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Abstract

We introduce dual-decoder Transformer, a new model architecture that jointly performs auto-
matic speech recognition (ASR) and multilingual speech translation (ST). Our models are based
on the original Transformer architecture (Vaswani et al., 2017) but consist of two decoders, each
responsible for one task (ASR or ST). Our major contribution lies in how these decoders interact
with each other: one decoder can attend to different information sources from the other via a
dual-attention mechanism. We propose two variants of these architectures corresponding to two
different levels of dependencies between the decoders, called the parallel and cross dual-decoder
Transformers, respectively. Extensive experiments on the MuST-C dataset show that our models
outperform the previously-reported highest translation performance in the multilingual settings,
and outperform as well bilingual one-to-one results. Furthermore, our parallel models demon-
strate no trade-off between ASR and ST compared to the vanilla multi-task architecture. Our code
and pre-trained models are available at https://github.com/formiel/speech-translation.

1 Introduction

While cascade speech-to-text translation (ST) systems operate in two steps: source language automatic
speech recognition (ASR) and source-to-target text machine translation (MT), recent works have at-
tempted to build end-to-end ST without using source language transcription during decoding (Bérard et
al., 2016; Weiss et al., 2017; Bérard et al., 2018). After two years of extensions to these pioneering
works, the last results of the IWSLT 2020 shared task on offline speech translation (Ansari et al., 2020)
demonstrate that end-to-end models are now on par (if not better) than their cascade counterparts. Such
a finding motivates even more strongly the works on multilingual (one-to-many, many-to-one, many-to-
many) ST (Gangi et al., 2019; Inaguma et al., 2019; Wang et al., 2020a) for which end-to-end models are
well adapted by design. Moreover, of these two approaches: cascade proposes a very loose integration
of ASR and MT (even if lattices or word confusion networks were used between ASR and MT before
end-to-end models appeared) while most end-to-end approaches simply ignore ASR subtask, trying to
directly translate from source speech to target text. We believe that these are two edge design choices
and that a tighter coupling of ASR and MT is desirable for future end-to-end ST applications, in which
the display of transcripts alongside translations can be beneficial to the users (Sperber et al., 2020).

This paper addresses multilingual ST and investigates more closely the interactions between speech
transcription (ASR) and speech translation (ST) in a multilingual end-to-end architecture based on Trans-
former. While those interactions were previously investigated as a simple multi-task framework for a
bilingual case (Anastasopoulos and Chiang, 2018), we propose a dual-decoder with an ASR decoder
tightly coupled with an ST decoder and evaluate its effectiveness on one-to-many ST. Our model is in-
spired by Liu et al. (2020), but the interaction between ASR and ST decoders is much tighter.1 Finally,
experiments show that our model outperforms theirs on the MuST-C benchmark (Di Gangi et al., 2019).

Our contributions are summarized as follows: (1) a new model architecture for joint ASR and mul-
tilingual ST; (2) an integrated beam search decoding strategy which jointly transcribes and translates,
and that is extended to a wait-k strategy where the ASR hypothesis is ahead of the ST hypothesis by

1The model of Liu et al. (2020) does not have interaction between internal hidden states of the decoders (c.f . Section 3.4).
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k tokens and vice-versa; and (3) competitive performance on the MuST-C dataset in both bilingual and
multilingual settings and improvements on previous joint ASR/ST work.

2 Related Work

Multilingual ST Multilingual translation (Johnson et al., 2016) consists in translating between dif-
ferent language pairs with a single model, thereby improving maintainability and the quality of low
resource languages. Gangi et al. (2019) adapt this method to one-to-many multilingual speech transla-
tion by adding a language embedding to each source feature vector. They also observe that using the
source language (English) as one of the target languages improves performance. Inaguma et al. (2019)
simplify the previous approach by prepending a target language token to the decoder and apply it to
one-to-many and many-to-many speech translation. They do not investigate many-to-one due to the lack
of a large corpus for this. To fill this void, Wang et al. (2020a) release the CoVoST dataset for ST from
11 languages into English and demonstrate the effectiveness of many-to-one ST.

Joint ASR and ST Joint ASR and ST decoding was first proposed by Anastasopoulos and Chiang
(2018) through a multi-task learning framework. Chuang et al. (2020) improve multitask ST by using
word embedding as an intermediate level instead of text. A two-stage model that performs first ASR and
then passes the decoder states as input to a second ST model was also studied previously (Anastasopou-
los and Chiang, 2018; Sperber et al., 2019). This architecture is closer to cascaded translation while
maintaining end-to-end trainability. Sperber et al. (2020) introduce the notion of consistency between
transcripts and translations and propose metrics to gauge it. They evaluate different model types for the
joint ASR and ST task and conclude that end-to-end models with coupled inference procedure are able to
achieve strong consistency. In addition to existing models having coupled architectures, they also inves-
tigate a model where the transcripts are concatenated to the translations, and the shared encoder-decoder
network learns to predict this concatenated outputs. It should be noted that our models have lower latency
compared to this approach since the concatenation of outputs makes the two tasks sequential in nature.
Our work is closely related to that of Liu et al. (2020) who propose an interactive attention mechanism
which enables ASR and ST to be performed synchronously. Both ASR and ST decoders do not only rely
on their previous outputs but also on the outputs predicted in the other task. We highlight three differ-
ences between their work and ours: (a) we propose a more general framework in which (Liu et al., 2020)
is a special case; (b) tighter integration of ASR and ST is proposed in our work; and (c) we experiment
in a multilingual ST setting while previous works on joint ASR and ST only investigated bilingual ST.

3 Dual-decoder Transformer for Joint ASR and Multilingual ST

We now present the proposed dual-decoder Transformer for jointly performing ASR and multilingual ST.
Our models are based on the Transformer architecture (Vaswani et al., 2017) but consist of two decoders.
Each decoder is responsible for one task (ASR or ST). The intuition is that the problem at hand consists
in solving two different tasks with different characteristics and different levels of difficulty (multilingual
ST is considered more difficult than ASR). Having different decoders specialized in different tasks may
thus produce better results. In addition, since these two tasks can be complementary, it is natural to allow
the decoders to help each other. Therefore, in our models, we introduce a dual-attention mechanism: in
addition to attending to the encoder, the decoders also attend to each other.

3.1 Model overview
The model takes as input a sequence of speech features x = (x1, x2, . . . , xTx) in a specific source lan-
guage (e.g. English) and outputs a transcription y = (y0, y1, . . . , yTy) in the same language as well as
translations z1, z2, . . . , zM in M different target languages (e.g. French, Spanish, etc.). When M = 1,
this corresponds to joint ASR and bilingual ST (Liu et al., 2020). For simplicity, our presentation consid-
ers only a single target language with output z = (z0, z1, . . . , zTz). All results, however, apply to the gen-
eral multilingual case. In the sequel, denote y<t , (y0, y1, . . . , yt−1) and y>t , (yt+1, yt+2, . . . , yTy)
(yt is included if “<” and “>” are replaced by “≤” and “≥” respectively). In addition, assume that yt is
ignored if t is outside of the interval [0, Ty]. Notations apply to z as well.



The dual-decoder model jointly predicts the transcript and translation in an autoregressive fashion:

p(y, z | x) =
max(Ty ,Tz)∏

t=0

p(yt, zt | y<t, z<t,x). (1)

A natural model would consist of a single decoder followed by a softmax layer. However, even if the
capacity of the decoder were large enough for handling both ASR and ST generation, a single softmax
would require a very large joint vocabulary (with size VyVz where Vy and Vz are respectively the vocab-
ulary sizes for y and z). Instead, our dual-decoder consists of two sub-decoders that are specialized in
producing outputs tailored to the ASR and ST tasks separately. Formally, our model predicts the next
output tokens (ŷs, ẑt) (where 1 ≤ s ≤ Ty, 1 ≤ t ≤ Tz) given a pair of previous outputs (y<s, z<t) as:

hy
s ,h

z
t = DECODERdual(y<s, z<t, ENCODER(x)) ∈ Rdy × Rdz , (2)

p(ys | y<s, z<t,x) = [softmax(Wyhy
s + by)]ys , ŷs = argmaxys p(ys | y<s, z<t,x), (3)

p(zt | y<s, z<t,x) = [softmax(Wzhz
t + bz)]zt , ẑt = argmaxzt p(zt | y<s, z<t,x), (4)

where [v]i denotes the ith element of the vector v. Note that ys and zt are token indices (1 ≤ ys ≤
Vy, 1 ≤ zt ≤ Vz). In (3) and (4), we detail the intermediate quantities p(ys | ·) and p(zt | ·) as obtained
from the probability distributions over the output vocabulary. In the above, we have made an important
assumption about the joint probability p(ys, zt | ·) that it can be factorized into p(ys | ·)p(zt | ·).
Therefore, the joint distribution (1) encoded by the dual-decoder Transformer can be rewritten as

p(y, z | x) =
max(Ty ,Tz)∏

t=0

p(yt | y<t, z<t,x)p(zt | y<t, z<t,x). (5)

We also assumed so far that the sub-decoders start at the same time, which is the most basic configuration.
In practice, however, one may allow one sequence to advance k steps compared to the other, known as
the wait-k policy (Ma et al., 2019). For example, if ST waits for ASR to produce its first k tokens, then
the joint distribution becomes

p(y, z | x) = p(y<k | x)p(y≥k, z | y<k,x) (6)

=

k−1∏
t=0

p(yt | y<t,x)

max(Ty−k,Tz)∏
t=0

p(yt+k | y<t+k, z<t,x)p(zt | y<t+k, z<t,x). (7)

In the next section, we propose two concrete architectures for the dual-decoder, corresponding to
different levels of dependencies between the two sub-decoders (ASR and ST). Then, we show that several
known models in the literature are special cases of these architectures.

3.2 Parallel and cross dual-decoder Transformers

The first architecture is called parallel dual-decoder Transformer, which has the highest level of depen-
dencies: one decoder uses the hidden states of the other to compute its outputs, as illustrated in Figure 1a.
The encoder consists of an input embedding layer followed by a positional embedding and a number of
self-attention and feed-forward network (FFN) layers whose inputs are normalized (Ba et al., 2016).2

This is almost the same as the encoder of the original Transformer (Vaswani et al., 2017) (we refer to
the corresponding paper for further details), except that the embedding layer in our encoder is a small
convolutional neural network (CNN) (Fukushima and Miyake, 1982; LeCun et al., 1989) of two layers
with ReLU activations and a stride of 2, therefore reducing the input length by 4.

2All the illustrations in this paper are for the so-called pre-LayerNorm configuration, in which the input of the layer is
normalized. Likewise, if the output is normalized instead, the configuration is called post-LayerNorm. Since pre-LayerNorm is
known to perform better than post-LayerNorm (Wang et al., 2019; Nguyen and Salazar, 2019), we only conducted experiments
for the former, although our implementation supports both.



M×

N×

Speech inputs

Conv2D
Embedding

LayerNorm

Attention

LayerNorm

FFN

LayerNorm

Outputs (shifted right)

Output
Embedding

LayerNorm

Attention

LayerNorm

Attention

LayerNorm

FFN

LayerNorm

Linear

Sotfmax

Attention

Merge

Attention

Merge

ASR probabilities

Outputs (shifted right)

Output
Embedding

LayerNorm

Attention

LayerNorm

Attention

LayerNorm

FFN

LayerNorm

Linear

Sotfmax

Attention

Merge

Attention

Merge

ST probabilities

(a) The parallel dual-decoder Transformer

N×N×

A

M

A

M

A

A

A

M

A

M

A

A

(b) Parallel

N×

L

N×

A

M

A

M

A

A

A

M

A

M

A

A

L

(c) Cross

Figure 1: The dual-decoder Transformers. Figure (a) shows the detailed architecture of the parallel dual-decoder
Transformer, and Figure (b) shows its simplified view. The cross dual-decoder Transformer is very similar to the
parallel one, except that the keys and values fed to the dual-attention layers come from the previous output, which
is illustrated by Figure (c). From the above figures, one can easily infer the detailed architecture of the cross
Transformer, which can be found in the Appendix. Abbreviations: A (Attention), M (Merge), L (LayerNorm).

The parallel dual-decoder consists of: (a) two decoders that follow closely the common Transformer
decoder structure, and (b) four additional multi-head attention layers (called dual-attention layers). Each
dual-attention layer is complementary to a corresponding main attention layer. We recall that an at-
tention layer receives as inputs a query Q ∈ Rdk , a key K ∈ Rdk , a value V ∈ Rdv and outputs
Attention(Q,K,V).3 A dual-attention layer receives Q from the main branch and K,V from the other
decoder at the same level (i.e. at the same depth in Transformer architecture) to compute hidden repre-
sentations that will be merged back into the main branch (i.e. one decoder attends to the other in parallel).
We present in more detail this merging operation in Section 3.4.

Our second proposed architecture is called cross dual-decoder Transformer, which is similar to the
previous one, except that now the dual-attention layers receive K,V from the previous decoding step
outputs of the other decoder, as illustrated in Figure 1c. Thanks to this design, each prediction step can
be performed separately on the two decoders. The hidden representations hy

s ,hz
t in (2) produced by the

decoders can thus be decomposed into:4

hy
s = DECODERasr(y<s, z<t, ENCODER(x)) ∈ Rdy , (8)

hz
t = DECODERst(z<t,y<s, ENCODER(x)) ∈ Rdz . (9)

3Following Vaswani et al. (2017), we use multi-head attention, in which the inputs are linearly projected multiple times
before feeding to the function, then the outputs are concatenated and projected back to the original dimension.

4This decomposition is clearly not possible for the parallel dual-decoder Transformer.



3.3 Special cases
In this section, we present some special cases of our dual-decoder architecture and discuss their links to
existing models in the literature.

Independent decoders When there is no dual-attention, the two decoders become independent. In
this case, the prediction joint probability can be factorized simply as p(ys, zt | y<s, z<t,x) = p(ys |
y<s,x)p(zt | z<t,x). Therefore, all prediction steps are separable and thus this model is the most
computationally efficient. In the literature, this model is often referred to as multi-task (Anastasopoulos
and Chiang, 2018; Sperber et al., 2020).

Chained decoders Another special case corresponds to the extreme wait-k policy, in which one de-
coder waits for the other to completely finish before starting its own decoding. For example, if ST
waits for ASR, then the prediction joint probability reads p(ys, zt | y<s, z<t,x) = p(ys | y<s,x)p(zt |
z<t,y,x). This model is called triangle in previous work (Anastasopoulos and Chiang, 2018; Sperber et
al., 2020). A special case of this model is when the second decoder in the chain is not directly connected
to the encoder, also referred to as two-stage5 (Sperber et al., 2019; Sperber et al., 2020).

To summarize the different cases, we show below the joint probability distributions encoded by the
presented models, in decreasing level of dependencies:

(single output) p(y, z | x) =
T∏
t=0

p(yt, zt | y<t, z<t,x), (10)

(dual-decoder) p(y, z | x) =
T∏
t=0

p(yt | y<t, z<t,x)p(zt | y<t, z<t,x), (11)

(chained) p(y, z | x) =
T∏
t=0

p(yt | y<t,x)p(zt | z<t,y,x), (12)

(independent) p(y, z | x) =
T∏
t=0

p(yt | y<t,x)p(zt | z<t,x), (13)

where T = max(Ty, Tz). Similar formalization for the wait-k policy (7) can be obtained in a straight-
forward manner. Note that for independent decoders, the distribution is the same as in non-wait-k.

3.4 Variants
The previous section presents special cases of our formulation at a high level. In this section, we intro-
duce different fine-grained variants of the dual-decoder Transformers used in the experiments (Section 5).

Asymmetric dual-decoder Instead of using all the dual-attention layers, one may want to allow a
one-way attention: either ASR attends ST or the inverse, but not both.

At-self or at-source dual-attention In each decoder block, there are two different attention layers,
which we respectively call self-attention (bottom) and source-attention6 (top). For each, there is an
associated dual-attention, named respectively dual-attention at self and dual-attention at source. In the
experiments, we study the case where either only the at-self or at-source attention layers are retained.

Merging operators The Merge layers shown in Figure 1 combine the outputs of the main attention
Hmain and the dual-attention Hdual. We experimented dual-attention with two different merging opera-
tors: weighted sum or concatenation. We can formally define the merging operators as

Hout = Merge(Hmain,Hdual) ,


Hmain if no dual-attention,
Hmain + λHdual, if sum operator,
linear ([Hmain;Hdual]) if concat operator.

(14)

5Also called cascade by Anastasopoulos and Chiang (2018). We omit this term to avoid confusion with the common cascade
models that are typically not trained end-to-end. Note that our chained-decoder (both triangle and two-stage) are end-to-end.

6Also referred to as cross-attention in the literature. We use a different name to avoid confusion with the cross dual-decoder.



For the sum operator, in particular, we perform experiments for learnable or fixed λ.

Remark. The model proposed by Liu et al. (2020) is a special case of our cross dual-decoder Trans-
former with no dual-attention at source, no layer normalization for the input embeddings (Figure 1c),
and sum merging with fixed λ.

4 Training and Decoding

4.1 Training

The objective, L(ŷ, ẑ,y, z) = αLasr(ŷ,y) + (1 − α)Lst(ẑ, z), is a weighted sum of the cross-entropy
ASR and ST losses, where (ŷ, ẑ) and (y, z) denote the predictions and the ground-truths for (ASR,
ST), respectively. The weight α is set to 0.3 in all experiments. Here we favor the ST task based on
the intuition that it is more difficult to train than the ASR one, simply because of the multilinguality.
A hyperparameter search may further improve the results. We also employ label smoothing (Szegedy
et al., 2016) with ε = 0.1. For each language pair, training data is sorted by the number of frames.
Each mini-batch contains all languages such that their numbers of frames are roughly the same. We
follow Inaguma et al. (2019) and prepend a language-specific token to the target sentence. Preliminary
experiments showed that this approach was more effective than adding a target language embedding
along the temporal dimension to the speech feature inputs (Di Gangi et al., 2019).

4.2 Decoding

We present the beam search strategy used by our model. Since there are two different outputs (ASR and
ST), one may naturally think about two different beams (with possibly some interactions). However, we
found that a single joint beam works best for our model. In this beam search strategy, each hypothesis
includes a tuple of ASR and ST sub-hypotheses. The two sub-hypotheses are expanded together and
the score is computed based on the sum of log probabilities of the output token pairs. For a beam size
B, the B best hypotheses are retained based on this score. In this setup, both sub-hypotheses evolve
jointly, which resembles the training process more than in the case of two different beams. A limitation
of this joint-beam strategy is that, in extreme cases, one of the task (ASR or ST) may only have a single
hypothesis. Indeed, at a decoding step t+1, we take the best B predictions (ŷt, ẑt) in terms of their sum
of scores s(yt, zt) , log p(yt | y<t, z<t)+ log p(zt | y<t, z<t); it can happen that, e.g., some ŷt has a so
dominant score that it is selected for all the hypotheses, i.e. the B (different) hypotheses have a single ŷt
and B different ẑt. We leave the design of a joint-beam strategy with enforced diversity to future work.
Finally, to produce translations for multiple target languages in our system, it suffices to feed different
language-specific tokens to the dual-decoder at decoding time.

5 Experiments

5.1 Dataset

To build a one-to-many model that can jointly transcribe and translate, we use MuST-C (Di Gangi et al.,
2019), which is currently the largest publicly available one-to-many speech translation dataset.7 MuST-C
covers language pairs from English to eight different target languages including Dutch, French, German,
Italian, Portuguese, Romanian, Russian, and Spanish. Each language direction includes a triplet of source
input speech, source transcription, and target translation, with size ranging from 385 hours (Portuguese)
to 504 hours (Spanish). We refer to the original paper for more details.

5.2 Training and decoding details

Our implementation is based on the ESPnet-ST toolkit (Inaguma et al., 2020).8 In the following, we
provide details for reproducing the results. The pipeline is identical for all experiments.

7Smaller datasets include Europarl-ST (Iranzo-Sánchez et al., 2020) and MaSS (Boito et al., 2020). Recently, a very large
many-to-many dataset called CoVoST-2 (Wang et al., 2020b) has been released, while its predecessor CoVoST (Wang et al.,
2020a) only covers the many-to-one scenario.

8https://github.com/espnet/espnet

https://github.com/espnet/espnet


Models All experiments use the same encoder architecture with 12 layers. The decoder has 6 layers,
except for the independent-decoder model where we also include a 8-layer version (independent++)
to compare the effects of dual-attention against simply increasing the number of model parameters.

Text pre-processing Transcriptions and translations were normalized and tokenized using the Moses
tokenizer (Koehn et al., 2007). The transcription was lower-cased and the punctuation was stripped. A
joint BPE (Sennrich et al., 2016) with 8000 merge operations was learned on the concatenation of the
English transcription and all target languages. We also experimented with two separate dictionaries (one
for English and another for all target languages), but found that the results are worse.

Speech features We used Kaldi (Povey et al., 2011) to extract 83-dimensional features (80-channel
log Mel filter-bank coefficients and 3-dimensional pitch features) that were normalized by the mean
and standard deviation computed on the training set. Following common practice (Inaguma et al., 2019;
Wang et al., 2020c), utterances having more than 3000 frames or more than 400 characters were removed.
For data augmentation, we used speed pertubation (Ko et al., 2015) with three factors of 0.9, 1.0, and
1.1 and SpecAugment (Park et al., 2019) with three types of deterioration including time warping (W ),
time masking (T ) and frequency masking (F ), where W = 5, T = 40, and F = 30.

Optimization Following standard practice for training Transformer, we used the Adam opti-
mizer (Kingma and Ba, 2015) with Noam learning rate schedule (Vaswani et al., 2017), in which the
learning rate is linearly increased for the first 25K warm-up steps then decreased proportionally to the
inverse square root of the step counter. We set the initial learning rate to 1e−3 and the Adam parameters
to β1 = 0.9, β2 = 0.98, ε = 1e−9. We used a batch size of 32 sentences per GPU, with gradient accu-
mulation of 2 training steps. All models were trained on a single-machine with 8 32GB GPUs for 250K
steps unless otherwise specified. As for model initialization, we trained an independent-decoder model
with the two decoders having shared weights for 150K steps and used its weights to initialize the other
models. This resulted in much faster convergence for all models. We also included this shared model in
the experiments, and for a fair comparison, we trained it for additional 250K steps. Finally, for decoding,
we used a beam size of 10 with length penalty of 0.5.9

5.3 Results and analysis
In this section, we report detokenized case-sensitive BLEU10 (Papineni et al., 2002) on the MuST-C dev
sets (Table 1). Results on the test sets are discussed in Section 5.4. Following previous work (Inaguma
et al., 2020), we remove non-verbal tokens in evaluation.11 In Table 1, there are 3 main groups of mod-
els, corresponding to independent-decoder, cross dual-decoder (crx), and parallel dual-decoder (par),
respectively. In particular, independent++ corresponds to a 8-decoder-layer model and will serve as
our strongest baseline for comparison. Figure 2 shows the relative performance of some representative
models with respect to this baseline, together with their validation accuracies. In the following, when
comparing models, we implicitly mean “on average” (over the 8 languages), except otherwise specified.

Parallel vs. cross Under the same configurations, parallel models outperform their cross counterparts
in terms of translation (line 5 vs. line 13, line 6 vs. line 14, and line 7 vs. line 16), showing an improve-
ment of 0.7 BLEU on average. In terms of recognition, however, the parallel architecture has on average
a 0.33% higher (worse) WER compared to the cross models. On the other hand, parallel dual-decoders
perform better than independent decoders in both translation and recognition tasks, except for the asym-
metric case (line 12), the at-self and at-source with sum merging configuration (line 17), and the wait-k
model where ST is ahead of ASR (line 19). This shows that both the translation and recognition tasks
can benefit from the tight interaction between the two decoders, i.e. it is possible to achieve no trade-off
between BLEUs and WERs for the parallel models compared to the independent architecture. This is
not the case, however, for the cross dual-decoders that feature weaker interaction than the parallel ones.

9For a hypothesis of length L, a length penalty p means a score of pL will be added to the (log probability) score of that
hypothesis (Section 4.2). Therefore, longer hypotheses are favored, or equivalently, shorter hypotheses are “penalized”.

10We also tried sacreBLEU (Post, 2018) and found that the results are identical.
11This is for a fair comparison with the results of Inaguma et al. (2020), presented in Section 5.4.



No type side self src merge params de es fr it nl pt ro ru avg WER

1 independent (shared) 31.3M 19.40 27.77 24.65 19.93 21.53 24.24 18.19 10.99 20.84 14.2
2 independent 44.8M 20.11 28.18 25.61 20.76 21.83 25.45 18.45 11.31 21.46 12.6
3 independent++ 51.2M 20.25 29.48 26.10 21.05 22.34 26.71 19.67 12.10 22.21 12.9

4 crx st - X sum 46.4M 20.01 28.57 25.86 20.66 22.26 25.36 19.06 12.00 21.72 12.7
5 crx both - X concat 51.2M 20.36 28.51 25.80 21.18 22.10 25.24 19.55 11.89 21.83 12.3
6 crx both - X sum 48.0M 19.99 28.87 26.09 20.94 21.67 25.42 18.85 11.83 21.71 12.2
7 crx both X X concat 54.3M 20.07 28.73 26.01 20.93 22.59 25.60 19.08 12.46 21.93 12.4
8 crx both X X sum 51.2M 20.38 28.90 26.64 21.07 22.61 26.23 19.44 12.12 22.17 12.1
9 crx? both X - sum 48.0M 19.72 27.96 25.49 20.52 21.56 25.01 18.53 11.33 21.26 12.8
10 crx? both X - sum† 48.0M 18.62 27.11 24.41 19.73 20.47 24.49 17.23 11.09 20.39 12.8
11 crx? both X X sum 51.2M 19.54 28.17 25.68 20.95 21.55 24.77 18.76 11.28 21.34 12.3

12 par st X X concat 49.6M 20.57 28.84 26.08 20.85 22.11 25.70 19.36 11.90 21.93 13.0
13 par both - X concat 51.2M 20.84 29.51 26.44 21.53 22.68 25.94 19.04 12.60 22.32 12.5
14 par both - X sum 48.0M 20.85 29.18 26.38 22.14 22.87 26.49 19.70 12.74 22.54 12.7
15 par both X - sum 48.0M 20.56 29.21 26.54 21.07 22.51 25.75 19.64 12.80 22.26 12.8
16 par both X X concat 54.3M 21.22 29.50 26.66 21.74 22.76 26.66 20.25 12.79 22.70 12.7
17 par both X X sum 51.2M 20.95 28.67 26.45 21.31 22.29 25.87 19.53 12.24 22.16 12.8
18 par bothR3 - X sum 48.0M 21.22 30.12 26.53 22.06 23.37 26.59 19.82 12.54 22.78 12.6
19 par bothT3 - X sum 48.0M 20.35 28.61 25.94 21.22 22.12 25.19 19.36 11.99 21.85 13.6

?no normalization for dual-attention input, †sum merging has λ = 0.3 fixed,
R3ASR is 3 steps ahead of ST, T3ST is 3 steps ahead of ASR.

Table 1: BLEU and (average) WER on MuST-C dev set. In the second column (type), crx and parallel
denote the cross and parallel dual-decoder, respectively. In the third column (side), st means only ST attends to
ASR. Line 1 corresponds to the independent-decoder model where the weights of the two decoders are shared,
and independent++ corresponds to the model with 8 decoder layers (instead of 6). It should be noted that
line 10 corresponds to the model proposed by Liu et al. (2020). The values that are better than the baseline
(independent++) are underlined and colored in blue, while the best values are highlighted in bold.

Interestingly, there is a slight trade-off between the parallel and cross designs: the parallel models are
better in terms of BLEUs but worse in terms of WERs. This is to some extent similar to previous work
where models having different types of trade-offs between BLEUs and WERs (He et al., 2011; Sperber
et al., 2020; Chuang et al., 2020). It should be emphasized that most of the dual-decoder models have
fewer or same numbers of parameters compared to independent++. This confirms our intuition that
the tight connection between the two decoders in the parallel architecture improves performance. The
cross dual-decoders perform relatively well compared to the baseline of two independent decoders with
the same number of layers (6), but not so well compared to the stronger baseline with 8 layers.

Symmetric vs. asymmetric In some experiments, we only allow the ST decoder to attend to the ASR
decoder. For the cross dual-decoder, this did not yield noticeable improvements in terms of BLEU (21.72
at line 4 vs. 21.71 at line 6), while for the parallel architecture, the results are worse (21.93 at line 12 vs.
22.70 at line 16). The symmetric models also outperform the asymmetric counterparts in terms of WER
(12.7 at line 4 vs. 12.2 at line 6, 13.0 at line 12 vs. 12.7 at line 16). It is confirmed again that the two
tasks are complementary and can help each other: removing the ASR-to-ST attention hurts performance.
In fact, examining the learnable λ in the sum merging operator shows that the decoders learn to attend to
each other, though at different rates. We observed that for the same layer depth, the ST decoder always
attends more to the ASR one, and for both of them λ increases with the depth of the layer.

At-self dual-attention vs. at-source dual-attention For the parallel dual-decoder, the at-source dual-
attention produces better results than the at-self counterpart (BLEU: 22.54 vs. 22.26, WER: 12.7 vs. 12.8
at line 14 vs. line 15), while the combination of both does not improve the results (BLEU 22.16, WER
12.8 at line 17). For the concat merging, using both yields better results in terms of translation but
slightly hurts the recognition task (BLEU: 22.70 vs. 22.32, WER: 12.7 vs. 12.5 at line 16 vs. line 13).

Sum vs. concat merging The impact of merging operators is not consistent across different models. If
we focus on the parallel dual-decoder, sum is better for models with only at-source attention (line 13 vs.
line 14) and concat is better for models using both at-self and at-source attention (line 16 vs. line 17).
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Figure 2: Results on the MuST-C dev set. The models listed in the legends correspond respectively to lines 17,
16, 8, 7, 3, 2 in Table 1. The baseline used for relative BLEU is independent++. One can observe that the
parallel models consistently outperform the others in terms of validation accuracy.

Input normalization and learnable sum Some experiments confirm the importance of normalizing
the input fed to the dual-attention layers (i.e. the LayerNorm layers shown in Figure 1c). The results
show that normalization substantially improves the performance (BLEU: 22.17 vs. 21.34, WER: 12.1 vs.
12.3 at line 8 vs. at line 11). It is also beneficial to use learnable weights compared to a fixed value for
the sum merging operator (Equation (14)) (BLEU: 21.26 vs. 20.39 at line 9 vs. line 10). Note that the
fixed weight and non-normalization configuration corresponds to the model of Liu et al. (2020) (line 10).

Wait-k policy We compare a non-wait-k parallel dual-decoder (line 14) with its wait-k (k = 3) coun-
terparts. From the results, one can observe that letting ASR be ahead of ST (line 18) improves the
performance (BLEU: 22.78 vs. 22.54, WER: 12.6 vs. 12.7), while letting ST be ahead of ASR (line 19)
considerably worsen the results (BLEU: 21.85, WER: 13.6). This confirms our intuition that the ST task
is more difficult and should not take the lead in the dual-decoder models.

ASR results From the results (last column of Table 1), one can observe that the dual-decoder models
outperform the baseline indepedent++, except for the asymmetric case and the wait-k model where
ST is 3 steps ahead of ASR. While using a single decoder leads to an average of 14.2% WER, all other
symmetric architectures with two decoders (except the ASR-waits-for-ST) have better and rather stable
WERs (from 12.1% to 13.0%). Detailed results for each data subset are provided in the Appendix.

5.4 Comparison to state-of-the-art
To avoid a hyper-parameter search over the test set, we only select three of our best models together
with the baseline independent++ for evaluation. All of the three models are symmetric parallel dual-
decoders, the first one has at-source dual-attention with sum merging, the second one has both at-self
and at-source dual-attentions with concat merging, and the last one is a wait-k model in which ASR is
3 steps ahead of ST. These models correspond to lines 5, 6, and 7 of Table 2, and will be referred to
respectively as par++, par, and parR3 in the sequel. For par++ we increase the number of decoder
layers from 6 to 8, thus increasing the number of parameters from 48M to 51.2M, matching that of the
baseline. We do not do this for parR3 (48M) as this model already has a higher latency due to the wait-k.
All models are trained for 550K steps, corresponding to 25 epochs. Following Inaguma et al. (2020), we
use the average of five checkpoints with the best validation accuracies on the dev sets for evaluation.

We compare the results with the previous work (Gangi et al., 2019) in the multilingual setting. In
addition, to demonstrate the competitive performance of our models, we also include the best existing
translation performance on MuST-C (Inaguma et al., 2020), although these results were obtained with
bilingual systems and from a sophisticated training recipe. Indeed, to obtain the results for each language
pair (e.g. en-de), Inaguma et al. (2020) pre-trained an ASR model and an MT model to initialize the



No type side self src merge epochs de es fr it nl pt ro ru avg WER

1 Bilingual one-to-one (Inaguma et al., 2020) 50 22.91 27.96 32.69 23.75 27.43 28.01 21.90 15.75 25.05 12.0

2 Multilingual one-to-many (Gangi et al., 2019) 17.70 20.90 26.50 18.00 20.00 22.60 - - - -
3 Multilingual one-to-many (Gangi et al., 2019) 16.50 18.90 24.50 16.20 17.80 20.80 15.90 9.80 17.55 -

4 independent++ 25 22.82 27.20 32.11 23.34 26.67 28.98 21.37 14.34 24.60 11.6

5 par++ both - X sum 25 23.63 28.12 33.45 24.18 27.55 29.95 22.87 15.21 25.62 11.4
6 par both X X concat 25 22.74 27.59 32.86 23.50 26.97 29.51 21.94 14.88 25.00 11.6
7 parR3 both - X sum 25 22.84 27.92 32.12 23.61 27.29 29.48 21.16 14.50 24.87 11.6

Table 2: BLEU on MuST-C tst-COMMON test set. Line 2 corresponds to the best multilingual models
of Gangi et al. (2019) trained separately for {de,nl} and {es,fr,it,pt}, while line 3 is a single model trained
on 8 languages. The WER in line 1 corresponds to the best result reported by Inaguma et al. (2020).12

weights of (respectively) the encoder and decoder for ST training. This means that to obtain the results
for the 8 language pairs, 24 independent trainings had to be performed in total (3 for each language pair).

The results in Table 2 show that our models achieved very competitive performance compared to
bilingual one-to-one models (Inaguma et al., 2020), despite being trained for only half the number of
epochs. In particular, the par++ model achieved the best results, consistently surpassing the others
on all languages (except on Russian where it is outperformed by the bilingual model). Our results also
surpassed those of Gangi et al. (2019) by a large margin. We observe the largest improvements on
Portuguese (+1.94 at line 5, +1.50 at line 6, and +1.47 at line 7, compared to the bilingual result at line
1), which has the least data among the 8 language pairs in MuST-C. This phenomenon is also common
in multilingual neural machine translation where multilingual joint training has been shown to improve
performance on low-resource languages (Johnson et al., 2017).

6 Conclusion

We introduced a novel dual-decoder Transformer architecture for synchronous speech recognition and
multilingual speech translation. Through a dual-attention mechanism, the decoders in this model are at
the same time able to specialize in their tasks while being helpful to each other. The proposed model
also generalizes previously proposed approaches using two independent (or weakly tied) decoders or
chaining ASR and ST. It is also flexible enough to experiment with settings where ASR is ahead of ST
which makes it promising for (one-to-many) simultaneous speech translation. Experiments on the MuST-
C dataset showed that our model achieved very competitive performance compared to state-of-the-art.
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Appendix

We present the detailed model architecture for the cross dual-decoder Transformer in Figure 3. Detailed
WER results on MuST-C dev set are presented in Table 3.
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Figure 3: The cross dual-decoder Transformer. Unlike the parallel dual-decoder Transformer, here one decoder
attends to the previous decoding-step outputs of the other and there is no interaction between their hidden states.



No type side self src merge params de es fr it nl pt ro ru avg

1 independent (shared) 31.3M 14.9 13.8 14.5 13.6 14.0 13.6 14.8 14.0 14.2
2 independent 44.8M 12.6 12.6 13.1 11.9 12.4 12.3 13.1 12.4 12.6
3 independent++ 51.2M 13.4 12.5 14.0 12.2 12.7 12.8 13.3 12.5 12.9

4 crx st - X sum 46.4M 12.8 13.0 13.2 12.8 12.1 12.4 12.2 12.8 12.7
5 crx both - X concat 51.2M 12.3 12.9 12.4 11.9 12.3 12.3 12.2 12.4 12.3
6 crx both - X sum 48.0M 12.2 12.6 12.4 12.0 12.3 12.0 12.0 12.2 12.2
7 crx both X X concat 54.3M 12.5 12.9 12.6 12.0 12.2 12.3 12.4 12.2 12.4
8 crx both X X sum 51.2M 12.1 12.7 12.1 11.7 12.0 12.0 12.0 12.1 12.1
9 crx? both X - sum 48.0M 12.7 12.9 13.3 12.5 12.6 12.5 12.6 12.9 12.8
10 crx? both X - sum† 48.0M 12.7 12.8 13.2 12.3 11.5 13.1 12.7 12.9 12.8
11 crx? both X X sum 51.2M 12.2 12.6 12.4 11.8 12.1 12.2 12.4 12.4 12.3

12 par st X X concat 49.6M 13.0 13.7 13.1 12.5 13.1 12.7 13.3 12.9 13.0
13 par both - X concat 51.2M 12.6 13.0 12.6 12.1 12.4 12.3 12.5 12.5 12.5
14 par both - X sum 48.0M 12.8 13.0 13.2 12.2 12.8 12.4 12.6 12.6 12.7
15 par bothR3 - X sum 48.0M 13.1 13.4 12.8 12.3 12.9 12.5 12.7 12.9 12.8
16 par bothT3 - X sum 48.0M 14.0 14.3 13.9 13.4 13.9 13.6 13.8 13.5 13.8
17 par both X - sum 48.0M 12.6 13.1 13.3 12.4 12.6 12.6 12.6 12.8 12.8
18 par both X X concat 54.3M 12.5 13.3 12.9 12.3 12.7 12.6 12.6 12.5 12.7
19 par both X X sum 51.2M 12.7 13.4 12.8 12.5 12.8 12.6 12.7 12.7 12.8

Table 3: Word error rate on MuST-C dev set. The values that are better than the baseline (independent++)
are underlined and colored in blue.
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