2) 1.107, and (3) 1.061, averaged over all samples (there are 280 samples in total — 14 corps for
each of 20 years). Twice the negative log-likelihood is sometimes called the “deviance,” which is
generally defined only up to an additive constant. The decrease in deviance when moving from
covariates (0) to (1) is 26.3, the decrease from (0) to (2) is 9.5, and from (0) to (3) is 35.3; these
deviances refer to the totals over all 280 samples, so are 280 times the average over the samples.
The degrees of freedom corresponding to each of these changes is less than the decrease in deviance,
indicating some minor heterogeneity in the data. (The baseline deviance generally has no statistical
interpretation in terms of a universal distribution such as χ2; changes in deviance when changing
covariates are what matter.)

With 14 samples per minibatch, each iteration of stochastic gradient descent takes about 1.7×
10−2 seconds when training in private for any of the four sets of covariates; the smallest set (0)
takes about 0.5× 10−2 seconds less per iteration than the largest set (3). When training in public,
each iteration takes about 1.7 × 10−4 seconds for any of the four sets of covariates. Training in
private thus takes about 100 times longer than training in public on standard machines in a cluster
for software development at Facebook.

6 Discussion and conclusion

The scheme proposed in the present paper has several strengths. One is the simple relation between
the machine precision and the best settings for parameters; for instance, our theoretical analysis
points to γ = 105 for IEEE standard double-precision arithmetic, and indeed γ = 105 works
well in all our numerical experiments. Naturally, this requires that the numbers being encrypted
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be appropriately normalized (so that β need not be too large), as usually achieved in modern
machine learning via various normalizations and normalization layers of neural networks. For
shallow networks (such as the generalized linear models considered above), such normalization is
standard as preprocessing of the data. In principle, the present paper discusses the numerical tools
required for other normalizations that are common in machine learning (such tools include raising
to the power −1/2, as in the reciprocal of a Euclidean norm); however, handling deep networks
automatically is likely to require further work beyond the scope of the present paper.

Another strength is that those who provide the sensitive data being processed need only provide
their shares once and for all to the multiple parties, prior to the execution of any secure multiparty
computations. Although the multiple parties must conspire together via communication among
themselves in the all-reduce operations of the Beaver multiplication and squaring in Tables 1 and 2,
there is no need for the data providers to participate in any of the processing (aside from providing
the shares of data in the first place). Indeed, multiple data providers never need to communicate
with each other, but only with the multiple parties that will process the data — and only once,
before any computation commences. Please note that this strength is common to most schemes
proposed for secure multiparty computations and is in no way unique to ours.

Undoubtedly the greatest strength is that the proposal of the present paper requires nothing
but IEEE standard double-precision floating-point arithmetic, while still guaranteeing perfect pri-
vacy at a precision of about 10−5, with all information leakage rigorously controlled courtesy of
full mathematical proofs. We suspect that the traditional discrete secure multiparty computa-
tions might necessarily leak about as much information via side channels such as measurements of
timing or usage of computational resources, when approximating floating-point calculations with
discretizations. In any case, our scheme’s requiring nothing more than the standard floating-point
arithmetic greatly facilitates implementation, and conveniently allows for optimized performance
by leveraging existing hardware and software. That said, many of the same benefits are available
on secure hardware supporting the Intel SGX of [1], AMD SEV-SNP of [14], IBM Secure Execution
of [17], and other such frameworks, at least on special secure microprocessors. We look forward
to investigating combinations of our secure multiparty computations with such secure hardware,
hoping to gain the advantages of both hardware- and software-based security.

A Proof of Theorem 1

A simple, standard computation yields that the differential entropy, in bits, of a random variable
Y distributed uniformly over [−γ, γ] is

h(Y ) = log2(2γ). (34)

Combining (1), (34), and the upper-bound on h(X + Y ) from the following lemma yields (2),
completing the proof of Theorem 1.

Lemma 6. Suppose that X and Y are independent scalar random variables and β and γ are positive
real numbers such that |X| ≤ β < γ and Y is distributed uniformly over [−γ, γ]. Then,

h(X + Y ) ≤ β

γ
+ log2(2γ), (35)

where h denotes the differential entropy measured in bits (not nats), with equality attained in (35)
when X is β times a Rademacher variate, that is, when X = β with probability 1/2 and X = −β
with probability 1/2.

25



Proof. Denoting the cumulative distribution function of X by F , the probability density function
of X + Y is

g(y) =
1

2γ

∫ γ

−γ
dF (y − x) =

1

2γ

∫ y+γ

y−γ
dF (x) =

F (y + γ)− F (y − γ)

2γ
. (36)

Combining |X| ≤ β and the definition of a cumulative distribution function yields that F (x) = 0
for x < −β and F (x) = 1 for x > β, so (36) becomes (as diagrammed in Figure 13)

g(y) =



0, y < −γ − β
F (y+γ)

2γ , −γ − β < y < −γ + β
1
2γ , −γ + β < y < γ − β
1−F (y−γ)

2γ , γ − β < y < γ + β

0, y > γ + β

(37)

and the entropy in bits of X + Y is

h(X + Y ) = −
∫ ∞
−∞

g(y) log2(g(y)) dy

= − 1

2γ

∫ γ+β

γ−β

(
F (γ − y) log2

(
F (γ − y)

2γ

)
+ (1− F (y − γ)) log2

(
1− F (y − γ)

2γ

))
dy

− 1

2γ

∫ γ−β

−γ+β
log2

(
1

2γ

)
dy

= − 1

2γ

∫ β

−β

(
F (−y) log2(F (−y)) + (1− F (y)) log2(1− F (y))

)
dy + log2(2γ)

= − 1

2γ

∫ β

−β

(
F (y) log2(F (y)) + (1− F (y)) log2(1− F (y))

)
dy + log2(2γ). (38)

The function p log2(p)+(1−p) log2(1−p) is minimal for 0 < p < 1 at p = 1/2, so the integral in
the right-hand side of (38) is minimal when F (y) = 1/2 for |y| < β, in which case (38) becomes (35)
with equality attained when X is β times a Rademacher variate.

B Proof of Theorem 2

For any scalar random variables X, Y , and Z, the definition of mutual information states

I(X; X + Y, X + Z) = h(X + Y, X + Z)− h(X + Y, X + Z | X), (39)

I(X; X + Y ) = h(X + Y )− h(X + Y | X), (40)

and
I(X; X + Z) = h(X + Z)− h(X + Z | X), (41)

where h denotes entropy. Furthermore, the subadditivity of entropy for any arbitrary random
variables yields

h(X + Y, X + Z) ≤ h(X + Y ) + h(X + Z). (42)

Taking X, Y , and Z to be independent then yields

h(X + Y, X + Z | X) = h(Y, Z | X) = h(Y, Z) = h(Y ) + h(Z)

= h(Y | X) + h(Z | X) = h(X + Y | X) + h(X + Z | X). (43)

Combining (39)–(43) yields (3), completing the proof of Theorem 2.
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Figure 13: Sketch of a visualization for understanding the proof of Lemma 6, in the case where the
probability distribution of X is given by an even unimodal probability density
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C Proof of Theorem 3

We suppose that X, Y , P , Q, and T are independent scalar random variables and γ is a positive
real number such that |X| ≤ 1 < 3 < γ, the random variable T is distributed uniformly over
[−γ2, γ2], and Y , P , and Q are distributed uniformly over [−γ, γ]. Then, since (X − Y )− (P −Q)
is just the difference between X − Y and P −Q, providing no more and no less information than
X−Y and P −Q on their own without (X−Y )− (P −Q), and (P 2−T )+2(P −Q)(X−P )+(X−
P )2/2 is also merely a deterministic combination of the observations P 2 − T , P −Q, and X − P ,
providing no more and no less information than P 2 − T , P −Q, and X − P on their own without
(P 2 − T ) + 2(P −Q)(X − P ) + (X − P )2/2, the mutual information satisfies

I
(
X; X−Y, P−Q, P 2−T, (X−Y )−(P−Q), X−P, (P 2−T )+2(P−Q)(X−P )+(X−P )2/2

)
= I(X; X − Y, P −Q, P 2 − T, X − P ). (44)

Since X −Q = (X − P ) + (P −Q) and P −Q = (X −Q)− (X − P ) establish a bijection between
the pair X − P and X −Q and the pair X − P and P −Q, it follows that

I(X; X − Y, P −Q, P 2 − T, X − P ) = I(X; X − Y, X −Q, X − P, P 2 − T ). (45)

Combining (3) and the fact that X, Y , Q, P , and T are independent yields

I(X; X −Y, X −Q, X −P, P 2−T ) ≤ I(X; X −Y ) + I(X; X −Q) + I(X; X −P, P 2−T ). (46)

Combining (44)–(46) and (47) from the following lemma, together with (2), yields (4), completing
the proof of Theorem 3.

Lemma 7. Suppose that X, P , and T are independent scalar random variables and γ is a positive
real number such that |X| ≤ 1 < 3 < γ, the random variable P is distributed uniformly over [−γ, γ],
and T is distributed uniformly over [−γ2, γ2]. Then,

I(X; X − P, P 2 − T ) ≤ I(X; X − P ) +
2

γ
+

1

γ2
, (47)

where I denotes the mutual information measured in bits.

Proof. The proof begins with a string of identities, systematically simplifying (or re-expressing)
their right-hand sides. Indeed, since X2− 2XP +P 2 is simply the square of X −P , it follows that

I(X; X − P, P 2 − T ) = I(X; X − P, X2 − 2XP + P 2, P 2 − T ). (48)

Since X2−2XP+T = (X2−2XP+P 2)−(P 2−T ) and P 2−T = (X2−2XP+P 2)−(X2−2XP+T )
establish a bijection between the pair X2 − 2XP + P 2 and P 2 − T and the pair X2 − 2XP + P 2

and X2 − 2XP + T , it follows that

I(X; X − P, X2 − 2XP + P 2, P 2 − T ) = I(X; X − P, X2 − 2XP + P 2, X2 − 2XP + T ). (49)

Since X2 − 2XP + P 2 is simply the square of X − P , it follows that

I(X; X − P, X2 − 2XP + P 2, X2 − 2XP + T ) = I(X; X − P, X2 − 2XP + T ). (50)

The chain rule for mutual information yields

I(X; X − P, X2 − 2XP + T ) = I(X; X − P ) + I(X; X2 − 2XP + T | X − P ). (51)
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The definition of mutual information states

I(X; X2 − 2XP + T | X − P )

= h(X2 − 2XP + T | X − P )− h(X2 − 2XP + T | X − P, X), (52)

where h denotes the differential entropy measured in bits. Since T is independent of X and P , the
last term in the right-hand side of (52) is

h(X2 − 2XP + T | X − P, X) = h(X2 − 2XP + T | P,X) = h(T ). (53)

The fact that T is distributed uniformly over [−γ2, γ2] yields via a simple, straightforward calcula-
tion that

h(T ) = log2(2γ
2). (54)

We now upper-bound the first term in the right-hand side of (52), by defining

S = X2 − 2XP (55)

and noticing
|S| ≤ |X|2 + 2|X||P | ≤ 1 + 2γ. (56)

That conditioning never increases entropy yields that the first term in the right-hand side of (52)
satisfies

h(S + T | X − P ) ≤ h(S + T ). (57)

Combining (35) and the fact that T is distributed uniformly over [−γ2, γ2] yields that, maximizing
over all random variables S such that |S| ≤ β = 1 + 2γ (even dropping the constraint that
S = X2 − 2XP in the maximization),

h(S + T ) ≤ 1 + 2γ

γ2
+ log2(2γ

2) =
2

γ
+

1

γ2
+ log2(2γ

2). (58)

Combining (52)–(58) yields that, maximizing over any random variable X such that |X| ≤ 1,

I(X; X2 − 2XP + T | X − P ) ≤ 2

γ
+

1

γ2
. (59)

Combining (48)–(51) and (59) yields (47).

D Chebyshev series for odd functions

In this appendix, we review the approximation of odd functions via Chebyshev series, as summarized
for general (not necessarily odd) functions in Sections 4–6 of [8].

Given a real-valued differentiable function f on [−z, z] that is odd, that is,

f(−x) = −f(x) (60)

for any real number x such that −z ≤ x ≤ z, we can approximate f via its Chebyshev series, as
follows. First, we select a sufficiently large positive integer n and compute

cj =
2

n

n∑
k=1

cos

(
j(2k − 1)π

4n

)
f

(
z cos

(
(2k − 1)π

4n

))
(61)
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for j = 1, 3, . . . , 2n− 1; the approximation will converge as n increases. Having calculated c1, c3,
. . . , c2n−1 from (61), we can compute a good approximation to f evaluated at any real number y
such that −z ≤ y ≤ z:

f(y) ≈
n∑
j=1

c2j−1 T2j−1(y/z), (62)

where Tj(x) denotes the Chebyshev polynomial of degree j evaluated at x = y/z.
To calculate the right-hand side of (62) efficiently using only additions and multiplications

involving the input
x = y/z, (63)

we evaluate the sums

s2k−1 =
k∑
j=1

c2j−1 T2j−1(x) (64)

for k = 1, 2, . . . , n, via the following recurrence:

t2k+1 = (4x2 − 2)t2k−1 − t2k−3 (65)

and
s2k+1 = s2k−1 + c2k+1t2k+1, (66)

started with
t1 = x, (67)

t3 = (4x2 − 3)x, (68)

s1 = c1t1, (69)

and
s3 = s1 + c3t3. (70)

The final sum s2n−1 is equal to the right-hand side of (62), due to (63) and (64).

E Review of stochastic gradient descent with minibatches

As discussed in any standard reference on modern machine learning, such as that of [4], minibatched
stochastic gradient descent (SGD) calculates a vector w of parameters that minimizes the expected
value E(`(X;w)), where ` is a function of both w and a random vector X. The expected value
is known as the “risk” and ` is known as the “loss.” SGD minimizes the expected loss without
having direct access to the probability distribution of X, instead relying solely on samples of X
(usually drawn at random from a so-called “training set”). Minibatched SGD generates a sequence
of approximations via iterations,

w(k+1) = w(k) − η

m

m∑
j=1

∂

∂w
`(x(j,k);w)

∣∣∣∣
w=w(k)

, (71)

where η is a positive real number known as the “learning rate,” ∂/∂w denotes the gradient with
respect to w (which is `’s second argument), m is the number of samples in a so-called “minibatch,”
and x(1,k), x(2,k), . . . , x(m,k) denote samples from X. The iterations fail to minimize the expected
loss when η is constant rather than decaying to 0 as the iterations proceed, but fixing η at a sensibly
small value is a common practice in machine learning (and still ensures convergence to the minimum
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of the empirical risk under suitable conditions on `, that is, to the minimum of the average of the
loss, averaged over all samples in a fixed, finite training set).

Minimizing the regularized objective function E(`(X;w)) + ρ‖w‖22/2, where ρ is a nonnegative
real number and ‖w‖2 denotes the Euclidean norm of w, is a common way of ensuring that w not
become too large. Adding such regularization to SGD is also known as “weight decay,” and the
iterations in (71) become

w(k+1) = w(k) − η

m

m∑
j=1

∂

∂w
`(x(j,k);w)

∣∣∣∣
w=w(k)

− ηρw(k); (72)

we used some weight decay for the multinomial logistic regression of the measured data in Subsec-
tion 5.2 (but used no weight decay for any other results reported above, nor did we use any weight
decay for iterative updates to the so-called bias offsets in c from the following appendix).

F Review of generalized linear models

As discussed in any standard reference on generalized linear models, such as that of [18], a general-
ized linear model regresses a random vector Y of so-called targets against a matrix X of so-called
covariates via the model

g(E(Y |X)) = Xw + c, (73)

where g is known as the “link function,” E(Y |X) is the conditional expectation of the vector Y of
targets given X (the matrix of covariates), w is a vector of so-called “weights” (or “parameters”),
and c is a vector whose entries are independent of the values of X, known as “biases.” Table 6 lists
several special cases of generalized linear models. Given independent samples of pairs (x(1), y(1)),
(x(2), y(2)), . . . , (x(n), y(n)), the standard method of fitting the vectors w of weights and c of biases
is to minimize the negative of the natural logarithm of the likelihood, that is, to minimize the
empirical risk − 1

n

∑n
k=1 ln(p(y(k)|x(k);w, c)), where p(y(k)|x(k);w, c) denotes the probability (at the

parameter values w and c) of observing y(k) given x(k). Minimizing −E(ln(p(Y |X;w, c))) via the
minibatched stochastic gradient descent of the previous appendix is another (nearly equivalent)
approach.

The probability distribution of Y given X for all of the generalized linear models considered in
Table 6, except for probit regression, is a so-called “exponential family” of the form

p(y|x;w, c) = f(y) exp(y>xw + y>c− ψ(xw + c)), (74)

where f is a nonnegative-valued function, and ψ is known as the “log partition function”: ψ(θ) =
‖θ‖22/2 for the normal distribution, ψ(θ) = ln(1+exp(θ)) for the Bernoulli distribution, and ψ(θ) =
exp(θ) for the Poisson distribution. For all these cases, substituting (74) and taking the gradient
with respect to θ of both sides of

∫
p(y|x;w, c) dy = 1 yields after a straightforward calculation that

∂ψ/∂θ = E(Y |x), where θ = xw+ c; combined with (73) this yields that g(∂ψ/∂θ) = θ, so the link
g is the inverse of ∂ψ/∂θ.

Combining (74) and the chain rule yields that the gradient with respect to w of ln(p(y|x;w, c))
is

∂

∂w
ln(p(y|x;w, c)) = x>

(
y − ∂ψ

∂θ

∣∣∣∣
θ=xw+c

)
(75)

and the gradient with respect to c of ln(p(y|x;w, c)) is

∂

∂c
ln(p(y|x;w, c)) = y − ∂ψ

∂θ

∣∣∣∣
θ=xw+c

. (76)
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name distribution name of link link g(µ) range of mean µ

linear least squares N(µ, I) identity µ all real vectors

logistic regression Bernoulli logit ln(µ/(1− µ)) unit interval [0, 1]

probit regression Bernoulli probit Φ−1(µ) unit interval [0, 1]

Poisson regression Poisson log ln(µ) nonnegative real numbers

multinomial logistic multinomial log performed ln of each prob. simplex
∑k

j=1µj = 1

regression entry-by-entry entry of µ and µ1, µ2, . . . , µk ≥ 0

Table 6: Special cases of generalized linear models, where N(µ, I) denotes the (possibly multi-
variate) normal distribution with mean µ and variance-covariance matrix being the identity matrix
I, and Φ is the cumulative distribution function for the standard normal distribution (so Φ−1 is the
corresponding quantile function, the inverse of Φ); “linear least squares” is also known as “ordinary
least squares” or the “general” linear model — a special case of the “generalized” linear model

Thus, the stochastic gradient descent of the previous appendix requires nothing more than addition,
matrix-vector multiplications, and evaluation of the inverse (∂ψ/∂θ) of the link g. Needless to say,
the inverse of the identity function is the identity function, the inverse of ln is exp, and the inverse
of the inverse of the cumulative distribution function Φ for the standard normal distribution is Φ. A
simple calculation shows that the inverse of the logit function g(µ) = ln(µ/(1− µ)) is the standard
logistic function ∂ψ/∂θ = 1/(1 + exp(−θ)) and that the softmax detailed in Subsection 4.3 above
inverts ln applied entrywise to a probability vector (the softmax simply applies exp entrywise and
then normalizes to form a proper probability distribution).

The probability distribution for probit regression is an exponential family, but not of the form
in (74); we handle this special case as detailed in Sub-subsection 5.1.3.
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