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ABSTRACT

In the setting of online experiments, we propose a two-step procedure to improve efficiency for es-
timating average treatment effect (ATE) by combining synthetic control methods with the popular
regression adjustment framework. In particular, we form a synthetic control for each and every sub-
ject in the experiment using a donor pool that consists of k nearest-neighbors (kNN) from outside of
the experiment. The predicted counterfactuals are then used in the following regression adjustment
step. The asymptotic theory of the method can be shown following [17] and is validated in a real-
istically calibrated Monte Carlo analysis. For both user-level and cluster experiments at Facebook,
we show that the proposed method yields significantly narrower CIs compared with the standard
difference-in-mean estimator and a widely used OLS adjusted estimator.

1 Introduction

Regression adjustment methods have been widely used to improve estimation efficiency in randomized experiments of
various designs [12, 13, 16, 17, 18]. It is known that asymptotically the estimator after adjustment performs no worse
than the standard difference-in-mean estimator [19]; in fact, the stronger the covariates correlate with the outcome, the
greater variance reduction the adjusted estimator would achieve [17]. Meanwhile, machine learning (ML) has received
growing attention in causal inference literature (e.g., [8, 9, 10, 20]). For variance reduction purpose in the setting of
online experiments, in particular, [14] uses ML models to predict the value of outome from many covariates in the
hope of generating a proxy that is strongly correlated with the goal metric, in which case the width of confidence
interval is shown to be reduced dramatically.

Regression adjustment is known to be valid under mild assumptions that are standard for analyzing online experiments
and is very easy to implement. In this article, we propose a new idea of improving estimation efficiency under the
framework of regression adjustment that makes use of synthetic control methods [2]. In particular, we construct a
synthetic control for each and every subject in the experiment using a donor pool that consists of k nearest-neighbors
(kNN) outside the experiment. The predicted counterfactuals from synthetic controls are later used as a covariate in
the following regression adjustment step (e.g., OLS regression). We emphasize from the outset that individuals outside
the experiment could be involved in other experiments and thus receive other interventions, so while they can be useful
as control variates, they are not actually part of the control group. In fact, we could consider the donor pool as being
literally any time-series of any quantities independent of the intervention – they do not even need to be meaningful
subjects such as users.

The synthetic control method is originally proposed in economics to estimate the effects of interventions on aggregate
outcomes (e.g., at country level) in observational settings [5]. More recently, the method has also been used for
disaggregated data (e.g., [6]). To the best of our knowledge, this is the first study that applies synthetic control
methods for the purpose of variance reduction in randomized experiments. Our method distinguishes itself from
existing regression adjustment methods in two important ways. First, it exploits both the time-series fluctuation of the
outcome variable in the pre-intervention periods and the information of donors outside the experiment, which most
existing methods do not fully leverage. Second, it offers great flexibility for customization, and thus should admit
broad applications – it can be applied in both individual-level and cluster experiments; the predicted counterfactuals



can be used either alone as the adjustment or as an additional covariate in more complicated nonlinear adjustment
models. Our method can be particularly useful in cluster experiments which do not have a large number of clusters for
training complex ML models.

2 Methodology

We introduce the synthetic control average treatment effect (SCATE) estimator. For a real vector of matching variables
X , we define ‖X‖ = (X ′V X)1/2, where V is a diagonal matrix to adjust the scale and relative importance of
different components in X . As a concrete example, if we only include the time-series values of the outcome variable
in pre-intervention periods in X , then X is a T0-vector, where T0 is the number periods before the experiment starts.
If we let V = I , ‖X‖ becomes the Euclidean norm. Let the post-intervention outcome variable be Y . Given an integer
k and a diagonal matrix V – the choice of which will be discussed below – we propose the following algorithm.

Algorithm. SCATE
1: Procedure SCATE(k, V )
2: for each subject in the experiment (i = 1, . . . , n) do
3: i) Find k nearest-neighbors indexed by j from N − n subjects outside the experiment based on ‖Xi −Xj‖2.
4: ii) Compute W ?

i ≡ (Wi,1, . . . ,Wi,k) that solves

5: minW i∈Rk

∥∥∥Xi −
∑k
j=1Wi,jXj

∥∥∥2
6: s.t. Wi,j ≥ 0,
7:

∑k
j=1Wi,j = 1,

8: where Wi,j is the weight given to donor j to form the synthetic control for subject i.
9: iii) Compute predicted counterfactuals as Ŷi =

∑k
j=1W

?
i,jYj .

10: end for
11: Estimation. Get τ̂ from the OLS regression
12: Yi = α+ τTi + γŶi + φTi

(
Ŷi − ¯̂

Y
)

+ εi

13: as the ATE estimator, where Ti is the treatment indicator.
14: CLT. Compute σ̂2

τ = σ̂2
0/(1− p̂) + σ̂2

1/p̂− σ̂2
sc[γ̂p̂+ (γ̂ + φ̂)(1− p̂)]2/p̂(1− p̂), where σ̂2

1 and σ̂2
0 are the sample

15: variances of Yi in the treatment and control group, respectively; σ̂2
sc =

∑n
i=1(Ŷi − ¯̂

Y )2/n; and p̂ =
∑n
i=1 Ti/n

16: (the derivation of σ̂τ is based on (10) in [21]).
17: Use

√
n(τ̂ − τ)/σ̂τ → N (0, 1) for statistical inference.

18: end procedure

Comments. Several practical considerations with using synthetic controls are discussed below.

(a) Lack of unique solutions. Given our large donor pool outside the experiments, one could possibly find multiple
best synthetic controls for some subject if the matching variables of that subject fall into a convex hull of the corre-
sponding values for the donors. Two common solutions to this problem are (i) restricting the donor pool to a smaller
number of units that are similar to the target unit until the nonuniqueness issue is no longer a practical concern as in the
proposed algorithm and (ii) introducing a penalized term that focuses on pair-wise discrepency between the target unit
and each donor as advocated in [6]. The two solutions share the same spirit, but the latter one is more computationally
intensive due to the high dimensionality of the problem, especially in the setting of online experiments.

(b) Choice of k. Since the synthetic control method finds the projection of each subject onto a convex hull spanned by
its k neighbors, adding more neighbors would reduce matching error but at the same time is susceptible to overfitting
(i.e., the discussion on the tradeoff between extrapolation bias and interpolation bias in the synthetic control commu-
nity, e.g., [15]). A practical way of choosing k is to minimize the sum of squared errors

∑
i∈control group(Yi − Ŷi(k))2

in the control group.

(c) Choice of V . A simple choice is to use the inverse variance of each dimension of X to form a diagonal matrix. A
more sophisticated method involves using a nested quadratic optimization with out-of-sample validation to internalize
the choice of V in the algorithm (e.g., [4]). Based on our empirical analysis with real experiment data, when only
values of the outcome variable over pre-intervention periods are included in X , setting V = I rarely affects the
variance reduction performance, and thus is a reasonable choice for large scale experiments.

(d) Computational feasibility. In the above algorithm, we use the synthetic control method proposed in the seminal
paper [3] to get the predicted counterfactuals (later referred to as the ADH method). For this method, both finding
kNN and optimizing for weights can be computationally intensive at scale. There exist highly scalable solutions for
similarity search (e.g., FAISS [1]), which makes it possible to find kNN among millions of units within seconds. In
addition, finding optimal weights can be converted into a matrix completion problem, which can be solved via iterative
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thresholded SVD [7]. We remark that other methods for counterfactual prediction could also be used to replace the
ADH method. To name two alternatives, (a) Vertical Regression: Given the kNNs, we could simply run time-series
regressions for pre-intervention values of the outcome [11], that is,Xi,t = β0+β1Xneighbor1,t+· · ·+βkXneighbork,t+εt
for pre-intervention periods t = 1, . . . , T0, with k < T0, and the estimated regression model can then be used in the
post-treatment periods to generate counterfactual predictions according to Ŷi = β̂0 + β̂1Yneighbor1 + · · ·+ β̂kYneighbork ;
(b) Elastic Net: We could apply the elastic net synthetic control method studied in [11], which readily allows for the
possibility that N − n� T0 by solving minW i∈RN−n ‖Xi −

∑N−n
j=1 Wi,jXj‖2 + λ(α‖W i‖1 + 1−α

2 ‖W i‖2).

Given our purpose of variance reduction in online experiments, we propose two simple extensions of the above al-
gorithm that might better fit certain scenarios in practice. First, since synthetic controls are derived from matching
subjects in and outside the experiment, they contain “orthogonal” information to the covariates that are usually used
in non-linear regression adjustment methods. It is therefore natural to use the predicted counterfactuals as additional
covariates in those non-linear models. For example, under the framework of [14], we can add the predicted counterfac-
tual as an additional feature in the GBDT model. Hypothetically, one could also throw all time-series data of the focal
subjects and donors into a large ML model to generate counterfactual predictions. However, due to the considerable
computational needs and the implementation complexity of a large scale ML model, we believe the synthetic control
approach has distinct value to extract useful information from the raw data. Second, when cluster experiments are
considered, the synthetic control method could be applied to the aggregated data at cluster level. When the number
of clusters is not large enough for training highly complex ML models with many covariates, SCATE clearly has its
advantage and could be used instead to gain efficiency.

From a theoretical standpoint, synthetic controls and regression adjustment methods have very good synergy – the pre-
dicted counterfactuals are independent of the treatment assignment, since they only rely on the values of the outcome
variable in the pre-intervention periods, the outcome values from donors outside the experiment, and potentially some
time-invariant covariates. Under the assumption of no interference across the subjects, the argument in [17] can be
directly applied to justify the asymptotic validity of the algorithm. In cluster experiments where clusters are treated as
subjects, the inference theory holds under the assumption of no cross-cluster interference.

3 Numerical study

3.1 Consistency

As discussed above, SCATE always generates consistent estimates of the average treatment effects. To verify this
property, we examine two metrics used in Facebook cluster experiments. The metric values are pre-aggregated into the
cluster level. We have in total 10,000 clusters, from which we randomly select 100–1,000 clusters into the experiment
with the remaining clusters outside to mimic the size of the real experiments. We simulate both A/A and A/B tests with
constant treatment effects, and compare the average finite-sample bias of SCATE with that of the standard difference-
in-mean estimator across 1,000 Monte Carlo trials. For the A/B settings, we consider two effect sizes: 1% and 5%. As
expected, our proposed method almost always yields smaller biases compared with the difference-in-mean estimator
in finite sample.

Table 1. Finite-sample bias in percentage term (%)
Model Diff-in-mean SCATE

A. Topline Metric I.
A/A Test 0.0072 0.0025
A/B Test: 1% effect 0.0110 0.0068
A/B Test: 5% effect (0.0207) (0.0083)

B. Topline Metric II.
A/A Test (0.0001) (0.0045)
A/B Test: 1% effect 0.0128 0.0055
A/B Test: 5% effect (0.0039) (0.0002)

3.2 Variance reduction performance

Finally, we compare the empirical performance of SCATE against two popular estimators – difference-in-mean and
OLS adjusted estimator – in simulated A/A tests for a set of real outcome metrics. As in the previous section, we
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simulate 1,000 Monte Carlo repetitions for each metric and calculate average improvement of efficiency. 1 Below, we
present some highlights of our results for both user-level and cluster experiments.

For user-level experiments, SCATE yields significantly narrower confidence intervals compared with both the stan-
dard difference-in-mean estimator and a commonly used estimator adjusted by the pre-intervention outcome values
with OLS. In particular, we show that for four top company critical metrics, SCATE yields about 58% narrower CIs
compared with the standard difference-in-mean estimator and 16% narrower CIs compared with the OLS adjusted
estimator.

For cluster experiments, which are also widely used at Facebook, on average for tests with 100–1,000 clusters, the
CIs from SCATE are approximately 34% narrower relative to those generated by the standard difference-in-mean
estimator. When compared against the OLS adjusted estimator, SCATE produces 15% narrower CIs. Details can be
found in Table 2.

Table 2. Ratio of the width of CI
Metric SCATE / Diff-

in-Mean
SCATE / OLS-
Ajusted

A. User-level experiments
Metric 1 0.5656 0.8879
Metric 2 0.4233 0.8551
Metric 3 0.5840 0.8809
Metric 4 0.2456 0.7201

B. Cluster experiments
Metric 1 0.9070 0.9641
Metric 2 0.3491 0.6959
Metric 3 0.4531 0.8614
Metric 4 0.4919 0.7533
Metric 5 0.9326 0.9762
Metric 6 0.9182 0.9606
Metric 7 0.9918 0.9966
Metric 8 1.0074 0.9991
Metric 9 0.5932 0.7849
Metric 10 0.9968 0.9950
Metric 11 0.7874 0.8706
Metric 12 0.6839 0.8739
Metric 13 0.6189 0.9931
Metric 14 0.4653 0.6811
Metric 15 0.5371 0.7605
Metric 16 0.4000 0.6340
Metric 17 0.8836 0.9762
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