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ABSTRACT  

A video on demand (VOD) server generates multiple video output qualities (bit rates), resolutions and codecs to best 
video quality for all viewers’ internet connection. While each codec optimizes tools and does computation-quality trade-
off there isn't much work to exploit computation reduction across codecs. In this work, we propose some methods to 
achieve this. Specifically, we use VP9 mode decision to reduce the computational requirements of AV1 encoding. 
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1. INTRODUCTION 
In a world where video content is exploding and poor-quality video directly influences user engagement and quality of 
experience (QoE), it is paramount to invest more resources into system design for video related pipelines. To optimize 
for the viewer's device and available internet connection, for the same video content a VOD server generates multiple 
output quality and resolution (or bit rate) ladders, a process known as adaptive streaming. 

The transcoding flow is broken into a number of distinct steps, outlined below in more detail. The first stage of video 
transcoding is called decoding, in which an uploaded file is decompressed to get raw frames. These uncompressed 
frames are then scaled - typically at a lower than the source resolution - to change their resolution, and each resolution is 
encoded again using, ideally, optimized settings. The output video is typically compared with the original source to 
calculate quality metrics, an operation that, depending on system design, can involve yet another decode and up-sample 
of encoded videos. In an ideal world, this is preferred to be done on all videos to ensure that the encoding settings used 
produces a good-quality output. But to optimize for scale, the last decodes and quality metrics calculations are usually 
done outside of the main transcoding pipelines for select few content, either for experimentation or based on low quality 
of experience (QoE) reported from the user. All transcoding steps are typically run in multi-core CPUs in video-on-
demand (VOD) applications.  

If we consider the popular codecs VP9[1][2]/AV1[3][4], the compute complexity of AV1 is much higher than VP9. The 
AV1 encoding time is measured to be 114 times the VP9 encoding time[5]. There have been considerable recent efforts to 
libaom[6] the reference, open-source codebase implementing AV1, to bring this factor down to 10x run-time increase 
from VP9. In addition to computation increase, changes to video pipelines depend on the market adoption and the 
available client devices to decode the encoded bitstreams. Due to this, the decision to modify and fully support newer 
codecs in a video infrastructure takes time. And even if it is supported, usually the best quality preset (or lower 
cpu_speed) of a newer codec is rarely used. A practical SW encoder preset is used as a trade-off based on the compute 
resource capacity/availability vs. the coding gain that the preset gives. In other words, a preset of newer codec is chosen 
that will give quality gains with a similar compute/power profile of the older (predecessor) codec preset currently 
deployed in a video processing system. This varies according to scale and requirements. In this work, we take an 
alternative approach of leveraging encoding decisions from one codec to another. This can be effective when a new 
codec is an evolution of older codec, such as VP9 to AV1 and HEVC to VVC, where more tools are added to realize bit-
rate savings for the same quality. 

The paper is organized as follows. Section 2 describes various methodologies to enable cross-codec data sharing. In 
Section 3, we give a brief description of VP9 and AV1 encoding toolsets. Section 4 describes RD-optimized mode 
decision performed in prevalent encoders (HEVC, VP9, AV1). Section 5 describes usage of VP9 data to AV1 encoding. 
We present results in Section 6 and conclude the paper in section 7. 

 



 
 

 
 

2. CROSS-CODEC DATA SHARING 

 
Figure 1: Key components in video encoding and cross codec sharing 

Figure 1 shows the key components in a typical video encoding process, Motion search, Mode Decision, encode block 
(prediction, T, Q and entropy coding) followed by filtering. In this paper, we propose to share the decisions of motion 
estimation and mode decision data from one codec into another, thereby saving the computational requirements of the 
system. The qualified data to be shared should satisfy at least one if not all of the following –  

(1) It should be compute-intensive  

(2) It needs to conform directly or through a mapping with the standard (normative) requirement of the target 
codec/s 

(3) The coding inefficiency is acceptable after reusing this cross-codec data 

(4) The overhead it generates to the target codec can be absorbed seamlessly 

The shared data can be categorized into 2 buckets:  

(1) Directly use the data as long as it is applicable to auxiliary codec. Examples include motion vectors, block 
shapes, block type (inter/intra) 

(2) Use the data as the starting point to do a mapping or for a refinement search to find the final motion, shapes and 
modes 

Computational-quality trade-off is taken into account while deciding on which bucket to use for each of the encoding 
decisions. In the second method, for doing a refinement search or a mapping, there are multiple ways. Examples include 
first pass statistics, calculated block-based statistics, machine-learning (ML) based etc. In addition to the final encoding, 
many VOD systems employ a convex hull approach to decide the best rate control settings for encoding. This is another 
avenue where cross codec data can be shared. 

This cross-codec data sharing not just helps in software encoding but also helps in a hardware ecosystem. The host 
server CPUs on which the transcode jobs get scheduled are not efficient as VOD gets scaled for the growing number of 
video contents. In response to the tremendous growth, on May 14, 2019, Facebook publicly announced a video 
transcoding custom-chip design, codenamed “Mount Shasta'', to be deployed in our data centers for the acceleration and 
compute optimization of our various video products[7]. For codecs, which are getting adopted well in edge devices, ASIC 
implementation of well optimized video encoding is a solution that can help with the scale issue. One problem with 
offloading to ASIC is that current market adoption of codecs along with the forecasted adoption of newer codecs drive 
the ASIC specification. All market changes during and after deployment of ASICs will be absorbed by software 
encoders and the stop-gap solution falls on the general-purpose/host server CPUs. The time and cost to support a new 
codec is expensive. If we analyze current edge devices, AV1 HW decoders are much less than competing standards and 
hence it is natural to use AV1 software encoding for some contents to help codec adoption in the ecosystem, thereby 
enabling realization of significant bandwidth savings offered by AV1. Given that AV1 encoding computational 
requirements are much higher, using VP9 encoding decision is a good way to reduce workload. 



 
 

 
 

The cross-codec qualified data can optionally be generated by ASICs and then reused by CPUs to do a minimal 
refinement search and the final encode (normative) part of the newer codec. Thus, cross-codec data sharing can be done 
completely in software (CPU) or if someone is planning for specialized hardware for few codecs, a hybrid HW-SW 
solution can be utilized, where HW-generated data can be hooked up to a software encoder for the newer codec. 

 

3. VP9 AND AV1 ENCODER TOOLSETS 
In this section, we want to give a brief introduction on the toolset/feature selected in VP9 (libvpx-1.8.0[8]) and AV1 
(libaom-2.0.0[6]) codebases. 

As mentioned in section 2, cross-codec data sharing not just helps in software encoding but also helps in a hardware 
ecosystem. For VP9 encoder, we have an internal experimental codebase, which uses libvpx-1.8.0[8] as baseline with the 
modifications to the toolsets and encoding algorithm as shown in the table. 

Table 1. Modifications to libvpx-1.8.0[8] toolsets and encoding algorithm. 

Feature Modifications 
Fixed Transform size Transform size search depth was set to 0 

Coefficient optimization Disabled in both mode decision and final encode path 

Motion estimation Separated from mode decision rate-distortion optimization logic 

For sb < 16x16 Only square partition shapes evaluated in inter search 

For sb < 8x8 No compound prediction 

Loop filter level Decided by Q, instead of binary search 

SSE/Distortion calculations in 
mode decision 

Not performed in transform domain 

Dynamic early termination in 
partition 

 

Disabled: 
Threshold based rectangular partition search skip, Skip rectangular 
partition test when larger block size gives better rdcost 

Dynamic early termination in 
mode search 

Disabled: 
conditional_skipintra, mode_skip_start, mode_search_skip_flags 

Static early termination in 
partition 

Disabled: 
skip some partition based on source noise energy, skip computing 
inter modes if ARF is not available 

Static early termination in mode 
search 

Disabled: 
intra modes other than DC PRED for blocks with low variance 
threshold for intra skipping based on source variance, check if 
NEARESTMV / NEARMV / ZEROMV is the cheapest way to 
encode zero motion 

 

These modifications are based upon HW complexity as opposed to SW which is what libvpx-1.8.0[8] is based upon. To 
experiment the idea of cross codec data sharing, we focus on re-using much of the data from VP9 to get an AV1 encoder 
implementation with minimal overhead for doing the normative parts - essentially, entropy coding, reconstruction loop 
and in-loop filtering. To this effect, we first take a look at an AV1 encoder without toolset enhancements from VP9 as 
well as features that do not require considerable additional computation, compared to VP9. The following table 
summarizes those features that can be used to get a VP9 equivalent version of AV1 encoder. We term this as 
“AV1_VP9eq” in the rest of the paper. Most toolset enhancements that can be controlled at sequence level are disabled 



 
 

 
 

since they don’t incur any rate penalty. One exception is post processing filters. These filters give good visual quality 
gains and can also be implemented effectively with parallel computations. 

Table 2. Features to get VP9 equivalent version of AV1 encoder. 

Feature Brief Description Usage in “AV1_VP9eq” 
Super Block Size of 128x128 Maximum Block size where 

partitioning into different shapes 
begins 

Restricted to 64x64 

Intra Modes 3 additional smooth modes (non-
directional) and 56 directional modes 

Use HOG (Histogram of 
gradients) to get top 3 angles 
for consideration 

Extended reference frames 
(7) 

Last, Last2, Last3, Golden, Altref, 
Altref2, BwdRef 

Restricted to 3 references per 
frame (2 previous and 1 bwd) 

Dynamic referencing of MVs Uses sophisticated weighting 
mechanism of spatial and temporal 
predictors  

Enabled 

Constrained Directional 
Enhancement Filter (CDEF) 
and  

Loop Restoration (LR) 

Sophisticated in-loop post processing 
filters to remove compression 
artifacts 

Enabled (low complexity 
search. Only Wiener filter is 
used in LR) 

Extended partition type Apart from square and rectangular 
shapes, AV1 allows T shape and 4:1 
shapes 

Disabled 

Recursive-filter for Intra 
prediction 

Filters neighboring pixels before 
using them for intra prediction 

Intra Block Copy Block prediction from already coded 
pixels in the same frame (beneficial 
for screen content) 

Extended transform kernels More choices of transform including 
rectangular transforms 

Warped Motion 
compensation 

Local affine transforms limited to 
small degrees 

OBMC (Overlapped block 
Motion compensation) 

Gives smooth combination of 
predictors from different MVs 

Advanced compound modes Inter-intra 

Masked prediction 

Wedge prediction 

Other Misc tools Dual filter, Palette mode, Chroma 
from Luma 

 

4. RD-OPTIMIZED MODE DECISION 
In this section we describe algorithmic details of making rate-distortion optimized mode and partition decisions 
prevalent among many encoders such as HEVC, VP9, AV1 etc. These encoders start with a superblock of size 64x64 



 
 

 
 

(128x128 in AV1) which can be split recursively using split flags. Figure 2 shows the block sizes at different levels. 
Each square split can be coded as is, a 2Nx2N block partition or 2 rectangular block partitions (2NxN / Nx2N) or 4 NxN 
block partitions. AV1 has further extensions of block shapes in each recursive split, but as mentioned earlier we use only 
rectangular and square shapes in AV1_VP9eq encoder. A partition block can be coded as an inter block or Intra block. In 
an inter block, a motion vector (MV) is used to find the prediction block from previously coded frames (reference 
frames). Intra block uses spatially neighboring pixels to get the prediction. All decisions are made using rate distortion 
cost expressed as D + λR. Distortion (D) typically is the mean square error between original and reconstructed pixels. 
Rate R is bits taken by quantized coefficients. λ is a Langrangian multiplier parameter to trade off quality for bitrate and 
is typically determined based on the quantization step size. 

 
Figure 2: Prediction unit structure in VP9 

Partition split decision process is done in a recursive z-scan order. For VP9, we support 13 different prediction sizes. For 
each square partition (2Nx2N) at level Li, there are 8 different partitions: 4 NxN, 2 - 2NxN, 2 - Nx2N which account for 
3 rdcost values (Exception is at 64x64 level where an additional process for 2Nx2N partition is done). The NxN partition 
at next level is equivalent to the 2Nx2N partition at current level. This is explained in the flowchart in Figure 3. 

 
Figure 3: RD-optimized Mode Decision 



 
 

 
 

5. AV1 ENCODING USING VP9 DATA 
Though the algorithmic flow in mode decisions are similar between codecs, there are challenges when we try to make a 
common R-D optimized mode decision for multiple codecs to realize computational savings. 1. Intra/Inter Prediction, 
transform, quantization, rate and entropy coding are codec specific, resulting in different RD cost. 2. Predictive MV inter 
modes (Nearest, Near MV) derivation are different and directly using them from one codec to another will result in non-
normative parts or have detrimental effect to coding efficiency. 3. Group of Pictures (GOP) structure has to be the same 
to share motion estimation results. Designing a common effective mode decision module is a complex problem. In this 
paper, we focus to keep best results for VP9 while still being able to leverage them for AV1 encoding. Our motivation 
for this choice is the practical use case, where we expect deployment of VP9 bitstream to be more prevalent in the 
immediate future and offering an AV1 encoder is targeting to enable and grow the video codec ecosystem. Hence, we 
choose to make best mode decisions for VP9 encoding and re-use and refine the results from it to have an AV1 encoder. 
We term this as “AV1_VP9share”. 

AV1_VP9share encoder is derived from AV1_VP9eq, where partitions and modes from VP9 are reused/refined to have 
a computationally inexpensive AV1 encoder. The partition split, block shape (2Nx2N, 2NxN, Nx2N), inter/intra decision 
is used as is from VP9. Remaining decisions are the intra mode and the inter mode. For intra mode, we do not use 
SMOOTH predictors. Non-angular modes are mapped from VP9 to AV1 directly. (True motion to PAETH, DC->DC 
and Planar to Planar). Histogram of gradient (HOG) is a well-known method to determine dominant directions for 
selective angular intra modes. In libaom[6], it is used to prune the number of angles that are searched using full RD-cost. 
It gives around 1.2% quality loss but can reduce the number of modes from 56 to 6. If VP9 picks an angular mode, we 
use HOG to get the top 2 angles and add them to the best angle from VP9 mode to get a total of 3 candidate angles. A 
total of 9 angles (3 candidates with +/-1) are searched using full RD optimization. For inter frames, NEW MV along 
with reference ID from VP9 is used as is and its RD-cost is established to compare with other inter modes. Nearest and 
Near MVs are computed based on AV1 specification and its RD-cost is calculated. Though the inter mode decision 
involves calculating accurate RD-cost of AV1, the number of shapes and partitions for which this is computed is 
substantially reduced to give necessary computational savings. 

 

6. RESULTS 
Figure 4 presents coding efficiency results using Bjontegaard delta bit rate (BD-rate)[9] with respect to three popular 
video quality metrics on 3 different datasets[10][11][12]. First dataset shown in the figure is Facebook (FB) internal 
dataset[10] which are 400 top-viewed public videos from Facebook (FB) Pages and has video contents across different 
resolutions. These videos were tested in an anonymized manner without subjective analysis. Second and third are the 
widely accepted JVET[11] and DERF[12] datasets. We have excluded content with resolution higher than 1080p, since 
most current uploads in VOD do not exceed HD. BD-rate metric gives average bit-rate reduction (-ve) or increase (+ve) 
for the same quality between 2 encoding methods for Constant Quality mode. Three different video quality metrics are 
presented: SSIM[13], PSNR, VMAF[14]. The CRF/QP values used are {33, 39, 45, 51}[10] and for VMAF calculations, we 
use the vmaf_v0.6.1.pkl model. All comparisons are made with respect to libvpx-1.8.0[8] preset 1 (cpu_speed 1). 
Command Lines used are given below - 

--ivf -o <output_video.vp9> <Input y4m> --codec=vp9 --verbose --passes=2 --limit=300 --i420 --profile=0 --cpu-used=1 
--fps=30 --kf-min-dist=60 --kf-max-dist=60 --arnr-maxframes=7 --arnr-strength=5 --lag-in-frames=19 --aq-mode=0 --
bias-pct=100 --minsection-pct=1 --maxsection-pct=10000 --end-usage=q --cq-level=<val> --min-q=0 --max-q=63 --
auto-alt-ref=5 --max-gf-interval=16 --min-gf-interval=4 --frame-parallel=0 --threads=1 --tile-columns=0 

<Input y4m> --ivf 1 --codec=av1 --passes=2 --cpu-used=1 --threads=0 --profile=0 --lag-in-frames=19 --min-q=0 --max-
q=63 --auto-alt-ref=1 --kf-max-dist=60 --kf-min-dist=60 --drop-frame=0 --static-thresh=0 --bias-pct=50 --minsection-
pct=0 --maxsection-pct=2000 --arnr-maxframes=7 --arnr-strength=5 --sharpness=0 --undershoot-pct=100 --overshoot-
pct=100 --tile-columns=0 --frame-parallel=0 --test-decode=warn -v --psnr --end-usage=q --cq-level=<val> -o 
<output_video.av1> --limit=300 

First column set in figure 4 shows that our internal VP9 experimental codebase is close to libvpx-1.8.0[8]. Second column 
set shows BD-rate reduction of libaom-2.0.0[6] at preset (cpu_speed) 1. As expected AV1 has significant gains (30-35%) 
compared to VP9. Since libaom[6] implementation is active in getting optimized, we haven’t compared its computational 



 
 

 
 

speed. But it is well accepted that AV1 toolset compute requirements are significantly higher than VP9. Third column 
set shows the quality of AV1_VP9eq encoder described in Section 3. It is interesting to note that even without 
computationally expensive features we can get good gains (10-16%) which comes from better design of intra/inter 
modes, adaptive entropy coding, inter referencing structures and post processing filters. Reducing the number of 
reference frames from 7 to 3 gives 0.7% loss w.r.t SSIM. Adding post-processing filters gives 5.6% gain w.r.t SSIM. 

AV1_VP9share quality is shown in the last column set. We get a loss of 6-8% when we compare the BD-rate number of 
AV1_VP9share w.r.t AV1_VP9eq. This comes primarily from inaccurate RD-cost usage since VP9 codec datapath is 
used to make those decisions. Nevertheless, we still get a gain of 5-10% compared to VP9 with little additional 
computations. 

 

 
(a) 

 
(b) 

-35

-30

-25

-20

-15

-10

-5

0

VP9 internal
experiment

LibAOM Speed
1

AV1_Vp9eq AV1_Vp9share

FB Internal Dataset

SSIM PSNR VMAF

-35
-30
-25
-20
-15
-10

-5
0
5

10

VP9 internal
experiment

LibAOM Speed
1

AV1_Vp9eq AV1_Vp9share

JVET Dataset

SSIM PSNR VMAF



 
 

 
 

 
(c) 

Figure 4: Video quality results. (a) results for FB internal dataset (b) results for JVET dataset (c) results for DERF dataset 

 

7. CONCLUSION AND FUTURE WORK 
In this paper, we presented the idea of leveraging encoding decisions across codecs. This is very useful for reducing 
computation in VOD servers to scale for rising video usage. We applied VP9 encoding decisions to AV1 and 
demonstrated feasibility of this approach to get computation-quality trade-off. A more effective approach would be to 
prune the partitions and intra/inter selection to a few candidates and use accurate RD-cost of the codec to make the final 
decision. One other avenue for reducing computation load at VOD would be to use data from decode to limit the search 
during encoding. Mapping of data from one codec to another can be improved by using learning algorithms by training 
on the data from decode. 
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