Exploration Bonus for Regret Minimization in Discrete and Continuous Average Reward MDPs

Jian Qian, Ronan Fruit
Sequel Team - Inria Lille
jian.qian@ens.fr, ronan.fruit@inria.fr

Matteo Pirotta, Alessandro Lazaric
Facebook AI Research
\{pirotta, lazaric\}@fb.com

Abstract

The exploration bonus is an effective approach to manage the explorationexploitation trade-off in Markov Decision Processes (MDPs). While it has been analyzed in infinite-horizon discounted and finite-horizon problems, we focus on designing and analysing the exploration bonus in the more challenging infinitehorizon undiscounted setting. We first introduce SCAL^{+}, a variant of SCAL [1], that uses a suitable exploration bonus to solve any discrete unknown weaklycommunicating MDP for which an upper bound c on the span of the optimal bias function is known. We prove that SCAL^{+}enjoys the same regret guarantees as SCAL, which relies on the less efficient extended value iteration approach. Furthermore, we leverage the flexibility provided by the exploration bonus scheme to generalize SCAL^{+}to smooth MDPs with continuous state space and discrete actions. We show that the resulting algorithm $\left(\mathrm{SCCAL}^{+}\right)$achieves the same regret bound as UCCRL [2] while being the first implementable algorithm for this setting.

1 Introduction

While learning in an unknown environment, a reinforcement learning (RL) agent must trade off the exploration needed to collect information about the dynamics and reward, and the exploitation of the experience gathered so far to gain reward. An effective strategy to trade off exploration and exploitation is the optimism in the face of uncertainty (OFU) principle. A popular technique to ensure optimism is to use an exploration bonus. This approach has been successfully implemented in H-step finite-horizon and infinite-horizon γ-discounted settings with provable guarantees in finite MDPs. Furthermore, its simple structure (i.e., it only requires solving an estimated MDP with a reward increased by the bonus) allowed it to be integrated in deep RL algorithms [e.g., 3, 4, 5, 6]. As the exploration bonus is designed to bound estimation errors on the value function, it requires knowing the maximum reward $r_{\text {max }}$ and the intrinsic horizon of the problem [e.g., 7, 8, 9] (e.g., H in finite-horizon and $1 /(1-\gamma)$ in discounted problems). Here we consider the challenging infinite-horizon undiscounted setting [10, Chap. 8], which generalizes the two previous settings when $H \rightarrow \infty$ and $\gamma \rightarrow 1$. While several algorithms implementing the OFU principle in this setting have been proposed [11, 2, 12, 1, 13], none of them exploits the idea of an exploration bonus.
In this paper we study the problem of defining and analysing an exploration bonus approach in the infinite-horizon undiscounted setting. Contrary to the other settings, in average reward there is no information about the intrinsic horizon. As a consequence, we follow the approach in [14, 1] and we assume that an upper-bound c on the range of the optimal bias (i.e., value function) is known. We define SCAL^{+}and we show that its regret is bounded by $\widetilde{O}\left(\max \left\{c, r_{\max }\right\} \sqrt{\Gamma S A T}\right)$ w.h.p. for any MDP with S states, A actions and Γ possible next states. We prove that the bonus used by SCAL ${ }^{+}$ ensures optimism using a novel technical argument. We no longer use an inclusion argument (i.e., the true MDP is contained in a set of plausible MDPs) but we reason directly at the level of the Bellman operator. We show that the optimistic Bellman operator defined by the empirical MDP with optimistic reward $\widehat{r}(s, a)+b(s, a)$ dominates the Bellman operator of the true MDP when applied to
the optimal bias function. This is sufficient to prove that the solution of the optimistic MDP is indeed (gain-)optimistic. This proof technique has two main advantages w.r.t. the inclusion argument. First, it directly applies to slightly perturbed empirical MDPs, without re-deriving confidence sets. Second, as we study the optimistic Bellman operator applied only to the optimal bias function (rather than all possible vector in \mathbb{R}^{S}), we save a factor $\sqrt{\Gamma}$ in designing the exploration bonus, compared to the (implicit) bounds obtained by algorithms relying on confidence sets on the MDP. Furthermore, as SCAL^{+}only solves the estimated MDP with optimistic reward, it is computationally cheaper than UCRL-based algorithms, which require computing the optimal policy for an extended MDP with a continuous action space defined by the confidence set over MDPs.

Surprisingly, the "tighter" optimism of SCAL ${ }^{+}$does not translate into a better regret, which actually matches the one of SCAL and still depends on the factor $\sqrt{\Gamma}$. We isolate and discuss where the term $\sqrt{\Gamma}$ appears in the proof sketch of Sect. 3.3. While Azar et al. [8], Jin et al. [9] managed to remove the $\sqrt{\Gamma}$ term in the finite-horizon setting, their proof techniques cannot be directly applied to the infinite-horizon case. Recently Ortner [15] derived an algorithm achieving $O\left(\sqrt{t_{\text {mix }} S A T}\right)$ regret bound under the assumption that the true MDP is ergodic ($t_{\text {mix }}$ denotes the maximum mixing time of any policy). It remains an open question if a regret scaling with \sqrt{S} (instead of $\sqrt{\Gamma S}$) can be achieved in the infinite-horizon case without any ergodicity assumption. We report preliminary experiments showing that the exploration bonus may indeed limit over-exploration and lead to better empirical performance w.r.t. approaches based on confidence intervals on the MDP itself (i.e., UCRL and SCAL). A more detailed comparison to existing literature is postponed to App. A

To further illustrate the generality of the exploration bonus approach, we also present SCCAL ${ }^{+}$, an extension of SCAL^{+}to continuous state MDPs. As in [2, 16], we require the reward and transition functions to be Hölder continuous with parameters ρ_{L} and $\alpha . \mathrm{SCCAL}^{+}$is also the first implementable algorithm in continuous average reward problems with theoretical guarantees (existing algorithms with theoretical guarantees such as UCCRL [2] cannot be implemented). The key result is a regret bound of $\widetilde{O}\left(\max \left\{c, r_{\max }\right\} \rho_{L} \sqrt{A} T^{(\alpha+2) /(2 \alpha+2)}\right)$ w.h.p. Finally, we provide an empirical comparison of SCCAL ${ }^{+}$with a Q-learning algorithm with exploration bonus for average reward problems (RVIQUCB) inspired by [17, 9] and the results in this paper (to deal with continuous states).

2 Preliminaries

We consider a weakly-communicating MDP [10, Sec. 8.3] $M=(\mathcal{S}, \mathcal{A}, p, r)$ with state space \mathcal{S} and action space \mathcal{A}. Every state-action pair (s, a) is characterized by a reward distribution with mean $r(s, a)$ and support in $\left[0, r_{\text {max }}\right]$, and a transition distribution $p(\cdot \mid s, a)$ over next states. In this section, we assume the finite case (i.e., $|\mathcal{S}|,|\mathcal{A}|<+\infty$), although all following definitions extend to continuous state spaces under mild assumptions on r and p (see Sect. 4). We denote by $S=|\mathcal{S}|$ and $A=|\mathcal{A}|$ the number of states and action, by $\Gamma(s, a)=\|p(\cdot \mid s, a)\|_{0}$ the number of states reachable by selecting action a in state s, and by $\Gamma=\max _{s, a} \Gamma(s, a)$ its maximum. A stationary Markov randomized policy $\pi: \mathcal{S} \rightarrow P(\mathcal{A})$ maps states to distributions over actions. The set of stationary randomized (resp. deterministic) policies is denoted by Π^{SR} (resp. Π^{SD}). Any policy $\pi \in \Pi^{\mathrm{SR}}$ has an associated long-term average reward (or gain) and a bias function defined as

$$
g^{\pi}(s):=\lim _{T \rightarrow+\infty} \mathbb{E}_{s}^{\pi}\left[\frac{1}{T} \sum_{t=1}^{T} r\left(s_{t}, a_{t}\right)\right] \text { and } h^{\pi}(s):=\underset{T \rightarrow+\infty}{C-\lim _{s}} \mathbb{E}_{s}^{\pi}\left[\sum_{t=1}^{T}\left(r\left(s_{t}, a_{t}\right)-g^{\pi}\left(s_{t}\right)\right)\right],
$$

where \mathbb{E}_{s}^{π} denotes the expectation over trajectories generated starting from $s_{1}=s$ with $a_{t} \sim \pi\left(s_{t}\right)$. The bias $h^{\pi}(s)$ measures the expected total difference between the reward and the stationary reward in Cesaro-limit (denoted by C-lim). Accordingly, the difference of bias $h^{\pi}(s)-h^{\pi}\left(s^{\prime}\right)$ quantifies the (dis-)advantage of starting in state s rather than s^{\prime}. We denote by $s p\left(h^{\pi}\right):=\max _{s} h^{\pi}(s)-$ $\min _{s} h^{\pi}(s)$ the span of the bias function. In weakly communicating MDPs, any optimal policy $\pi^{*} \in \arg \max _{\pi} g^{\pi}(s)$ has constant gain, i.e., $g^{\pi^{*}}(s)=g^{*}$ for all $s \in \mathcal{S}$. Moreover, there exists a policy $\pi^{*} \in \arg \max _{\pi} g^{\pi}(s)$ for which $\left(g^{*}, h^{*}\right)=\left(g^{\pi^{*}}, h^{\pi^{*}}\right)$ satisfy the optimality equation,

$$
\begin{equation*}
\forall s \in \mathcal{S}, \quad h^{*}(s)+g^{*}=L h^{*}(s):=\max _{a \in \mathcal{A}}\left\{r(s, a)+p(\cdot \mid s, a)^{\top} h^{*}\right\} \tag{1}
\end{equation*}
$$

where L is the optimal Bellman operator. Finally, $D=\max _{s \neq s^{\prime}}\left\{\tau\left(s \rightarrow s^{\prime}\right)\right\}$ denotes the diameter of M, where $\tau\left(s \rightarrow s^{\prime}\right)$ is the minimal expected number of steps needed to reach s^{\prime} from s.

Input: Confidence $\delta \in] 0,1\left[, r_{\max }, \mathcal{S}\left(\mathcal{I}\right.\right.$ for $\left.\mathrm{SCCAL}^{+}\right), \mathcal{A}, c \geq 0$ (and ρ_{L} and α for SCCAL^{+})
For episodes $k=1,2, \ldots$ do

1. Set $t_{k}=t$ and episode counters $\nu_{k}(s, a)=0$.
2. Compute estimates $\widehat{p}_{k}^{+}\left(I\left(s^{\prime}\right) \mid I(s), a\right), \widehat{r}_{k}^{+}(I(s), a), b_{k}(I(s), a)$ (Eq. 3 or 6 and build the MDP \widehat{M}_{k}^{+} $\left(\mathrm{SCAL}^{+}\right)$or $\widehat{M}_{k}^{\text {ag+ }}\left(\mathrm{SCCAL}^{+}\right)$.
3. Compute an $\frac{r_{\text {max }}}{t_{k}}$-approximate solution of Eq. 4 for $\widehat{M}_{k}^{+}\left(\mathrm{SCAL}^{+}\right)$or $\widehat{M}_{k}^{a g+}\left(\mathrm{SCCAL}^{+}\right)$using SCOPT
4. Sample action $a_{t} \sim \pi_{k}\left(\cdot \mid I\left(s_{t}\right)\right)$.
5. While $\nu_{k}\left(I\left(s_{t}\right), a_{t}\right)<\max \left\{1, N_{k}\left(I\left(s_{t}\right), a_{t}\right)\right\}$ do
(a) Execute a_{t}, obtain reward r_{t}, and observe next state s_{t+1}.
(b) Increment counter $\nu_{k}\left(s_{t}, a_{t}\right)+=1$.
(c) Sample action $a_{t+1} \sim \pi_{k}\left(\cdot \mid I\left(s_{t+1}\right)\right)$ and increment $t+=1$.
6. Increment counters $N_{k+1}(s, a):=N_{k}(s, a)+\nu_{k}(s, a)$ for all s, a.

Figure 1: Shared pseudo-code for SCAL^{+}and SCCAL^{+}. For $\mathrm{SCAL}^{+} I(s)=s$ by definition.

Learning Problem. Let M^{*} be the true MDP. We consider the learning problem where \mathcal{S}, \mathcal{A} and $r_{\max }$ are known, while rewards r and dynamics p are unknown and need to be estimated on-line. We evaluate the performance of a learning algorithm \mathfrak{A} after T time steps by its cumulative regret $\Delta(\mathfrak{A}, T)=\sum_{t=1}^{T}\left(g^{*}-r_{t}\left(s_{t}, a_{t}\right)\right)$. Finally, we make the following assumption.
Assumption 1. There exists a known upper-bound $c>0$ to the optimal bias span i.e., $c \geq s p\left(h^{*}\right)$.
This assumption is common in the literature [see e.g., 18, 2, 1]. Such a bound to the "range" of the value function is already available in discounted and finite horizon problems (i.e., as $\frac{1}{1-\gamma}$ and H), so Asm. 1 is not more restrictive. While the span $s p\left(h^{*}\right)$ is a non-trivial function of the dynamics and the rewards of the MDP, some intuition about how the cumulative reward varies depending on different starting states is often available. Furthermore, as $s p\left(h^{*}\right) \leq r_{\max } D$ [e.g., 14], it is sufficient to have prior knowledge about the diameter D and the range of the reward $r_{\max }$, to provide a rough upper-bound on the span.

3 SCAL $^{+}$: SCAL with exploration bonus

In this section, we introduce SCAL^{+}, the first online RL algorithm -in the infinite horizon undiscounted setting- that leverages an exploration bonus to achieve near-optimal regret guarantees. Similar to SCAL [1], SCAL ${ }^{+}$takes as input an upper-bound c on the optimal bias span (i.e., $\operatorname{sp}\left(h^{*}\right) \leq c$) to constrain the planning problem solved over time. The crucial difference is that SCAL ${ }^{+}$does not compute an optimistic MDP within a high-probability confidence set, but it directly computes the optimal policy of the estimated MDP, with the reward increased by an exploration bonus. The bonus is carefully tuned so as to guarantee optimism and small regret at the same time (Thm. 1 .

3.1 The Algorithm

Similar to other OFU-based algorithms, SCAL ${ }^{+}$proceeds in episodes (see Fig. $11{ }^{1}$ Denote by t_{k} the starting time of episode $k, N_{k}\left(s, a, s^{\prime}\right)$ the number of observations of tuple $\left(s, a, s^{\prime}\right)$ before episode k and $N_{k}(s, a):=\sum_{s^{\prime}} N_{k}\left(s, a, s^{\prime}\right)$. We define the estimators of the transitions and rewards as

$$
\begin{equation*}
\hat{p}_{k}^{+}\left(s^{\prime} \mid s, a\right)=\frac{N_{k}\left(s, a, s^{\prime}\right)}{N_{k}(s, a)+1}+\frac{\mathbb{1}\left(s^{\prime}=\bar{s}\right)}{N_{k}(s, a)+1}, \quad \bar{r}_{k}(s, a)=\sum_{t=1}^{t_{k}-1} \frac{r_{t}\left(s_{t}, a_{t}\right) \mathbb{1}\left(\left(s_{t}, a_{t}\right)=(s, a)\right)}{N_{k}(s, a)} \tag{2}
\end{equation*}
$$

where $\bar{s} \in \mathcal{S}$ is an arbitrary state and $\bar{r}_{k}(s, a):=r_{\max }, \hat{p}_{k}^{+}\left(s^{\prime} \mid s, a\right)=1 / S$ when $N_{k}(s, a)=0$. The transition model $\hat{p}_{k}^{+}\left(s^{\prime} \mid s, a\right)$ is a biased (but asymptotically consistent) estimator of $p\left(s^{\prime} \mid s, a\right)$. We further define the exploration bonus

$$
\begin{equation*}
b_{k}(s, a):=\left(c+r_{\max }\right) \underbrace{\sqrt{\frac{\ln \left(20 S A N_{k}^{+}(s, a) / \delta\right)}{N_{k}^{+}(s, a)}}}_{:=\beta_{k}^{s a}}+\frac{c}{N_{k}(s, a)+1} \tag{3}
\end{equation*}
$$

[^0]where $N_{k}^{+}(s, a)=\max \left\{1, N_{k}(s, a)\right\}$. Intuitively, the exploration bonus is large for poorly visited state-action pairs, while it decreases with the number of visits. A crucial aspect in the formulation of b_{k} is that it scales with the span c. In fact, the exploration bonus is not used to obtain an upperconfidence bound on the reward (setting $b_{k}(s, a)=\beta_{k}^{s a}$ would be sufficient), but it is designed to take into consideration how estimation errors on \bar{p} and \bar{r}, which are bounded by $\beta_{k}^{s a}$, may propagate to the bias and gain through repeated applications of the Bellman operator. As the span c provides prior knowledge about the "range" of the optimal bias function, the exploration bonus is obtained by considering that "local" estimation errors may be amplified up to a factor c. The specific shape of b_{k} and $\beta_{k}^{s a}$ and their theoretical properties are derived in Lem. 1. At each episode k, SCAL^{+}builds an $\operatorname{MDP} \widehat{M}_{k}^{+}=\left(\mathcal{S}, \mathcal{A}^{+}, \widehat{p}_{k}^{+}, \widehat{r}_{k}^{+}\right)$obtained by duplicating every action in \mathcal{A} with transition probabilities unchanged and optimistic reward set to 0 . Formally, let $\mathcal{A}^{+}:=\mathcal{A} \times\{1,2\}$ and we denote any pair $(a, i) \in \mathcal{A} \times\{1,2\}$ by a_{i}. We then define $\widehat{r}_{k}^{+}\left(s, a_{i}\right):=\left(\bar{r}_{k}(s, a)+b_{k}(s, a)\right) \cdot \mathbb{1}(i=1) . \mathrm{SCAL}^{+}$ proceeds by computing the optimal policy of the MDP \widehat{M}_{k}^{+}subject to the constrains on the bias span:
\[

$$
\begin{equation*}
\pi_{k}:=\arg \sup _{\pi \in \Pi_{c}\left(\widehat{M}_{k}^{+}\right)}\left\{g^{\pi}\right\} ; \quad g_{c}^{*}\left(\widehat{M}_{k}^{+}\right):=\sup _{\pi \in \Pi_{c}\left(\widehat{M}_{k}^{+}\right)}\left\{g^{\pi}\right\}, \tag{4}
\end{equation*}
$$

\]

where the constraint set is $\Pi_{c}(M):=\left\{\pi \in \Pi^{\mathrm{SR}}: s p\left(h^{\pi}\right) \leq c \wedge s p\left(g^{\pi}\right)=0\right\}$. The optimal policy is executed until the number of visits in at least one state-action pair during the episode has doubled.

Problem 4 is well posed and can be solved using ScOpt.Let \widehat{L}^{+}be the optimal Bellman operator associated to \widehat{M}_{k}^{+}, given $v \in \mathbb{R}^{S}$ and $c \geq 0$, we define the value operator $\widehat{T}_{c}^{+}: \mathbb{R}^{S} \rightarrow \mathbb{R}^{S}$ as

$$
\widehat{T}_{c}^{+} v=\Gamma_{c} \widehat{L}^{+} v= \begin{cases}\widehat{L}^{+} v(s) & \forall s \in\left\{s \in \mathcal{S} \mid \widehat{L}^{+} v(s) \leq \min _{s}\left\{\widehat{L}^{+} v(s)\right\}+c\right\} \tag{5}\\ c+\min _{s}\left\{\widehat{L}^{+} v(s)\right\} & \text { otherwise }\end{cases}
$$

where Γ_{c} is the span constrain projection operator (see [1, App. D] for details). In other words, operator \widehat{T}_{c}^{+}applies a span truncation to the one-step application of \widehat{L}^{+}, which guarantees that $s p\left(\widehat{T}_{c}^{+} v\right) \leq c$. Given a vector $v_{0} \in \mathbb{R}^{S}$ and a reference state \bar{s}, SCOpt runs relative value iteration where \widehat{L}^{+}is replaced by \widehat{T}_{c}^{+}as $v_{n+1}=\widehat{T}_{c}^{+} v_{n}-\widehat{T}_{c}^{+} v_{n}(\bar{s}) e$. The policy π_{k} returned by ScOpt takes action in the augmented set \mathcal{A}^{+}and it can be "projected" on \mathcal{A} as $\pi_{k}(s, a) \leftarrow \pi_{k}\left(s, a_{1}\right)+\pi_{k}\left(s, a_{2}\right)$ (we use the same notation for the two policies), which is the policy actually executed through the episode. Following similar steps as in [1], we can prove that \widehat{M}_{k}^{+}satisfies all sufficient conditions for ScOpt to converge and return the optimal policy (see App. B).
Proposition 1. The MDP \widehat{M}_{k}^{+}satisfies the following properties: 1) the associated optimal Bellman operator \widehat{L}^{+}is a γ-span-contraction; 2) all policies are unichain; 3) the operator \widehat{T}_{c}^{+}is globally feasible at any vector $v \in \mathbb{R}^{S}$ such that $\operatorname{sp}(v) \leq c$, i.e., for all $s \in \mathcal{S}$, $\min _{a \in \mathcal{A}}\left\{r(s, a)+p(\cdot \mid s, a)^{\top} v\right\} \leq$ $\min _{s^{\prime}}\left\{L v\left(s^{\prime}\right)\right\}+c$. As a consequence, ScOpt converges and returns a policy π_{k} solving (4).

3.2 Optimistic Exploration Bonus

All regret proofs for OFU-based algorithms rely on the property that the optimal gain of the MDP used to compute π_{k} (\widehat{M}_{k}^{+}in our case) is an upper-bound on g^{*}. If we want to use the same proof technique for SCAL^{+}, we need to ensure that the policy π_{k} is gain-optimistic, i.e., $\widehat{g}_{k}^{+}:=g_{c}^{*}\left(\widehat{M}_{k}^{+}\right) \geq g^{*}$.

Recall that the optimal gain and bias of the true $\operatorname{MDP}\left(g^{*}, h^{*}\right)$ satisfy the optimality equation $L h^{*}=h^{*}+g^{*} e$ where $e=(1, \ldots, 1)$. Since $s p\left(h^{*}\right) \leq c$ (by assumption), we also have $s p\left(L h^{*}\right)=$ $s p\left(h^{*}+g^{*} e\right)=s p\left(h^{*}\right) \leq c$ and so $T_{c} h^{*}=L h^{*}$. A minor variation to Lemma 8 of Fruit et al. [1] shows that a sufficient condition to prove optimistic gain is to show that the operator \widehat{T}_{c}^{+}is optimistic w.r.t. its exact version when applied to the optimal bias function, i.e., (see Prop. 3 in App. B)

$$
\widehat{T}_{c}^{+} h^{*} \geq h^{*}+g^{*} e=T_{c} h^{*}
$$

As the truncation operated by T_{c} (i.e., Γ_{c}) is monotone, this inequality is implied by $\widehat{L}_{k}^{+} h^{*} \geq L h^{*}$. Finally, since $\widehat{p}_{k}^{+}\left(s^{\prime} \mid s, a_{1}\right)=\widehat{p}_{k}^{+}\left(s^{\prime} \mid s, a_{2}\right)=\widehat{p}_{k}\left(s^{\prime} \mid s, a\right)$ and $\widehat{r}_{k}^{+}\left(s, a_{2}\right) \leq \widehat{r}_{k}^{+}\left(s, a_{1}\right)$ it is immediate to see that $\widehat{L}_{k}^{+} h^{*}=\widehat{L}_{k} h^{*}$, thus implying that a sufficient condition for $\widehat{g}_{k}^{+} \geq g^{*}$ is to have $\widehat{L}_{k} h^{*} \geq L h^{*}$, which reduces to verifying optimism for the Bellman operator of \widehat{M}_{k}^{+}when applied to the exact optimal bias function. The exploration bonus is tailored to achieve this condition with high probability.

Lemma 1. Denote by \widehat{L}_{k} the optimal Bellman operator of \widehat{M}_{k}. With probability at least $1-\frac{\delta}{5}$, for all $k \geq 1, \widehat{L}_{k} h^{*} \geq L h^{*}$ (componentwise) and as a consequence $\widehat{g}_{k}^{+} \geq g^{*}$.

Proof (see App. \bar{D}. By using Hoeffding-Azuma inequality and union bound, we can show that for all $k \geq 1,\left|\bar{r}_{k}(s, a)-r(s, a)\right| \leq r_{\max } \beta_{k}^{s a}$ and $\left|\left(\bar{p}_{k}(\cdot \mid s, a)-p(\cdot \mid s, a)\right)^{\top} h^{*}\right| \leq c \beta_{k}^{s a}$ w.h.p. $\left(\bar{p}_{k}\right.$ is the MLE of p). We also need to take into account the small bias introduced by $\widehat{p}_{k}(\cdot \mid s, a)$ compared to $\bar{p}_{k}(\cdot \mid s, a)$ which is not bigger than $c /\left(N_{k}(s, a)+1\right)$ by definition. Then, with high probability, for all $k \geq 1, \bar{r}_{k}(s, a)+b_{k}(s, a)+\widehat{p}_{k}(\cdot \mid s, a)^{\top} h^{*} \geq r(s, a)+p(\cdot \mid s, a)^{\top} h^{*}$ for all $(s, a) \in \mathcal{S} \times \mathcal{A}$.

The argument used to prove optimism (Lem. Tp) significantly differs from the one used for UCRL and SCAL. Confidence-based methods compute the optimal policy of an extended MDP that "contains" the true MDP M^{*} (w.h.p.), which directly implies that the gain of the extended MDP is bigger than g^{*}. The main advantage of our argument is that it allows for a "tighter" optimism (i.e., less prone to over-exploration). In fact, the exploration bonus quantifies by how much $\widehat{L}_{k}^{+} h^{*}$ is bigger than $L h^{*}$ and it approximately scales as $b_{k}(s, a)=\widetilde{\Theta}\left(\max \left\{r_{\max }, c\right\} / \sqrt{N_{k}(s, a)}\right)$. In contrast, UCRL and SCAL use an optimistic Bellman operator $\widetilde{\sim}$ such that $\widetilde{L} h^{*}$ is bigger than $L h^{*}$ by respectively $\widetilde{\Theta}\left(r_{\max } D \sqrt{\Gamma / N_{k}(s, a)}\right)(\mathrm{UCRL})$ and $\widetilde{\Theta}\left(\max \left\{r_{\max }, c\right\} \sqrt{\Gamma / N_{k}(s, a)}\right)$ (SCAL). In other words, the optimism in SCAL^{+}is tighter by a multiplicative factor $\sqrt{\Gamma}$.

3.3 Regret Analysis of SCAL ${ }^{+}$

We report the main result of this section.
Theorem 1. For any weakly communicating MDP M such that $\operatorname{sp}\left(h^{*}\right) \leq c$, with probability at least $1-\delta$ it holds that for any $T \geq 1$, the regret of SCAL^{+}is bounded as

$$
\Delta\left(\mathrm{SCAL}^{+}, T\right)=O\left(\max \left\{r_{\max }, c\right\}\left(\sqrt{\left(\sum_{s, a} \Gamma(s, a)\right) T \ln (T / \delta)}+S^{2} A \ln ^{2}\left(\frac{T}{\delta}\right)\right)\right)
$$

Since the optimism in SCAL ${ }^{+}$is tighter than in UCRL and SCAL by a factor $\sqrt{\Gamma}$, one may expect to get a regret bound scaling as $c \sqrt{S A T}$ instead of $c \sqrt{\Gamma S A T}$, thus matching the lower bound of Jaksch et al. [11] as for the dependency in S. Unfortunately, such a bound seems difficult to achieve with SCAL ${ }^{+}$ (and even SCAL) due to the correlation between h_{k} and \bar{p}_{k} (see App.D]. Azar et al. [8] managed to achieve the optimal dependence in S in finite-horizon problems. In this setting, the definition of regret is different and it is not clear whether it is possible to adapt their guarantees and techniques to infinite horizon without introducing a $\Theta(T)$-term. Agrawal and Jia [19] showed the optimistic posterior sampling has a regret of $\widetilde{O}(D \sqrt{S A T})$ in the infinite horizon undiscounted setting. Unfortunately, their proof critically relies on the concentration inequality $\left|\left(\bar{p}_{k}(\cdot \mid s, a)-p(\cdot \mid s, a)\right)^{\top} h_{k}\right| \lesssim r_{\max } D \beta_{k}^{s a}$ which is incorrect \square^{2} It remains as an open question whether the $\sqrt{\Gamma}$ term can be actually removed.
Finally, SCAL^{+}'s regret does not scale $\min \left\{r_{\max } D, c\right\}$ as for SCAL , implying that SCAL^{+}may perform worse when c is too large. The difference resides in the fact SCAL builds an extended MDP that contains the true MDP (w.h.p.). The shortest path between two states in the extended MDP is therefore shorter than in the true MDP and consequently, the diameter of the extended MDP is smaller than the true diameter D. This explains why the regret of SCAL depends on both D and c (which is provided as input to the algorithm). Unfortunately, in SCAL^{+}it is not clear how to bound the diameter of \widehat{M}_{k}^{+}and the only information that can be exploited to bound the regret is the constraint c.

4 SCCAL $^{+}$: SCAL $^{+}$for continuous state space

We now consider an MDP with continuous state space $\mathcal{S}=[0,1]$ and discrete action space \mathcal{A}. In general, it is impossible to learn an arbitrary real-valued function with only a finite number of samples. We therefore introduce the same smoothness assumption as Ortner and Ryabko [2]:
Assumption 2 (Hölder continuity). There exist $\rho_{L}, \alpha>0$ s.t. for any two states $s, s^{\prime} \in \mathcal{S}$ and any action $a \in \mathcal{A},\left|r(s, a)-r\left(s^{\prime}, a\right)\right| \leq r_{\max } \rho_{L}\left|s-s^{\prime}\right|^{\alpha} \quad$ and $\quad\left\|p(\cdot \mid s, a)-p\left(\cdot \mid s^{\prime}, a\right)\right\|_{1} \leq \rho_{L}\left|s-s^{\prime}\right|^{\alpha}$.

As in Sec. 3 . we start by introducing our proposed algorithm SCCAL^{+}which is a variant of SCAL^{+} for continuous state space (Sec. 4.1), and then analyze its regret (Sec. 4.2).

[^1]
4.1 The algorithm

In order to apply SCAL^{+}to a continuous problem, we discretize the state space as in [2]. We partition \mathcal{S} into S intervals defined as $I_{1}:=\left[0, \frac{1}{S}\right]$ and $\left.\left.I_{k}=\right] \frac{k-1}{S}, \frac{k}{S}\right]$ for $k=2, \ldots, S$. The set of aggregated states is then $\mathcal{I}:=\left\{I_{1}, \ldots, I_{S}\right\}(|\mathcal{I}|=S)$. The number of intervals S is a parameter of the algorithm and plays a central role in its performance. Note that the terms $N_{k}\left(s, a, s^{\prime}\right)$ and $N_{k}(s, a)$ defined in Sec. 3 are still well-defined for s and s^{\prime} lying in $[0,1]$ but are 0 except for a finite number of s and s^{\prime}. For any subset $I \subseteq \mathcal{S}$, the sum $\sum_{s \in I} u_{s}$ is also well-defined as long as the collection $\left(u_{s}\right)_{s \in I}$ contains only a finite number of non-zero elements. We can therefore define the aggregated counts, rewards and transition probabilities for all $I, J \in \mathcal{I}$ as: $N_{k}(I, a):=\sum_{s \in I} N_{k}(s, a)$,
$\bar{r}_{k}^{a g}(I, a):=\frac{1}{N_{k}(I, a)} \sum_{t=1}^{t_{k}-1} r_{t}\left(s_{t}, a_{t}\right) \mathbb{1}\left(s_{t} \in I, a_{t}=a\right), \bar{p}_{k}^{a g}(J \mid I, a):=\frac{\sum_{s^{\prime} \in J} \sum_{s \in I} N_{k}\left(s, a, s^{\prime}\right)}{\sum_{s \in I} N_{k}(s, a)}$.
Similar to Eq. 3, we define the exploration bonus of an aggregated state as

$$
\begin{equation*}
b_{k}(I, a):=\left(c+r_{\max }\right)\left(\beta_{k}^{I a}+\rho_{L} S^{-\alpha}\right)+\frac{c}{N_{k}(I, a)+1} \tag{6}
\end{equation*}
$$

where $\beta_{k}^{I a}$ is defined in (3). The main difference is an additional $O\left(c \rho_{L} S^{-\alpha}\right)$ term that accounts for the fact that the states that we aggregate are not completely identical but have parameters that differ by at most $\rho_{L} S^{-\alpha}$. We pick an arbitrary reference aggregated state \bar{I} and define $\widehat{M}_{k}^{a g}=\left(\mathcal{I}, \mathcal{A}, \widehat{p}_{k}^{a g}, \widehat{r}_{k}^{a g}\right)$, the aggregated (discrete) analogue of \widehat{M}_{k} defined in Sec. 3. where $\widehat{r}_{k}^{a g}=\bar{r}_{k}^{a g}+b_{k}$ and

$$
\widehat{p}_{k}^{a g}(J \mid I, a):=\frac{N_{k}(I, a) \bar{p}_{k}^{a g}(J \mid I, a)}{N_{k}(I, a)+1}+\frac{\mathbb{1}(J=\bar{I})}{N_{k}(I, a)+1},
$$

Similarly we "augment" $\widehat{M}_{k}^{a g}$ into $\widehat{M}_{k}^{a g+}=\left(\mathcal{I}, \mathcal{A}^{+}, \widehat{p}_{k}^{a g+}, \widehat{r}_{k}^{a g+}\right)$ (analogue of \widehat{M}_{k}^{+}in Sec. 3) by duplicating each transition in $\widehat{M}_{k}^{a g}$. At each episode k, SCCAL $^{+}$uses ScOpt (with the same parameters as in Sec. 3) to solve optimization problem (4) on $\widehat{M}_{k}^{a g+}$. This is possible because although the state space of M^{*} is uncountable, $\widehat{M}_{k}^{a g+}$ has only $S<+\infty$ states. ScOpt returns an optimistic optimal policy π_{k} satisfying the span constraint. This policy is defined in the discrete aggregated state space but can easily be extended to the continuous case by setting $\pi_{k}(s, a):=\pi_{k}(I(s), a)$ for any (s, a) (with $I(s)$ mapping a state to the interval containing it).

4.2 Regret Analysis of SCCAL ${ }^{+}$

This section is devoted to the regret analysis of SCCAL^{+}, with the main result summarized in Thm 2
Theorem 2. For any MDP M satisfying Asm. 2 and such that $s p\left(h_{M}^{*}\right) \leq c$, with probability at least $1-\delta$ it holds that for any $T \geq 1$, the regret of SCCAL^{+}is bounded as

$$
\Delta\left(\mathrm{SCCAL}^{+}, T\right)=O\left(\max \left\{r_{\max }, c\right\}\left(S \sqrt{A T \ln (T / \delta)}+S^{2} A \ln ^{2}(T / \delta)+\rho_{L} S^{-\alpha} T\right)\right)
$$

By setting $S=\left(\alpha \rho_{L} \sqrt{\frac{T}{A}}\right)^{1 /(\alpha+1)}$ the bound becomes: $\widetilde{O}\left(\max \left\{r_{\max }, c\right\} \rho_{L}^{\frac{1}{(\alpha+1)}} A^{\frac{\alpha}{(2 \alpha+2)}} T^{\frac{(\alpha+2)}{(2 \alpha+2)}}\right)$.
Thm. 2 shows that SCCAL $^{+}$achieves the same regret as UCCRL [2] while being the only implementable algorithm with such theoretical guarantees for this setting. Thm. 2 can be extended to the more general case where \mathcal{S} is d-dimensional. As pointed out by [2], in this case S^{d} intervals are needed for the discretization leading to a regret bound of order $\widetilde{O}\left(T^{(2 d+\alpha) /(2 d+2 \alpha)}\right)$ after tuning $S=T^{1 /(2 d+2 \alpha)}$. Finally, we believe that SCCAL $^{+}$can be extended to the setting considered by [16] where, in addition to Hölder conditions, the transition function is assumed to be κ-times smoothly differentiable. In the case of Lipschitz model, i.e., $\alpha=1$, this means that it is possible obtain an asymptotic regret (as $\kappa \rightarrow \infty$) of $\widetilde{O}\left(T^{2 / 3}\right)$ while SCCAL ${ }^{+}$is achieving $\widetilde{O}\left(T^{3 / 4}\right)$.
Proof sketch. Thm. 2 can be seen as a generalization of Thm. 1 but the continuous nature of the state space makes the analysis more difficult. The main technical challenge lies in relating two MDPs with different state spaces: $\widehat{M}_{k}^{a g}$ (with finite state space) and M^{*} (with continuous state space). For instance, It is necessary to compare these two MDPs to prove optimism. To facilitate the comparison, we introduce an "intermediate" MDP \widehat{M}_{k} which has continuous state space like M^{*}, but which also depends on the samples collected before episode k like $\widehat{M}_{k}^{a g}$.

Definition 1 (Empirical MDP with continuous state space). Let $\widehat{M}_{k}=\left(\mathcal{S}, \mathcal{A}, \widehat{p}_{k}, \widehat{r}_{k}\right)$ be the continuous state space MDP s.t. for all $(s, a) \in \mathcal{S} \times \mathcal{A}, \bar{r}_{k}(s, a):=\bar{r}_{k}^{a g}(I(s), a)$,

$$
\widehat{r}_{k}(s, a):=\bar{r}_{k}(s, a)+b_{k}(I(s), a) \text { and } \widehat{p}_{k}\left(s^{\prime} \mid s, a\right):=\frac{N_{k}(I(s), a) \bar{p}_{k}\left(s^{\prime} \mid s, a\right)}{N_{k}(I(s), a)+1}+\frac{S \cdot \mathbb{1}\left(s^{\prime} \in I(\bar{s})\right)}{N_{k}(I(s), a)+1}
$$

where $I: \mathcal{S} \rightarrow \mathcal{I}$ is the function mapping a state s to the interval containing s, and $\bar{p}_{k}\left(s^{\prime} \mid s, a\right)$ is the Radon-Nikodym derivative of the cumulative density function $F(s)=\sum_{s^{\prime} \leq s} \frac{\sum_{x \in I(s)} N_{k}\left(x, a, s^{\prime}\right)}{N_{k}(I(s), a)}$.

MDP \widehat{M}_{k} is designed so that: 1) the reward function is piece-wise constant over any interval in \mathcal{I} and matches the reward function of $\widehat{M}_{k}^{a g}, 2$) the transitions integrated over $s^{\prime} \in J \in \mathcal{I}$ are piece-wise constant and match the transitions of the discrete state space MDP $\widehat{M}_{k}^{a g}$. More precisely, $\forall J \in \mathcal{I}$, $\int_{J} \bar{p}_{k}\left(s^{\prime} \mid s, a\right) \mathrm{d} s^{\prime}=\bar{p}_{k}^{a g}(J \mid I(s), a)$ and so $\forall(s, J) \in \mathcal{S} \times \mathcal{I}$:

$$
\begin{equation*}
\int_{J} \widehat{p}_{k}\left(s^{\prime} \mid s, a\right) \mathrm{d} s^{\prime}=\frac{N_{k}(I(s), a) \bar{p}_{k}^{a g}(J \mid I(s), a)}{N_{k}(I(s), a)+1}+\frac{S \int_{J} \mathbb{1}\left(s^{\prime} \in I(\bar{s})\right) \mathrm{d} s^{\prime}}{N_{k}(I(s), a)+1}=\widehat{p}_{k}^{a g}(J \mid I(s), a) \tag{7}
\end{equation*}
$$

This ensures that $\widehat{M}_{k}^{a g}$ and \widehat{M}_{k} can be easily compared (and as a consequence, so can $\widehat{M}_{k}^{a g+}$ and \widehat{M}_{k}^{+}, the augmented versions of $\widehat{M}_{k}^{a g}$ and \widehat{M}_{k}) although they have different state spaces and obtain:
Lemma 2. For any $k \geq 1, \widehat{g}_{k}^{a g+}:=g_{c}^{*}\left(\widehat{M}_{k}^{a g+}\right)=\widehat{g}_{k}^{+}:=g_{c}^{*}\left(\widehat{M}_{k}^{+}\right)$
Proof (see App. ©.2). We notice that for any continuous function $v(s)$ defined on \mathcal{S} and piece-wise constant on the intervals of \mathcal{I}, we can associate a discrete function $v^{\prime}(I)$ (defined on \mathcal{I}) such that for all $s \in \mathcal{S}, v^{\prime}(I(s))=v(s)$. Let $v_{0}=0$ (continuous function) and denote by v_{0}^{\prime} its discrete analogue. We define the sequences $\left(v_{n}\right)_{n \in \mathbb{N}}$ and $\left(u_{n}\right)_{n \in \mathbb{N}}$ by recursively applying \widehat{T}_{c}^{+}and $\widehat{T}_{c}^{a g+}$ respectively: $v_{n+1}:=\widehat{T}_{c}^{+} v_{n}$ and $u_{n+1}:=\widehat{T}_{c}^{a g+} u_{n}$ with $u_{0}:=v_{0}^{\prime}$. It is easy to show that for all n, v_{n} is piece-wise constant and its discrete analogue is u_{n} i.e., $u_{n}=v_{n}^{\prime}$. Therefore the sequences $v_{n+1}(s)-v_{n}(s)$ and $u_{n+1}(I(s))-u_{n}(I(s))$ have the same limits, respectively \widehat{g}_{k}^{+}and $\widehat{g}_{k}^{a g+}$.
Leveraging Lem. 2, it is sufficient to compare the gains of \widehat{M}_{k}^{+}and M^{*} to prove optimism. Since both MDPs have the same (continuous) state space, we can proceed as in Sec. 3.2 and just show that $\widehat{L}_{k} h^{*} \geq L h^{*}$ (analogue of Lem. 11, with the difference that h^{*} is defined on a continuous space.
Lemma 3. Denote by \widehat{L}_{k} the optimal Bellman operator of \widehat{M}_{k}. With probability at least $1-\frac{\delta}{5}$, for all $k \geq 1$ we have $\widehat{L}_{k} h^{*} \geq L h^{*}$ (on the whole state space) and as a consequence $\widehat{g}_{k}^{\text {ag+ }} \geq g^{*}$.
Proof (see Lem. 4 and 5) in App. C). The proof is similar to Lem. 1. we compare \widehat{r}_{k} and \widehat{p}_{k} with the true reward function r and transition probabilities p using concentration inequalities. Due to the aggregation of states, there are two major differences with the discrete case. The first difference is that \widehat{p}_{k} is even more biased than before. Thanks to the smoothness assumption (Asm. 22), the extra bias is only of order $O\left(L S^{-\alpha}\right)$ (this explains why this term appears in the definition of the bonus in (6). The second difference is that since there are uncountably many states, it is impossible to use a union bound argument on the set of states (like in Lem. 1). Instead, we show using optional skipping that the terms of interest are martingales and we apply Azuma's and Freedman's inequalities.
The rest of the proof is similar to SCAL^{+}with additional steps to deal with the continuous state space.

5 Numerical Simulations

We design experiments to investigate the learning performance in discrete and continuous MDP (see App. E for details). In the discrete case, the main theoretical open question is whether the tighter exploration bonus does translate in a better regret, that is, whether the dependency on the branching factor Γ in the regret bound is due to the analysis or not. Unfortunately, it is difficult to design experiments to thoroughly investigate the actual dependency. First, it is challenging to design MDPs with all parameters fixed (i.e., gain, span, diameters, number of states and actions) but Γ (e.g., the bigger Γ, the smaller the span as the MDP is more connected). Furthermore, the regret bound is worst-case w.r.t. all MDPs with a given set of parameters, which is difficult to design in practice. For these reasons, instead of investigating the exact dependency, we rather focus on comparing the performance of SCAL^{+}to UCRL for different values of Γ. We consider

Figure 2: Cumulative regret (Garnet MDPs) and cumulative reward (continuous state MDPs). We report mean, max and min curves obtained over 50 independent runs.
the $\operatorname{Garnet}(S, A, \Gamma$) family [20] of random MDPs. In all the experiments we take $S=200$, $A=3$ and $c=2$ and we guarantee the MDPs to be communicating by setting $p\left(s_{0} \mid s, a\right) \geq 0.01$ for every pair (s, a) and an arbitrary state s_{0}. In order to provide a fair comparison of UCRL, SCAL and SCAL ${ }^{+}$, we consider Hoeffdin-based confidence bounds with standardized constants: $\beta_{k}^{r}(s, a)=r_{\max } \sqrt{\mathcal{L}_{k} / N_{k}(s, a)}$ and $\beta_{p}(s, a)=\sqrt{\Gamma \mathcal{L}_{k} / N_{k}(s, a)}$ with $\mathcal{L}_{k}=\log \left(S A / \delta_{k}\right) / 4$ for UCRL and SCAL, and $b_{k}(s, a)=\beta_{k}^{r}(s, a)+c \beta_{k}^{p}(s, a)$ for SCAL^{+}. Since $\operatorname{Garnet}(S, A, \Gamma)$ defines a distribution over MDPs, we evaluate the algorithms on the MDP with median bias span (since the distribution shows relatively long tails, see App. E). According to the theoretical analysis, the per-episode regret of UCRL scales as $O\left(s p\left(h_{k}\right) \sqrt{\Gamma}\right)$, where $s p\left(h_{k}\right)$ is the span of the optimistic MDP, while SCAL ${ }^{+}$has regret $O(c \sqrt{\Gamma})$, where c is an upper-bound on $s p\left(h^{*}\right)$. While in the worst case $s p\left(h_{k}\right) \leq D$, in the MDP we selected, UCRL always generates optimistic MDPs with span $s p\left(h_{k}\right)$ smaller than $s p\left(h^{*}\right) \leq c$. In this favorable case for UCRL, the only hope for SCAL ${ }^{+}$to achieve better performance is if the tighter optimism translates into a per-episode regret of $O(c)$, with no dependency on Γ. This is indeed what we observed empirically. When $\Gamma=5$, as expected, UCRL outperforms SCAL ${ }^{+}$as $s p\left(h_{k}\right) \sqrt{\Gamma} \leq c$ for most of the episodes. On the other hand, when $\Gamma=144$, the tighter optimism of SCAL ${ }^{+}$allows a faster convergence to the optimal solution compared to UCRL as $\operatorname{sp}\left(h_{k}\right) \sqrt{\Gamma} \geq c$. Although this result does not provide a definite answer on whether and how the regret of SCAL^{+}scales with Γ, it hints to the fact that tighter optimism does indeed translate to better empirical performance w.r.t. confidence-based algorithms such as UCRL.
As SCCAL ${ }^{+}$is the first implementable model-based algorithm with regret guarantees in continuous MDPs, we compare it to model-free heuristic variants. We consider RVI Q-learning [17] with either ϵ-greedy and UCB [9] exploration ${ }^{3}$ Since Q-learning is model-free, it does not perform planning and updates the policy at each time step (the action selection is greedy w.r.t. the current estimate). Even in this case we harmonize the bonus such that $b(s, a)=\beta^{r}(s, a)+c \beta^{p}(s, a)+\left(r_{\max }+c\right) \rho_{L} S^{-\alpha}$. We use the same uniform discretization of the state space for all the algorithms. We considering a continuous version of the RiverSwim [7] discretized into $S=50$ states ($\rho_{L}=\alpha=1, c=30, \mathcal{S} \subseteq \mathbb{R}$) and the ShipSteering domain [21] with $S=|\mathcal{I}|=512$ discrete states ($\rho_{L}=5, \alpha=1, c=1.5$, $\mathcal{S} \subseteq \mathbb{R}^{3}$) (see the App. Efor MountainCar [22]). In both cases, RVIQ shows an unstable behaviour. In the RiverSwim it outperforms the other approaches when optimistically initialized (i.e., $q_{0}=c$) while the same configuration fails to learn in the ShipSteering. Moreover, RVIQ with $q_{0}=0$ shows the ability to learn in the ShipSteering but also high variance. This undesired behavior is typical of unstable algorithms (we observed linear regret in some run). RVIQ-UCB is able to learn in the RiverSwim but not in the ShipSteering. The only stable algorithm in both domains is SCCAL ${ }^{+}$.

6 Conclusion

We derive the first regret analysis of exploration bonus for average reward with discrete and continuous state space by leveraging on an upper-bound to the range of the optimal bias function to properly scale the bonus (as done in other settings). It is an open question whether an exploration bonus approach is still possible when no prior knowledge on the span of the optimal bias function is available [see e.g.,11,23]. Despite the $\sqrt{\Gamma}$ improvement in the definition of the exploration bonus (i.e., optimism) compared to confidence-set-based algorithms, the final regret still scales with Γ leaving it as an open question whether such dependency can be actually removed in non-ergodic MDPs.

[^2]
References

[1] Ronan Fruit, Matteo Pirotta, Alessandro Lazaric, and Ronald Ortner. Efficient bias-spanconstrained exploration-exploitation in reinforcement learning. In ICML, Proceedings of Machine Learning Research. PMLR, 2018.
[2] Ronald Ortner and Daniil Ryabko. Online regret bounds for undiscounted continuous reinforcement learning. In NIPS, pages 1772-1780, 2012.
[3] Marc G. Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Rémi Munos. Unifying count-based exploration and intrinsic motivation. In NIPS, pages 1471-1479, 2016.
[4] Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, Xi Chen, Yan Duan, John Schulman, Filip De Turck, and Pieter Abbeel. \#exploration: A study of count-based exploration for deep reinforcement learning. In NIPS, pages 2750-2759, 2017.
[5] Georg Ostrovski, Marc G. Bellemare, Aäron van den Oord, and Rémi Munos. Count-based exploration with neural density models. In ICML, volume 70 of Proceedings of Machine Learning Research, pages 2721-2730. PMLR, 2017.
[6] Jarryd Martin, Suraj Narayanan Sasikumar, Tom Everitt, and Marcus Hutter. Count-based exploration in feature space for reinforcement learning. CoRR, abs/1706.08090, 2017.
[7] Alexander L Strehl and Michael L Littman. An analysis of model-based interval estimation for markov decision processes. Journal of Computer and System Sciences, 74(8):1309-1331, 2008.
[8] Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos. Minimax regret bounds for reinforcement learning. In ICML, volume 70 of Proceedings of Machine Learning Research, pages 263-272. PMLR, 2017.
[9] Chi Jin, Zeyuan Allen-Zhu, Sébastien Bubeck, and Michael I. Jordan. Is q-learning provably efficient? CoRR, abs/1807.03765, 2018.
[10] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. John Wiley \& Sons, Inc., New York, NY, USA, 1994. ISBN 0471619779.
[11] Thomas Jaksch, Ronald Ortner, and Peter Auer. Near-optimal regret bounds for reinforcement learning. Journal of Machine Learning Research, 11:1563-1600, 2010.
[12] Ronan Fruit, Matteo Pirotta, Alessandro Lazaric, and Emma Brunskill. Regret minimization in mdps with options without prior knowledge. In NIPS, pages 3169-3179, 2017.
[13] Mohammad Sadegh Talebi and Odalric-Ambrym Maillard. Variance-aware regret bounds for undiscounted reinforcement learning in mdps. In ALT, volume 83 of Proceedings of Machine Learning Research, pages 770-805. PMLR, 2018.
[14] Peter L. Bartlett and Ambuj Tewari. REGAL: A regularization based algorithm for reinforcement learning in weakly communicating MDPs. In UAI, pages 35-42. AUAI Press, 2009.
[15] Ronald Ortner. Regret bounds for reinforcement learning via markov chain concentration. CoRR, abs/1808.01813, 2018. URL http://arxiv.org/abs/1808.01813.
[16] K. Lakshmanan, Ronald Ortner, and Daniil Ryabko. Improved regret bounds for undiscounted continuous reinforcement learning. In ICML, volume 37 of JMLR Workshop and Conference Proceedings, pages 524-532. JMLR.org, 2015.
[17] Jinane Abounadi, Dimitri P. Bertsekas, and Vivek S. Borkar. Learning algorithms for markov decision processes with average cost. SIAM J. Control and Optimization, 40(3):681-698, 2001.
[18] Ronald Ortner. Optimism in the face of uncertainty should be refutable. Minds and Machines, 18(4):521-526, 2008.
[19] Shipra Agrawal and Randy Jia. Optimistic posterior sampling for reinforcement learning: worst-case regret bounds. In NIPS, pages 1184-1194, 2017.
[20] TW Archibald, KIM McKinnon, and LC Thomas. On the generation of markov decision processes. Journal of the Operational Research Society, 46(3):354-361, 1995.
[21] Michael T. Rosenstein and Andrew G. Barto. Supervised actor-critic reinforcement learning. Handbook of learning and approximate dynamic programming, 2:359, 2004.
[22] Andrew William Moore. Efficient memory-based learning for robot control. Technical report, University of Cambridge, 1990.
[23] Ronan Fruit, Matteo Pirotta, and Alessandro Lazaric. Near optimal exploration-exploitation in non-communicating markov decision processes. In NIPS, 2018.
[24] Sébastien Bubeck and Nicolò Cesa-Bianchi. Regret analysis of stochastic and nonstochastic multi-armed bandit problems. Foundations and Trends ${ }^{\circledR}$ in Machine Learning, 5(1):1-122, 2012. ISSN 1935-8237. doi: 10.1561/2200000024.
[25] Sham Kakade, Mengdi Wang, and Lin F. Yang. Variance reduction methods for sublinear reinforcement learning. CoRR, abs/1802.09184, 2018.
[26] Dimitri P Bertsekas. Dynamic programming and optimal control. Vol II. Number 2. Athena scientific Belmont, MA, 1995.
[27] Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Pre-publication version, 2018. URL http://downloads.tor-lattimore.com/banditbook/book.pdf.
[28] Y.S. Chow and H. Teicher. Probability Theory: Independence, Interchangeability, Martingales. Springer texts in statistics. World Publishing Company, 1988. ISBN 9780387966953.
[29] Eyal Even-Dar and Yishay Mansour. Convergence of optimistic and incremental q-learning. In NIPS, pages 1499-1506. MIT Press, 2001.
[30] A. Klenke and M. Loève. Probability Theory: A Comprehensive Course. Graduate texts in mathematics. Springer, 2013. ISBN 9781447153627.
[31] David A. Freedman. On tail probabilities for martingales. Ann. Probab., 3(1):100-118, 021975. doi: 10.1214/aop/1176996452.
[32] Nicolò Cesa-Bianchi and Claudio Gentile. Improved risk tail bounds for on-line algorithms. In NIPS, pages 195-202, 2005.

Structure of the appendix. We start with a review of the literature and positioning of this paper (AppA). We then review the problem of planning under bias span constraint (AppB). We present the proofs for the continuous case first (App. C), and then for the discrete case (App. D) since the latter can be viewed as a special case of the former. That way, we only need to highlight the main differences in the discrete case. Because of the continuous nature of the state space and the aggregation of states in the continuous case, extra care needs to be taken while using concentration inequalities compared to standard regret proofs in RL (see App. C.1.3 for more details). In App. Ewe report all the details of the experiments. Finally, in App.Fwe recall/prove all the necessary results from probability theory that we use in the regret proofs.
For sake of clarity we state the main terms of the analysis in the following table.

Discrete case

$$
\begin{array}{ll}
\bar{M}_{k}=\left(\mathcal{S}, \mathcal{A}, \bar{p}_{k}, \bar{r}_{k}\right) & \text { Empirical (MLE) MDP } \\
& \bar{r}_{k}(s, a)=\sum_{t=1}^{t_{k}-1} \frac{r_{t}\left(s_{t}, a_{t}\right) \mathbb{1}\left(\left(s_{t}, a_{t}\right)=(s, a)\right)}{N_{k}(s, a)} \\
& \bar{p}_{k}\left(s^{\prime} \mid s, a\right)=\frac{N_{k}\left(s, a, s^{\prime}\right)}{N_{k}(s, a)} \\
\widehat{M}_{k}=\left(\mathcal{S}, \mathcal{A}, \widehat{p}_{k}, \widehat{r}_{k}\right) \quad & \text { Perturbed MDP with bonus } \\
& \widehat{r}_{k}(s, a)=\bar{r}_{k}(s, a)+b_{k}(s, a) \\
& \widehat{p}_{k}\left(s^{\prime} \mid s, a\right)=\frac{N_{k}(s, a) \bar{p}_{k}\left(s^{\prime} \mid s, a\right)}{N_{k}(s, a)+1}+\frac{\mathbb{1}\left(s^{\prime}=\bar{s}\right)}{N_{k}(s, a)+1} \\
& b_{k}(s, a):=c \cdot \min \left\{\beta_{k}^{s a}+\frac{1}{N_{k}(s, a)+1} ; 2\right\}+r_{\max } \cdot \min \left\{\beta_{k}^{s a} ; 1\right\} \\
& \text { Augmentation of } \widehat{M}_{k} \\
\widehat{M}_{k}^{+}=\left(\mathcal{S}, \mathcal{A}^{+}, \widehat{p}_{k}^{+}, \widehat{r}_{k}^{+}\right) \quad & \mathcal{A}^{+}=\mathcal{A} \times\{1,2\} \\
& \widehat{r}_{k}^{+}(s, a i)=\widehat{r}_{k}(s, a) \cdot \mathbb{1}(i=1) \\
& \widehat{p}_{k}^{+}\left(s^{\prime} \mid s, a_{i}\right)=\widehat{p}_{k}\left(s^{\prime} \mid s, a\right) \\
\hline
\end{array}
$$

Continuous case

$\rho_{L}, \alpha \quad$ Hölder continuity parameters
$\bar{M}_{k}^{a g}=\left(\mathcal{I}, \mathcal{A}, \bar{r}_{k}^{a g}, \bar{p}_{k}^{a g}\right) \quad$ Empirical (MLE) MDP (discrete state space)
$I_{1}:=\left[0, \frac{1}{S}\right]$ and $\left.\left.I_{k}=\right] \frac{k-1}{S}, \frac{k}{S}\right]$ for $k=2, \ldots, S$
$\mathcal{I}:=\left\{I_{1}, \ldots, I_{S}\right\}(|\mathcal{I}|=S)$
$\bar{r}_{k}^{a g}(I, a):=\frac{1}{N_{k}(I, a)} \sum_{t=1}^{t_{k}-1} r_{t}\left(s_{t}, a_{t}\right) \mathbb{1}\left(s_{t} \in I, a_{t}=a\right)$
$\bar{p}_{k}^{a g}(J \mid I, a):=\frac{\sum_{s^{\prime} \in J} \sum_{s \in I} N_{k}\left(s, a, s^{\prime}\right)}{\sum_{s \in I} N_{k}(s, a)}$
$\widehat{M}_{k}^{a g}=\left(\mathcal{I}, \mathcal{A}, \widehat{r}_{k}^{a g}, \widehat{p}_{k}^{a g}\right) \quad$ Perturbed MDP with bonus (discrete state space)
$b_{k}(J, a):=c \cdot \min \left\{\beta_{k}^{J a}+\rho_{L} S^{-\alpha}+\frac{1}{N_{k}(J, a)+1} ; 2\right\}+r_{\max }$. $\min \left\{\beta_{k}^{J a}+\rho_{L} S^{-\alpha} ; 1\right\}, \quad \forall J \in \mathcal{I}$

$$
\begin{array}{rlr}
\widehat{M}_{k}^{a g+} & =\left(\mathcal{I}, \mathcal{A}, \widehat{r}_{k}^{a g+}, \widehat{p}_{k}^{a g+}\right) & \text { Augmentation of } \widehat{M}_{k}^{a g} \text { (discrete state space) } \\
\bar{M}_{k} & =\left(\mathcal{S}, \mathcal{A}, \bar{r}_{k}, \bar{p}_{k}\right) & \text { Empirical MDP }(\text { continuous state space })
\end{array}
$$

$$
\begin{array}{ll}
& \bar{r}_{k}(s, a):=\bar{r}_{k}^{a g}(I(s), a) \\
& \bar{p}_{k}\left(s^{\prime} \mid s, a\right) \text { is the Radon-Nikodym derivative of the cumulative } \\
& \text { density function } F(s)=\sum_{s^{\prime} \leq s} \frac{\sum_{x \in I(s)} N_{k}\left(x, a, s^{\prime}\right)}{N_{k}(I(s), a)} \\
\widehat{M}_{k}=\left(\mathcal{S}, \mathcal{A}, \widehat{r}_{k}, \widehat{p}_{k}\right) \quad & \text { Perturbed MDP with bonus (continuous state space) } \\
& b_{k}(s, a):=b_{k}(I(s), a) \\
& \widehat{r}_{k}(s, a):=\bar{r}_{k}(s, a)+b_{k}(s, a) \\
& \widehat{p}_{k}\left(s^{\prime} \mid s, a\right):=\frac{N_{k}(I(s), a) \bar{p}_{k}\left(s^{\prime} \mid s, a\right)}{N_{k}(I(s), a)+1}+\frac{S \cdot \mathbb{1}\left(s^{\prime} \in I(\bar{s})\right)}{N_{k}(I(s), a)+1} \\
\widehat{M}_{k}^{+}=\left(\mathcal{S}, \mathcal{A}, \widehat{r}_{k}^{+}, \widehat{p}_{k}^{+}\right) \quad & \text { Augmentation of } \widehat{M}_{k}(\text { continuous state space }) \\
\widetilde{M}_{k}=\left(\mathcal{S}, \mathcal{A}, \widetilde{r}_{k}, \widetilde{p}_{k}\right) \quad & \text { Approximation of true MDP } M^{*} \text { to be piecewise constant on } \mathcal{I} \\
& (\text { continuous state space })
\end{array} \quad \begin{array}{ll}
& \widetilde{r}_{k}(s, a):=\frac{1}{N_{k}(I(s), a)} \sum_{x \in I(s)} N_{k}(x, a) r(x, a) \\
& \widetilde{p}_{k}\left(s^{\prime} \mid s, a\right):=\frac{1}{N_{k}(I(s), a)} \sum_{x \in I(s)} N_{k}(x, a) p\left(s^{\prime} \mid x, a\right) \\
\hline
\end{array}
$$

A Extended Introduction and Related Work

While learning in an unknown environment, a reinforcement learning (RL) agent must trade off the exploration needed to collect information about the dynamics and reward, and the exploitation of the experience gathered so far to gain reward. The performance of an online learning agent is measured in terms of its cumulative regret, which compares the rewards accumulated by the agent to the rewards obtained by an optimal policy. A popular strategy to trade off exploration and exploitation and minimize regret is the optimism in the face of uncertainty (OFU) principle.

Optimistic approaches have been widely studied in the context of stochastic multi-armed bandit (MAB) problems and RL. A popular technique to ensure optimism is to use an exploration bonus. OFU-based bandit algorithms maintain optimistic estimates of the expected reward for each action a by adding a high-probability confidence bound $b(a)$ to the empirical average reward $\widehat{r}(a)$, thus obtaining the optimistic reward $\widehat{r}(a)+b(a)$. The action with highest optimistic estimate is then played [see e.g., 24]. The confidence bound plays the role of an exploration bonus: the higher $b(a)$, the more likely a will be explored. For instance, the Upper-Confidence Bound (UCB) algorithm uses $b(a)=\widetilde{\Theta}\left(r_{\max } / \sqrt{N(a)}\right)$ where $N(a)$ is the number of times action a has been played and $r_{\max }$ is a bound to the range of the rewards.

In RL, the agent aims at maximizing the cumulative expected reward (i.e., value function) rather than the immediate reward as in MAB. As a consequence, the exploration bonus should be designed to obtain an upper-bound on the value function. While standard concentration inequalities can be used to derive confidence bounds on "local" estimation errors on the reward function and dynamics, it is crucial to study how these errors compound when computing the value function. Exploiting the recursive structure of the optimal value function, it is possible to bound how errors are amplified through repeated applications of the optimal Bellman operator. Strehl and Littman [7] analysed the infinite-horizon γ-discounted setting and derived PAC guarantees on the sample complexity of the Model Based Interval Estimation with Exploration Bonus (MBIE-EB) algorithm ${ }^{4}$ MBIEEB plays the optimal policy of the estimated MDP where in each state-action pair (s, a), a bonus $b(s, a)=\widetilde{\Theta}\left(\frac{r_{\max }}{1-\gamma} \sqrt{\frac{1}{N(s, a)}}\right)$ is added to estimated reward $\widehat{r}(s, a)$. As the exploration bonus is designed to bound estimation errors on the value function, it scales by its range $\frac{r_{\text {max }}}{1-\gamma}$.
The exploration bonus approach has also been successfully applied to finite-horizon problems [8, 9]. In this setting, the planning horizon H is known to the learning agent and the range of the

[^3]value function is $r_{\max } H$. A natural choice for the bonus is then $b(s, a)=\widetilde{\Theta}\left(r_{\max } H / \sqrt{N(s, a)}\right)$. UCBVI_1 introduced by Azar et al. [8] uses such a bonus and achieves near-optimal regret guarantees $\widetilde{O}(H \sqrt{S A T})$ where S and A are the number of states and the number of actions of the unknown MDP. Refined versions of UCBVI_1 achieve a tighter regret of $\widetilde{O}(\sqrt{H S A T})$ [8, 25, 9].

Both the finite-horizon and infinite-horizon discounted setting assume an intrinsic horizon (respectively H and $\frac{1}{1-\gamma}$) known to the learning agent. Unfortunately, in many common RL problems it is not clear how to define H or $\frac{1}{1-\gamma}$ and it is often desirable to set them as big as possible (e.g., in episodic problems, the time to the goal is not known in advance and random in general). As H tends to infinity the regret of UCBVI_1 becomes linear, while as γ tends to 1 the sample complexity (of MBIE-EB, etc.) tends to infinity. In this paper, we focus on the more natural infinite-horizon undiscounted setting [10, Chap. 8], which generalizes the two previous settings to the case where $H \rightarrow \infty$ and $\gamma \rightarrow 1$ respectively. Several algorithms implementing the OFU principle in this setting have been proposed in the literature [e.g., 11, 2, 12, 1, 13], but none of these approaches exploits the idea of an exploration bonus. Instead, they all maintain a confidence set on the MDP (i.e., on the reward function and dynamics) and select the MDP with largest optimal average reward. Since the true MDP is contained in the set of plausible MDPs, the solution of this optimization problem is optimistic. UCRL [11] achieves a regret of order ${ }^{5} \widetilde{O}\left(r_{\max } D \sqrt{\Gamma S A T}\right)$ where D and Γ are respectively the diameter of the true MDP and the maximum number of states reachable from any state. Fruit et al. [1] introduced SCAL, achieving an improved bound $\widetilde{O}\left(\min \left\{r_{\max } D, c\right\} \sqrt{\Gamma S A T}\right)$ when a known upper bound c on the range of the optimal value function (i.e., bias function) is known to the learning agent.

In this paper, we introduce and analyse SCAL^{+}, the first algorithm that relies on an exploration bonus to efficiently balance exploration and exploitation in the infinite-horizon undiscounted setting. Similar to the exploration bonus used in finite-horizon and discount setting, which depends on the knowledge of γ or H, we follow the approach of Bartlett and Tewari [14], Fruit et al. [1] and we assume an upper-bound c on the range of the optimal bias is known. The exploration bonus used by SCAL^{+}is thus $b(s, a)=\widetilde{\Theta}\left(\max \left\{c, r_{\max }\right\} / \sqrt{N(s, a)}\right)$. We prove that this bonus ensures optimism using a novel technical argument. We no longer use an inclusion argument (i.e., the true MDP is contained in a set of plausible MDPs) but we reason directly at the level of the Bellman operator. We show that the optimistic Bellman operator defined by the empirical MDP with optimistic reward $\widehat{r}(s, a)+b(s, a)$ dominates the Bellman operator of the true MDP when applied to the optimal bias function. This is sufficient to prove that the solution of the optimistic MDP is indeed (gain-)optimistic. This proof technique has two main advantages w.r.t. the inclusion argument. First, it directly applies to slightly perturbed empirical MDPs, without re-deriving confidence sets. Second, as we study the optimistic Bellman operator applied only to the optimal bias function (rather than all possible vector in \mathbb{R}^{S}), we save a factor $\sqrt{\Gamma}$ in designing the exploration bonus, compared to the (implicit) bounds obtained by algorithms relying on confidence sets on the MDP. In practice, this may limit over-exploration and lead to better empirical performance. Furthermore, as SCAL^{+}only solves the estimated MDP with optimistic reward, it is computationally cheaper than UCRL-based algorithms, which require computing the optimal policy for an extended MDP with a continuous action space defined by the confidence set over MDPs.

To further illustrate the generality of the exploration bonus approach, we also present SCCAL^{+}, an extension of SCAL ${ }^{+}$to continuous state MDPs. As in [2, 16], we require the reward and transition functions to be Hölder continuous with parameters ρ_{L} and $\alpha . \mathrm{SCCAL}^{+}$is also the first implementable algorithm in continuous problem with theoretical guarantees (existing algorithms with theoretical guarantees such as UCCRL [2] cannot be implemented). The main result of the paper can be summarized as follows.

Theorem 3 (informal). For any MDP with S states, A actions and Γ next states, the regret of SCAL^{+} is bounded with high probability by $\widetilde{O}\left(\max \left\{c, r_{\max }\right\} \sqrt{\Gamma S A T}\right)$. For any "smooth" MDP with smoothness parameters ρ_{L} and α, 1-dimensional state space $\mathcal{S}=[0,1]$ and A actions, the regret of SCCAL^{+}is bounded with high probability by $\widetilde{O}\left(\max \left\{c, r_{\max }\right\} \rho_{L} \sqrt{A} T^{(\alpha+2) /(2 \alpha+2)}\right)$.

[^4]The regret bound of SCAL^{+}(resp. SCCAL ${ }^{+}$) matches the one of SCAL (resp. UCCRL). Surprisingly, the better optimism introduced by SCAL ${ }^{+}$compared to SCAL and UCRL (i.e., the exploration bonus is smaller by a factor $\sqrt{\Gamma}$) is not reflected in the final regret bound with the current statistical analysis. We isolate and discuss where the term $\sqrt{\Gamma}$ appears in the proof sketch of Sect. 3.3 Azar et al. [8], Jin et al. [9] managed to remove the $\sqrt{\Gamma}$ term in the finite-horizon setting, while recently Ortner [15] derived an algorithm achieving $O\left(\sqrt{t_{\text {mix }} S A T}\right)$ regret bound under the assumption that the true MDP is ergodic ($t_{\text {mix }}$ denotes the maximum mixing time of any policy). It remains an open question if a regret scaling with \sqrt{S} (instead of $\sqrt{\overline{\Gamma S}}$) can be achieved in the infinite-horizon case without any ergodicity assumption (infinite mixing time for example). Adapting the proof techniques of the finite-horizon setting does not seem straightforward either as (among other things) the two definitions of regret do not match and differ by a linear term.

B Planning under span constraint

In this section we introduce and analyze the problem of planning under bias span constraint, i.e., maximizing the gain among policies π satisfying $s p\left(h^{\pi}\right) \leq c$. This problem is at the core of the proposed algorithms (SCAL^{+}and SCCAL^{+}) for exploration-exploitation. Formally:

$$
\begin{equation*}
g_{c}^{*}(M):=\sup _{\pi \in \Pi_{c}(M)}\left\{g^{\pi}\right\}, \tag{8}
\end{equation*}
$$

where M is any MDP (with discrete or continuous state space) s.t. $\Pi_{c}(M):=\left\{\pi \in \Pi^{\mathrm{SR}}: s p\left(h^{\pi}\right) \leq\right.$ $\left.\left.c \wedge s p\left(g^{\pi}\right)=0\right\} \neq \emptyset\right]^{6}$ This problem is a slight variation of the bias-span constrained problem considered by [14, 2, 16], for which no known-solution is available. On the other hand, problem 8 has been widely analysed by Fruit et al. [1].

Problem 8 can be solved using ScOpt [1], a version of (relative) value iteration [10, 26], where the optimal Bellman operator is modified to return value functions with span bounded by c, and the stopping condition is tailored to return a constrained-greedy policy with near-optimal gain. Given $v \in \mathbb{R}^{S}$ and $c \geq 0$, we define the value operator $T_{c}: \mathbb{R}^{S} \rightarrow \mathbb{R}^{S}$ as

$$
T_{c} v=\Gamma_{c} L v= \begin{cases}L v(s) & \forall s \in \overline{\mathcal{S}}(c, v) \tag{9}\\ c+\min _{s}\{L v(s)\} & \forall s \in \mathcal{S} \backslash \overline{\mathcal{S}}(c, v)\end{cases}
$$

where $\overline{\mathcal{S}}(c, v)=\left\{s \in \mathcal{S} \mid L v(s) \leq \min _{s}\{L v(s)\}+c\right\}$ and Γ_{c} is the span constrain projection ("truncation") operator (see [1] App. D] for details). In other words, operator T_{c} applies a span truncation Γ_{c} to the one-step application of L, which guarantees that $s p\left(T_{c} v\right) \leq c$. Given a vector $v_{0} \in \mathbb{R}^{S}$ and a reference state \bar{s} SCOPT implements relative value iteration where L is replaced by T_{c} : $v_{n+1}=T_{c} v_{n}-T_{c} v_{n}(\bar{s}) e$. We can now state the convergence guarantees of ScOpt [see 1, Lem. 8 and Thm. 10].
Proposition 2. Given an MDP M such that 1) the associated optimal Bellman operator L is a γ-spancontraction; 2) all policies are unichain; 3) the operator T_{c} is globally feasible at any vector $v \in \mathbb{R}^{S}$ such that $\operatorname{sp}(v) \leq c$, i.e., for all $s \in \mathcal{S}, \min _{a \in \mathcal{A}}\left\{r(s, a)+p(\cdot \mid s, a)^{\top} v\right\} \leq \min _{s^{\prime}}\left\{L v\left(s^{\prime}\right)\right\}+c$. Then:
(a) Optimality equation: there exists a solution $\left(g^{+}, h^{+}\right) \in \mathbb{R} \times \mathbb{R}^{S}$ to the optimality equation $T_{c} h^{+}=h^{+}+g^{+} e$. Moreover, any solution $\left(g^{+}, h^{+}\right)$satisfies $g^{+}=g_{c}^{*}$.
(b) Convergence: for any initial vector $v_{0} \in \mathbb{R}^{S}$, SCOpt converges to a solution h^{+}of the optimality equation, and $\lim _{n \rightarrow+\infty} T_{c}^{n+1} v_{0}-T_{c}^{n} v_{0}=g^{+} e$.

We also recall that the operator T_{c} satisfies the following property as a direct consequence of Fruit et al. [1, Lem. 8].
Proposition 3 (Dominance). If there exists (g, h) satisfying $T_{c} h \geq h+g e$ then $g_{c} \geq g$.
Proof. By induction, using the monotonicity and "linearity" of $T_{c}[1$ Lemma 16 (a) \& (c)], we have that $\forall n \in \mathbb{N}, \quad\left(T_{c}\right)^{n+1} h \geq\left(T_{c}\right)^{n} h+g e$. By Prop. $2 \lim _{n \rightarrow+\infty}\left(T_{c}\right)^{n+1} h-\left(T_{c}\right)^{n} h=g_{c}$. Taking the limit when n tends to infinity in the previous inequality yields: $g_{c} \geq g$.

[^5]We finally conclude this section by formally showing that the 3 assumptions stated earlier (Prop. 1 and 2 hold for the discrete MDP \widehat{M}_{k}^{+}defined in Sec. 3.1

Proof of Prop.1. We follow the arguments of Fruit et al. [1, Sec. 6] for SCAL. We denote by \widehat{L}^{+}, \widehat{L} and L the optimal Bellman operators of $\widehat{M}_{k}^{+}, \widehat{M}_{k}$ and M^{*} respectively. Similarly, we denote by $\widehat{T}_{c}^{+}, \widehat{T}_{c}$ and T_{c} the "truncated" Bellman operators of these MDPs.

1) Contraction of \widehat{L}^{+}. The small bias in the definition of \widehat{p}_{k} ensures that the "attractive" state \bar{s} is reached with non-zero probability from any state-action pair $\left(s, a_{i}\right)$ implying that the ergodic coefficient of \widehat{M}_{k}^{+}defined as $\gamma_{k}=1-\min _{\substack{s, u \in \mathcal{S} \\ a, b \in \mathcal{A}^{+}}}\left\{\sum_{j \in \mathcal{S}} \min \left\{\widehat{p}_{k}(j \mid s, a), \widehat{p}_{k}(j \mid u, b)\right\}\right\}$ is smaller than $1-\min _{s, a}\left\{\frac{N_{k}(s, a, \bar{s})+1}{N_{k}(s, a)+1}\right\}<1$ and thus \widehat{L}^{+}is γ_{k}-contractive [10, Thm. 6.6.6].
2) \widehat{M}_{k}^{+}is unichain. By construction, the attractive state \bar{s} necessarily belongs to all recurrent classes of all policies implying that \widehat{M}_{k}^{+}is unichain (i.e., all policies are unichain).
3) Global feasibility of \widehat{T}_{c}^{+}. Let $v \in \mathbb{R}^{S}$ such that $s p(v) \leq c$ and let $\left(s^{*}, a_{i}^{*}\right) \in \mathcal{S} \times \mathcal{A}^{+}$be such that $\widehat{r}_{k}^{+}\left(s^{*}, a_{i}^{*}\right)+\widehat{p}_{k}^{+}\left(\cdot \mid s^{*}, a_{i}^{*}\right)^{\top} v=\min _{s \in \mathcal{S}}\left\{\max _{a \in \mathcal{A}^{+}}\left\{\widehat{r}_{k}^{+}(s, a)+\widehat{p}_{k}^{+}(\cdot \mid s, a)^{\top} v\right\}\right\}$. For all $\left(s, a_{2}\right) \in \mathcal{S} \times \mathcal{A}^{+}$we have:

$$
\hat{p}_{k}^{+}\left(\cdot \mid s, a_{2}\right)^{\top} v-\hat{p}_{k}^{+}\left(\cdot \mid s^{*}, a_{i}^{*}\right)^{\top} v \leq \max _{s \in \mathcal{S}}\{v(s)\}-\min _{s \in \mathcal{S}}\{v(s)\}=s p(v) \leq c
$$

and $\widehat{r}_{k}^{+}\left(s, a_{2}\right)=0 \leq \widehat{r}_{k}^{+}\left(s^{*}, a_{i}^{*}\right)$. Therefore, for all $s \in \mathcal{S}, \min _{a_{j} \in \mathcal{A}^{+}}\left\{\widehat{r}_{k}^{+}\left(s, a_{j}\right)+\widehat{p}_{k}^{+}\left(\cdot \mid s, a_{j}\right)^{\top} v\right\} \leq$ $\min _{s^{\prime}}\left\{\widehat{L}^{+} v\left(s^{\prime}\right)\right\}+c$, i.e., \widehat{T}_{c}^{+}is globally feasible at v [1, Lemma 5]. The application of Prop. 2 concludes the proof.

C Continuous state MDPs: the analysis of SCCAL^{+}

In all this section we say that a function $v: s \in \mathcal{S} \mapsto \mathbb{R}$ is piece-wise constant on \mathcal{I} when $\forall J \in \mathcal{I}, \forall s, s^{\prime} \in J$ we have $v(s)=v\left(s^{\prime}\right)$ and we denote by $v(J)$ the joint value.

C. 1 High probability bound using the exploration bonus (proof of Lem. 3)

To begin with, we introduce a slightly tighter exploration bonus than the one defined in (6). Despite being always smaller, it is of the same order of magnitude and has a slightly more complex expression. We decided to simplify it in the main body of the paper for the sake of clarity (this simplification does not change the final regret bound, but may impact the empirical performances).

$$
\begin{equation*}
b_{k}(J, a):=c \cdot \min \left\{\beta_{k}^{J a}+\rho_{L} S^{-\alpha}+\frac{1}{N_{k}(J, a)+1} ; 2\right\}+r_{\max } \cdot \min \left\{\beta_{k}^{J a}+\rho_{L} S^{-\alpha} ; 1\right\} \tag{10}
\end{equation*}
$$

where $\beta_{k}^{s a}$ is defined in Eq. 3 (with J in place of s in this case). We also recall that the terms $\bar{r}_{k}, \widehat{r}_{k}$, \bar{p}_{k} and \widehat{p}_{k} are defined in Def. 1 in the main body. Lem. 3 is a direct consequence of the following (more general) result:
Lemma 4. Consider the estimated continuous MDP \widehat{M}_{k} defined in Def. 1 For any $v: \mathcal{S} \mapsto \mathbb{R}$, define the term

$$
\Delta L_{k}(s, a, v)=\left|\bar{r}_{k}(s, a)-r(s, a)+\int_{\mathcal{S}}\left(\widehat{p}_{k}\left(s^{\prime} \mid s, a\right)-p\left(s^{\prime} \mid s, a\right)\right) v\left(s^{\prime}\right) \mathrm{d} s^{\prime}\right|
$$

and the event $F_{b}(v):=\left\{\forall k \geq 1, \forall(s, a) \in \mathcal{S} \times \mathcal{A}, b_{k}(s, a) \geq \Delta L_{k}(s, a, v)\right\}$. Then, for any v such that $s p(v) \leq c, \mathbb{P}\left(F_{b}(v)\right) \geq 1-\frac{\delta}{5}$.

Proof of Lem. 4 We introduce an intermediate $\operatorname{MDP} \widetilde{M}_{k}:=\left(\mathcal{S}, \mathcal{A}, \widetilde{r}_{k}, \widetilde{p}_{k}\right)$ (with continuous state-space) defined for all pairs $(s, a) \in \mathcal{S} \times \mathcal{A}$ by:

$$
\begin{aligned}
\widetilde{r}_{k}(s, a) & :=\frac{1}{N_{k}(I(s), a)} \sum_{x \in I(s)} N_{k}(x, a) r(x, a) \\
\widetilde{p}_{k}\left(s^{\prime} \mid s, a\right) & :=\frac{1}{N_{k}(I(s), a)} \sum_{x \in I(s)} N_{k}(x, a) p\left(s^{\prime} \mid x, a\right)
\end{aligned}
$$

\widetilde{M}_{k} can be interpreted as an approximation of M where $s \mapsto \widetilde{r}_{k}(s, a)$ and $s \mapsto \widetilde{p}_{k}\left(s^{\prime} \mid s, a\right)$ are constrained to be piece-wise constant on \mathcal{I} in a way that depends on the states visited before episode k. We then decompose $\widehat{p}_{k}-p$ and $\bar{r}_{k}-r$ as

$$
\begin{equation*}
\widehat{p}_{k}-p=\left(\widehat{p}_{k}-\bar{p}_{k}\right)+\left(\bar{p}_{k}-\widetilde{p}_{k}\right)+\left(\widetilde{p}_{k}-p\right) \text { and } \bar{r}_{k}-r=\left(\bar{r}_{k}-\widetilde{r}_{k}\right)+\left(\widetilde{r}_{k}-r\right) \tag{11}
\end{equation*}
$$

and bound all the terms separately in the next sections. To simplify the analysis, we "recenter" the function v and define $w(s):=v(s)-(\max \{v(s)\}+\min \{v(s)\}) / 2$ so that for all $s \in \mathcal{S}$, $w(s) \in[-c / 2, c / 2]$.

C.1.1 Bounding the difference between $\widetilde{r}_{k} / \widetilde{p}_{k}$ and r / p

To bound the differences $\widetilde{r}_{k}\left(s^{\prime} \mid s, a\right)-r(s, a)$ and $\int\left(\widetilde{p}_{k}\left(s^{\prime} \mid s, a\right)-p\left(s^{\prime} \mid s, a\right)\right) w\left(s^{\prime}\right) \mathrm{d} s^{\prime}$ we simply use the smoothness assumption on the reward and transition model (see Asm. 2). For all $(s, a) \in \mathcal{S} \times \mathcal{A}$ (using the triangle inequality):

$$
\begin{equation*}
\left|\widetilde{r}_{k}(s, a)-r(s, a)\right| \leq \frac{1}{N_{k}(I(s), a)} \sum_{x \in I(s)} N_{k}(x, a) \underbrace{|r(x, a)-r(s, a)|}_{\leq r_{\max } L S^{-\alpha} \text { since } x \in I(s)} \leq r_{\max } \rho_{L} S^{-\alpha} \tag{12}
\end{equation*}
$$

For the transition probability we have that (using the triangle inequality):

$$
\begin{array}{rl}
\mid \int_{\mathcal{S}}\left(\widetilde{p}_{k}\left(s^{\prime} \mid s, a\right)-p\left(s^{\prime} \mid s, a\right)\right) w & w\left(s^{\prime}\right) \mathrm{d} s^{\prime}\left|\leq c \int_{\mathcal{S}}\right| \widetilde{p}_{k}\left(s^{\prime} \mid s, a\right)-p\left(s^{\prime} \mid s, a\right) \mid \mathrm{d} s^{\prime} \\
& =\frac{c}{N_{k}(I(s), a)} \sum_{x \in I(s)} N_{k}(x, a) \int_{\mathcal{S}} \underbrace{\left|p\left(s^{\prime} \mid x, a\right)-p\left(s^{\prime} \mid s, a\right)\right|}_{\leq \rho_{L} S^{-\alpha} \text { since } x \in I(s)} \mathrm{d} s^{\prime} \tag{13}\\
& \leq c \rho_{L} S^{-\alpha}
\end{array}
$$

Note that all these inequalities hold with probability 1.

C.1.2 Bounding the difference between \widehat{p}_{k} and \bar{p}_{k}

Using the triangle inequality and the fact that $\int_{\mathcal{S}} \mathbb{1}\left(s^{\prime} \in I(\bar{s})\right) \mathrm{d} s^{\prime}=\int_{I(\bar{s})} 1 \mathrm{~d} s^{\prime}=|I(\bar{s})|=1 / S$ we have that for any $(s, a) \in \mathcal{S} \times \mathcal{A}$:

$$
\begin{align*}
\left|\int_{\mathcal{S}}\left(\widehat{p}_{k}\left(s^{\prime} \mid s, a\right)-\bar{p}_{k}\left(s^{\prime} \mid s, a\right)\right) w\left(s^{\prime}\right) \mathrm{d} s^{\prime}\right| \leq & \int_{\mathcal{S}}\left|\widehat{p}_{k}\left(s^{\prime} \mid s, a\right)-\bar{p}_{k}\left(s^{\prime} \mid s, a\right)\right| \cdot\left|w\left(s^{\prime}\right)\right| \mathrm{d} s^{\prime} \\
= & \left|\frac{N_{k}(I(s), a)}{N_{k}(I(s), a)+1}-1\right| \int_{\mathcal{S}} \bar{p}_{k}\left(s^{\prime} \mid s, a\right) \underbrace{\left|w\left(s^{\prime}\right)\right|}_{\leq c / 2} \mathrm{~d} s^{\prime} \tag{14}\\
& +S \int_{\mathcal{S}} \frac{\left|w\left(s^{\prime}\right)\right| \mathbb{1}\left(s^{\prime} \in I(\bar{s})\right)}{N_{k}(I(s), a)+1} \mathrm{~d} s^{\prime} \\
\leq & \frac{c}{N_{k}(I(s), a)+1}
\end{align*}
$$

C.1.3 Bounding the difference between $\widetilde{r}_{k} / \widetilde{p}_{k}$ and $\bar{r}_{k} / \bar{p}_{k}$

Let's consider a fixed pair $(s, a) \in \mathcal{S} \times \mathcal{A}$ and a fixed aggregated state $J \in \mathcal{I}$. Our goal is to bound the differences $\int_{\mathcal{S}}\left(\widetilde{p}_{k}\left(s^{\prime} \mid s, a\right)-\bar{p}_{k}\left(s^{\prime} \mid s, a\right)\right) w\left(s^{\prime}\right) \mathrm{d} s^{\prime}, \int_{J} \widetilde{p}_{k}\left(s^{\prime} \mid s, a\right)-\bar{p}_{k}\left(s^{\prime} \mid s, a\right) \mathrm{d} s^{\prime}$ and
$\widetilde{r}_{k}(s, a)-\bar{r}_{k}(s, a)$. Since \widetilde{p}_{k} and \widetilde{r}_{k} are in some sense the expected values of \bar{p}_{k} and \bar{r}_{k}, we would like to use concentration inequalities. In the case of a finite state space \mathcal{S}, Jaksch et al. [11, UCRL] and Fruit et al. [1, SCAL] use concentration inequalities that apply to independent random variables (r.v.). We argue that a more careful analysis is needed here since the states lie in an uncountable set. Indeed, the implicit assumption made about the RL model for UCRL and SCAL is that for each state-action pair (s, a), the rewards (respectively next states) are sampled from an infinite stack of independent and identically distributed (i.i.d.) rewards (respectively next states). More precisely, each time the agent visits (s, a), it receives a reward from the top of the stack of rewards associated to (s, a) and moves to the state on the top of the stack of next states associated to (s, a). The two samples are then withdrawn from their respective stacks (meaning that they cannot be popped again). For more details about why this is a valid model refer to [27, Section 4.4]. In the case where \mathcal{S} and \mathcal{A} are discrete sets (finite or countable), it is possible to use any concentration inequality for i.i.d. r.v. and then take a union bound over all "stacks" (s, a). When \mathcal{S} is uncountable however, the same argument cannot be used (the probability of an uncountable union of events is not even always defined). Moreover, the terms \widetilde{r}_{k} and \widetilde{p}_{k} are obtained using sampled from different states $x \in I(s)$ instead of a single state s. To overcome these technical problems, we use a variant of Doob's optional skipping [e.g., 28, Sec. 5.3, Lem. 4] and concentration inequalities for martingales (Azuma and Freedman inequalities). For the sake of completeness, the argument that we use is formalized (with detailed proofs) in App. F(Thm. [4, but it is of course not new.

For any $t \geq 0$, the σ-algebra induced by the past history of state-action pairs and rewards up to time t is denoted $\mathcal{F}_{t}:=\sigma\left(s_{1}, a_{1}, r_{1}, \ldots, s_{t}, a_{t}\right)$ where by convention $\mathcal{F}_{0}=\sigma(\emptyset)$ and $\mathcal{F}_{\infty}:=\sigma\left(\cup_{t \geq 0} \mathcal{F}_{t}\right)$. Let \mathbb{F} denote the filtration $\left(\mathcal{F}_{t}\right)_{t \geq 0}$. We define the following adapted sequences and stopping times:

1) Adapted sequences:

We consider the following stochastic processes adapted to $\mathbb{F}:\left(w\left(s_{t}\right)\right)_{t \geq 0}$ and $\left(r_{t-1}\left(s_{t-1}, a_{t-1}\right)\right)_{t \geq 0}$ (with the conventions $r_{-1}\left(s_{-1}, a_{-1}\right)=r_{0}\left(s_{0}, a_{0}\right)=r_{\infty}\left(s_{\infty}, a_{\infty}\right)=0$ and $w\left(s_{0}\right)=w\left(s_{\infty}\right)=\overline{0}$). Theses processes are bounded as $\left|w\left(s_{t}\right)\right| \leq 2 \times\|w\|_{\infty} \leq c$ and $\left|r_{t-1}\left(s_{t-1}, a_{t-1}\right)\right| \leq r_{\max }$ for all $t \geq 0$.

2) Stopping times:

We define $\tau:=\left(\tau_{l}\right)_{l>0}$ s.t. $\tau_{0}:=0$ and $\tau_{l+1}:=\inf \left\{t_{k}>t>\tau_{l}: s_{t} \in I(s), a_{t}=a\right\}$ (we omit the dependency in (s, a) in the notation τ_{l}). For all $l \geq 0$ and for all $t \geq 0, \tau_{l}:=\left\{\tau_{l}=t\right\} \in \mathcal{F}_{t}$ and so τ_{l} is a stopping time w.r.t. \mathbb{F} (see Def. 3in App. F). By definition for any $l \geq 0, \tau_{l}<\tau_{l+1}$ a.s. (i.e., τ is strictly increasing, see Lem. 9). We denote $\mathcal{\mathcal { G } _ { l }}:=\mathcal{F}_{\tau_{l+1}}$ the σ-algebra at stopping time τ_{l+1} (see Def. 4 in App. F.
All the assumptions of Thm. 4 are satisfied and we have that $\forall s, a \in \mathcal{S} \times \mathcal{A}$ (using the compact notation $N_{k}^{s a}:=N_{k}(I(s), a)$ for the sake of readibility)

$$
\begin{aligned}
& \mathbb{P}\left(\forall k \geq 1,\left|\sum_{l=1}^{N_{k}^{s a}}\left(r_{\tau_{l}}\left(s_{\tau_{l}}, a_{\tau_{l}}\right)-\mathbb{E}\left[r_{\tau_{l}}\left(s_{\tau_{l}}, a_{\tau_{l}}\right) \mid \mathcal{G}_{l-1}\right]\right)\right| \leq r_{\max } \sqrt{N_{k}^{s a} \ln \left(\frac{2 N_{k}^{s a}}{\delta}\right)}\right) \geq 1-\delta \\
& \mathbb{P}\left(\forall k \geq 1,\left|\sum_{l=1}^{N_{k}^{s a}}\left(w\left(s_{\tau_{l}+1}\right)-\mathbb{E}\left[w\left(s_{\tau_{l}+1}\right) \mid \mathcal{G}_{l-1}\right]\right)\right| \leq c \sqrt{N_{k}^{s a} \ln \left(\frac{2 N_{k}^{s a}}{\delta}\right)}\right) \geq 1-\delta
\end{aligned}
$$

We now need to relate the above sums to $\int_{\mathcal{S}}\left(\widetilde{p}_{k}\left(s^{\prime} \mid s, a\right)-\bar{p}_{k}\left(s^{\prime} \mid s, a\right)\right) w\left(s^{\prime}\right) \mathrm{d} s^{\prime}$ and $\widetilde{r}_{k}(s, a)-\bar{r}_{k}(s, a)$. By defintion of τ, we can rewrite \bar{r}_{k} and \bar{p}_{k} as follows:

$$
\begin{aligned}
\bar{r}_{k}(s, a) & =\frac{1}{N_{k}(I(s), a)} \sum_{l=1}^{N_{k}(I(s), a)} r_{\tau_{l}}\left(s_{\tau_{l}}, a_{\tau_{l}}\right) \\
\int_{J} \bar{p}_{k}\left(s^{\prime} \mid s, a\right) \mathrm{d} s^{\prime} & =\frac{1}{N_{k}(I(s), a)} \sum_{l=1}^{N_{k}(I(s), a)} \mathbb{1}\left(s_{\tau_{l}+1} \in J\right)
\end{aligned}
$$

It is also easy to verify that the following holds: $\mathbb{E}\left[w\left(s_{\tau_{l}+1}\right) \mid \mathcal{G}_{l-1}\right]=\int_{\mathcal{S}} p\left(s^{\prime} \mid s_{\tau_{l}}, a_{\tau_{l}}\right) w\left(s^{\prime}\right) \mathrm{d} s^{\prime}$, and $\mathbb{E}\left[r_{\tau_{l}}\left(s_{\tau_{l}}, a_{\tau_{l}}\right) \mid \mathcal{G}_{l-1}\right]=r\left(s_{\tau_{l}}, a_{\tau_{l}}\right)$ (see Lem. 11 in App. Ffor a formal proof). As a result, we can
rewrite \widetilde{r}_{k} and \widetilde{p}_{k} as follows:

$$
\begin{gathered}
\widetilde{r}_{k}(s, a)=\frac{1}{N_{k}(I(s), a)} \sum_{x \in I(s)} N_{k}(x, a) r(x, a)=\frac{1}{N_{k}(I(s), a)} \sum_{l=1}^{N_{k}(I(s), a)} \mathbb{E}\left[r_{\tau_{l}}\left(s_{\tau_{l}}, a_{\tau_{l}}\right) \mid \mathcal{G}_{l-1}\right] \\
\text { and } \int_{\mathcal{S}} \widetilde{p}_{k}\left(s^{\prime} \mid s, a\right) w\left(s^{\prime}\right) \mathrm{d} s^{\prime}
\end{gathered}=\frac{1}{N_{k}(I(s), a)} \sum_{x \in I(s)} N_{k}(x, a) \int_{\mathcal{S}} p\left(s^{\prime} \mid x, a\right) w\left(s^{\prime}\right) \mathrm{d} s^{\prime} \quad 1 \sum_{k}^{N_{k}(I(s), a)} \mathbb{E}\left[w\left(s_{\tau_{l}+1}\right) \mid \mathcal{G}_{l-1}\right] .
$$

Then, we have that $\forall(s, a) \in \mathcal{S} \times \mathcal{A}$

$$
\begin{align*}
& \mathbb{P}\left(\forall k \geq 1,\left|\bar{r}_{k}(s, a)-\widetilde{r}_{k}(s, a)\right| \leq r_{\max } \beta_{k}^{s a}\right) \geq 1-\frac{\delta}{10 S A} \tag{15}\\
& \mathbb{P}\left(\forall k \geq 1,\left|\int_{\mathcal{S}}\left(\bar{p}_{k}\left(s^{\prime} \mid s, a\right)-\widetilde{p}_{k}\left(s^{\prime} \mid s, a\right)\right) w\left(s^{\prime}\right) \mathrm{d} s^{\prime}\right| \leq c \beta_{k}^{s a}\right) \geq 1-\frac{\delta}{10 S A} \tag{16}
\end{align*}
$$

To conclude, we take a union bound over all possible $(I(s), a) \in \mathcal{I} \times \mathcal{A}$ and $J \in \mathcal{I}$ (and over both inequalities 15 and 16). Note that we only need to take a union bound over $I(s) \in \mathcal{I}$ (and not \mathcal{S}) because $s \mapsto \widetilde{p}_{k}(\cdot \mid s, a)$ and $s \mapsto \widetilde{r}_{k}(s, a)$ are piecewise constant on \mathcal{I} (and similarly for \bar{p}_{k} and \bar{r}_{k}).

Remark. Note that for $N_{k}(I(s), a)=0$ we have that $\beta_{k}^{s a} \geq 1$, thus the bound holds with probability one.

C.1.4 Gathering all the terms

We first notice that $\int_{\mathcal{S}}\left(\widehat{p}_{k}\left(s^{\prime} \mid s, a\right)-p\left(s^{\prime} \mid s, a\right)\right) v\left(s^{\prime}\right) \mathrm{d} s^{\prime}=\int_{\mathcal{S}}\left(\widehat{p}_{k}\left(s^{\prime} \mid s, a\right)-p\left(s^{\prime} \mid s, a\right)\right) w\left(s^{\prime}\right) \mathrm{d} s^{\prime}$ since w and v are equal up to a constant shift and $\int_{\mathcal{S}} \widehat{p}_{k}\left(s^{\prime} \mid s, a\right) \mathrm{d} s^{\prime}=\int_{\mathcal{S}} p\left(s^{\prime} \mid s, a\right) \mathrm{d} s^{\prime}=1$. Gathering equations (13), (14) and (16) we have that with probability at least $1-\frac{\delta}{12}, \forall s, a, k$,

$$
\begin{equation*}
\left|\int_{\mathcal{S}}\left(\widehat{p}_{k}\left(s^{\prime} \mid s, a\right)-p\left(s^{\prime} \mid s, a\right)\right) v\left(s^{\prime}\right) \mathrm{d} s^{\prime}\right| \leq c \cdot \min \left\{\beta_{k}^{s a}+\rho_{L} S^{-\alpha}+\frac{1}{N_{k}(I(s), a)+1} ; 2\right\} \tag{17}
\end{equation*}
$$

Gathering equations (15) and (12) we have that with probability at least $1-\frac{\delta}{12}$

$$
\begin{equation*}
\forall s, a, k, \quad\left|\bar{r}_{k}(s, a)-r(s, a)\right| \leq r_{\max } \cdot \min \left\{\beta_{k}^{s a}+\rho_{L} S^{-\alpha} ; 1\right\} \tag{18}
\end{equation*}
$$

The lemma follows by applying the triangular inequality, a union bound (to have (18) and (17) to hold simultaneously) and by definition of the exploration bonus.

C. 2 Optimism (Proof of Lem. 2 and 3)

Let $\widehat{g}_{k}^{a g+}:=g_{c}^{*}\left(\widehat{M}_{k}^{a g+}\right)$ denote the solution of optimisation problem (4) on MDP $\widehat{M}_{k}^{a g+}$ (defined in Sec. 47. In this section we prove that:
Lemma 5 (see Lem. 3). Under event $F_{b}\left(h^{*}\right)$ (Lem. 4), for any episode $k \geq 1, \widehat{g}_{k}^{\text {ag+ }} \geq g^{*}$.
$\widehat{M}_{k}^{a g+}$ only has a finite number of states while the true MDP M^{*} has an uncountable state-space. Thus, it is difficult to compare directly $\widehat{g}_{k}^{a g+}$ with g^{*}. To overcome this difficulty, we first compare g^{*} with the gain of \widehat{M}_{k} and then compare the latter to $\widehat{g}_{k}^{a g+}$.

1. Optimism of \widehat{M}_{k}. Let \widehat{g}_{k} denote the solution of optimisation problem (4) on \widehat{M}_{k}. To prove that $\widehat{g}_{k} \geq g^{*}$ we can use Prop. 3 which -as explained in the main body of the paper- only requires to show that $\widehat{L}_{k} h^{*} \geq L h^{*}$ where \widehat{L}_{k} is the optimal Bellman operator of \widehat{M}_{k}. Under event $F_{b}\left(h^{*}\right)$,

$$
\begin{aligned}
\forall s \in \mathcal{S}, \widehat{L}_{k} h^{*}(s) & :=\max _{a \in \mathcal{A}}\left\{\bar{r}_{k}(s, a)+b_{k}(s, a)+\int_{\mathcal{S}} \widehat{p}_{k}\left(s^{\prime} \mid s, a\right) h^{*}\left(s^{\prime}\right) \mathrm{d} s^{\prime}\right\} \\
& \geq \max _{a \in \mathcal{A}}\left\{r(s, a)+\int_{\mathcal{S}} p\left(s^{\prime} \mid s, a\right) h^{*}\left(s^{\prime}\right) \mathrm{d} s^{\prime}\right\}=L h^{*}(s)
\end{aligned}
$$

Therefore, $\widehat{g}_{k} \geq g^{*}$.
2. Relationship between \widehat{M}_{k} and $\widehat{M}_{k}^{a g+}$ (proof of Lem. 2). We now show that $\widehat{g}_{k}^{a g+}=\widehat{g}_{k}$. Consider a piecewise-constant function v_{0} on \mathcal{S} (e.g., $v_{0}=0$) and a vector $u_{0} \in \mathbb{R}^{S}$ satisfying $u_{0}(J)=v_{0}(J)$ for all $J \in \mathcal{I}$. We define the sequences $v_{n+1}:=\widehat{T}_{c} v_{n}$ and $u_{n+1}:=\widehat{T}_{c}^{a g+} u_{n}$. We show by induction that $u_{n}(J)=v_{n}(J)$ for all $n \geq 0$ and for all $J \in \mathcal{I}$. By definition it is true for $n=0$ and for all $n \geq 0$:

$$
\begin{align*}
\int_{s \in \mathcal{S}} \widehat{p}_{k}\left(s^{\prime} \mid s, a\right) v_{n}\left(s^{\prime}\right) \mathrm{d} s^{\prime} & =\sum_{J \in \mathcal{I}} \int_{J} \widehat{p}_{k}\left(s^{\prime} \mid s, a\right) v_{n}\left(s^{\prime}\right) \mathrm{d} s^{\prime} \\
& =\sum_{J \in \mathcal{I}} v_{n}(J) \int_{J} \widehat{p}_{k}\left(s^{\prime} \mid s, a\right) \mathrm{d} s^{\prime}=\sum_{J \in \mathcal{I}} u_{n}(J) \widehat{p}_{k}^{a g}(J \mid I(s), a) \tag{19}
\end{align*}
$$

where the last equality follows from (7) and the induction hypothesis. In addition $\widehat{r}_{k}(s, a)$ is also piecewise-constant on \mathcal{I} and $\widehat{r}_{k}(s, a)=\widehat{r}_{k}^{a g}(I(s), a)$ for all $s \in \mathcal{S}$. Therefore, we have that $\widehat{L}_{k}^{a g} u_{n}(I(s))=\widehat{L}_{k} v_{n}(s)$ for any $s \in \mathcal{S}$. Finally, the augmentation is not impacting the optimal Bellman operator (i.e., for any $v, \widehat{L}_{k}^{a g+} v=\widehat{L}_{k}^{a g} v$) so $\widehat{L}_{k}^{a g+} u_{n}(I(s))=\widehat{L}_{k} v_{n}(s)$ and consequently $\widehat{T}_{c}^{a g+} u_{n}(I(s))=\widehat{T}_{c} v_{n}(s)$ for any $s \in \mathcal{S}$. This shows that $v_{n+1}(J)=u_{n+1}(J)$ for all $J \in \mathcal{I}$ which concludes the proof by induction.

As shown by Fruit et al. [1, Theorem 10], $\lim _{n \rightarrow+\infty} v_{n+1}(J)-v_{n}(J)=\widehat{g}_{k}^{a g+}$ and $\lim _{n \rightarrow+\infty} u_{n+1}(J)-u_{n}(J)=\widehat{g}_{k}$ so that, under event $F_{b}, \widehat{g}_{k}^{a g+}=\widehat{g}_{k} \geq g^{*}$.

C. 3 Relaxation of the Exploration Bonus

In this section we introduce a new bonus $d_{k}(J, a)$ that will be used in the regret analysis:

$$
\begin{equation*}
d_{k}(J, a):=c \cdot \min \left\{\phi_{k}^{J a}+\rho_{L} S^{-\alpha}+\frac{1}{N_{k}(J, a)+1} ; 2\right\}+r_{\max } \cdot \min \left\{\beta_{k}^{J a}+\rho_{L} S^{-\alpha} ; 1\right\} \tag{20}
\end{equation*}
$$

with $\beta_{k}^{J a}$ defined in Eq. 3 (with J in place of s) and

$$
\begin{equation*}
\phi_{k}^{J a}=2 \sqrt{\frac{S \ln \left(\frac{40 S^{2} A N_{k}^{+}(J, a)}{\delta}\right)}{N_{k}^{+}(J, a)}}+\frac{4 S \ln \left(\frac{40 S^{2} A N_{k}^{+}(J, a)}{\delta}\right)}{N_{k}^{+}(J, a)} \geq \beta_{p, k}^{J a} \tag{21}
\end{equation*}
$$

with $N_{k}^{+}(J, a):=\max \left\{1, N_{k}(J, a)\right\}$. Note that d_{k} is a looser exploration bonus, i.e., $d_{k}(s, a) \geq$ $b_{k}(J, a)$, for all J, a, k. However, it allows us to extend Lem. 4 instead of showing that for all v such that $s p(v) \leq c, F_{b}(v)$ holds with high probability, we show that $\bigcap_{s p(v) \leq c} F_{b}(v)$ holds with high probability (when b_{k} is replaced by d_{k} and with the additional restriction that all the functions v should be piece-wise constant).
Lemma 6. Consider the estimated continuous MDP \widehat{M}_{k} defined in Def. $\left\lceil\right.$ and the term $\Delta L_{k}(s, a, v)$ defined in Lem. 4 Let's define the event
$F_{d}:=\left\{\forall v\right.$ piece-wise constant s.t. $\left.s p(v) \leq c, \forall k \geq 1, \forall(s, a) \in \mathcal{S} \times \mathcal{A}, d_{k}(s, a) \geq \Delta L_{k}(s, a, v)\right\}$
Then, $\mathbb{P}\left(F_{d}\right) \geq 1-\frac{\delta}{5}$.
Proof of Lem. 6 The proof follows the same steps as the proof of Lem. 4 and we do not repeat the derivation of inequality (18). Similarly to Eq. 13 , for all $(s, a) \in \mathcal{S} \times \mathcal{A}$:

$$
\begin{align*}
& \sum_{J \in \mathcal{I}} \mid \int_{J}\left(\widetilde{p}_{k}\left(s^{\prime} \mid s, a\right)-p\right.\left.\left.p s^{\prime} \mid s, a\right)\right) \mathrm{d} s^{\prime}\left|\leq \sum_{J \in \mathcal{I}} \int_{J}\right| \widetilde{p}_{k}\left(s^{\prime} \mid s, a\right)-p\left(s^{\prime} \mid s, a\right) \mid \mathrm{d} s^{\prime} \\
&=\frac{1}{N_{k}(I(s), a)} \sum_{x \in I(s)} N_{k}(x, a) \int_{\mathcal{S}} \underbrace{\left|p\left(s^{\prime} \mid x, a\right)-p\left(s^{\prime} \mid s, a\right)\right|}_{\leq \rho_{L} S^{-\alpha} \text { since } x, s \in I(s)} \mathrm{d} s^{\prime} \tag{22}\\
& \leq \rho_{L} S^{-\alpha}
\end{align*}
$$

and similarly to Eq. 14 .

$$
\begin{equation*}
\sum_{J \in \mathcal{I}}\left|\int_{J}\left(\widehat{p}_{k}\left(s^{\prime} \mid s, a\right)-\bar{p}_{k}\left(s^{\prime} \mid s, a\right)\right) \mathrm{d} s^{\prime}\right| \leq \int_{\mathcal{S}}\left|\widehat{p}_{k}\left(s^{\prime} \mid s, a\right)-\bar{p}_{k}\left(s^{\prime} \mid s, a\right)\right| \mathrm{d} s^{\prime} \leq \frac{1}{N_{k}(I(s), a)+1} \tag{23}
\end{equation*}
$$

Let's consider the same sequence of stopping times τ as in App.C.1.3 and the additional adapted sequence $\left(\mathbb{1}\left(s_{t} \in J\right)\right)_{t>0}$ (with the convention $\left.\mathbb{1}\left(s_{0} \in J\right)=\mathbb{1}\left(s_{\infty} \in J\right)=0\right)$. This process is bounded as $\left|\mathbb{1}\left(s_{t} \in J\right)\right| \leq 1$. Using again Thm. 4 , we can state that $\forall s, a, J \in \mathcal{S} \times \mathcal{A} \times \mathcal{I}$

$$
\begin{array}{r}
\mathbb{P}\left(\forall k \geq 1,\left|\sum_{l=1}^{N_{k}^{s a}}\left(\mathbb{1}\left(s_{\tau_{l}+1} \in J\right)-\mathbb{E}\left[\mathbb{1}\left(s_{\tau_{l}+1} \in J\right) \mid \mathcal{G}_{l-1}\right]\right)\right|\right. \tag{24}\\
\left.\leq 2 \sqrt{V_{k}(J) \ln \left(\frac{4 N_{k}^{s a}}{\delta}\right)}+4 \ln \left(\frac{4 N_{k}^{s a}}{\delta}\right)\right) \geq 1-\delta
\end{array}
$$

where $V_{k}(J):=\sum_{l=1}^{N_{k}^{s a}} \mathbb{V}\left(\mathbb{1}\left(s_{\tau_{l}+1} \in J\right) \mid \mathcal{G}_{l-1}\right)$. We now need to relate $\int_{J} \widetilde{p}_{k}\left(s^{\prime} \mid s, a\right)-$ $\bar{p}_{k}\left(s^{\prime} \mid s, a\right) \mathrm{d} s^{\prime}$ to the above sum and to provide an explicit formula for $V_{k}(J)$. By defintion of τ, we can rewrite \bar{p}_{k} as follows:

$$
\int_{J} \bar{p}_{k}\left(s^{\prime} \mid s, a\right) \mathrm{d} s^{\prime}=\frac{1}{N_{k}(I(s), a)} \sum_{l=1}^{N_{k}(I(s), a)} \mathbb{1}\left(s_{\tau_{l}+1} \in J\right)
$$

It is also easy to verify that $\mathbb{E}\left[\mathbb{1}\left(s_{\tau_{l}+1} \in J\right) \mid \mathcal{G}_{l-1}\right]=\int_{J} p\left(s^{\prime} \mid s_{\tau_{l}}, a_{\tau_{l}}\right) \mathrm{d} s^{\prime}$ (see Lem. 11 in App. F for a formal proof). As a result, we can rewrite \widetilde{p}_{k} as follows:

$$
\int_{J} \widetilde{p}_{k}\left(s^{\prime} \mid s, a\right) \mathrm{d} s^{\prime}=\frac{1}{N_{k}(I(s), a)} \sum_{l=1}^{N_{k}(I(s), a)} \mathbb{E}\left[\mathbb{1}\left(s_{\tau_{l}+1} \in J\right) \mid \mathcal{G}_{l-1}\right]
$$

We can also give a more explicit expression for V_{k} :

$$
\begin{aligned}
\mathbb{V}\left(\mathbb{1}\left(s_{\tau_{l}+1} \in J\right) \mid \mathcal{G}_{l-1}\right) & :=\mathbb{E}[\underbrace{\mathbb{1}\left(s_{\tau_{l}+1} \in J\right)^{2}}_{=\mathbb{1}\left(s_{\tau_{l}+1} \in J\right)} \mid \mathcal{G}_{l-1}]-\mathbb{E}\left[\mathbb{1}\left(s_{\tau_{l}+1} \in J\right) \mid \mathcal{G}_{l-1}\right]^{2} \\
& =\int_{J} p\left(s^{\prime} \mid s_{\tau_{l}}, a_{\tau_{l}}\right) \mathrm{d} s^{\prime}-\left(\int_{J} p\left(s^{\prime} \mid s_{\tau_{l}}, a_{\tau_{l}}\right) \mathrm{d} s^{\prime}\right)^{2}
\end{aligned}
$$

implying:
$V_{k}(J)=\sum_{l=1}^{N_{k}(I(s), a)} \underbrace{\left(1-\int_{J} p\left(s^{\prime} \mid s_{\tau_{l}}, a_{\tau_{l}}\right) \mathrm{d} s^{\prime}\right)}_{\leq 1} \underbrace{\int_{J} p\left(s^{\prime} \mid s_{\tau_{l}}, a_{\tau_{l}}\right) \mathrm{d} s^{\prime}}_{\geq 0} \leq \sum_{x \in I(s)} N_{k}(x, a) \int_{J} p\left(s^{\prime} \mid x, a\right) \mathrm{d} s^{\prime}$
Using Cauchy-Scwartz inequality (recall that $|\mathcal{I}|=S$)

$$
\sum_{J \in \mathcal{I}} \sqrt{V_{k}(J)} \leq \sqrt{S \sum_{J \in \mathcal{I}} V_{k}(J)} \leq \sqrt{S \sum_{x \in I(s)} N_{k}(x, a) \sum_{J \in \mathcal{I}} \int_{J} p\left(s^{\prime} \mid x, a\right) \mathrm{d} s^{\prime}}=\sqrt{S N_{k}(I(s), a)}
$$

Then, we have that $\forall(s, a) \in \mathcal{S} \times \mathcal{A}$ (the inequalities remain valid after replacing N_{k} with N_{k}^{+})

$$
\begin{equation*}
\mathbb{P}\left(\forall k \geq 1, \sum_{J \in \mathcal{I}}\left|\int_{J} \bar{p}_{k}\left(s^{\prime} \mid s, a\right)-\widetilde{p}_{k}\left(s^{\prime} \mid s, a\right) \mathrm{d} s^{\prime}\right| \leq \phi_{k}^{I(s) a}\right) \geq 1-\frac{\delta}{10 S A} \tag{25}
\end{equation*}
$$

where we took a union bound over and $J \in \mathcal{I}$. As in Sec.C.1.3, we can take a union bound over all possible $(I(s), a) \in \mathcal{I} \times \mathcal{A}$.
Let v be a piecewise constant function on \mathcal{I} s.t. $s p(v) \leq c$ and define $w(s):=v(s)-$ $(\inf \{v(s)\}+\sup \{v(s)\}) / 2 . \quad w$ is also piecewise constant on \mathcal{I} and for all $J \in \mathcal{I}, w(J) \in$
$[-c / 2, c / 2]$. Gathering equations (25], 22] and (23) we have with probability at least $1-\frac{\delta}{12}$ that $\forall s, a, k$ and for all v piece-wise constant on \mathcal{I} such that $s p(v) \leq c$:

$$
\begin{align*}
\sum_{J \in \mathcal{I}}\left|\int_{J}\left(\widehat{p}_{k}\left(s^{\prime} \mid s, a\right)-p\left(s^{\prime} \mid s, a\right)\right) v\left(s^{\prime}\right) \mathrm{d} s^{\prime}\right| & =\sum_{J \in \mathcal{I}}\left|w(J) \int_{J}\left(\widehat{p}_{k}\left(s^{\prime} \mid s, a\right)-p\left(s^{\prime} \mid s, a\right)\right) \mathrm{d} s^{\prime}\right| \\
& \leq \frac{c}{2} \sum_{J \in \mathcal{I}}\left|\int_{J}\left(\widehat{p}_{k}\left(s^{\prime} \mid s, a\right)-p\left(s^{\prime} \mid s, a\right)\right) \mathrm{d} s^{\prime}\right| \\
& \leq c\left(\phi_{k}^{I(s) a}+\rho_{L} S^{-\alpha}+\frac{1}{N_{k}(I(s), a)+1}\right) \tag{26}
\end{align*}
$$

Note also that $\sum_{J \in \mathcal{I}}\left|\int_{J}\left(\widehat{p}_{k}\left(s^{\prime} \mid s, a\right)-p\left(s^{\prime} \mid s, a\right)\right) \mathrm{d} s^{\prime}\right| \leq 2$ so that another (trivial) bound is $2 c$. The lemma follows by application of triangular inequality, union bound (to have (18) and (26) to hold simultaneously) and by definition of the exploration bonus $d_{k}(s, a)$.

C. 4 Regret Proof of SCCAL^{+}(Proof of Thm. 2)

In this section, we provide a complete proof for the regret bound of SCCAL ${ }^{+}$.
The arguments used in the proof of the following lemma will be used several times in the rest of the regret proof (we will not repeat these arguments for the sake of brevity). We define the episode at time t as $k_{t}:=\sup \left\{k \geq 1: t \geq t_{k}\right\}$. Then,
Lemma 7. With probability at least $1-\frac{\delta}{5}$

$$
\forall T \geq 1, \sum_{t=1}^{T} r\left(s_{t}, a_{t}\right) \geq \sum_{t=1}^{T} \sum_{a \in \mathcal{A}} \pi_{k_{t}}\left(s_{t}, a\right) r\left(s_{t}, a\right)+2 r_{\max } \sqrt{T \ln \left(\frac{5 T}{\delta}\right)}
$$

Proof. For any $t \geq 0$, the σ-algebra induced by the past history of state-action pairs and rewards up to time t is denoted $\mathcal{F}_{t}:=\sigma\left(s_{1}, a_{1}, r_{1}, \ldots, s_{t}, a_{t}, s_{t+1}\right)$ where by convention $\mathcal{F}_{0}=\sigma(\emptyset)$ and $\mathcal{F}_{\infty}:=$ $\sigma\left(\cup_{t \geq 0} \mathcal{F}_{t}\right)$ (not that unlike in App. C.1.3 we include s_{t+1} in the definition of \mathcal{F}_{t}). Let's consider the stochastic process $X_{t}=r_{t}\left(s_{t}, a_{t}\right)-\sum_{a \in \mathcal{A}} \pi_{k_{t}}\left(s_{t}, a\right) r\left(s_{t}, a\right)$. The term $\sum_{a \in \mathcal{A}} r\left(s_{t}, a\right) \pi_{k_{t}}\left(s_{t}, a\right)$ is \mathcal{F}_{t-1}-measurable and moreover

$$
\mathbb{E}\left[r_{t}\left(s_{t}, a_{t}\right) \mid \mathcal{F}_{t-1}\right]=\sum_{a \in \mathcal{A}} \pi_{k_{t}}\left(s_{t}, a\right) r\left(s_{t}, a\right)
$$

so that $\mathbb{E}\left[X_{t} \mid \mathcal{F}_{t-1}\right]=0$. Since in addition $\left|X_{t}\right| \leq r_{\max },\left(X_{t}, \mathcal{F}_{t}\right)_{t \geq 1}$ is a Martingale Difference Sequence (MDS) and we can apply Azuma's inequality (see for example Jaksch et al. [11, Lemma 10]):

$$
\begin{equation*}
\mathbb{P}\left(\sum_{t=1}^{T} r_{t}\left(s_{t}, a_{t}\right) \leq \sum_{t=1}^{T} \sum_{a \in \mathcal{A}} \pi_{k_{t}}\left(s_{t}, a\right) r\left(s_{t}, a\right)-r_{\max } \sqrt{4 T \ln \left(\frac{5 T}{\delta}\right)}\right) \leq\left(\frac{\delta}{5 T}\right)^{2} \leq \frac{\delta}{20 T^{2}} \tag{27}
\end{equation*}
$$

The lemma follows by taking a union bound over all possible values of $T \geq 1$ and noticing that $1-\sum_{T=1}^{+\infty} \frac{\delta}{20 T^{2}}=1-\frac{2 \pi^{2} \delta}{120} \geq 1-\frac{\delta}{5}$.

Defining $\Delta_{k}=\sum_{s \in \mathcal{S}} \nu_{k}(s)\left(g^{*}-\sum_{a \in \mathcal{A}_{s_{t}}} r(s, a) \pi_{k}(s, a)\right)$ and using Lem. 7 it holds with probability at least $1-\frac{\delta}{5}$ that: $\Delta\left(\mathrm{SCAL}^{+}, T\right) \leq \sum_{k=1}^{k_{T}} \Delta_{k}+2 r_{\max } \sqrt{T \ln \left(\frac{5 T}{\delta}\right)}$. Note that $\nu_{k}(s)$ is the total number of observation of state s in episode k and is well-defined for s lying in $[0,1]$. Finally, recall that for any subset $I \subseteq \mathcal{S}$, the sum $\sum_{s \in I} u_{s}$ is also well-defined as long as the collection $\left(u_{s}\right)_{s \in I}$ contains only a finite number of non-zero elements.

A In this section we will abuse notation and write $p(\cdot \mid s, a)^{\top} v=\int_{\mathcal{S}} p\left(s^{\prime} \mid s, a\right) v\left(s^{\prime}\right) \mathrm{d} s^{\prime}$ for any probability density function p defined on $\mathcal{S}=[0,1]$.

C.4.1 Optimism and Bellman Equation

From now on we assume that $F_{b}\left(h^{*}\right) \cap F_{d}$ hold (see Lem. 4 and 6). Denote by g_{k} and h_{k} the gain and bias returned by SCOpt. By definition, $g_{k}:=1 / 2 \cdot\left(\max \left\{\widehat{T}_{c}^{+} h_{k}-h_{k}\right\}+\min \left\{\widehat{T}_{c}^{+} h_{k}-h_{k}\right\}\right)$. The stopping condition of SCOPT [see 1] and Lem. 5 ensure that (since $F_{b}\left(h^{*}\right)$ holds)

$$
g_{k} \geq g_{c}^{*}\left(\widehat{M}_{k}^{a g+}\right)-\frac{r_{\max }}{t_{k}} \overbrace{\geq}^{\text {Lem.5] }} g^{*}-\frac{r_{\max }}{t_{k}}
$$

implying

$$
\begin{equation*}
\Delta_{k} \leq r_{\max } \sum_{s \in \mathcal{S}} \frac{\nu_{k}(s)}{t_{k}}+\sum_{s \in \mathcal{S}} \nu_{k}(s)(\underbrace{g_{k}-\sum_{a \in \mathcal{A}_{s}} r(s, a) \pi_{k}(s, a)}_{:=\Delta_{k}^{\prime}(s)}) \tag{28}
\end{equation*}
$$

Note that we can associate a continuous piece-wise constant function $u_{k}: \mathcal{S} \mapsto \mathbb{R}$ to the discrete vector $h_{k} \in \mathbb{R}^{S}: u_{k}(s):=h_{k}(I(s)), \forall s \in \mathcal{S}$. Since event F_{d} holds,

$$
-r(s, a) \leq d_{k}(s, a)-\bar{r}_{k}(s, a)+\left(p(\cdot \mid s, a)-\widehat{p}_{k}(\cdot \mid s, a)\right)^{\top} u_{k} .
$$

Note that we cannot replace d_{k} by b_{k} (and invoke event $F_{b}\left(u_{k}\right)$ instead of F_{d}) since u_{k} is correlated with \widehat{p}_{k}. By definition $\bar{r}_{k}(s, a)=\bar{r}_{k}^{a g}(I(s), a)=\widehat{r}_{k}(s, a)-b_{k}(s, a)$ and therefore,

$$
\begin{align*}
\Delta_{k}^{\prime}(s) \leq & g_{k}-\sum_{a \in \mathcal{A}_{s}} \pi_{k}(s, a)(\underbrace{\widehat{r}_{k}(s, a)}_{:=\widehat{r}_{k}^{a g}(I(s), a)}+\widehat{p}_{k}(\cdot \mid s, a)^{\top} u_{k}) \tag{29}\\
& +\sum_{a \in \mathcal{A}_{s}} \pi_{k}(s, a)(\underbrace{b_{k}(s, a)}_{:=b_{k}(I(s), a)}+d_{k}(s, a)+p(\cdot \mid s, a)^{\top} u_{k})
\end{align*}
$$

A direct consequence of the stopping condition used by SCOpt (see Thm. 18 of Fruit et al. [1]) is that: $\forall J \in \mathcal{I}$,

$$
\begin{equation*}
\left|g_{k}+h_{k}(J)-\sum_{a_{i} \in \mathcal{A} \times\{1,2\}} \pi_{k}\left(J, a_{i}\right)\left(\widehat{r}_{k}^{a g+}\left(J, a_{i}\right)-\widehat{p}_{k}^{a g+}\left(\cdot \mid J, a_{i}\right)^{\mathrm{\top}} h_{k}\right)\right| \leq \frac{r_{\max }}{t_{k}} \tag{30}
\end{equation*}
$$

Recall that by definition: $\pi_{k}(J, a)=\pi_{k}\left(J, a_{1}\right)+\pi_{k}\left(J, a_{2}\right), \widehat{r}_{k}^{a g+}\left(J, a_{i}\right) \leq \widehat{r}_{k}^{a g}(J, a)$ (since we have $\widehat{r}_{k}^{a g+}\left(J, a_{1}\right)=\widehat{r}_{k}^{a g}(J, a)$ and $\left.\widehat{r}_{k}^{a g+}\left(J, a_{2}\right)=0\right)$ and $\widehat{p}_{k}^{a g}(\cdot \mid J, a)=\widehat{p}_{k}^{a g+}\left(\cdot \mid J, a_{i}\right)$. We can thus write:

$$
\begin{align*}
& \sum_{a \in \mathcal{A}} \widehat{r}_{k}^{a g}(J, a) \pi_{k}(J, a)=\sum_{a \in \mathcal{A}} \sum_{i \in\{1,2\}} \widehat{r}_{k}^{a g}(J, a) \pi_{k}\left(J, a_{i}\right) \geq \sum_{a_{i} \in \mathcal{A} \times\{1,2\}} \widehat{r}_{k}^{a g+}\left(J, a_{i}\right) \pi_{k}\left(J, a_{i}\right) \tag{31}\\
& \text { and } \sum_{a \in \mathcal{A}} \pi_{k}(s, a) \widehat{p}_{k}^{a g}(\cdot \mid J, a)=\sum_{a \in \mathcal{A} \times\{1,2\}} \pi_{k}\left(J, a_{i}\right) \widehat{p}_{k}^{a g+}\left(\cdot \mid J, a_{i}\right)
\end{align*}
$$

As in (19), we can easily show that $\widehat{p}_{k}(\cdot \mid s, a)^{\top} u_{k}=\widehat{p}_{k}^{a g}(\cdot \mid s, a)^{\top} h_{k}$. Plugging the two inequalities of (31) into (30), the fact that $u_{k}(s)=h_{k}(I(s)), \widehat{r}_{k}(s, a)=\widehat{r}_{k}^{a g}(I(s), a)$, and $\pi_{k}(s, a)=$ $\pi_{k}(I(s), a)$, we obtain:

$$
\begin{equation*}
\forall s \in \mathcal{S}, \quad g_{k}-\sum_{a \in \mathcal{A}} \pi_{k}(s, a)\left(\widehat{r}_{k}(s, a)+\widehat{p}_{k}(\cdot \mid s, a)^{\top} u_{k}\right) \leq-u_{k}(s)+\frac{r_{\mathrm{max}}}{t_{k}} \tag{32}
\end{equation*}
$$

Combining (32) with (29) we obtain

$$
\begin{equation*}
\Delta_{k}^{\prime}(s) \leq \sum_{a \in \mathcal{A}_{s}} \pi_{k}(s, a)(d_{k}(s, a)+\underbrace{b_{k}(s, a)}_{\leq d_{k}(s, a)}+p(\cdot \mid s, a)^{\top} u_{k})-u_{k}(s)+\frac{r_{\max }}{t_{k}} \tag{33}
\end{equation*}
$$

Note that $d_{k}(s, a) \geq b_{k}(s, a)$ for any $(s, a) \in \mathcal{S} \times \mathcal{A}$ since the term $\phi_{k}^{I a}$ (see Eq. 21 contains a \sqrt{S} dependence that is not present in $\beta_{k}^{I a}$. Since the dominant term is given by $d_{k}(s, a)$, we will consider
the following (loose) upper-bound $d_{k}(s, a)+b_{k}(s, a) \leq 2 d_{k}(s, a)$ in the remaining of the proof. Gathering (28) and (33) we can now state that

$$
\begin{array}{r}
\Delta_{k} \leq \underbrace{\sum_{s} \nu_{k}(s)\left(\left(\sum_{a} \pi_{k}(s, a) p(\cdot \mid s, a)^{\top} w_{k}\right)-w_{k}(s)\right)}_{:=\Delta_{k}^{p}} \tag{34}\\
+2 \sum_{s, a} \nu_{k}(s) \pi_{k}(s, a) d_{k}(s, a)+2 r_{\max } \sum_{s \in \mathcal{S}} \frac{\nu_{k}(s)}{t_{k}}
\end{array}
$$

where $w_{k}=u_{k}-\left(\min _{s}\left\{u_{k}(s)\right\}+\max _{s}\left\{u_{k}(s)\right\}\right) / 2$ is obtained by "recentering" u_{k} around 0 so that $\left\|w_{k}\right\|_{\infty}=s p\left(w_{k}\right) / 2 \leq c / 2$. Then, similarly to what is done by Jaksch et al. [11, Sec. 4.3.2] and Fruit et al. [1, App. F.7, pg. 32], we have

$$
\begin{aligned}
\Delta_{k}^{p} & =\sum_{t=t_{k}}^{t_{k+1}-1} \underbrace{\left(\sum_{a} \pi_{k}\left(s_{t}, a\right) \int p\left(s^{\prime} \mid s_{t}, a\right) w_{k}\left(s^{\prime}\right) \mathrm{d} s^{\prime}\right)-w_{k}\left(s_{t+1}\right)}_{:=X_{t}}+\sum_{t=t_{k}}^{t_{k+1}-1} w_{k}\left(s_{t+1}\right)-w_{k}\left(s_{t}\right) \\
& =\sum_{t=t_{k}}^{t_{k+1}-1} X_{t}+\underbrace{w_{k}\left(s_{t_{k}+1}\right)-w_{k}\left(s_{t_{k}}\right)}_{\leq s p\left(w_{k}\right) \leq c}
\end{aligned}
$$

Given the filtration $\mathcal{F}_{t}=\sigma\left(s_{1}, a_{1}, r_{1}, \ldots, s_{t+1}\right), X_{t}$ is an MDS since $\left|X_{t}\right| \leq c$ and $\mathbb{E}\left[X_{t} \mid \mathcal{F}_{t-1}\right]=0$ since $\pi_{k_{t}}$ is \mathcal{F}_{t-1}-measurable. By using Azuma's inequality we have that with probability at least $1-\frac{\delta}{5}$:

$$
\begin{equation*}
\forall T \geq 1, \quad \sum_{k=1}^{k_{T}} \Delta_{k}^{p} \leq 2 c \sqrt{T \ln \left(\frac{5 T}{\delta}\right)}+c k_{T} \tag{35}
\end{equation*}
$$

with $k_{T} \leq S A \log _{2}\left(\frac{8 T}{S A}\right)$ when $T \geq S A$ (see App. C. 2 in [11]).

C.4.2 Bounding the exploration bonus and summing up visit counts

Using again a martingale argument and Azuma's inequality (see Lem 7 and App. F. 6 in [1]), since $d_{k}(s, a) \leq 2 c+r_{\max } \leq 3 \max \left\{c, r_{\max }\right\}$, we obtain with probability at least $1-\frac{\delta}{5}$, that for all $T \geq 1$

$$
\begin{equation*}
\sum_{k=1}^{m} \sum_{s, a} \nu_{k}(s) \pi_{k}(s, a) d_{k}(s, a) \leq \sum_{k=1}^{m} \sum_{s, a} \nu_{k}(s, a) d_{k}(s, a)+6 \max \left\{c, r_{\max }\right\} \sqrt{T \ln \left(\frac{5 T}{\delta}\right)} \tag{36}
\end{equation*}
$$

We now gather inequalities (36, (35) into inequality (34) summed over all the episodes k which yields that with probability at least $1-\frac{4 \delta}{5}$ (for $T \geq S A$):

$$
\begin{align*}
\sum_{k=1}^{m} \Delta_{k} \leq & 8 \max \left\{c, r_{\max }\right\} \sqrt{T \ln \left(\frac{5 T}{\delta}\right)}+c S A \log _{2}\left(\frac{8 T}{S A}\right) \\
& +\underbrace{2 r_{\max } \sum_{s \in \mathcal{S}} \frac{\nu_{k}(s)}{t_{k}}}+2 \sum_{k=1}^{m} \sum_{s, a} \nu_{k}(s, a) d_{k}(s, a) \tag{37}\\
& =O(S A \ln (T))[1 \text { App. F.7] }
\end{align*}
$$

Let $\phi_{k}^{s a}$ as defined in Eq. 21 , then

$$
\begin{align*}
\sum_{k=1}^{m} \sum_{s, a} \nu_{k}(s, a) d_{k}(s, a) \leq & \underbrace{\sum_{k=1}^{m} \sum_{s, a} \nu_{k}(s, a) r_{\max } \beta_{k}^{s a}}_{\text {see App. F.7 [1] }}+c \underbrace{\sum_{k=1}^{m} \sum_{s, a} \nu_{k}(s, a) \phi_{k}^{s a}}_{\text {see App. F. }[1]} \tag{38}\\
& +2 c \sum_{k=1}^{m} \sum_{s, a} \frac{\nu_{k}(s, a)}{N_{k}(s, a)+1}+\underbrace{\left(c+r_{\max }\right)}_{\leq 2 \max \left\{c, r_{\max }\right\}} \rho_{L} S^{-\alpha} T
\end{align*}
$$

We recall that [see e.g., 1, App. F.7]

$$
r_{\max } \sum_{k=1}^{m} \sum_{s, a} \nu_{k}(s, a) \beta_{k}^{s a}=\widetilde{O}\left(r_{\max } \sqrt{S A T}\right) \text { and } c \sum_{k=1}^{m} \sum_{s, a} \nu_{k}(s, a) \phi_{k}^{s a}=\widetilde{O}\left(c S \sqrt{A T}+c S^{2} A\right)
$$

Similarly to what is done in [1, Eq. 58-60], we can write, $\forall T \geq 1$

$$
\begin{equation*}
\sum_{k=1}^{m} \sum_{s, a} \frac{\nu_{k}(s, a)}{N_{k}(s, a)+1}=O(S A \ln (T)) \tag{39}
\end{equation*}
$$

C.4.3 Completing the proof

Summing up all the contributions, we arrive at the conclusion that there exists a numerical constant χ such that with probability at least $1-\delta$, for all $T \geq 1, \mathrm{SCCAL}^{+}$has a regret bounded by

$$
\Delta\left(\mathrm{SCCAL}^{+}, T\right) \leq \chi \cdot\left(\max \left\{r_{\max }, c\right\}\left(S \sqrt{A T \ln \left(\frac{T}{\delta}\right)}+S^{2} A \ln ^{2}\left(\frac{T}{\delta}\right)+\rho_{L} S^{-\alpha} T\right)\right)
$$

We now set $S=\left(\alpha \rho_{L} \sqrt{\frac{T}{A}}\right)^{1 /(\alpha+1)}$ so that

$$
\begin{aligned}
\Delta\left(\operatorname{SCCAL}^{+}, T\right)=\widetilde{O}(& \max \left\{r_{\max }, c\right\}(\underbrace{\max \left\{\alpha^{1 /(\alpha+1)}, \alpha^{-\alpha /(1+\alpha)}\right\}}_{\leq 2, \forall \alpha \geq 0} \times \\
& \times \rho_{L}^{1 /(\alpha+1)} A^{\alpha /(2 \alpha+2)} T^{(\alpha+2) /(2 \alpha+2)}+\underbrace{\alpha^{2 /(1+\alpha)}}_{\leq 2, \forall \alpha \geq 0} \rho_{L}^{2 /(1+\alpha)} A^{\alpha /(1+\alpha)} T^{1 /(1+\alpha)}))
\end{aligned}
$$

Finally, when $T \geq \rho_{L}^{2 / \alpha} A$, the regret of SCCAL $^{+}$is bounded by

$$
\Delta\left(\mathrm{SCCAL}^{+}, T\right)=\widetilde{O}\left(\max \left\{r_{\max }, c\right\} \rho_{L}^{1 /(\alpha+1)} A^{\alpha /(2 \alpha+2)} T^{(\alpha+2) /(2 \alpha+2)}\right)
$$

D Finite MDPs: the analysis of SCAL^{+}

In this section we analyse SCAL^{+}by leveraging the results provided for the continuous state case. We define the bonus b_{k} and state a lemma analogue to Lem. 4 and Lem. 6 combined (which among other things, implies that SCAL^{+}is optimistic at each episode k). Finally, we provide the proof of the regret bound stated in Thm. 1.

D. 1 High probability bound using the exploration bonus (proof of Lem. 1)

To begin with, we introduce two variants of bonus that will be used for the regret proof (analogue to the bonuses used for continuous state spaces):

$$
\begin{align*}
& b_{k}(s, a):=c \cdot \min \left\{\beta_{k}^{s a}+\frac{1}{N_{k}(s, a)+1} ; 2\right\}+r_{\max } \cdot \min \left\{\beta_{k}^{s a} ; 1\right\} \tag{40}\\
& d_{k}(s, a):=c \cdot \min \left\{\phi_{k}^{s a}+\frac{1}{N_{k}(s, a)+1} ; 2\right\}+r_{\max } \cdot \min \left\{\beta_{k}^{s a} ; 1\right\}
\end{align*}
$$

where $\beta_{k}^{s a}$ is defined as in Eq. 3 and

$$
\phi_{k}^{s a}:=2 \sqrt{\frac{(\Gamma(s, a)-1) \ln \left(\frac{40 S^{2} A N_{k}^{+}(s, a)}{\delta}\right)}{N_{k}^{+}(s, a)}}+\frac{4 S}{N_{k}^{+}(s, a)} \ln \left(\frac{40 S^{2} A N_{k}^{+}(s, a)}{\delta}\right)
$$

Notice that compared to b_{k}, d_{k} explicitly depends on the number of states S and next states Γ. Also, $d_{k}(s, a) \geq b_{k}(s, a)$ for any $(s, a) \in \mathcal{S} \times \mathcal{A}$. In the continuous case we could also have considered the number of next states $\Gamma(s, a)$ in the (true) aggregated MDP. However, this quantity is not very informative so we decided (for sake of clarity) to upper-bound it by the number of intervals $|\mathcal{I}|=S$.

Lemma 8. Let $\left(g^{*}, h^{*}\right)$ be a solution of the optimality equation $L h^{*}=h^{*}+g^{*}$ such that $s p\left(h^{*}\right) \leq c$. With probability at least $1-\frac{\delta}{5}$, for all $T \geq 1$ and $k \geq 1$, for any $(s, a) \in \mathcal{S} \times \mathcal{A}$ and for any $v \in \mathbb{R}^{S}$ s.t. $s p(v) \leq c$ we have:

$$
\begin{aligned}
& \text { (a) } b_{k}(s, a) \geq\left|\bar{r}_{k}(s, a)-r(s, a)+\left(\widehat{p}_{k}(\cdot \mid s, a)-p(\cdot \mid s, a)\right)^{\top} h^{*}\right| \\
& \text { (b) } d_{k}(s, a) \geq\left|\bar{r}_{k}(s, a)-r(s, a)+\left(\widehat{p}_{k}(\cdot \mid s, a)-p(\cdot \mid s, a)\right)^{\top} v\right|
\end{aligned}
$$

where b_{k} and d_{k} are defined as in Eq. 40 Events (a) and (b) hold individually with probability $1-\frac{\delta}{5}$ and not simultaneously.

Proof. We consider the discrete case as a special sub-case of the continuous one considered in Lem. 4 As explained in Sec.C.1.3, for the discrete case we can even use an independence argument based on the "stack of samples" idea [27, Sec. 4.4]. However, for sake the sake of brevity, we re-use the same MDS argument exploited in the continuous case. The main difference is that in the discrete case we do not need state aggregation and thus we replace every interval with a singleton function, i.e., $I(s)=s, \forall s \in \mathcal{S}$. Define $w:=h^{*}-\left(\min \left\{h^{*}\right\}+\max \left\{h^{*}\right\}\right) / 2$ such that $w \in[-c / 2, c / 2]$. We decompose $\widehat{p}_{k}-p$ into $\left(\widehat{p}_{k}-\bar{p}_{k}\right)+\left(\bar{p}_{k}-p\right)$. As done in Eq. 14 (App.C.1.2), we can write that

$$
\begin{align*}
\left|\left(\widehat{p}_{k}(\cdot \mid s, a)-\bar{p}_{k}(\cdot \mid s, a)\right)^{\top} w\right| & \leq\left|\frac{N_{k}(s, a)}{N_{k}(s, a)+1}-1\right| \underbrace{\left\|\bar{p}_{k}(\cdot \mid s, a)\right\|_{1}}_{=1} \underbrace{\|w\|_{\infty}}_{\leq c / 2}+\frac{|w(\bar{s})|}{N_{k}(s, a)+1} \tag{41}\\
& \leq \frac{c}{2}\left(1-\frac{N_{k}(s, a)}{N_{k}(s, a)+1}+\frac{1}{N_{k}(s, a)+1}\right)=\frac{c}{N_{k}(s, a)+1}
\end{align*}
$$

In order to bound the term depending on $\left(\bar{p}_{k}-p\right)$ we use the same MDS argument as in App. C.1.3 You can consider r equivalent to \widetilde{r} defined in the continuous case since:

$$
\widetilde{r}_{k}(s, a)=\frac{1}{N_{k}(\underbrace{I(s)}_{:=s}, a)} \sum_{x \in \underbrace{I(s)}_{:=s}} N_{k}(x, a) r(x, a)=r(s, a)
$$

Similarly, we can prove that $\widetilde{p}_{k}\left(s^{\prime} \mid s, a\right)=p\left(s^{\prime} \mid s, a\right)$. Then, we consider the same adapted sequences, stopping times and predictable processes except from the fact that intervals are replaced by singletons (i.e., discrete states). As a consequence, (an analogue of) Lem. 11 holds. By following the same steps as in App. C.1.3. we can prove that with probability at least $1-\frac{\delta}{10}$ (individually), for all $k \geq 1$ and $(s, a) \in \mathcal{S} \times \mathcal{A}$

$$
\begin{gathered}
\left|\bar{r}_{k}(s, a)-r_{k}(s, a)\right| \leq r_{\max } \sqrt{\frac{7 \ln \left(\frac{20 S A N_{k}^{+}(s, a)}{\delta}\right)}{N_{k}^{+}(s, a)}}:=r_{\max } \beta_{k}^{s a} \\
\left|\left(\bar{p}_{k}(\cdot \mid s, a)-p(\cdot \mid s, a)\right)^{\top} h^{*}\right| \leq c \sqrt{\frac{\ln \left(\frac{20 S A N_{k}^{+}(s, a)}{\delta}\right)}{N_{k}^{+}(s, a)}}:=c \beta_{k}^{s a}
\end{gathered}
$$

where we recall the $N_{k}^{+}(s, a):=\max \left\{1, N_{k}(s, a)\right\}$. We now consider the concentration of $\left(\widehat{p}_{k}-\right.$ $p)^{\top} v$ for which we need to use Freedman's inequality (see Thm. 47. Similarly to what done before, let $z=v-(\min \{v\}+\max \{v\}) / 2$ such that $\left(\widehat{p}_{k}-p\right)^{\top} v=\left(\widehat{p}_{k}-p\right)^{\top} z$. We start noticing that, Eq. 24 holds for the discrete case where we replace the adapted sequence $\mathbb{1}\left(s_{\tau_{l}+1} \in I\right)$ by $\mathbb{1}\left(s_{\tau_{l}+1}=s^{\prime}\right)$ and the conditional variance $V_{k}(J)$ by $V_{k}\left(s^{\prime}\right)=\sum_{l=1}^{N_{k}(s, a)} \mathbb{1}\left(\tau_{l}<t_{k}\right) \mathbb{V}\left(\mathbb{1}\left(s_{\tau_{l}+1}=s^{\prime}\right) \mid \mathcal{G}_{l-1}\right)$. Furthermore, $\mathbb{V}\left(\mathbb{1}\left(s_{\tau_{l}+1}=s^{\prime}\right) \mid \mathcal{G}_{l-1}\right)=\left(1-p\left(s^{\prime} \mid s, a\right)\right) p\left(s^{\prime} \mid s, a\right)$ and

$$
V_{k}\left(s^{\prime}\right)=\sum_{l=1}^{N_{k}(s, a)}\left(1-p\left(s^{\prime} \mid s_{\tau_{l}}, a_{\tau_{l}}\right)\right) p\left(s^{\prime} \mid s_{\tau_{l}}, a_{\tau_{l}}\right) \leq N_{k}(s, a)\left(1-p\left(s^{\prime} \mid s, a\right)\right) p\left(s^{\prime} \mid s, a\right)
$$

As done in [1, App. F.7] we use Cauchy-Schwartz inequality to write that

$$
\sum_{s^{\prime} \in \mathcal{S}} \sqrt{p\left(s^{\prime} \mid s, a\right)\left(1-p\left(s^{\prime} \mid s, a\right)\right)}=\sum_{s^{\prime} \in \mathcal{S}:} \sum_{p\left(s^{\prime} \mid s, a\right)>0} \sqrt{p\left(s^{\prime} \mid s, a\right)\left(1-p\left(s^{\prime} \mid s, a\right)\right)} \leq \sqrt{\Gamma(s, a)-1}
$$

where we recall that $\Gamma(s, a):=\|p(\cdot \mid s, a)\|_{0}$ is the support of p in (s, a). Then, as done in Lem. 6, we have that for any vector $z \in[-c / 2, c / 2]$, with probability at least $1-\frac{\delta}{10}$ (after taking an union bound over $\mathcal{S} \times \mathcal{A}$) for all $(s, a) \in \mathcal{S} \times \mathcal{A}$ and $k \geq 1$

$$
\begin{aligned}
\left|\left(\bar{p}_{k}(\cdot \mid s, a)-p(\cdot \mid s, a)\right)^{\top} z\right| & \leq\|z\|_{\infty} \sum_{s^{\prime} \in \mathcal{S}}\left|\bar{p}_{k}\left(s^{\prime} \mid s, a\right)-p\left(s^{\prime} \mid s, a\right)\right| \\
& \leq \frac{c}{2 N_{k}^{+}(s, a)} \sum_{s^{\prime} \in \mathcal{S}}\left(2 \sqrt{V_{k}\left(s^{\prime}\right) \ln \left(\frac{4 N_{k}(s, a)}{\delta}\right)}+4 \ln \left(\frac{4 N_{k}(s, a)}{\delta}\right)\right) \\
& \leq c\left(\sqrt{\frac{(\Gamma(s, a)-1) \ln \left(\frac{48 S A N_{k}^{+}(s, a)}{\delta}\right)}{N_{k}^{+}(s, a)}}+\frac{4 S}{N_{k}^{+}(s, a)} \ln \left(\frac{48 S A N_{k}^{+}(s, a)}{\delta}\right)\right)
\end{aligned}
$$

We can also write with probability 1 that:

$$
\left|\left(\widehat{p}_{k}(\cdot \mid s, a)-p(\cdot \mid s, a)\right)^{\top} w\right| \leq \widehat{p}_{k}(\cdot \mid s, a)^{\top} w+p(\cdot \mid s, a)^{\top} w \leq 2 c
$$

So we can take the minimum between the two upper-bounds. We also know that the difference in reward is bound by $r_{\text {max }}$.

In order to prove optimism we start noticing that the bonus $b_{k}(s, a)$ (see Lem. 8 implies that $\widehat{L}_{k} h^{*} \geq L h^{*}$. As a consequence, we can use Prop. 3 to show that $g_{k}^{+} \geq g^{*}$ (same arguments as in with continuous state space).

D. 2 Regret Proof of SCAL^{+}(proof of Thm. 1).

The regret proof follows the same steps as for SCCAL^{+}. The main difference resides in the fact that there is no need of state aggregation, thus simplifying the proof.

Proof sketch. In the following, all inequalities should be interpreted up to minor approximations and in high probability.Let $\nu_{k}(s, a)$ be the number of visits in (s, a) during episode k and m be the total number of episodes. Using Lem. 1 , we have:

$$
\begin{equation*}
\Delta\left(\mathrm{SCAL}^{+}, T\right) \lesssim \sum_{k=1}^{m} \sum_{s, a} \nu_{k}(s, a)\left(g_{k}-\sum_{a} r(s, a) \pi_{k}(s, a)\right) \tag{42}
\end{equation*}
$$

where g_{k}, h_{k} and π_{k} are respectively the gain, bias and policy returned by ScOpt [1]. ScOpt ensures that: $g_{k}+h_{k}(s) \simeq \sum_{a} \pi_{k}(s, a)\left(\widehat{r}_{k}(s, a)+\widehat{p}_{k}(\cdot \mid s, a)^{\top} h_{k}\right)$. By plugging this inequality into (42) we obtain two terms: $\bar{r}_{k}(s, a)-r(s, a)+b_{k}(s, a)$ and $\left(\widehat{p}_{k}(\cdot \mid s, a)-e_{s}\right)^{\top} h_{k}$. We can then introduce the true probability $\left(\widehat{p}_{k}(\cdot \mid s, a)-p(\cdot \mid s, a)\right)^{\top} h_{k}+\left(p(\cdot \mid s, a)-e_{s}\right)^{\top} h_{k}$. Since $s p\left(h_{k}\right) \leq c$, the second term is of order $\widetilde{O}(c \sqrt{T}+c S A)$ when summed over \mathcal{S}, \mathcal{A} and episodes k [1, Eq. 56]. On the other hand, the term $\left(\widehat{p}_{k}(\cdot \mid s, a)-p(\cdot \mid s, a)\right)^{\top} h_{k}$ is the dominant term of the regret and represents the error of using the estimated \widehat{p}_{k} in place of p in ScOpt. To bound this term we first compare the difference $\left(\widehat{p}_{k}-\bar{p}_{k}\right)^{\top} h_{k}$ which is not bigger than $c /\left(N_{k}(s, a)+1\right)$. The remaining term is thus $\left(\bar{p}_{k}-p\right)^{\top} h_{k}$ (recall that \bar{p}_{k} is the MLE of p). Since h_{k} depends on \bar{p}_{k}, we cannot apply Hoeffding-Azuma inequality as done in the proof of Lem. 11 Instead we bound separately $\left.\| \bar{p}_{k}(\cdot \mid s, a)-p(\cdot \mid s, a)\right) \|_{1} \lesssim \sqrt{\Gamma(s, a)} \beta_{k}^{s a}$ and $s p\left(h_{k}\right) \leq c$ which eventually introduce a $\sqrt{\Gamma}$ factor. It is worth pointing out that Γ only appears due to statistical fluctuations that we cannot control, and not from the optimism (i.e., exploration bonus) that is explicitly encoded in the algorithm. For the reward we have $|\bar{r}(s, a)-r(s, a)| \leq r_{\max } \beta_{k}^{s a}$. As a consequence, we can approximately write that:

$$
\Delta\left(\mathrm{SCAL}^{+}, T\right) \lesssim \sum_{k=1}^{m} \sum_{s, a} \nu_{k}(s, a) \pi_{k}(s, a)(\underbrace{b_{k}(s, a)}_{\leq d_{k}(s, a)}+\underbrace{\left(c \sqrt{\Gamma(s, a)}+r_{\max }\right) \beta_{k}^{s a}+c /\left(N_{k}(s, a)+1\right)}_{:=d_{k}(s, a)})
$$

The remaining terms can be bounded as in [1].

```
Input: Confidence \(\delta \in] 0,1\left[, r_{\text {max }}, \mathcal{I}, \mathcal{A}, c \geq 0, \rho_{L}\right.\) and \(\alpha\)
Initialization: Observe intial state \(s_{0}\) and set \(\bar{s}=s_{0}, \bar{a}=a_{0}, q^{0}(s, a)=c\) for all \((s, a)\)
For times \(t=1,2, \ldots\) do
1. \(a_{t} \in \arg \max _{a}\left\{q^{t}\left(s_{t}, a\right)\right\}\)
2. Execute \(a_{t}\), obtain reward \(r_{t}\), and observe next state \(s_{t+1}\left(s_{t}=I\left(s_{t}\right), s_{t+1}=I\left(s_{t+1}\right)\right)\).
    \(\alpha_{t}=\frac{c+1}{c+N_{t}\left(s_{t}, a_{t}\right)}\)
4. Asynchronous update of the \(Q\)-function
    \(\begin{aligned} q^{t+1}\left(s_{t}, a_{t}\right) & =q^{t}\left(s_{t}, a_{t}\right)+\alpha_{t}\left(r_{t}+b_{t}\left(s_{t}, a_{t}\right)+\max _{a \in \mathcal{A}}\left\{q^{t}\left(s_{t+1}, a\right)\right\}-q^{t}\left(s_{t}, a_{t}\right)-q^{t}(\bar{s}, \bar{a})\right) \\ q^{t+1}(s, a) & =q^{t}(s, a), \quad \forall(s, a) \neq\left(s_{t}, a_{t}\right)\end{aligned}\)
5. \(q^{t+1}\left(s_{t}, a_{t}\right)=\min \left\{c, q^{t+1}\left(s_{t}, a_{t}\right)\right\}\).
6. Increment counters \(N_{t+1}(s, a):=N_{t}(s, a)+\mathbb{1}\left((s, a)=\left(s_{t}, a_{t}\right)\right)\) for all \(s, a\).
```

Figure 3: RVIQ-UCB for continuous state (smooth) problems.

Additional details. By using the optimism of \widehat{M}_{k}^{+}, the stopping condition of SCOPT and the relationships between \widehat{M}_{k}^{+}and \widehat{M}_{k} (see Eq. 31 , we can prove Eq. 34 for the discrete case. Note that the analysis of the cumulative contribution of the term $d_{k}(s, a)$ and $b_{k}(s, a)$ will lead to the following terms $\widetilde{O}(c \sqrt{\Gamma S A T})$ and $\widetilde{O}(c \sqrt{S A T})$, respectively. Since the dominant term is the one associated to d_{k}, even in this case we upper-bound b_{k} by d_{k}.
From this point, we follow the same steps as in Sec. C.4. The only difference resides in Eq. 37 . where the term $\left(c+r_{\max }\right) \rho_{L} S^{-\alpha} T$ disappears since it depends on aggregation and/or smoothness. Finally, the regret bound in Thm. 1 follows by noticing that the order of the term $\sum_{k=1}^{m} \sum_{s, a} \nu_{k}(s, a) \phi_{k}^{s a}$ is $\widetilde{O}\left(\sqrt{\sum_{s, a} \Gamma(s, a) A T}+S^{2} A\right)$.
As a consequence, there exists a numerical constant χ such that at least with probability $1-\delta$ our algorithm SCAL^{+}has a regret bounded by

$$
\Delta\left(\mathrm{SCAL}^{+}, T\right) \leq \chi\left(\max \left\{r_{\max }, c\right\}\left(\sqrt{\left(\sum_{s, a} \Gamma(s, a)\right) T \ln \left(\frac{T}{\delta}\right)}+S^{2} A \ln ^{2}\left(\frac{T}{\delta}\right)\right)\right)
$$

E Experiments

We start describing the variants of Q-learning we considered in the experiments Then we report the configurations of algorithms and MDPs.

E. 1 RVI Q-learning

Relative Value Iteration is defined as

$$
v^{n+1}(s)=\max _{a}\left\{r(s, a)+p(\cdot \mid s, a)^{\top} v^{n}-v(\bar{s})\right\}
$$

where \bar{s} is an arbitrary but fixed state. Under mild conditions, v^{n} converges to the solution of the Bellman optimality equation $L h=h+g e$ with $h(\bar{s})=g$ (i.e., $v^{n}(\bar{s}) \rightarrow g$) [17]. This approach suggests a way of defining a relative Q-factor iteration algorithm which is defined as:

$$
q^{n+1}(s, a)=r(s, a)-q^{n}(\bar{s}, \bar{a})+\sum_{s^{\prime}} p\left(s^{\prime} \mid s, a\right) \max _{a^{\prime}}\left\{q^{n}\left(s^{\prime}, a^{\prime}\right)\right\}
$$

with (\bar{s}, \bar{a}) arbitrary but fixed.
The asynchronous RVI Q-learning algorithm [17] is a variant of Q-learning defined for average reward problems. At each iteration n it computes an asyncronous update of the estimated Q-function of the current state action pair $\left(s_{n}, a_{n}\right)$ by using the observed transition and reward:
$q^{n+1}(s, a)=q^{n}(s, a)+\alpha_{n}(s, a)\left(r_{n+1}+\max _{a \in \mathcal{A}}\left\{q^{n}\left(s_{n}^{\prime}, a\right)\right\}-q^{n}(s, a)-f\left(q^{n}\right)\right) \cdot \mathbb{1}\left((s, a)=\left(s_{n}, a_{n}\right)\right)$

Figure 4: Distribution of the optimal bias span

Figure 5: Expected cumulative regret on 50 randomly generated MDPs. For each MDP we performed 5 runs for each algorithm.
where $s_{n+1} \sim p\left(\cdot \mid s_{n}, a_{n}\right)$ and $r_{n+1} \sim r\left(s_{n}, a_{n}\right)$ and f is a Lipschitz function such that $f(e)=1$ and $f(x+c e)=f(x)+c$ (see [17] Asm. 2.2]). In this work we consider $f(q)=q(\bar{s}, \bar{a})$. This algorithm is guaranteed to converge asymptotically under standard assumptions [17]. Note that $\max _{a} Q(s, a)$ is an estimate of the bias function $h(s)$ and $q(\bar{s}, \bar{a})$ an estimate of the gain.

RVIQ performs exploration by using an ϵ-greedy strategy. In all the experiments we use

$$
\epsilon_{t+1}=\frac{\epsilon_{0}}{\sqrt{N_{t}\left(s_{t}, a_{t}\right)}} \quad \text { and } \quad \alpha_{t}=\frac{1}{\sqrt{N_{t}\left(s_{t}, a_{t}\right)}}
$$

where $\epsilon_{0}=20$ in order to force random exploration at the beginning of the experiment. Another parameter of RVIQ is the initial value used to fill the q-table. We consider both $q_{0}=0$ and $q_{0}=c$. Q-learning with $q_{0}=c$ is known as Optimistic Q-learning [29].
Finally, we use RVIQ to design an algorithm for exploration-exploitation inspired by the modelfree approaches for finite-horizon problems [9]. We use an exploration bonus $b_{t}(s, a)=c$. $\min \left\{\beta_{t}^{s a}+\rho_{L} S^{-\alpha} ; 2\right\}+r_{\max } \cdot \min \left\{\beta_{t}^{s a}+\rho_{L} S^{-\alpha} ; 1\right\}$. The algorithm is reported in 3 We believe this is a reasonable algorithm but we want to stress that we do not have any theoretical guarantee for the regret of this algorithm. The design of a model-free algorithm for efficient exploration-exploitation in average reward is an open problem.

Note that in the experiments we set \bar{s} and \bar{a} to the first observed state and performed action.

Figure 6: Cumulative regret in the Garnet domain with $\Gamma=30$.

E. 2 Garnet

Garnet [20] is a family of randomly generated MDPs. The distribution over MDPs can be controlled by three parameters: number of states (i.e., $S=|\mathcal{S}|$), number of actions (i.e., $A=|\mathcal{A}|$) and branching factor (i.e., Γ). In the experiments we consider $S=200, A=3$ and $\Gamma \in\{5,144\}$.
As we have seen in the main paper, the span of the optimal bias function plays an important role in the performance of the algorithms. As shown in Fig. 4 , the distribution of the bias span has relatively long tails in the case of $\Gamma=5$. In order to be more robust we evaluate the performance of the algorithms on the MDP with median bias span. The median bias span is 1.07 and 1.59 for $\Gamma=144$ and $\Gamma=5$, respectively. Her, we additionally report the performance of the algorithms when $\Gamma=30$ (see Fig. 6). This confirms that SCAL^{+}is able to exploit the tighter optimism and achieve a lower regret.

In the main paper we have reported the cumulative regret for the median MDP. Fig. 5 shows the expected cumulative regret w.r.t. the MDP distribution (in this case we use $c=3.5$). As expected, the algorithms show the same behavior observed for the median MDP.

E. 3 Continuous RiverSwim

RiverSwim [7] is a classical domain for testing exploration algorithms for discrete problems. It is a stochastic chain having 6 states and 2 actions (left and right). The optimal policy is to always perform right. We preserve the idea of the domain but we generalize it to a continuous state space $\mathcal{S}=[0,6]$. The domain is not episodic (the agent is never reset) and the initial position is $s_{0}=0$. At each time step the agent can move left or right by a factor $d x=0.1$. The transitions are stochastics:

$$
\left.\left.\begin{array}{rl}
f(s, \text { left }) & =\max \{0, s-d x-\sigma \epsilon\} \\
f(s, \text { right }) & = \begin{cases}\max \{0, s-d x-\sigma \epsilon\} & \text { w.p. } 0.05 \\
s & \text { w.p. } 0.6\end{cases} \\
\min \{6, s+d x+\sigma \epsilon\} & \text { w.p. } 0.35
\end{array}\right\} \begin{array}{ll}
0 & \text { w.p. } 0.4 \\
\max \{0, d x+\sigma \epsilon\} & \text { w.p. } 0.6
\end{array}\right\} \begin{array}{ll}
\min \{6-d x-\sigma \epsilon, 6\} & \text { w.p. } 0.4 \\
f(6, \text { right }) & = \begin{cases}\text { w.p. } 0.6\end{cases}
\end{array}
$$

where $\epsilon \sim \mathcal{N}(0,1)$ and $\sigma=d x / 2$. The reward is zero everywhere except in $s=0$ and $s=6$ $(r(0$, left $)=0.01$ and $r(6$, right $)=1)$.

In the ContinuousRiverSwim the state space is one-dimensional and we use 50 bins ($\rho_{L}=\alpha=1$).

Figure 7: Expected cumulative reward in MountainCar.

E. 4 Ship Steering

The task is to steer a ship, which is cruising at constant speed, to a goal in minimum time [21]. The task is made not trivial by the presence of different water currents around the goal. The continuous state and action spaces are described by the 2-dimensional ship position and the scalar heading $\left(\mathcal{S} \subseteq \mathbb{R}^{3}\right.$). The following equations describes the continuous motion of the ship

$$
\dot{x}=C(\cos (\phi)-y), \dot{y}=C \sin (\phi)
$$

where ϕ is the ship heading. The start location is $\left(x_{0}, y_{0}\right)=(3.66,-1.86)$ and the goal region has a radius of 0.2 km and the center is in $(0,0)$. The speed is $C=0.01 \mathrm{~km} / \mathrm{h}$. The action is the steering angle (in degree) w.r.t. the current heading. The action set is $\mathcal{A}=\{-20,-10,-5,0,5,10,20\}$. Control decisions are made every 25 s, at which time the ship changes heading instantaneously, but the change is affected by noise:

$$
\phi_{t+1}=\phi_{t}+\left(a_{t}+\epsilon_{t}\right) \cdot \frac{2 \pi}{360}
$$

where ϵ_{t} is drawn uniformly from $[-2,2]$. The state space is bounded as $\mathcal{S} \subseteq[0,6] \times[-2,2] \times[-\pi, \pi]$. The position of the ship is always clipped to this space. If the ship reaches position $x=0$ but it is not in the goal (i.e., $y>0.2$ or $y<-0.2$), the ship is reset to position $(5.5,0)$.
In ShipSteering we use 8 bins for each state variable leading to 512 discrete states. Note that this discretization generates an MDP that is not communicating.

E. 5 Mountain Car

We consider the standard MountainCar [22]. The state space is two-dimensional and we use 29 bins for each dimension leading to 637 states after removing non-reachable states ($\rho_{L}=5$ and $\alpha=1$). We consider $c=0.5$.

We report the results in Fig. 7 averaged over 50 runs. We report also max and min observed values. As mentioned in the main paper, RVIQ is unstable. Also in this case is able to learn with one type of initialization (here $q_{0}=0$) while shows high variance when initialized optimistically. SCCAL^{+}is constantly the most stable algorithm.

F Results of probability theory

F. 1 Reminder

We start by recalling some well-known properties of filtrations, stopping times and martingales [30, Chapter 2]. For simplicity, we use "a.s." to denote "almost surely" (i.e., with probability 1). In this section, we consider a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. We call filtration any increasing (for the inclusion) sequence of sub- σ-algebras of \mathcal{F} i.e., $\left(\mathcal{F}_{n}\right)_{n \in \mathbb{N}}$ where $\forall n \in \mathbb{N}, \mathcal{F}_{n} \subseteq \mathcal{F}_{n+1} \subseteq \mathcal{F}$. We
denote by $\mathcal{F}_{\infty}:=\cup_{n \in \mathbb{N}} \mathcal{F}_{n}$. For any sub- σ-algebra $\mathcal{G} \subseteq \mathcal{F}$, we say that a real-valued random variable (r.v.) $X: \Omega \rightarrow \mathbb{R}^{d}$ is \mathcal{G}-measurable if for all borel sets $B \in \mathcal{B}\left(\mathbb{R}^{d}\right), X^{-1}(B) \in \mathcal{G}$. We say that X is \mathcal{G}-integrable if it is \mathcal{G}-measurable and $\mathbb{E}[|X|]<+\infty$ (componentwise). We call stochastic process any sequence of r.v. $\left(X_{n}\right)_{n \in \mathbb{N}}$. We say that the stochastic process $\left(X_{n}\right)_{n \in \mathbb{N}}$ is adapted to the filtration $\left(\mathcal{F}_{n}\right)_{n \in \mathbb{N}}$ if for all $n \in \mathbb{N}, X_{n}$ is \mathcal{F}_{n}-measurable. In this case, the sequence $\left(X_{n}, \mathcal{F}_{n}\right)_{n \in \mathbb{N}}$ is called an adapted sequence. If in addition, X_{n} is integrable for all $n \in \mathbb{N}$ then we say that $\left(X_{n}, \mathcal{F}_{n}\right)_{n \in \mathbb{N}}$ is an integrable adapted sequence. We say that a stochastic process $\left(X_{n}\right)_{n \in \mathbb{N}}$ is almost surely:

1. increasing (resp. strictly increasing) if for all $n \geq N, \mathbb{P}\left(X_{n} \leq X_{n+1}\right)=1$ (respectively $\left.\mathbb{P}\left(X_{n}<X_{n+1}\right)=1\right)$,
2. bounded if there exists a universal constant K such that for all $n \in \mathbb{N}, \mathbb{P}\left(X_{n}<K\right)=1$,

Definition 2 (Conditional expectation). Let X be an \mathcal{F}-integrable r.v. with values in \mathbb{R}^{d}. Let $\mathcal{G} \subseteq \mathcal{F}$ be a sub- σ-algebra of \mathcal{F}. The conditional expectation of X given \mathcal{G} (denoted $\mathbb{E}[X \mid \mathcal{G}]$) is the (a.s. unique) r.v. that is \mathcal{G}-integrable and satisfies:

$$
\forall A \in \mathcal{G}, \quad \mathbb{E}[\mathbb{1}(A) \cdot \mathbb{E}[X \mid \mathcal{G}]]=E[\mathbb{1}(A) \cdot X]
$$

Proposition 4 (Law of total expextations). Let X be an \mathcal{F}-integrable r.v. with values in \mathbb{R}^{d}. For any sub- σ-algebra $\mathcal{G} \subseteq \mathcal{F}, \mathbb{E}[\mathbb{E}[X \mid \mathcal{G}]]=\mathbb{E}[X]$.
Proposition 5. Let X be an \mathcal{F}-integrable real-valued r.v. and $\mathcal{G} \subseteq \mathcal{F}$ a sub- σ-algebra. For any \mathcal{G}-integrable real-valued r.v. Y s.t. $Y X$ is also integrable we have $\mathbb{E}[Y X \mid \mathcal{G}]=Y \mathbb{E}[X \mid \mathcal{G}]$.
Definition 3 (Stopping time). A random variable $\tau: \Omega \rightarrow \mathbb{N} \cup\{+\infty\}$ is called stopping time w.r.t. a filtration $\left(\mathcal{F}_{n}\right)_{n \in \mathbb{N}}$ if for all $n \in \mathbb{N},\{\tau=n\} \in \mathcal{F}_{n}$.
Definition 4 (σ-algebra at stopping time). Let τ be a stopping time. An event prior to τ is any event $A \in \mathcal{F}_{\infty}$ s.t. $A \cap\{\tau=n\} \in \mathcal{F}_{n}$ for all $n \in \mathbb{N}$. The set of events prior to τ is a σ-algebra denoted \mathcal{F}_{τ} and called σ-algebra at time τ :

$$
\mathcal{F}_{\tau}:=\left\{A \in \mathcal{F}_{\infty}: \forall n \in \mathbb{N}, A \cap\{\tau=n\} \in \mathcal{F}_{n}\right\}
$$

Proposition 6. Let τ_{1} and τ_{2} be two stopping times w.r.t. the same filtration $\left(\mathcal{F}_{n}\right)_{n \in \mathbb{N}}$ s.t. $\tau_{1} \leq \tau_{2}$ a.s. Then $\mathcal{F}_{\tau_{1}} \subseteq \mathcal{F}_{\tau_{2}}$.

Definition 5 (Stopped Process). Let $\left(X_{n}, \mathcal{F}_{n}\right)_{n \in \mathbb{N}}$ be an adapted sequence with values in \mathbb{R}^{d}. If τ is a stopping time w.r.t. the filtration $\left(\mathcal{F}_{n}\right)_{n \in \mathbb{N}}$, then the process stopped at time τ (denoted by X_{τ}) is the r.v. defined as:

$$
\forall \omega \in \Omega, \quad X_{\tau}(\omega):=\sum_{n \in \mathbb{N}} X_{n}(\omega) \cdot \mathbb{1}(\tau(\omega)=n) \quad \text { (i.e., } X_{\infty}(\omega)=0 \text { by convention) }
$$

Proposition 7. X_{τ}-the process stopped at time τ - is \mathcal{F}_{τ}-measurable.
Definition 6 (Martingale difference sequence). An adapted sequence $\left(X_{n}, \mathcal{F}_{n}\right)_{n \in \mathbb{N}}$ is a martingale difference sequence (MDS for short) if for all $n \in \mathbb{N}$, X_{n} is \mathcal{F}_{n}-integrable and $\mathbb{E}\left[X_{n+1} \mid \mathcal{F}_{n}\right]=0$ a.s.

Proposition 8 (Azuma's inequality). Let $\left(X_{n}, \mathcal{F}_{n}\right)_{n \in \mathbb{N}}$ be an MDS such that $\left|X_{n}\right| \leq a$ a.s. for all $n \in \mathbb{N}$. Then for all $\delta \in] 0,1[$,

$$
\mathbb{P}\left(\forall n \geq 1,\left|\sum_{i=1}^{n} X_{i}\right| \leq a \sqrt{n \ln \left(\frac{2 n}{\delta}\right)}\right) \geq 1-\delta
$$

Proof. Azuma's inequality states that:

$$
\mathbb{P}\left(\left|\sum_{i=1}^{n} X_{i}\right| \leq a \sqrt{\frac{n}{2} \ln \left(\frac{2}{\delta}\right)}\right) \geq 1-\delta
$$

We can then choose $\delta \leftarrow \frac{\delta}{2 n^{2}}$ and take a union bound over all possible values of $n \geq 1$. The result follows by noting that $\sum_{n \geq 1} \frac{\delta}{2 n^{2}}<\delta$.

Proposition 9 (Freedman's inequality). Let $\left(X_{n}, \mathcal{F}_{n}\right)_{n \in \mathbb{N}}$ be an MDS such that $\left|X_{n}\right| \leq a$ a.s. for all $n \in \mathbb{N}$. Then for all $\delta \in] 0,1[$,

$$
\mathbb{P}\left(\forall n \geq 1,\left|\sum_{i=1}^{n} X_{i}\right| \leq 2 \sqrt{\left(\sum_{i=1}^{n} \mathbb{V}\left(X_{i} \mid \mathcal{F}_{i-1}\right)\right) \cdot \ln \left(\frac{4 n}{\delta}\right)}+4 a \ln \left(\frac{4 n}{\delta}\right)\right) \geq 1-\delta
$$

Proof. Freedman [31] showed that when $a=1$:

$$
\mathbb{P}\left(\forall n \geq 1, \quad \sum_{i=1}^{n} X_{i} \geq \varepsilon, \quad \sum_{i=1}^{n} \mathbb{V}\left(X_{i} \mid \mathcal{F}_{i-1}\right) \leq k\right) \leq \exp \left(\frac{-\varepsilon^{2}}{2 k+2 \varepsilon / 3}\right)
$$

Since $\left(-X_{n}, \mathcal{F}_{n}\right)_{n \in \mathbb{N}}$ is also an MDS, the above inequality holds also in absolute value (with a factor 2 appearing in front of the exponential term after taking a union bound). In order to reverse the inequality (i.e., replace ε by δ), we can use the same technique as Cesa-Bianchi and Gentile [32, Section 2]. Finally, to account for the case where $a \neq 1$ we can simply apply the result to $\left(X_{n} / a, \mathcal{F}_{n}\right)_{n \in \mathbb{N}}$.

F. 2 A useful concentration with optional skipping

In this section we prove a very simple theorem inspired by Doob's optional skipping [e.g., 28, Sec. 5.3, Lem. 4]. We start with useful definitions and lemmas.

Lemma 9. Let τ_{1} and τ_{2} be two stopping times w.r.t. the same filtration $\left(\mathcal{F}_{n}\right)_{n \in \mathbb{N}}$. We say that $\tau_{1}<\tau_{2}$ a.s. if $\mathbb{P}\left(\left\{\tau_{1}<\tau_{2}\right\} \cup\left\{\tau_{1}=\tau_{2}=+\infty\right\}\right)=1$. If $\tau_{1}<\tau_{2}$ a.s. then $\mathcal{F}_{\tau_{1}+1} \subseteq \mathcal{F}_{\tau_{2}}$.

Proof. If $\tau_{1}<\tau_{2}$ then $\tau_{1}+1 \leq \tau_{2}$ since τ_{1} is an integer-valued r.v. If $\tau_{1}=\tau_{2}=+\infty$ then $\tau_{1}+1=+\infty$ and so $\tau_{1}+1=\tau_{2}$. In conclusion, $\tau_{1}+1 \leq \tau_{2}$ a.s. and so by Prop. $6, \mathcal{F}_{\tau_{1}+1} \subseteq \mathcal{F}_{\tau_{2}}$.

Definition 7. We say that a sequence of stopping times $\left(\tau_{m}\right)_{m \in \mathbb{N}}$ w.r.t. $\left(\mathcal{F}_{n}\right)_{n \in \mathbb{N}}$ is strictly increasing if $\tau_{m}<\tau_{m+1}$ a.s. for all $m \geq 0$.
Lemma 10. Let $\left(X_{n}, \mathcal{F}_{n}\right)_{n \in \mathbb{N}}$ be a bounded adapted sequence and let $\left(\tau_{m}\right)_{m \in \mathbb{N}}$ be a strictly increasing sequence of stopping times w.r.t. $\left(\mathcal{F}_{n}\right)_{n \in \mathbb{N}}$. For all $m \in \mathbb{N}$, define $Y_{m}:=X_{\tau_{m}+1}-$ $\mathbb{E}\left[X_{\tau_{m}+1} \mid \mathcal{F}_{\tau_{m}}\right]$ and $\mathcal{G}_{m}:=\mathcal{F}_{\tau_{m+1}}$. Then, $\left(Y_{m}, \mathcal{G}_{m}\right)_{m \in \mathbb{N}}$ is an MDS.

Proof. By assumption, for any $m \in \mathbb{N}, \tau_{m}<\tau_{m+1}$ a.s. and Prop. 6 implies that $\mathcal{F}_{\tau_{m}} \subseteq \mathcal{F}_{\tau_{m+1}}$. As a consequence, $\left(\mathcal{G}_{m}\right)_{m \in \mathbb{N}}=\left(\mathcal{F}_{\tau_{m+1}}\right)_{m \in \mathbb{N}}$ is a filtration. By Prop. 7 we know that $X_{\tau_{m}+1}$ is $\mathcal{F}_{\tau_{m}+1^{-}}$ measurable and Lem. 9 implies that $\mathcal{F}_{\tau_{m}+1} \subseteq \mathcal{F}_{\tau_{m+1}}=\mathcal{G}_{m}$ so $X_{\tau_{m}+1}$ is \mathcal{G}_{m}-measurable. Finally, $\mathbb{E}\left[X_{\tau_{m}+1} \mid \mathcal{F}_{\tau_{m}}\right]$ is $\mathcal{F}_{\tau_{m}}$-measurable by definition (see Def. 2$]$. Therefore, Y_{m} is \mathcal{G}_{m}-measurable.
Since by assumption X_{n} is a.s. bounded $\left(\mathbb{P}\left(X_{n}<K\right)=1\right.$ for all $n \geq 0$), we can write a.s. (see Def. 5]
$\left|X_{\tau_{m}+1}\right|=\left|\sum_{n=0}^{+\infty} \mathbb{1}\left(\tau_{m}+1=n\right) \cdot X_{n}\right| \leq \sum_{n=0}^{+\infty} \mathbb{1}\left(\tau_{m}+1=n\right) \cdot\left|X_{n}\right| \leq K \sum_{n=0}^{+\infty} \mathbb{1}\left(\tau_{m}+1=n\right)=K$
Thus, $X_{\tau_{m}+1}$ is a.s. bounded hence integrable implying that $\mathbb{E}\left[X_{\tau_{m}+1} \mid \mathcal{F}_{\tau_{m}}\right]$ is well-defined (see Def. 22. Therefore, Y_{m} is a.s. bounded and so integrable.
Finally, we can apply Prop. 5 and we obtain:

$$
\mathbb{E}\left[Y_{m+1} \mid \mathcal{G}_{m}\right]=\mathbb{E}\left[X_{\tau_{m}+1}-\mathbb{E}\left[X_{\tau_{m}+1} \mid \mathcal{F}_{\tau_{m}}\right] \mid \mathcal{F}_{\tau_{m}}\right]=\mathbb{E}\left[X_{\tau_{m}+1} \mid \mathcal{F}_{\tau_{m}}\right]-\mathbb{E}\left[X_{\tau_{m}+1} \mid \mathcal{F}_{\tau_{m}}\right]=0
$$

which concludes the proof.
Theorem 4. Let $\left(X_{n}, \mathcal{F}_{n}\right)_{n \in \mathbb{N}}$ be an adapted sequence a.s. bounded by a_{1} and let $\left(\tau_{m}\right)_{m \in \mathbb{N}}$ be a strictly increasing sequence of stopping times w.r.t. $\left(\mathcal{F}_{n}\right)_{n \in \mathbb{N}}$. If $\left(Y_{m}, \mathcal{G}_{m}\right)_{m \in \mathbb{N}}$ is defined as in

Lem. 10 then the following concentration inequalities hold:

$$
\begin{aligned}
& \mathbb{P}\left(\forall m \geq 1,\left|\sum_{i=1}^{m} Y_{m}\right| \leq a_{1} \sqrt{m \ln \left(\frac{2 m}{\delta}\right)}\right) \geq 1-\delta \\
& \mathbb{P}\left(\forall m \geq 1,\left|\sum_{i=1}^{m} Y_{m}\right| \leq 2 \sqrt{\left(\sum_{i=1}^{m} \mathbb{V}\left(Y_{i} \mid \mathcal{G}_{i-1}\right)\right) \cdot \ln \left(\frac{4 m}{\delta}\right)}+4 a_{1} \ln \left(\frac{4 m}{\delta}\right)\right) \geq 1-\delta
\end{aligned}
$$

In particular for any sequence $\left(N_{k}\right)_{k \geq 1}$ of \mathcal{F}-measurable integer-valued r.v. $N_{k}: \Omega \rightarrow \mathbb{N} \backslash\{0\}$ the following inequality holds true

$$
\mathbb{P}\left(\forall k \geq 1,\left|\sum_{i=1}^{N_{k}} Y_{m}\right| \leq a_{1} \sqrt{N_{k} \ln \left(\frac{2 N_{k}}{\delta}\right)}\right) \geq 1-\delta \ldots
$$

Proof. The concentration inequalities follow from Lem. 10 and Azuma's and Freedman's inequalities. If the results hold for all $n \in \mathbb{N}$ and the r.v. N_{k} takes values in \mathbb{N}, then the high probability event holds for all N_{k} simulataneously.

F. 3 In the regret proof

For any $t \geq 0$, the σ-algebra induced by the past history of state-action pairs and rewards up to time t is denoted $\mathcal{F}_{t}:=\sigma\left(s_{1}, a_{1}, r_{1}, \ldots, s_{t}, a_{t}\right)$ where by convention $\mathcal{F}_{0}=\sigma(\emptyset)$ and $\mathcal{F}_{\infty}:=\cup_{t \geq 0} \mathcal{F}_{t}$. Trivially, for all $t \geq 0, \mathcal{F}_{t} \subseteq \mathcal{F}_{t+1}$ and the filtration $\left(\mathcal{F}_{t}\right)_{t \geq 0}$ is denoted by \mathbb{F}. We recall that the sequence $\left(t_{k}\right)_{k \geq 1}$ (starting times of episodes $k \geq 1$) is formally defined by $t_{1}:=1$ and for all $k \geq 1$,

$$
t_{k+1}:=1+\inf \left\{T \geq t>t_{k}: \sum_{u=t_{k}}^{t-1} \mathbb{1}\left(s_{u} \in I(s), a_{u}=a\right) \geq \sum_{u=0}^{t_{k}-1} \mathbb{1}\left(s_{u} \in I(s), a_{u}=a\right)\right\} .
$$

where by convention $\inf \{\emptyset\}:=T$. It is immediate to see that for all $t \geq 0,\left\{t_{k}=t\right\} \in \mathcal{F}_{t-1} \subseteq \mathcal{F}_{t}$ and so t_{k} is a stopping time w.r.t. filtration \mathbb{F} (see Def. 3).
The following lemma is used in App.C.1.3
Lemma 11. For all $l \geq 1$, we have:

1. $\mathbb{E}\left[w^{*}\left(s_{\tau_{l}+1}\right) \mid \mathcal{G}_{l-1}\right]=\int_{\mathcal{S}} p\left(s^{\prime} \mid s_{\tau_{l}}, a_{\tau_{l}}\right) w^{*}\left(s^{\prime}\right) \mathrm{d} s^{\prime}$,
2. $\mathbb{E}\left[\mathbb{1}\left(s_{\tau_{l}+1} \in J\right) \mid \mathcal{G}_{l-1}\right]=\int_{J} p\left(s^{\prime} \mid s_{\tau_{l}}, a_{\tau_{l}}\right) \mathrm{d} s^{\prime}$,
3. and $\mathbb{E}\left[r_{\tau_{l}}\left(s_{\tau_{l}}, a_{\tau_{l}}\right) \mid \mathcal{G}_{l-1}\right]=r\left(s_{\tau_{l}}, a_{\tau_{l}}\right)$.

Proof. To prove this result, we rely on the definition of conditional expectation (see Def. 2 . .

1) By Prop. 7. $\left(s_{\tau_{l}}, a_{\tau_{l}}\right)$ is \mathcal{G}_{l-1}-measurable $\left(\mathcal{G}_{l-1}=\mathcal{F}_{\tau_{l}}\right)$ and so $\int_{\mathcal{S}} p\left(s^{\prime} \mid s_{\tau_{l}}, a_{\tau_{l}}\right) w^{*}\left(s^{\prime}\right) \mathrm{d} \vec{s}$ is $\mathcal{G}_{l-1^{-}}$ measurable too. Moreover, $\left|\int_{\mathcal{S}} p\left(s^{\prime} \mid s_{\tau_{l}}, a_{\tau_{l}}\right) w^{*}\left(s^{\prime}\right) \mathrm{d} s^{\prime}\right| \leq c / 2$ a.s. so $\int_{\mathcal{S}} p\left(s^{\prime} \mid s_{\tau_{l}}, a_{\tau_{l}}\right) w^{*}\left(s^{\prime}\right) \mathrm{d} s^{\prime}$ is also integrable (and therefore \mathcal{G}_{l-1}-integrable).
2) We recall that for any stochastic process $\left(X_{t}\right)_{t \geq 0}$, we use the convention that $X_{\infty}=0$ a.s. implying that $X_{\tau_{l}}=\sum_{t=0}^{+\infty} X_{t} \mathbb{1}\left(\tau_{l}=t\right)$ (see Def. 55. Usinng the law of total expectations (see Prop. 4) we have that $\forall A \in \mathcal{G}_{l-1}$,

$$
\begin{aligned}
\mathbb{E}\left[\mathbb{1}(A) \times w^{*}\left(s_{\tau_{l}+1}\right)\right] & =\sum_{t=0}^{+\infty} \mathbb{E}\left[\mathbb{1}\left(A \cap\left\{\tau_{l}=t\right\}\right) \times w^{*}\left(s_{\tau_{l}+1}\right)\right] \\
& =\sum_{t=0}^{+\infty} \mathbb{E}[\mathbb{E}[\mathbb{1}(\underbrace{A \cap\left\{\tau_{l}=t\right\}}_{\in \mathcal{F}_{t}}) \times w^{*}(\underbrace{s_{\tau_{l}+1}}_{=s_{t+1}}) \mid \mathcal{F}_{t}]]
\end{aligned}
$$

In the first equality, the fact that we can move the sum outside the expectation is a direct consequence of the dominated convergence theorem (for series) since

$$
\begin{aligned}
\sum_{t=0}^{+\infty} \mathbb{E}\left[\mathbb{1}\left(A \cap\left\{\tau_{l}=t\right\}\right) \times\left|w^{*}\left(s_{\tau_{l}+1}\right)\right|\right] & \leq c / 2 \sum_{t=0}^{+\infty} \mathbb{E}\left[\mathbb{1}\left(A \cap\left\{\tau_{l}=t\right\}\right)\right] \\
& =c / 2 \sum_{t=0}^{+\infty} \mathbb{P}\left(A \cap\left\{\tau_{l}=t\right\}\right)=c / 2 \cdot \mathbb{P}(A)<+\infty
\end{aligned}
$$

Under event $\left\{\tau_{l}=t\right\}$ we have that $s_{\tau_{l}+1}=s_{t+1}$ a.s. Moreover, $A \cap\left\{\tau_{l}=t\right\} \in \mathcal{F}_{t}$ since τ_{l} is a stopping time (see Def. 4) so by Prop. 5 we can move it outside the conditional expectation and we get:

$$
\begin{aligned}
\mathbb{E}\left[\mathbb{1}(A) \times w^{*}\left(s_{\tau_{l}+1}\right)\right] & =\sum_{t=0}^{+\infty} \mathbb{E}[\mathbb{1}\left(A \cap\left\{\tau_{l}=t\right\}\right) \times \underbrace{\mathbb{E}\left[w^{*}\left(s_{t+1}\right) \mid \mathcal{F}_{t}\right]}_{=\int_{\mathcal{S}} p\left(s^{\prime} \mid s_{t}, a_{t}\right) w^{*}\left(s^{\prime}\right) \mathrm{d} s^{\prime}}] \\
& =\mathbb{E}[\mathbb{1}(A) \times \underbrace{\sum_{t=0}^{+\infty} \mathbb{1}\left(\tau_{l}=t\right) \int_{\mathcal{S}} p\left(s^{\prime} \mid s_{t}, a_{t}\right) w^{*}\left(s^{\prime}\right) \mathrm{d} s^{\prime}}_{\left.=\int_{\mathcal{S}} p\left(s^{\prime} \mid s_{\tau_{l}}, a_{\tau_{l}}\right) w^{*}\left(s^{\prime}\right) \mathrm{d} s^{\prime} \text { (see Def. } 5\right]}] \\
& =\mathbb{E}\left[\mathbb{1}(A) \times \int_{\mathcal{S}} p\left(s^{\prime} \mid s_{\tau_{l}}, a_{\tau_{l}}\right) w^{*}\left(s^{\prime}\right) \mathrm{d} s^{\prime}\right]
\end{aligned}
$$

This proves the first inequality (see Def. 2). The second and third equality can be proved using the same technique.

[^0]: ${ }^{1}$ The algorithm is reported in its general form, which applies to both discrete and continuous state space.

[^1]: ${ }^{2}$ See https://arxiv.org/abs/1705.07041

[^2]: ${ }^{3}$ Refer to App. E. 1 for details about RVIQ and RVIQ-UCB. There is no known regret bound for model-free algorithms in average reward, we think this is an interesting line of research for future work.

[^3]: ${ }^{4}$ Sample complexity is a more natural metric then regret in discounted problems.

[^4]: ${ }^{5}$ The original bound of Jaksch et al. [11] has \sqrt{S} instead of $\sqrt{\Gamma}$ but $\sqrt{\Gamma}$ can be easily achieved by replacing Hoeffding inequality by empirical Bernstein's inequality for transition probabilities.

[^5]: ${ }^{6}$ Fruit et al. [1] Lem. 2] showed that there may not exist a deterministic optimal policy for problem 8

