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Abstract

In addition to accuracy, fairness and robustness are two critical concerns for feder-
ated learning systems. In this work, we first identify that robustness to adversarial
training-time attacks and fairness, measured as the uniformity of performance
across devices, are competing constraints in statistically heterogeneous networks.
To address these constraints, we propose employing a simple, general multi-task
learning objective, and analyze the ability of the objective to achieve a favorable
trade-off between fairness and robustness. We develop a scalable solver for the
objective and show that multi-task learning can enable more accurate, robust, and
fair models relative to state-of-the-art baselines across a suite of federated datasets.

1 Introduction

Federated learning (FL) aims to collaboratively learn from data that has been generated by, and
resides on, a number of remote devices [34]]. FL stands to produce highly accurate statistical models
by aggregating knowledge from disparate data sources. However, to deploy federated learning
in practice, it is necessary for the resulting systems to be not only accurate, but to also satisfy a
number of pragmatic constraints, regarding issues such as fairness, robustness, privacy, and security.
Simultaneously satisfying these various constraints can be exceptionally difficult.

In this work, we focus specifically on targeting constraints between accuracy, fairness (i.e., uniform
performance distribution across the network), and robustness (against training-time attacks) Many
prior efforts have separately considered fairness or robustness in federated learning. For instance,
strategies to enforce fairness include focusing on the worst-performing devices by solving minimax
optimization [21} 35] or reweighting the devices to promote accuracy uniformity and allow for a
flexible fairness/accurcy trade-off [27, [28]. Common robust methods include techniques such as
gradient clipping [40] or the use of robust aggregators to combine model updates [6} 44]].

While these approaches are effective at either promoting fairness or defending against training-time
attacks in isolation, we show that the constraints of fairness and robustness can directly compete with
one another, and that simultaneously optimizing for accuracy, fairness, and robustness requires careful
consideration. For example, as we empirically demonstrate (Section ), current fairness approaches
can render FL systems highly susceptible to training time attacks from malicious devices. On the
other hand, robust baselines may filter out rare but informative updates, resulting in unfairness.

While addressing the competing constraints of FL. may seem like an insurmountable problem, in this
work we identify that statistical heterogeneity is a root cause for tension between these constraints,
and is key in paving a path forward. Our insight is that we can better address competing constraints by
properly modeling and accounting for heterogeneity in federated learning. In particular, we propose
to use multi-task learning (a framework that learns shared, heterogeneous models) to model federated

"We focus on the attacks against the main learning task, as opposed to backdoor attacks [2| 40| 41]]. Typically,
main-task attacks could compromise the entire model, particularly hurting the predictive power of benign devices.
Therefore, we define robustness as the test performance of benign devices.
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data. Multi-task learning (MTL) has been studied in non-federated settings [e.g., [15], as well as
convex settings for federated learning [38]]. However, it has not been directly explored as a solution
for robustness and fairness, and the area of non-convex federated MTL is generally less explored.

To this end, we propose a simple yet effective multi-task objective to achieve robustness and fairness
jointly in both convex and non-convex settings. To solve the objective, we provide a lightweight and
scalable solver which accounts for low device participation and local updating for federated settings.
Theoretically, we take a first step towards rigorously analyzing the benefits of multi-task learning to
handle competing constraints on a toy problem. Practically, through experiments on federated data,
across a set of attacks, we demonstrate that our multi-task learning approach is more accurate, robust,
and fair compared with strong baselines that handle these constraints separately.

2 Related Work

Robustness in Federated Learning. Training-time attacks (including data poisoning and model
poisoning attacks) have been well studied in the machine learning community. In data poisoning
attacks [5]], an adversary can compromise the model by corrupting a set of carefully-chosen samples [9}
18, 221130, 137, 43]] or injecting poisoned data points into the training set [[14} 22} 41]. In federated
settings, Bagdasaryan et al. [2] show that data poisoning by a single adversary is insufficient to
compromise the global model. As a result, stronger attack methods have been proposed including
scaling malicious model updates [2]], collaborative attacking [39]], or adding edge-case adversarial
training samples [41]. Some other works focus on performing attacks in a defense-aware fashion to
make the malicious updates evasive from benign updates [13,[17]. We make different assumptions on
the adversaries for different scenarios, and investigate label flipping [3| 4], sending random updates,
and scaling malicious updates [2] as attack baselines. While we do not focus on backdoor attacks in
this work, exploring MTL for this problem would be an interesting direction of future study.

In terms of defenses against training-time attacks, in distributed settings, robust aggregation [6, 36} 140]
is a common strategy to mitigate the effect of malicious updates. However, these robust aggregators
usually rely on the assumption of L.1.D. data, which may not be applicable in federated settings. Other
defense mechanisms include gradient clipping [40]] or normalization [21]. While these works can
improve robustness, they could produce unfair models by potentially filtering out many informative
updates, especially in heterogeneous environments [41]]. In this work, we compare multi-task learning
with several strong defenses (median, gradient clipping [40], Krum, Multi-Krum [6]], gradient-norm
based anomaly detector [2]], and a new defense proposed herein) and demonstrate that multi-task
learning is able to improve both robustness and fairness compared with these methods.

Fairness in Federated Learning. Fairness issues (i.e., uniformity of performance distribution), also
known as representation disparity [20], are a major concern in training in heterogeneous networks.
Some works propose minimax optimization [35] or alternative approaches to reweighting samples [27|
28| to encourage a more fair quality of service offered to all devices. Other works consider varying
notions of fairness (e.g., proportional fairness [46]) in federated learning. Nevertheless, fair methods
may not be robust in that they can easily overfit to corrupted devices (Section[4.1)). While Hu et al.
[21] consider both fairness and robustness in one algorithm, this work combines classical fairness and
limited robustness mechanisms (i.e., minimax optimization and gradient normalization), as opposed
to the multi-task framework proposed herein to jointly address the constraints in a unified manner.

Personalized Federated Learning. In federated learning, personalization is a natural approach to
handling statistical heterogeneity by fitting separate models to the distributed data, while increasing the
effective sample size on each local device. Several previous works have proposed different methods
to train personalized models. Smith et al. [38] propose a primal-dual multi-task learning framework
for federated learning, which only applies to convex settings. Some works use alternative objectives
to learn personalized models interpolated between the global and local models [11}133]]. However,
the solutions to these objectives can reduce to local minimizers. Another approach is to explicitly
regularize the local models, either towards their average [19]], or towards a reference point [12]].
Another line of work applies meta-learning for personalization in federated settings [8}, |16} 23} 24]].
Other works enforce hard parameter sharing among local models [1, 29]. However, few of these
works explore the benefits of personalization in terms of fairness or robustness defined herein. Wang
et al. [42] empirically show that local finetuning can help fairness. Yu et al. [45] use different
personalization methods (including multi-task learning) to improve accuracies after applying robust
mechanisms. Our work instead argues that multi-task learning itself offers robustness benefits, and
can provide both robustness and fairness to benign devices simultaneously. Our objective is also



inspired by the classical mean-regularized multi-task learning objective [[15]; but we regularize
towards a global model rather than the mean of local models.

3 Federated Multi-Task Learning for Accuracy, Fairness, and Robustness

In this section, we first describe our proposed multi-task objective (Section[3.1)), and then present a
scalable algorithm to solve this objective in federated settings (Section [3.2).

3.1 Multi-Task Learning Objective

In federated learning, a classical objective is to learn a single global model to fit all data across the
network [34]. In particular, we aim to solve:

Hii}n Z Pk Fi(w) , (D
k=1

where Fj,(w) (1 < k < N) is the local loss for device k and py, is a pre-defined weight such
that >’ « Pr = 1. In general, each device may generate data x;, via a distinct distribution Dy, i.e.,
Fr(w) :=E,, «p, [fr(w;zi)] where fj is the loss on an individual sample. Due to such statistical
heterogeneity, the model performance can vary across all devices and be highly non-uniform. In
addition, with the presence of malicious devices, training a global model can negatively affect its
performance on the benign devices, i.e., lacking robustness. To better account for heterogeneity
which could allow us to simultaneously achieve fairness and robustness, we propose to leverage
multi-task learning to model federated data.

In particular, we propose the following multi-task learning objective to learn separate models for each
device. In order to incorporate global information, we use an Lo regularizer to enforce local models
to be closer to the optimal global model. The goal is to solve
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where w* is the optimal global model defined as w* = argmin,, Zivzl prFi(w). \is a hyperparam-
eter that controls the interpolation between local and global models. When A is set to 0, Objective )
is reduced to training local models; as A grows large, it recovers global model optimization (Objec-
tive (T)). To reason about the benefits of Objective (2)), let us consider a simple case where the data
are homogeneous across devices. Without adversaries, learning a single global model is optimal for
generalization. However, in the presence of adversaries, learning globally might introduce lethal
corruption, while learning local models may not generalize well due to the limited sample size. Our
framework with an appropriate A offers a trade-off between these two extremes to achieve optimal
generalization and robustness even with I.LI.D. data. In the heterogeneous case, a finite A exists to
offer optimal robustness and fairness simultaneously. We make rigorous the benefits of multi-task
learning in terms of the accuracy-fairness-robustness divide on a toy problem in Appendix

Empirically, as we demonstrate in Sectionf.2] Objective (2)) produces more robust and fair personal-
ized models for benign devices in both convex and non-convex settings.

Other Multi-Task Learning Objectives for Federated Learning. As a first step towards exploring
the benefits of multi-task learning to robustness and fairness, we only consider objectives that can
be optimized relatively easily in federated settings. There are some prior works using related but
different multi-task objectives for personalization [[11}19,|33]]. Some approaches interpolate between
local and global models [[L1} 33]]. Nevertheless, perhaps surprisingly, they are essentially solving
local problems separately. For instance, in strongly convex settings where there is a unique empirical
minimizer for each local device, solving the objectives in Mansour et al. [33]] and Deng et al. [11]]
will degenerate into finding the exact local minimizers, as the optimal global model w* to interpolate
with is fixed. To further validate this, we empirically show that the objective proposed in Deng
et al. [11] arrives at the same solutions as those obtained by solving local problems (Appendix [D.).
Objective is also related to the previous mean-regularized objective [19]. Empirically, their
approach does not outperform Objective (2) (Table ] Appendix). Note that we do not claim that
Objective (2)) is optimal in terms of the accuracy-fairness-robustness tradeoff. Rather, we propose
it as a simple and practical multi-task objective that can improve both robustness and fairness for
federated learning.



Algorithm 1 Solver for Multi-Task Learning Objective (2))

1: Input: K, T, \, n, w°, pp, v, k=1,--- | N
2: fort=0,---,T—1do
3:  Server selects a subset S; of K devices at random (each device k is chosen with prob. py)
4:  Server sends w! to all selected devices
5 Each selected device k computes the following for some local iterations:
wy, = wy, — NV E(wy,), vi = v — n(VF(vx) + Moy, — w}))

6:  Each selected device k sends Al := w}, — w' back to the server

7:  Server updates w'*? as:
1
w't = w' + Tl Z Al
Skl kes,
8: end for
9: return vy, ve,--- , vy as personalized models

Other Regularizers. If we intend to enforce the local models to be closer to the optimal global
model, there are potentially other choices other than the Lo term, such as using a Bregman divergence-
based regularization or reshaping the L, regularization ball using the Fisher information matrix.
Under the common logistic loss (which is also what we use for all models in the experiments),
the Bregman divergence will reduce to the KL divergence (relative entropy), and its second-order
Taylor series expansion will result in an Lo ball reshaped with the Fisher information matrix. In
fact, such regularization is studied in other related contexts like continual learning [25] or multi-
task learning [45]]. However, in the presence of corrupted data or model poisoning, learning more
information from the (potentially corrupted) global model may hurt robustness. As we verify in
our experiments (Appendix [D.2)), incorporating approximate empirical fisher information does not
improve the performance, while adding non-trivial computation overheads.

3.2 Solver

To solve Objective (2)), there are generally two choices: (i) first solving for w*, and then for each
device k, solving a local objective min,,, pyFy(wy) + %Hwk — w*||?, or (ii) jointly optimizing the
global model (to obtain w*) and solving the local subproblems. Let us not consider the computation
aspects for now. Suppose we only care about the final solutions, then these two approaches will
arrive at the same solutions in convex cases. In non-convex settings, we observe that there could be
additional benefits of using joint optimization—empirically, the updating scheme would guide the
optimization trajectory towards a better solution compared with finetuning starting from w*.

Some previous works argue that early stopping can be provably robust against label noise in training
neural networks [26]. Motivated by this, we hypothesize that leveraging the early global information
(i.e., before the global model converges to w*) could also be helpful when training personalization
models. Intuitively, under data poisoning or model poisoning attacks, the global model may start
from a random one and gradually overfit to clean data or corrupted data. Therefore, it might be less
appropriate to choose (i). For similar reasons, another natural baseline (finetuning based on local
objectives min,,, Fj(wy) with wy, starting from w™*) may also underperform the joint optimization
method. We compare Algorithm T with local finetuning baselines in Section[4.2]and demonstrate that
the combination of Objective (2)) and its solver is more robust and fair.

4 Experiments

In this section, we first describe our empirical setup, and then we demonstrate the tension between
fairness and robustness (Section[d.T)). Finally, we compare the performance of the proposed multi-task
learning approach in terms of robustness and fairness with several strong baselines (Section [4.2)).

Setup. For all experiments, we measure robustness via test accuracies on benign devices, and
measure fairness via the test variance (or standard deviation), also across benign devices. We use two
federated datasets from a federated learning benchmark [[7]], and one dataset with a convex model
from prior federated learning work [38]]. The datasets are provided in Table[2] Appendix[C]

4.1 Competing Constraints between Accuracy, Fairness, and Robustness

When training a single global model, fair methods aim to encourage a more uniform performance
distribution, but may be highly susceptible to training-time attacks in statistically heterogeneous
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Figure 2: Compared with learning a global model, robust baselines
(i.e., the methods listed in the figure excluding ‘global’ and ‘FMTL")
are either robust but not fair (with higher accuracy, larger variance),
or not even robust (with lower accuracy). Proposed Federated MTL
(FMTL) lies at the lower right corner, which is our preferred region.

Figure 1: Fair methods can overfit to
corrupted devices by imposing more
weights on them, thus being particu-
larly susceptible to attacks.

environments. We investigate the test accuracy on benign devices under three training objectives:
training (i) global, (ii) local, and (iii) fair models. The ¢-FFL [28] objective has been recently
proposed for fairness in federated learning; and we use an improved version, TERM [27]], as the
fair baseline. TERM also recovers AFL [35]], another fair FL objective, as a special case. It uses
a parameter ¢ to offer different tradeoffs between fairness and accuracy. We take ¢t = 1,2,10 and
perform the simple data poisoning attack of randomly changing training labels on a subset of devices.
The results are reported in Figure[I] As the corruption level increases, fitting a global model becomes
less robust. Using fair methods will be more susceptible to attacks. When ¢ gets larger, the test
accuracy gets lower, which indicates that the fair method overfits more to corrupted devices.

Next, we apply various strong robust methods under the same attack, and explore the robust-
ness/accuracy and fairness tradeoffs. For Krum and Multi-Krum [6], we do our best to favor
them—assuming that the central server knows the expected number of malicious devices selected at
each communication round. Other robust approaches include: taking the coordinate-wise median
of gradients (‘median’), gradient clipping (‘clipping’), filtering out the gradients with largest norms
(‘k-norm’), and taking the gradient with the k-th largest loss where k is the number of malicious
devices (‘k-loss’). From Figure 2] we see that robust baselines are either (i) more robust than global
but less fair, or (ii) fail to provide robustness due to heterogeneity.

4.2 Results of the Proposed Federated Multi-Task Learning Objective

We apply three types of attacks to corrupt a randomly-selected subset of the devices. We choose the
corruption level until a point where there is a significant performace drop when training a global
model. Among all defense mechanisms we compare with, we present the results on three strongest
defenses here; and leave the full results to Appendix

Attack Scenarios. We consider a set of attacks based on different assumptions on the adversaries.
(A1) We first assume that the corrupted devices do not have access to the training APIs and only the
data are poisoned via randomly changing the labels on the training set. For other attacks, we assume
byzantine adversaries where the corrupted devices could send arbitrary model updates to the server
to attack the global model. (A2) One baseline is to send random Gaussian parameters drawn from
zero mean with the same variance as the updates of normal training so that it would be more difficult
for the server to defend against. (A3) Another stronger attack, which is called model replacement in
previous work, is to scale the adversarial updates introduced by corrupted data by some constant so
that the aggregated model updates will be dominated by the malicious one [2].

Federated MTL is Both Robust and Fair. As shown in Figure [3] the test accuracy on the benign
devices under robust baselines can degrade significantly when the number of malicious devices
increases, while the proposed objective maintains high accuracies. We also note that some robust
methods can outperform the multi-task approach (Table [7|in Appendix). Augmenting multi-task
learning with robust aggregators can further improve the robustness performance, which we do not
explore in this paper. In Table[I] we compare the proposed objective with global, local, and fair (the
TERM objective mentioned before) methods in terms of test accuracies and test standard deviation.
When the corruption level is high, ‘global’ or ‘fair’ will even fail to converge. Our Federated MTL
objective (FMTL) results in more accurate and fair solutions both with and without attacks.
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Figure 3: Robustness of multi-task learning on the Vehicle and FEMNIST datasets. We compare multi-task
learning with learning a global model and three strongest defense mechanisms among all defense baselines we
investigate (see Appendix [D.3]for full results on all defense methods), and show that multi-task learning is the
most robust under all attacks (i.e., achieving the highest test accuracy on benign devices).

0.0

Table 1: Test accuracy and standard deviation (numbers in the parentheses) across benign devices on FEMNIST
(top) and Vehicle (bottom). The proposed multi-task learning approach is either (i) more fair compared with the
baselines of training a global model, or (ii) more accurate than the fair baseline under a set of attacks. We bold
the highest worse-cast accuracy (i.e., accuracy mean minus standard deviation) across all methods.

Vehicle Al A2 A3
Methods clean  20% corrupted 80% corrupted 20% corrupted 80% corrupted 20% corrupted 50% corrupted
global 0.866 (.16) 0.847 (.08) 0.260 (.27) 0.866 (.18) 0.762 (.27) 0.606 (.08) 0.350 (.19)
local 0.836 (.07) 0.835(.08) 0.857 (.06) 0.835 (.08) 0.857 (.06) 0.835 (.08) 0.840 (.09)
fair (TERM, t=1) 0.866 (.15) 0.799 (.07) 0.310 (.22) 0.858 (.17) 0.747 (.23) 0.613 (.07) 0.328 (.16)
FMTL 0.882 (.05) 0.862 (.05) 0.851 (.06) 0.884 (.05) 0.879 (.04) 0.829 (.08) 0.833 (.08)
FEMNIST Al A2 A3
Methods clean  20% corrupted 80% corrupted 20% corrupted 80% corrupted 10% corrupted 20% corrupted
global 0.720 (.24) 0.628 (.25) 0.427 (.27) 0.695 (.26) 0.576 (.27) 0.327 (.23) 0.008 (.06)
local 0.915 (.18) 0.898 (.18) 0.859 (.23) 0.898 (.19) 0.859 (.23) 0.895 (.15) 0.898 (.19)
fair (TERM, t=1) 0.716 (.22) 0.574 (.22) 0.363 (.24) 0.026 (.06) 0.178 (.14) 0.567 (.24) 0.005 (.11)
FMTL 0.948 (.10)  0.940 (.14) 0.933 (.13) 0.943 (.13) 0.822 (.22) 0.794 (.26) 0.752 (.25)
CelebA

Comparison with Local Finetuning. As mentioned in section[3.2]
we consider two local finetuning strategies here: (i) solving
min,, Fy(wg) + §|wr — w*||? for each k € [N] after solving
for w*, and (ii) directly finetuning on Fj(wy,) for each k € [N] £

starting from w™*. The first one is another possible solver for the
proposed Objective (2). In realistic federated networks, finetuning
can face several practical issues like determining when to stop for
each device. Therefore, it is not straightforward to make it scalable
and automated. Despite this, in order to obtain the best performance
of finetuning, we solve the local problem on each device by running
30 epochs of mini-batch SGD. The results are shown in Figure ]
Both finetuning baselines improve the performance compared with
learning a global model, while Objective (2) combined with joint
optimization performs the best.

5 Conclusion and Future Work

FMTL, A=1
finetuning on F

finetuning on Fi + 3 [|wi — w"|[?
global

* % %

3
~ 0.5

0.0 0.2 0.4 0.6 0.8

Fraction of malicious devices
Figure 4: The proposed Objec-
tive @) and Algorithm [I] with
joint optimization outperforms
two local finetuning baselines.

In this work, we propose using a multi-task learning objective to address the competing constraints
of accuracy, fairness, and robustness in federated learning. In the future, we plan to build on our
empirical study and initial theoretical results (Appendix [B) to rigorously characterize the benefits
multi-task learning in terms of the accuracy-fairness-robustness trade-offs for more general problems.
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Appendix: Analysis of the Proposed Multi-Task Learning Objective

Here, we provide a theoretical analysis of the proposed multi-task learning objective (Objective (2)),
mainly on a simplified problem of federated point estimation. While our analysis in its current
form does not cover more general convex or even non-convex functions, on this toy problem, we
theoretically investigate the benefits of Objective (2) in terms of test accuracy, fairness, and robustness,
which helps to motivate the use of the proposed objective.

We first present some properties regarding Objective (Z), which servers as a first step towards
understanding the solutions of the proposed objective.

A Properties of the Multi-Task Learning Objective

Let the multi-task learning objective on device k be

ge(w) = fe(w) + M (w), (3)
where f, is strongly convex, and
1
Y(w) = 5w —w*?, @)
. 1
w* 1= arg min | Z Jr(w) p. (3)
ke[N]
Let
D) = argmin gy (w). (©)

Without any distributional assumptions on the tasks, we first characterize the solutions of the objective
gk (w).
Lemma 1. Forall \ = 0,
0
oA
0
oA
In addition, for all k, if fi.(w*) is finite, then
lim @ (\) = w™*. 9)

A—00

fe(@Wr(N) =0, (7

(@ (A)) < 0. ®)

Proof. The proof here directly follows the proof in Hanzely and Richtarik [Theorem 3.1,[19]. [

For the proposed multi-task objective, as A increases, the local training loss on fj will also increase,
and the resulting personalized models will be closer to the global model. Therefore, A effectively
controls how much personalization we impose. Since training loss is minimized when A = 0, training
separate local models is the most robust and fair when we do not consider generalization.

However, in order to obtain the guarantees on the test performance, we need to explicitly model the
joint distributions of data on all devices. In the next section, we explore a Bayesian framework on
a point estimation problem to examine the generalization, fairness, and robustness of the proposed
multi-task objective, all on test data.

B Federated Point Estimation

For the federated point estimation problem, we first examine the case without corrupted devices in
Section[B.T] We prove that there exists a A that results in an optimal average test performance and
optimal fairness across all devices. When there are adversaries, we analyze the robustness benefits of
our multi-task learning objective in Section[B.2} In particular, we show there exists a A which leads
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to the highest test accuracy across benign devices (i.e., the most robust) and minimizes the variance
of the test error across benign devices (i.e., the most fair) jointly.

Before we proceed, we first state a technical lemma that will be used throughout the analysis. The
proof can be found in Mahdavifar et al. [32]].

Lemma 2 (Lemma 11, Mahdavifar et al. [32]). Let 0 be drawn from the non-informative uniform prior
on R. Further, let {¢y}re[ i) denote noisy observations of 0 with additive zero-mean independent

Gaussian noises with variances {0} re[K]- Let
1
37 2
6
e[K]
Then, conditioned on { ¢y }re[ k1, we can write 0 as

0 =0} Z ¢2+z

(10)

a-m‘ =

where z is N'(0, 03) which is independent of{qbk}kE[K].

B.1 No Adversaries: Multi-Task Learning for Accuracy and Fairness

We consider a Bayesian framework. Let # be drawn from the non-informative prior on R, i.e.,
uniformly distributed on RE] We assume that K devices have their data distributed with parameters

{wi } ke (K]

wi = 0 + G, 1D
where (; ~ N(0,72%) are i.i.d. 7 controls the degree of dependence between the tasks on different
devices. If 7 = 0, then the data on all devices is distributed according to parameter 6, i.e., the tasks
are the same, and if 7 — o0, the tasks on different devices become completely independent.

Let each device have n data pointsﬂ denoted by xj, = {zk 1,..., %k n}, such that
Tk = Wk + 2, (12)
where 25 ; ~ N(0,0?) and are i.i.d.

Assume that

N)\)—l
3\}—'

fre(w) =

2 (13)
ie[n]

2
and denote by Wy, the minimizer of fy. It is clear that

1
- Z Tg i (14)
i€[n]
Further, let
1
* . __ :
w® = argmin 4 - Z fe(w) > . (15)

It is straightforward calculation to verify that

*72 Zxkl—KZ@k. (16)

i€[n] ke[K ke[K]

Let the objective at each device be

gr(w) = fi(w) + Mp(w) (17)
where 1
Y(w) = 5w —w*|?, (18)

*This is an improper prior that makes our calculations simpler and the interpretations nicer.
3For ease of notations, we assume that each device has the same number of data points. It is straightforward
to extend the current analysis to handle varying number of samples per device.
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Lemma 3. Denote by W, (\) the minimizer of gi,. Then,

A 1
Wy () = * w 19
) = et R (19)
A N K+X
A — e T 20
DY ;ﬂwﬁ A+ K™ (20)
Let
o2
o2 = —. (1)
n
KW= L >, (22)
K -1 /
j#k
Lemma 4. Given observations ©*\* and ©y, wy, is Gaussian distributed and given by
o2 (K —1)o2
= W w ~SK\E
W 2 Wy, + K2+ o2 w4+ €, (23)
where ) ) o1
el 24
o2 0'721+KT2+0721, 4
and
E~N(0,07). (25)

Proof. Wy, is a noisy observation of wy, with additive zero-mean independent Gaussian noise with
variance o2. Given 6, W \* is Gaussian with mean @ and variance % By symmetry, given
observations W5 \*, § is Gaussian with variance %
T;:_Uli +72 = % @*\* can be viewed as a noisy observation of wy, with Gaussian noise with
variance % The proof then follows by directly invoking Lemma O

Therefore, wy, is Gaussian with variance

Theorem 1. Ler \* be the optimal \ that minimizes the test performance, i.e.,

\* = arg mgnE { (wy, — @k()\))2| @K\k,ﬂ)\k} ) (26)
Then,
o? o?
O CR————
A @7)

Proof. The proof follows by inspecting Lemma and observing that A* leads to the MMSE estimator
of wy, given WX \¥, @y, i.e., Wy, (A*) is the MMSE estimator of wy, given the observations @ \¥ and
Wi O

Remark 1. We note that by using \* in Objective @), we not only achieve the most accurate solution
for the objective, but also we achieve the most accurate solution of any possible federated point
estimation algorithm in this problem, as Objective @) with \* realizes the MMSE estimator for wy.

2
We have derived an optimal \* = .2 for multi-task learning in terms of generalization. Recall that
we define fairness as the variance of the performance across all devices [[20]. Next, we prove that the
same A* that minimizes the expected MSE also achieves the optimal fairness.

Theorem 2. Among all possible solutions of Objective (2) parameterized by \, \* results in the most
fair performance across all devices when there are no adversaries, i.e., it minimizes the variance of
test performance (test mean square error) across all devices.
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Proof. Let
~ 1
Exc{a} = P (28)
ke[K]

Denote the variance of test performance across K devices as varg {(wi — @y, ()))?}. Then,

va{@mp—@MADﬂe=EK{&M;—@AA»4}—(EK{@mf—@ﬂAMQDQ. (29)

Also, notice that
wy, — W(\) = & + ay (30)

where
ar, = W(A) — Wr(A¥), (€29)

and \* = 7{‘—;, which is the X yielding the optimal generalization (Equation (27))).

By expanding varg {(wy, — @y ()))?}, we have

E {varg {(wy — @, ()} %\, i | (32)
~ ~ 2
~ B{ Bic {0000}~ (Bic (- a0} | 0% ) 33
A~ ~ 2
= E{EK {(Sk + ak)4} — (EK {(fk + ak)Q}) ‘@K\k,@k} (34)
- p{ B ft + o6t + ) - (B {et + )| 0,00 39)
A ~ 2 ~ ~ ~ 2
_ E{EK {¢h + 6630 + ab} - (Bx {62}) - 2Bk (€8} B {a} — (Bx {a}}) ‘@K\k,@k}
(36)
— 303, + 603@;( {ai} + EK {ai} — 0'3} — 2012“@;( {ai} — (E'K {a%})z 37

~ ~ ~ 2
— 204 + 402 B {a}} + B {ak} - (Bxc {a}}) (38)
where we have used the fact that we can swap expectations, and E{{}} = 307, given that ¢ is
Gaussian distributed.

Inspecting Equation (38), we can see that it is minimized if Ex {a2} = 0oraj = Oforall k € [K].
Notice that

~ ~ 2
Exc{at} - (Ex{at}) =0 (39)
with equality if and only if ay = a; for all k,j € [K]. Hence, a;, = 0 is the minimizer of the
variance. O

. . 2 .
Observations. From the optimal \* = -2 for mean test accuracy and variance of the test accuracy,
we have the following observations.

e Test error and variance can be jointly minimized with one A.

e Asn — o, \* — 0, i.e.,, when each local device has an infinite number of samples, there
is no need for federated learning, and training completely local models is optimal in terms of
generalization and fairness.

e AsT — 0, \* — 0, i.e., if the data on different devices (the tasks) are unrelated, then training
local models is optimal; On the other hand, as 7 — 0, A* — o0, i.e., if the data across all devices
are identically distributed, or equivalently if the tasks are the same, then training a global model is
the best we can achieve.

So far we have proved that the same A* achieves the best performance (expected mean square error)
for any device k and fairness (variance of mean square error) without considering adversaries. In
Section [B.Z]below, we analyze the benefit of multi-task learning for fairness and robustness in the
presence of adversaries.
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B.2 With Adversaries: Multi-Task Learning for Accuracy, Fairness, and Robustness

To reason about the behavior of multi-task learning for robustness, we make the following assumptions
on the adversaries.

Let K, and K} > 1 denote the number of adversarial and benign devices, respectively, such that
K=K, + Ky.

Definition 1. We say that a device k is a benign device if wy, ~ 0 + N(0,72); and we say a device k
is a malicious device (or an adversary) if wy, ~ 0 + N (0, 72) where T, > .

As mentioned in the introduction, in the presence of adversaries, we measure fairness as the perfor-
mance variance on benign devices, and robustness as the performance mean across benign devices.
We next characterize the benefits of multi-task learning under such definition.

K\k ._

Lemma 5. Let wy, be the parameter associated with a benign device. Given observations W
ﬁ Z#k W; and Wy, wy, is Gaussian distributed and given by

o2 (K —1)02

_ “Yw,a ~ ,a ~K\k
wy = Wy + w + &a, (40)
o2 K72+ 02 + Ko (12 — 72)
where K
1 1 —1
5~ 3 2 2 Ko (-2 2\’ (41)
aw,a On Kt + On + K—1 (Ta =T )
and
¢a ~ N (0,02,)- (42)

Proof. The proof is the same as the proof for Lemma [4] except that we note that the vari-
K\k (P 402)(K—Ko—1)+(r2+02)Kq
(K-1)?

ance of Gaussian distributed 6 given observations is

‘r2+o'i+ I?f1 (Tfsz)

K—1 ]

Theorem 3. Let wy, be a benign device. Let X} be the optimal \ that minimizes the test performance,

Le.,
N¢ = argmin B { (wy, — Dr(N)?] D5V, @k} : 43)
Then,
2
K
=2 - . (44)
n K12 4 22 (12 — 72)
Proof. We obtain \* following the proof of Theorem O

Theorem 4. Among all solutions of Objective @) parameterized by A, \¥ results in the most fair
performance across all benign devices, i.e., it minimizes the variance of test performance (test mean
square error) on benign devices.

Proof. Similarly, we look at the variance of the test mean square error across benign devices:

varg, {(we — Bx(\)2} = Ex, {(wy — d(N)*} — (EKb {(wy, — @k(A))2}>2 .45

The rest of the proof is the same as the proof of Theorem [2] except that we set ay = Wi (\) —
D). O

Remark 2. For any benign device k, the solution we obtain by solving Objective [2)) with \*
is the most robust solution one could obtain among any federated point estimation method given
observations @y, and WS \F. A also results in a most fair model in the solution space of Objective (2).

Lemma 6. The expected test error minimized at \* is o2

w,a’

and the variance of the test performance
minimized at \¥ is 200 .
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Proof. For the expected test performance, we note that

a w,a

E { (wi — Be(AF))?)| @K\k‘,@k} —E[e2] =02 . (46)
For variance, as a;, = 0if A = A}, we get

~ ~ ~ 2
vare, {(wy, — @x(\5)2} = 202 , + 402, Ex {al} + Ex {a} — (EK {ai}) — 203 . (47)
O

Observations. From A, we have the following interesting observations.

e Mean test error (performance, or robustness) and variance of the performance across benign devices
(fairness) can still be minimized with the same )\, in the presence of adversaries.

e As 1, — 0, A¥ — 0, i.e., training local models is optimal in terms of robustness and fairness
when adversary’s task may be arbitrarily far from the the task in the benign devices.

e As7 — 0,if 7, > 0, \*¥ < oo, which means that learning a global model is not optimal even with
homogeneous data in the presence of adversaries.

e \* is a decreasing function of the number (/,) and the capability (7,) of the corrupted devices. In
other words, as the attacks become more adversarial, we need more personalization.

o The smallest test error is o, ,, and the optimal variance is 207, ,, which are both increasing with
K, (number of adversarial devices) or 7, (the power of adversary) by inspecting (4T)). This reveals

a fundamental trade-off between fairness and robustness.

Discussions. Through our analysis, we prove that multi-task learning with an appropriate A is more
accurate, robust, and fair compared with training global or local models. We provide closed-form
solutions for A* across different settings (with and without adversaries), and show that multi-task
learning allows to achieve a favorable tradeoff between fairness and robustness. In the future, we plan
to generalize the current theoretical framework to linear models and more general convex models.
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C Experimental Details
We summarize the datasets, the corresponding models, and tasks in the table below. FEMNIST is

Federated EMNIST, which is EMNIST partitioned by the writers of digits/characters created by a
previous federated learning benchmark [[7]].

Table 2: Summary of datasets.

Datasets Data Partition Models Tasks

Vehicle [13] (23 devices natural (each device is a vehicle) linear SVM  binary classification
FEMNIST [7/110] (100 devices)  synthetic (assign 5 classes to each device) CNN 62-class classification
CelebA [31] (515 devices) natural (each device is a celebrity) CNN binary classification

D Full Results

D.1 Results in Convex Settings

To sanity check if APFL is doing local minimization for any « € (0, 1), we test its performance on
another downsampled version of Vehicle. The results are shown in Table [3| below.

Table 3: The interpolation-based approach (APFL in Deng et al. [11]) is solving local subproblems
for any interpolation parameter o # O—generating the same results as the local training baseline.
The proposed objective in this work (FMTL) can improve accuracy and fairness under clean data
(first column), and is also robust under different attaks.

Vehicle Al A3

Methods clean 20% corrupted 50% corrupted 80% corrupted 10% corrupted 15% corrupted 20% corrupted
global 0.821 (.21) 0.773 (.21) 0.803 (.16) 0.214 (.11) 0.275 (.22) 0.237 (.10) 0.086 (.09)
local 0.791 (.14) 0.795 (.14) 0.792 (.12) 0.829 (.07) 0.795 (.14) 0.792 (.12) 0.829 (.07)

FMTL, A=0.1 0.814 (.14) 0.812 (.15)  0.798 (14)  0.757(.10)  0.742(.15)  0.751(13)  0.757 (.11)
FMTL, A=1 0.841 (.12) 0.852(.15)  0.849 (.15)  0.814(.11)  0.803 (.15)  0.786 (.13)  0.828 (.11)
FMTL, \=2 0.847 (.13) 0.843 (.13)  0.826 (.15)  0.829(.09)  0.812(.16)  0.775(.14)  0.857 (.07)

APFL, @=0.3 0.803 (.14) 0.799 (.14) 0.792 (.14) 0.828 (.07) 0.795 (.14) 0.798 (.12) 0.828 (.08)
APFL, a=0.5 0.798 (.14) 0.790 (.14) 0.786 (.13) 0.829 (.07) 0.795 (.14) 0.803 (.13) 0.843 (.10)
APFL, a=0.8 0.785 (.14) 0.795 (.14) 0.798 (.12) 0.829 (.07) 0.790 (.13) 0.798 (.13) 0.842 (.10)

*http://www.ecs.umass.edu/ "mduarte/Software.html
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D.2 Compare with Other Multi-Task Learning Objectives

Table 4: Compare Objective (2) using the Lo regularizer with other multi-task learning objectives: (i)
L2SGD which regularizes local models towards their mean [19], and (ii) using Fisher information
when enforcing local models towards the optimal global model [25}145]. The local objective in such
case is min,, Fi(w) + 5 >, Fii - (w[i] — w*[i])? where [i] denotes the index of parameters and F;;
denotes the i-th diagonal of the Fisher information matrix F. The proposed objective (FMTL with
Lo) performs better than both alternatives. In the presence of noisy data, using the Fisher information
at the current (possibly corrupted) global model may not improve the performance.

FEMNIST Al CelebA Al
Methods clean  50% corrupted Methods clean  50% corrupted
global 0.720 (.24) 0.474 (.30) global 0911 (.19) 0.538 (.28)
L2SGD, best A 0.918 (.15) 0.914 (.17) L2SGD, best A 0.899 (.18)  0.725 (.25)
EWC, best A 0.935(.16) 0.925 (.23) EWC, best A 0.910 (.18) 0.642 (.26)
FMTL, best A  0.947 (.15) 0.930 (.20) FMTL, best A  0.921 (.16)  0.735 (.26)

D.3 Complete Results

In Sectiond.2] we present partial results on three strongest attacks, and on a subset of federated data.
Here, we provide full results indicating the robustness and fairness of the proposed approach on all
attacks, all defenses, and all datasets. The numbers in the parentheses are test accuracy standard
deviation across all devices. We bold the numbers with the highest worst-case accuracy (average
accuracy minus standard deviation).

Table 5: Full results on Vehicle.

Vehicle Al A2 A3

Methods clean 20% corrupted 80% corrupted 20% corrupted 80% corrupted 20% corrupted 50% corrupted
global 0.866 (.16) 0.847 (.08) 0.260 (.27) 0.866 (.18) 0.762 (.27) 0.606 (.08) 0.350 (.19)
local 0.836 (.07) 0.835 (.08) 0.857 (.09) 0.835 (.08) 0.857 (.09) 0.835 (.08) 0.840 (.09)
fair 0.866 (.15) 0.799 (.07) 0.310 (.22) 0.858 (.17) 0.747 (.23) 0.613 (.07) 0.328 (.16)
median 0.863 (.16) 0.861 (.18) 0.229 (.31) 0.864 (.18) 0.774 (.28) 0.797 (.07) 0.319 (.17)
Krum 0.852 (.17) 0.853 (.19) 0.221 (.32) 0.851 (.19) 0.780 (.31) 0.866 (.18) 0.588 (.14)

multi-Krum ~ 0.866 (.16) 0.867 (.18)  0.220(32)  0.867(.18)  0.770(31)  0.836 (.08)  0.406 (.15)
clipping 0.864 (.16) 0.865 (.17)  0.234(30)  0.865(.18)  0.764(27)  0.789(07)  0.315(.17)
k-norm 0.866 (.16) 0.867 (.17)  0222(32)  0.867(18)  0.778 (31)  0.844(.09)  0.458 (.16)
k-loss 0.850 (.05) 0.755 (.03) 0217 (31)  0.852(.06)  0.825(.09)  0.692(.08)  0.328 (.16)

FMTL, A=0.1 0.845 (.07) 0.841 (.08) 0.851 (.06) 0.844 (.07) 0.866 (.05) 0.829 (.08) 0.827 (.08)
FMTL, A=1  0.875 (.05) 0.859 (.06) 0.776 (.08) 0.875 (.06) 0.879 (.04) 0.813 (.07) 0.757 (.08)
FMTL, A=2  0.882 (.05) 0.862 (.05) 0.709 (.12) 0.884 (.05) 0.869 (.04) 0.791 (.06) 0.690 (.09)
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Table 6: Full results on FEMNIST.

FEMNIST Al A2 A3

Methods clean  20% corrupted 80% corrupted 20% corrupted 80% corrupted 10% corrupted 20% corrupted
global 0.720 (.24) 0.628 (.25) 0.427 (.27) 0.695 (.26) 0.576 (.27) 0.327 (.23) 0.008 (.06)
local 0.915(.18) 0.898 (.18) 0.859 (.23) 0.898 (.19) 0.859 (.23) 0.895 (.15) 0.898 (.19)
fair 0.716 (22) 0.574 (.22) 0.363 (.24) 0.026 (.06) 0.178 (.14) 0.567 (.24) 0.005 (.11)
median 0.079 (.12)  0.015 (.03) 0.011 (.05) 0.096 (.13) 0.153 (.13) 0.090 (.10) 0.090 (.10)
Krum 0.457 (.37) 0.453 (.35) 0.003 (.04) 0.459 (.38) 0.088 (.19) 0.290 (.31) 0.532(.32)
multi-Krum  0.725 (.25) 0.683 (.31) 0.371 (.29) 0.706 (.29) 0.532 (.30) 0.674 (.28) 0.006 (.05)
clipping 0.727 (28)  0.669 (.26) 0.432 (.29) 0.712 (.28) 0.616 (.26) 0.706 (.28) 0.576 (.29)
k-norm 0.716 (.28) 0.663 (.33) 0.082 (.20) 0.706 (.28) 0.647 (.36) 0.618 (.28) 0.006 (.05)
k-loss 0.587 (21) 0.512(.27) 0.004 (.11) 0.545 (.26) 0.343 (.30) 0.003 (.08) 0.006 (.05)

FMTL, A=0.01 0.947 (.15)  0.941 (.15) 0.928 (.20) 0.937 (.17) 0.915 (.19) 0.935 (.15) 0.886 (.20)
FMTL, A=0.1 0.948 (.10) 0.940 (.14) 0.933 (.13) 0.943 (.13) 0.822 (.22) 0.794 (.26) 0.752 (.25)
FMTL, A=1  0.902 (.15) 0.895 (.12) 0.854 (.20) 0.891 (.19) 0.591 (.35) 0.672 (.31) 0.609 (.33)

Table 7: Full results on CelebA.

CelebA Al A2 A3

Methods clean 20% corrupted 80% corrupted 20% corrupted 80% corrupted 10% corrupted 20% corrupted
global 0.911 (.19) 0.813 (.22) 0.497 (.27) 0.901 (.19) 0.847 (.21) 0.537 (.33) 0.539 (.33)
local 0.692 (.27) 0.690 (.27) 0.681 (.26) 0.690 (.27) 0.681 (.26) 0.692 (.27) 0.690 (.27)
fair 0.905 (.17) 0.690 (.26) 0.417 (.26) 0.768 (.25) 0.707 (.27) 0.537 (.33) 0.539 (.33)
median 0.910 (.18) 0.876 (.22) 0.474 (.24) 0.894 (.19) 0.860 (.21) 0.905 (.18) 0.885 (.20)
Krum 0.775 (.25) 0.456 (.33) 0.459 (.33) 0.565 (.32) 0.534 (.29) 0.777 (.26) 0.734 (.26)

multi-Krum 0911 (.18) 0.898 (.19) 0.523 (.32) 0.904 (.19) 0.767 (.27) 0.555 (.29) 0.514 (.27)
clipping 0.909 (.18) 0.890 (.17) 0.479 (.27) 0.909 (.18) 0.868 (.23) 0.908 (.17) 0.879 (.21)
k-norm 0.908 (.18) 0.898 (.20) 0.534 (.10) 0.907 (.20) 0.886 (.20) 0.778 (.24) 0.684 (.26)
k-loss 0.873 (.19) 0.675 (.29) 0.455 (.29) 0.856 (.22) 0.876 (.21) 0.538 (.33) 0.539 (.10)

EMTL, A=0.1 0.884 (.24) 0.844 (27)  0.792(27)  0.875(25) 0.856(25)  0.701(27)  0.680 (.29)
EMTL, A=1 0916 (.17) 0.877 (21)  0.796 (23)  0.907 (.17)  0.864(20)  0.654(28)  0.654 (.29)
EMTL, A=2 0.921(.16) 0.856 (21)  0.766(.25)  0.910(.17)  0.852(20) 0.612(32)  0.598 (31)
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