
RecNMP: Accelerating Personalized
Recommendation with Near-Memory Processing

Liu Ke∗, Udit Gupta†, Benjamin Youngjae Cho§,

David Brooks†, Vikas Chandra, Utku Diril, Amin Firoozshahian, Kim Hazelwood, Bill Jia, Hsien-Hsin S. Lee,
Meng Li, Bert Maher, Dheevatsa Mudigere, Maxim Naumov, Martin Schatz, Mikhail Smelyanskiy, Xiaodong Wang,

Brandon Reagen, Carole-Jean Wu, Mark Hempstead‡, Xuan Zhang∗

Facebook, Inc.

Abstract—Personalized recommendation systems leverage deep
learning models and account for the majority of data center
AI cycles. Their performance is dominated by memory-bound
sparse embedding operations with unique irregular memory
access patterns that pose a fundamental challenge to accelerate.
This paper proposes a lightweight, commodity DRAM compli-
ant, near-memory processing solution to accelerate personalized
recommendation inference. The in-depth characterization of
production-grade recommendation models shows that embedding
operations with high model-, operator- and data-level parallelism
lead to memory bandwidth saturation, limiting recommendation
inference performance. We propose RecNMP which provides a
scalable solution to improve system throughput, supporting a
broad range of sparse embedding models. RecNMP is specifically
tailored to production environments with heavy co-location of
operators on a single server. Several hardware/software co-
optimization techniques such as memory-side caching, table-
aware packet scheduling, and hot entry profiling are studied,
providing up to 9.8× memory latency speedup over a highly-
optimized baseline. Overall, RecNMP offers 4.2× throughput
improvement and 45.8% memory energy savings.

I. INTRODUCTION

Personalized recommendation is a fundamental building
block of many internet services used by search engines, social
networks, online retail, and content streaming [4], [19], [20],
[63]. Today’s personalized recommendation systems leverage
deep learning to maximize accuracy and deliver the best user
experience [21], [25], [29], [44], [49]. The underlying deep
learning models now consume the majority of the datacenter
cycles spent on AI. For example, recent analysis reveals
that the top recommendation models collectively contribute to
more than 79% of all AI inference cycles across Facebook’s
production datacenters [75].

Despite the large computational demand and production im-
pact, relatively little research has been conducted to optimize
deep learning (DL)-based recommendation. Most research
efforts within the architecture community have focused on ac-
celerating the compute-intensive, highly-regular computational

∗Washington University in St. Louis, work done while at Facebook.
†Harvard University, work done while at Facebook.
§University of Texas at Austin, work done while at Facebook.
‡Tufts University, work done while at Facebook.

9.8x

4.2x

1.3x
Bas

elin
e B

W

Rec
NMP BW

SLS

FC

RNN

C
on

v

(a) (b)

8x

Fig. 1. (a) Compute and memory footprint of common deep learning
operators, sweeping batch size; (b) Roofline lifting effect and the operator-
level (FC, SLS) and end-to-end model (RM) speedup enabled by RecNMP.

patterns found in fully-connected (FC), convolution (CNN),
and recurrent (RNN) neural networks [3], [6]–[8], [11], [12],
[15], [17], [18], [24], [33], [36], [40], [47], [53]–[55], [57],
[60], [68], [71]–[74], [76], [79], [82]. Unlike CNNs and RNNs,
recommendation models exhibit low compute-intensity and
little to no regularity. Existing acceleration techniques either
do not apply or offer small improvements at best, as they tend
to exploit regular reusable dataflow patterns and assume high
spatial locality, which are not the main performance bottle-
neck in recommendation models [75]. Given the volume of
personalized inferences and their rapid growth rate occurring
in the data center, an analogous effort to improve performance
of these models would have substantial impact.

To suggest personalized contents to individual users, recom-
mendation models are generally structured to take advantage
of both continuous (dense) and categorical (sparse) features.
The latter are captured by large embedding tables with sparse
lookup and pooling operations. These embedding operations
dominate the run-time of recommendation models and are
markedly distinct from other layer types.

A quantitative comparison of the raw compute and memory
access requirements is shown in Figure 1(a). Sparse em-
bedding operations, represented by SparseLengthsSum (SLS),
consist of a small sparse lookup into a large embedding
table followed by a reduction of the embedding entries (i.e.,
pooling). They present two unique challenges: First, while the

sparse lookup working set is comparatively small (MBs), the
irregular nature of the table indices exhibits poor predictabil-
ity, rendering typical prefetching and dataflow optimization
techniques ineffective. Second, the embedding tables are on
the order of tens to hundreds of GBs, overwhelming on-
chip memory resources. Furthermore, the circular points in
Figure 1(b) show the operational intensity of SLS is orders
of magnitude less than FC layers. Low intensity limits the
potential of custom hardware including the specialized data-
paths and on-chip memories used in CNN/RNN accelerators.
The result is a fundamental memory bottleneck that cannot be
overcome with standard caching (e.g., tiling [34]), algorithmic
(e.g., input batching), or hardware acceleration techniques.

This paper proposes RecNMP—a near-memory processing
solution to accelerate the embedding operations for DL-
based recommendation. RecNMP is a lightweight DIMM-
based system built on top of existing standard DRAM technol-
ogy. We focus on DIMM-based near-memory processing [5],
[22], [81] instead of resorting to specialized 2.5D/3D inte-
gration processes (e.g. HBM) [17], [38], [45]. The DIMM
form factor with commodity DDR4 devices can support the
100GB+ capacities necessary for production-scale recommen-
dation models with low cost. By eliminating the off-chip
memory bottleneck and exposing higher internal bandwidth we
find that RecNMP provides significant opportunity to improve
performance and efficiency by lifting the roofline by 8×
for the bandwidth-constrained region (Figure 1(b)), enabling
optimization opportunity not feasible with existing systems.

We have performed a detailed characterization of recom-
mendation models using open-source, production-scale DLRM
benchmark [49], [75] as a case study. This analysis quantifies
the potential benefits of near-memory processing in acceler-
ating recommendation models and builds the intuition for co-
designing the NMP hardware with the algorithmic properties
of recommendation. Specifically, it highlights the opportunity
for the RecNMP architecture in which bandwidth-intensive
embedding table operations are performed in the memory and
compute-intensive FC operators are performed on the CPU (or
potentially on an accelerator).

The proposed RecNMP design exploits DIMM- and rank-
level parallelism in DRAM memory systems. RecNMP per-
forms local lookup and pooling functions near memory, sup-
porting a range of sparse embedding inference operators,
which produce the general Gather-Reduce execution pattern.
In contrast to a general-purpose NMP architecture, we make
a judicious design choice to implement selected lightweight
functional units with small memory-side caches to limit the
area overhead and power consumption. We combine this light-
weight hardware with software optimizations including table-
aware packet scheduling and hot entry profiling. Compared
to previous work whose performance evaluation is solely
based on randomly-generated embedding accesses [81], our
characterization and experimental methodology is modeled
after representative production configurations and is evaluated
using real production embedding table traces. Overall, Rec-
NMP leads to significant embedding access latency reduction

(9.8×) and improves end-to-end recommendation inference
performance (4.2×) as illustrated in Figure 1(b). Our work
makes the following research contributions:
• Our in-depth workload characterization shows that pro-

duction recommendation models are constrained by mem-
ory bandwidth. Our locality analysis using production
embedding table traces reveals distinctive spatial and
temporal reuse patterns and motivates a custom-designed
NMP approach for recommendation acceleration.

• We propose RecNMP, a lightweight DDR4-compatible
near-memory processing architecture. RecNMP accel-
erates the execution of a broad class of recommen-
dation models and provides 9.8× memory latency
speedup and 45.9% memory energy savings. Overall,
RecNMP achieves 4.2× end-to-end throughput improve-
ment.

• We examine hardware-software co-optimization
techniques (memory-side caching, table-aware packet
scheduling, and hot entry profiling) to enhance
RecNMP performance, and customized NMP instruction
with 8× DRAM command/address bandwidth expansion.

• A production-aware evaluation framework is developed
to take into account common data-center practices and
representative production configuration, such as model
co-location and load balancing.

II. CHARACTERIZING DEEP LEARNING PERSONALIZED
RECOMMENDATION MODELS

This section describes the general architecture of DL-
based recommendation models with prominent sparse embed-
ding features and their performance bottlenecks. As a case
study, we conduct a thorough characterization of the recently-
released Deep Learning Recommendation Model (DLRM)
benchmark [49]. The characterization—latency breakdown,
roofline analysis, bandwidth analysis, and memory locality—
illustrates the unique memory requirements and access behav-
ior of production-scale recommendation models and justifies
the proposed near-memory accelerator architecture.

A. Overview of Personalized Recommendation Models

Personalized recommendation is the task of recommending
content to users based on their preferences and previous inter-
actions. For instance, video ranking (e.g., Netflix, YouTube),
a small number of videos, out of potentially millions, must be
recommended to each user. Thus, delivering accurate recom-
mendations in a timely and efficient manner is important.

Most modern recommendation models have an extremely
large feature set to capture a range of user behavior and
preferences. These features are typically separated out into
dense and sparse features. While dense features (i.e., vectors,
matrices) are processed by typical DNN layers (i.e., FC,
CNN, RNN), sparse features are processed by indexing large
embedding tables. A general model architecture of DL-based
recommendation systems is captured in Figure 2. A few
examples are listed with their specific model parameters [49],
[52], [63] in Figure 2(b). Similar mixture of dense and

2

Models # Embs Emb size Pooling Batch Size FC Layers

RMC1-small 8 1,000,000 20-80 1-256 6

RMC1-large 12 1,000,000 20-80 1-256 6

RMC2-small 24 1,000,000 20-80 1-256 6

RMC2-large 64 1,000,000 20-80 1-256 6

Fox 2 ~ Millions ~ 50 - 4

YouTube 2 ~ Millions ~ 50 - 3

(a)

(b)

D
LR
M

Click Through Rate(s)

Embedding Table
Lookup

Top-FC

Bottom-FC
Number of
Emb. Tables

Emb. Indices

Sparse Feature Sparse FeatureDense Feature

Requests Query N Batch sizeNN

Feature Interaction

N
Deep Learning-Based Personalized

Recommendation Model

Memory Capacity
and Bandwidth
Dominated

Communication
Dominated

Computation
Dominated

Embedding Table
Lookup

Fig. 2. (a) Simplified model-architecture reflecting production-scale recom-
mendation models; (b) Parameters of representative recommendation models.

sparse features are broadly observable across many alternative
recommendation models [1], [25], [49], [52], [63], [83].

Embedding table lookup and pooling operations provide
an abstract representation of sparse features learned during
training and are central to DL-based recommendation models.
Embedding tables are organized as a set of potentially millions
of vectors. Generally, embedding table operations exhibit
Gather-Reduce pattern; the specific element-wise reduction
operation varies between models. For example, Caffe [2] com-
prises a family of embedding operations, prefixed by Sparse-
Lengths (i.e., SparseLengthsWeightedSum8BitsRowwise), that
perform a similar Gather-Reduce embedding operation with
quantized, weighted summation. The SLS operator primitive
is widely employed by other production-scale recommendation
applications (e.g. YouTube [63] and Fox [52]). Our work aims
to alleviate this performance bottleneck and improve system
throughput by devising a novel NMP solution to offload the
SLS-family embedding operations thus covering a broad class
of recommendation systems.

B. A Case Study—Facebook’s DLRM Benchmark

To demonstrate the advantages of near-memory process-
ing for at-scale personalized recommendation models, we
study Facebook’s deep learning recommendation models (DL-
RMs) [49]. Dense features are initially processed by the
BottomFC operators, while sparse input features are processed
through the embedding table lookups. The output of these
operators are combined and processed by TopFC producing
a prediction of click-through-rate of the user-item pair.

This paper focuses on performance acceleration strategies
for four recommendation models representing two canonical
classes of the models, RMC1 and RMC2 [75]. These two
recommendation model classes consume significant machine
learning execution cycles at Facebook’s production datacenter,
with RMC1 over 29%, RMC2 over 31%. Parameters to config-
ure are shown in Figure 2(b). The notable distinguishing factor
across these configurations is the number of the embedding

! parallel workers per model

TopFC

BottomFC

…
Embs[1:$]

DLRM-%
Model-level
Parallelism

Op-level
Parallelism

Data-level
Parallelism

…

+ + +

Output

Indices = [id1 id2id3 id4id5 id6]

Emb

SLS Op: Batch size=3, pooling=2

TopFC

BottomFC

…
Embs[1:$]

DLRM-1 TopFC

BottomFC

…
Embs[1:$]

DLRM-2

SLS SLS SLS SLS SLS SLS

Func Def:
Output = SLS(Emb, Indices, Lengths)
Parameters:
Emb::<Emb size, vector size> matrix
Indices::<1, Batch size×pooling factor> vector
Lengths::<1, Batch size> vector
Output::<Batch size, vector size> matrix

Initialization: Batch size=3, pooling factor=2
Indices = [id1, id2, …, id6], Lengths = [2, 2, 2]

Fig. 3. Model-, operator- and data-level parallelism in production system.

O
pe
ra
to
rB
re
ak
do
w
n
(%
)

La
te
nc
y
(m
s)

RMC1-small RMC1-large RMC2-small RMC2-large

Fig. 4. Inference latency and breakdown across models (RMC1-small, RMC1-
large, RMC2-small, RMC2-large) with varying batch sizes (8, 64, 128, 256).

tables. RMC1 is a comparatively smaller model with few
embedding tables; RMC2 has tens of embedding tables.

Recommendation systems employ three levels of paral-
lelism, shown in Figure 3, to achieve high throughput under
strict latency constraints [75]. Model-level parallelism grows
by increasing the number of concurrent model inference (m)
on a single machine, operator-level parallelism adds parallel
threads (n) per model and data-level parallelism is scaled
by increasing batch size. An SLS operator performs a batch
of pooling operations; one pooling operation performs the
summation for a set of vectors. The inputs to SLS, for
one batch of embedding lookups, include an indices vector
containing sparse-IDs, and optionally a weight vector.

C. Operator Bottleneck Study

We observe that the SLS-family of operators is the largest
contributor to latency in recommendation models especially as
batch size, data-level parallelism, increases. Figure 4 depicts
the execution time breakdown per operator with the majority
of the time spent executing FC and SLS Caffe2 operators [75].
With a batch size of 8, SLS accounts for 37.2% and 50.6% of
the total model execution time of RMC1-small and RMC1-
large, respectively. Whereas for larger models represented
by RMC2-small and RMC2-large, a more significant por-
tion of the execution time goes into SLS (73.5%, 68.9%).
Furthermore, the fraction of time spent on the embedding
table operations increases with higher batch-size — 37.2%
to 61.1% and 50.6% to 71.3% for RMC1-small and RMC1-
large respectively. Note, the execution time of RMC2-large
is 3.6× higher than RMC1-large because RMC2 comprises a
higher number of embedding tables. Embedding table sizes are
expected to increase further for models used in industry [81].

D. Roofline Analysis

Applying the roofline model [70], we find recommendation
models lie in the memory bandwidth-constrained region, close

3

Comp. Perf. (0.98 TFlops/s)

Me
m
BW
(62
.1
GB
/s)

35.1% Roofline Bound
SLS Ops
FC Ops
RMC1-large
RMC2-large

Fig. 5. Roofline of multi-threaded
RMC1-large, RMC2-large sweep-
ing batch size (1-256). Darker
color indicates larger batch.

62.1 GB/s (79.6%)
51.8 GB/s (67.4%)

76.8 GB/s (100%)

Fig. 6. Memory bandwidth saturation
with increasing number of parallel SLS
threads and batch sizes.

to the theoretical roofline performance bound. We construct
a roofline describing the theoretical limits of the test system
described in Section IV. We use Intel’s Memory Latency
Checker (MLC)1 to derive the memory bound. We derive the
compute bound by sweeping the number of fused multiply-
add (FMA) units in the processor and the operating frequency
of the CPU (Turbo mode enabled).

Figure 5 presents the roofline data points for the models,
RMC1 and RMC2, as well as their corresponding FC and
SLS operators separately. We sweep batch size from 1 to
256 with darker colors indicating a larger batch size. We
observe that the SLS operator has low compute but higher
memory requirements; the FC portion of the model has higher
compute needs; and the combined model is in between. SLS
has low and fixed operational intensity across batch sizes, as
it performs vector lookups and element-wise summation. FC’s
operational intensity increases with batch size, as all requests
in the batch share the same FC weights, increasing FC data
reuse. With increasing batch size, the FC operator moves from
the region under the memory-bound roofline to the compute-
bound region. For the full model, we find RMC1 and RMC2
in the memory bound region, as the operational intensity
is dominated by the high percentage of SLS operations. It
also reveals that, with increasing batch size, the performance
of SLS, as well as RMC1 and RMC2, is approaching the
theoretical performance bound of the system.

More importantly, our roofline analysis suggests that the
performance of the recommendation model is within 35.1% of
the theoretical performance bound and there is little room
for further improvement without increasing system memory
bandwidth. By performing the embedding lookups and pooling
operations before crossing the pin-limited memory interface,
near-memory processing can exploit higher internal band-
width of the memory system, thus effectively lifting up the
roofline and fundamentally improving the memory bandwidth-
constrained performance bound.

E. Memory Bandwidth of Production Configurations

Executing embedding operations on real systems can satu-
rate memory bandwidth at high model-, operator- and data-
level parallelism. Figure 6 depicts the memory bandwidth
consumption as we increase the number of parallel SLS

1Intel MLC [30] measures the bandwidth from the processor by creating
threads that traverse a large memory region in random or sequential stride as
fast as possible.

Increasing

(a)

Decreasing

(b)

Fig. 7. (a) Temporal data locality sweeping cache capacity 8-64MB with
fixed cacheline size of 64B; (b) Spatial data locality sweeping cacheline size
64-512B with fixed cache capacity 16MB.

threads for different batch sizes (blue curves). The green
horizontal line represents the ideal peak bandwidth (76.8 GB/s,
4-channel, DDR4-2400) and the red curve is an empirical
upper bound measured with Intel MLC [30]. We observe
that memory bandwidth can be easily saturated by embedding
operations especially as batch size and the number of threads
increase. In this case, the memory bandwidth saturation point
occurs (batch size = 256, number of SLS threads = 30) where
more than 67.4% of the available bandwidth is taken up by
SLS. In practice, a higher level of bandwidth saturation beyond
this point becomes undesirable as memory latency starts to
increase significantly [37]. What is needed is a system that
can perform the Gather-Reduce operation near memory such
that only the final output from the pooling returns to the CPU.

F. Embedding Table Locality Analysis

Prior work [75], [81] has assumed that embedding table
lookups are random, however we show, for traces from pro-
duction traffic, there exists modest level of locality mostly due
to temporal reuse. While recommendation models are limited
by memory performance generally, we wanted to study the
memory locality to see if caching can improve performance.
We evaluate both a random trace and embedding table (T1-T8)
lookup traces from production workloads used by Eisenman
et al. [10]. In production systems, one recommendation model
contains tens of embedding tables and multiple models are co-
located on a single machine. To mimic the cache behavior of a
production system, we simulate the cache hit rate for multiple
embedding tables co-located on one machine. In Figure 7(a),
Comb-8 means that 8 embedding tables are running on the
machine and the T1-T8 traces (each for a single embedding
table) are interleaved for the 8 embedding tables. For Comb-
16, Comb-32 and Comb-64 we multiply the 8 embedding
tables 2, 4, and 8 times on the same machine, which also
approximates larger models with 16, 32 and 64 embedding
tables. We use the LRU cache replacement policy and 4-way
set associative cache. We assume each embedding table is
stored in a contiguous logical address space and randomly
mapped to free physical pages.

To estimate the amount of temporal locality present, we
sweep the cache capacity between 8-64MB with fixed cache-
line size of 64B. In Figure 7(a), the random trace has a low
hit rate of <5% representing the worst case locality. We see
that the combined simulation of production traces is much
higher than random with a hit rate between 20% and 60%.
More importantly, hit rate increases as cache size increases. In
Section III-D, we will show how optimizations to RecNMP can

4

take advantage of this locality through table-aware packet
scheduling and software locality hints from batch profiling.

Spatial locality can be estimated by sweeping the cacheline
size of 64-512B with a fixed cache capacity of 16MB. Fig-
ure 7(b) illustrates this sweep for the Comb-8. We observe that
as the cacheline size increases, in fact, hit rate decreases. In
order to isolate the effect of increased conflict misses we run
the same experiment on a fully-associative cache and observe
similar trends of decreasing hit rate. Thus, we conclude that
embedding table lookup operations have little spatial locality.

III. RECNMP SYSTEM DESIGN

Considering the unique memory-bounded characteristics
and the sparse and irregular access pattern of personal-
ized recommendation, we propose RecNMP—a practical and
lightweight near-memory processing solution to accelerate the
dominated embedding operations. It is designed to maximize
DRAM rank-level parallelism by computing directly and lo-
cally on data fetched from concurrently activated ranks.

First, we employ a minimalist style hardware architecture
and embed specialized logic units and a rank-level cache
to only support the SLS-family inference operators instead
of general-purpose computation. The modified hardware is
limited to the buffer chip within a DIMM without requiring
any changes to commodity DRAM devices. Next, the sparse,
irregular nature of embedding lookups exerts a high demand
on command/address (C/A) bandwidth. This is addressed by
sending a compressed instruction format over the standard
memory interface, conforming to the standard DRAM physical
pin-outs and timing constraints. Other proposed NMP solu-
tions have employed special NMP instructions without ad-
dressing the C/A limitation of irregular and low spatial locality
memory accesses pattern [22], [81]. We also present a hard-
ware/software (HW/SW) interface for host-NMP coordination
by adopting a heterogeneous computing programming model,
similar to OpenCL [35]. Finally, we explore several HW/SW
co-optimization techniques–memory-side caching, table-aware
scheduling and hot entry profiling–that provide additional per-
formance gains. These approaches leverage our observations
from the workload characterization in the previous section.

A. Hardware Architecture

System overview. RecNMP resides in the buffer chip on the
DIMM. The buffer chip bridges the memory channel interface
from the host and the standard DRAM device interface, using
data and C/A pins, as illustrated in Figure 8(a). Each buffer
chip contains a RecNMP processing unit (PU) made up of a
DIMM-NMP module and multiple rank-NMP modules. This
approach is non-intrusive and scalable, as larger memory ca-
pacity can be provided by populating a single memory channel
with multiple RecNMP-equipped DIMMs. Multiple DDR4
channels can also be utilized with software coordination.

The host-side memory controller communicates with a
RecNMP PU by sending customized compressed-format NMP
instructions (NMP-Inst) through the conventional memory
channel interface; the PU returns the accumulated embedding

pooling results (DIMM.Sum) to the host. Regular DDR4-
compatible C/A and data signals (DDR.C/A and DDR.DQ)
are decoded by the RecNMP PU from the NMP-Insts and
then sent to all DRAM devices across all parallel ranks in a
DIMM. By placing the logic at rank-level, RecNMP is able to
issue concurrent requests to the parallel ranks and utilize, for
SLS-family operators, the higher internal bandwidth present
under one memory channel. Its effective bandwidth thus
aggregates across all the parallel activated ranks. For example,
in Figure 8(a), a memory configuration of 4 DIMMs×2 ranks
per DIMM could achieve 8× higher internal bandwidth.

The DIMM-NMP module first receives a NMP-Inst through
DIMM interface and then forwards it to the corresponding
rank-NMP module based on the rank address. The rank-
NMPs decode and execute the NMP-Inst to perform the
local computation of the embedding vectors concurrently.
We do not confine a SLS operation to a single rank but
support aggregation across ranks within the PU. This simplifies
the memory layout and increases bandwidth. DIMM-NMP
performs the remaining element-wise accumulation of the
partial sum vectors (PSum) from parallel ranks to arrive at the
final result (DIMM.Sum). In the same fashion, Psums could
be accumulated across multiple RecNMP PUs with software
coordination. We will next dive into the design details on the
DIMM-NMP and rank-NMP modules. While they are on the
same buffer chip, having separate logical modules makes it
easy to scale to DIMMs with a different number of ranks.

DIMM-NMP Module. To dispatch the NMP-Inst received
from the DIMM interface, the DIMM-NMP module employs
DDR PHY and protocol engine similar to the design of a
conventional DIMM buffer chip relaying the DRAM C/A and
DQ signals from and to the host-side memory controller.
The instruction is multiplexed to the corresponding ranks
based on the Rank-ID as shown in Figure 8(b). DIMM-NMP
buffers the Psum vectors accumulated by each rank-NMP in its
local registers and performs final summation using an adder
tree before sending the final result back to the host via the
standard DIMM interface. Depending on the memory system
configuration, the number of ranks within a DIMM can vary,
changing the number of inputs to the adder tree.

Rank-NMP Module. RecNMP uses the internal bandwidth
on a DIMM to increase the effective bandwidth of embedding
table operations, thus the majority of the logic is replicated
for each rank. Three crucial functions are performed by
the rank-NMP module—translating the NMP-Inst into low-
level DDR C/A commands, managing memory-side caching
and computing SLS-family operators locally. As illustrated in
Figure 8(c), the NMP-Inst is decoded to control signals and
register inputs. To address C/A bus limitations, all of the DDR
commands for a single SLS vector is embedded in one NMP-
Inst. Three fields in NMP-Inst (Figure 8(d))—DDR cmd (the
presence/absence of {ACT, RD, PRE} with bit 1/0), vector
size (vsize), and DRAM address (Daddr)—determine the DDR
command sequence and the burst length. These are fed to
the local command decoder (Rank.CmdDecoder) to generate
standard DDR-style ACT/RD/PRE commands to communicate

5

Rank.NMP-Inst

Inst
Buffer

Inst
Decoder
Inst.LocalityBit

RD.Daddr

Rank.CmdDecoder

Req
Queue

C
m
d,D

addrAddr Decoder

Cmd Generator

DDR.C/A

Rank.RankCache

Cmd, CacheMiss.Daddr

WR.Daddr
WR.Data

DDR.DQ

Bias Reg

Inst.LocalityBit

Psum Vector Reg

Psum.RegFile
Inst.PsumTag

(c)

R
D
.D
ata

×

Host
MC

DIMM

DIMM

DIMM

DIMM

(a)

D
R
AM

D
R
AM

D
R
AM

D
R
AM

D
R
AM

D
R
AM

D
R
AM

D
R
AM

DIMM-NMP
RecNMP
PU

NMP-Inst DIMM.Sum

Rank0.NMP-Inst Rank1.NMP-Inst
Rank1.Psum

DDR.C/A DDR.DQ
Rank-NMP Rank-NMP

Rank0.Psum
Weight Reg

Scalar Reg

Input Emb Vector Reg

×××

×

×
+ + ++

DIMM Interface

Inst Queue R
ank-ID

NMP-Inst

Rank0.
NMP-Inst

Rank1.
NMP-Inst

Rank0.Psum Rank1.Psum

DIMM.Sum

(b)

DDR PHY

Rank0.Psum
Buffer

Rank1.Psum
Buffer

DIMM.Sum Buffer

+ Element-wise
adders

D
IM
M
-N
M
P

R
an
k-
N
M
P

Rank.Psum

Controller
Counter++ vsize

In
st
.W
ei
gh
t

DDR cmd Daddr

3 bits 32 bits 3 bits 32 bits 1 bit 4 bits
ACT, RD, PRE

Op Code

nmp_sum/mean

nmp_weightedsum/mean

nmp_weightedsum/mean_8bits

Rank, BG, BA, Row, Col vsize weight (FP32) LocalityBit PsumTag

(d)

4 bits

Fig. 8. (a) Architecture overview of RecNMP architecture; (b) DIMM-NMP; (c) Rank-NMP; (d) NMP instruction format.

with DRAM devices. The tags are set at runtime by the
host-side memory controller based on the relative physical
address location of consecutive embedding accesses. This
keeps the CmdDecoder in rank-NMP lightweight, as the host-
side memory controller has performed the heavy-lifting tasks
of request reordering, arbitration, and clock and refresh signal
generation. If a 128B vector (vsize=2) requires ACT/PRE from
a row buffer miss, the command sequence to DRAM devices
for the NMP-Inst is {PRE, ACT Row, RD Col, RD Col+8}
decoded from {ACT, RD, PRE} and vsize tags.

Our locality analysis in Section II shows that the modest
temporal locality within some embedding tables as vectors
are reused. The operands of each SLS-family operator vary
so caching the final result in the DIMM or CPU will be
ineffective. We incorporate a memory-side cache (RankCache)
in each rank-NMP module to exploit the embedding vectors
reuse. The RankCache in RecNMP takes hints from the Lo-
calityBit in the NMP-Inst to determine whether an embedding
vector should be cached or bypassed. The detailed method to
generate the LocalityBit hint through hot entry profiling will
be explained in Section III-D. Entries in RankCache are tagged
by the DRAM address field (Daddr). If the LocalityBit in the
NMP-Inst indicates low locality, the memory request bypasses
the RankCache and is forwarded to Rank.CmdDecoder to
initiate a DRAM read. Embedding tables are read-only during
inference, so this optimization does not impact correctness.

The datapath in the rank-NMP module supports a range
of SLS-family operators. The embedding vectors returned by
the RankCache or DRAM devices are loaded to the input
embedding vector registers. For weighted sum computation,
the weight registers are populated by the weight fields from
the NMP-Inst. For quantized operators such as the SLS-8bits
operator, the dequantized parameters Scalar and Bias are
stored with the embedding vectors and can be fetched from
memory to load to the Scalar and Bias registers. The Weight
and Scalar/Bias registers are set to be 1 and 1/0 during execu-
tion of non-weighted and non-quantized SLS operators. The
PsumTag decoded from the NMP-Inst is used to identify the
embedding vectors belonging to the same pooling operations,
as multiple poolings in one batch for one embedding table
could be served in parallel. The controller counter, vector

size register, and final sum registers in the both the DIMM-
NMP and rank-NMP modules are all memory-mapped, easily
accessible and configurable by the host CPU.

B. C/A Bandwidth Expansion

Although the theoretical aggregated internal bandwidth of
RecNMP scales linearly with the number of ranks per channel,
in practice, the number of concurrently activated ranks is
limited by the C/A bandwidth. Due to frequent row buffer
misses/conflicts from low spatial locality, accessing the em-
bedding table entries in memory requires a large number of
ACT and PRE commands. The reason is that the probability of
accessing two embedding vectors in the same row is quite low,
as spatial locality only exists in continuous DRAM data burst
of one embedding vector. In production, embedding vector size
ranges from 64B to 256B with low spatial locality, resulting
in consecutive row buffer hits in the narrow range of 0 to 3.

To fully understand the C/A bandwidth limitation, we ana-
lyze the worst-case scenario when the embedding vector size
is 64B. A typical timing diagram is presented in Figure 9(a).
It shows an ideal sequence of bank-interleaved DRAM reads
that could achieve one consecutive data burst. In this burst
mode, the ACT command first sets the row address. Then the
RD command is sent accompanied by the column address.
After tRL DRAM cycles, the first set of two 64-bit data (DQ0
and DQ1) appear on the data bus. The burst mode lasts for 4
DRAM cycles (burst length = 8) and transmits a total of 64B
on the DQ pins at both rising and falling edges of the clock
signal. Modern memory systems employ bank interleaving,
therefore in the next burst cycle (4 DRAM cycles), data from
a different bank can be accessed in a sequential manner. In this
ideal bank interleaving case, every 64B data transfer takes 4
DRAM cycles and requires 3 DDR commands (ACT/RD/PRE)
to be sent over the DIMM C/A interface, this consumes
75% of the C/A bandwidth. Activating more than one bank
concurrently would require issuing more DDR commands,
thus completely exhausting the available C/A bandwidth of
conventional memory interface.

To overcome C/A bandwidth limitation, we propose a
customized NMP-Inst with a compressed format of DDR
commands to be transmitted from memory controller to Rec-
NMP PUs. Figure 9(b) illustrates the timing diagram of

6

ACT: Activate command
RD: Read command
DES: “Device Deselect” pseudo command

Row0
ACT

tRCD

tCL

tCCD_S or tCCD_L

DIMM.C/A

DIMM.DQ

(a)

Col0
RD DES DES DES

DQ
BL0,1

DQ
2,3

DQ
4,5

DQ
6,7

tBL (Burst=8)

Col1
RD DES DES DES

DQ
0,1

…

Bank0::[Rank, BG, BA] Bank1

…Row1
ACT

MC.Interface Inst
0,1

Inst
2,3

Inst
4,5

Inst
6,7

DIMM0.Interface Inst
0, 1

Inst
8,9

Inst
10,11

Inst
12,13

Inst
14,15

Inst
8, 9

…

… Sum

Local accumulation (DDR.DQ)
and sum (Rank.Psum)
in Rank- and DIMM-NMP

DIMM1. Interface Sum

DIMM2. Interface

Inst
2,3

…Inst
10,11

…Inst
4,5

Inst
12,13

…

Inst
6,7

Inst
14,15

…

Sum

SumDIMM3. Interface

Rank0.DDR.C/A Row0
ACT

tRCD

Rank1.DDR.C/A Row1
ACT

tCL

DQ
0, 1

DQ
2, 3

DQ
4, 5

DQ
6, 7

DQ
0, 1

…tCCD_S or tCCD_L
tBL

Rank0.DDR.DQ

Rank1.DDR.DQ

Row8
ACT
Row9
ACT

Col0
RD
Col1
RD

Col8
RD
Col9
RD

DQ
0, 1

DQ
2, 3

DQ
4, 5

DQ
6, 7

DQ
0, 1

…

Sum Sum Sum Sum

(b)

Fig. 9. Timing diagram of (a) ideal DRAM bank interleaving read operations;
(b) The proposed RecNMP concurrent rank activation.

interleaving NMP-Inst to a 4 DIMMs × 2 Ranks per DIMM
memory configuration. Eight NMP-Insts can be transferred be-
tween memory controller and DIMMs interfaces in 4 DRAM
data burst cycles on double data rate. In low spatial locality
case (64B embedding vector and one NMP-Inst per vector)
and ideal bank interleaving, we could potentially activate 8
parallel ranks to perform 8×64B lookups concurrently in 4
DRAM data burst cycles. Although customized instructions
have been proposed before [5], [22], [81], our solution is the
first one to directly deal with the C/A bandwidth limitation
using DDR command compression that enables up to 8×
bandwidth expansion for small-sized embedding vectors (i.e.
64B) with low spatial locality. Higher expansion ratio can be
achieved with larger vector size.

C. Programming Model and Execution Flow

Like previous NMP designs [22], [32], RecNMP adopts a
heterogeneous computing programming model (e.g. OpenCL),
where the application is divided into host calls running on
the CPU and NMP kernels being offloaded to RecNMP
PUs. NMP kernels are compiled into packets of NMP-Insts
and transmitted to each memory channel over the DIMM
interface to RecNMP PUs. Results of NMP kernels are then
transmitted back to the host CPU. In Figure 8(d), each 79-bit
NMP-Inst contains distinctive fields that are associated with
different parameters in an embedding operation, locality hint
bit (LocalityBit) and pooling tags (PsumTag) passed between
the HW/SW interface. The proposed NMP-Inst format can fit
within the standard 84-pin C/A and DQ interface.

Using a simple SLS function call in Figure 10(a) as an
example, we walk through the execution flow of the proposed
RecNMP programming model. First, memory is allocated
for SLS input and output data, and is marked up as either
Host (cacheable) or NMP (non-cacheable) regions to simplify
memory coherence between the host and RecNMP. Variables
containing host visible data, such as the two arrays Indices
and Lengths, are initialized and loaded by the host and are
cachable in the host CPU’s cache hierarchy. The embedding
table (Emb) in memory is initialized by the host as a host non-
cacheable NMP region using a non-temporal hint (NTA) [31].

Core 0

NMP Packet

NMP-Inst

Queue

Paddr

Mapping

Counter

Calc

Rank[0:N].counter

Core

(Worker)

L1/L2

…

Memory Controller

Core

(Worker)

L1/L2

MMU MMU

LLC Offloading

NMP packets

NMP-DIMM NMP-DIMM

NMP-Inst

NMP-extension

NMP Packet
[Packet header]
Store counter

NMP-Inst

…

NMP-Inst

Load Host::&Output, NMP::Sum_reg

[Packet tail]

NMP Packet
[Packet header]
Store counter

NMP-Inst

…

NMP-Inst

Load Host::&Output, NMP::Sum_reg

[Packet tail]

// Memory Allocation

NMP::matrix<float> Emb (n, vsize, hint=NTA)
Host::vector<int> Indices (batch_size*pooling)

Host::vector<int> Lengths (batch_size)

Host::matrix<float> Output (batch_size, vsize)

// Initialization

NMP::Initial(Emb)

Host::Indices = [50, 23, 16, 39, 43, 11]

Host::Lengths = [2, 2, 2]

// NMP Kernels

NMP::SLS(Emb, Indices, Lengths, Output){

start = 0, batch_size = len(Lengths)

parallel_for (int i = 0; i < batch_size; i++){
pool = Lengths[i]

idx = Indices[start : start + pool]

atomic_sum::Output[i] = sum(Emb[idx[0]],
…, Emb[idx[pool]])

start += pool

}}

(a)

(b)

(c)

Regular

DRAM access

Core N

NMP Packet
…

Packet

Scheduler

NMP Packets Queue

Packet-0 Packet-N…Packet-1

…

Packet-i

NMP-Inst

Scheduler

FR-FCFS

NMP-Inst

Setup

NMP-Inst Tag

ACT,RD,PRE

Chip-Select, NMP-Inst

(d)
Fig. 10. (a) RecNMP SLS example code; (b) NMP packet; (c) NMP kernel
offloading; (d) NMP-enabled memory controller.

Next, the code segment marked as a NMP kernel is com-
piled to packets of NMP-Insts (Figure 10(b)). A single SLS
NMP kernel containing one batch of embedding poolings can
be split into multiple NMP packets, with each packet having
one or more pooling operations. The NMP-Insts belonging to
different embedding poolings in one NMP packet are tagged
by PsumTag, and the maximum number of poolings in one
packet is determined by the number of bits of the PsumTag.
We use a 4-bit PsumTag in our design. At runtime, the NMP
kernel is launched by the host with special hardware/driver
support to handle NMP packet offloading; access to the
memory management unit (MMU) to request memory for
NMP operations; and the virtual memory system for logical-
to-physical addresses translation (Figure 10(c)). The offloaded
NMP packets bypass L1/L2 and eventually arrive at the host-
side memory controller with an NMP extension. To avoid
scheduling the NMP packets out-of-order based on FR-FCFS
policy, the NMP extension of the memory controller includes
extra scheduling and arbitration logic.

As illustrated in Figure 10(d), the memory controller with
the NMP extension receives concurrent NMP packets from
parallel execution of multiple host cores, which are stored
in a queue. Once scheduled, each NMP packet is decoded
into queued NMP-Insts. Physical-to-DRAM address mapping
is then performed and a FR-FCFS scheduler reorders the
NMP-Insts within a packet only and not between packets.
Instead of sending direct DDR commands, ACT/RD/PRE
actions are compressed into the 3-bit DDR cmd field in the
NMP-Inst. The host-side memory controller also calculates the
correct accumulation counter value to configure the memory-
mapped control registers in the RecNMP PU. Finally, after
the completion of all the counter-controlled local computation
inside the RecNMP PU for one NMP packet, the final summed

7

…

pa
ck
et

Pooling

Pooling

Pooling

Ba
tc
h
si
ze

Pooling

pa
ck
et

pa
ck
et

Pooling

Pooling

Pooling

Pooling

pa
ck
et

Ba
tc
he
d
R
eq
ue
st
s

Ba
tc
he
d
R
eq
ue
st
s

Pooling

Pooling

Pooling

Pooling pa
ck
et

Pooling

Pooling

Pooling

Pooling

pa
ck
et

pa
ck
et

pa
ck
et

Emb-1

Model-1
… Emb-N Emb-1

Model-m
… Emb-N

Fig. 11. NMP packet scheduling scheme that prioritizes batch of single table.

Fig. 12. Hit rate of 1MB cache without optimization, with table-aware packet
scheduling optimization, with both table-aware packet scheduling and hot
entry profiling optimization, and ideal case without interference.

result is transmitted over the DIMM interface and returned to
the Output cacheable memory region visible to the CPU.

D. HW/SW Co-optimization

Our locality analysis of production recommendation traffic
in Section II-F illustrates intrinsic temporal reuse opportuni-
ties in embedding table lookups. We propose memory-side
caches (RankCache) inside rank-NMP modules. To extract
more performance from memory-side caching, we explore two
additional HW/SW co-optimization techniques. This locality-
aware optimization results in 33.7% memory latency im-
provement and 45.8% memory access energy saving (detailed
performance benefits will be presented in Section V).

First, to preserve the intrinsic locality from embedding
lookups residing in one table, we propose to prioritize schedul-
ing NMP packets from a single batch requests to the same
embedding table together – table-aware packet scheduling. In
production workloads, the memory controller receives NMP
packets from parallel SLS threads with equal scheduling
priority. The intra-embedding table temporal locality is not
easily retained because of the interference from lookup op-
erations of multiple embedding tables. This locality can be
further degraded when multiple recommendation models are
co-located. Therefore, as illustrated in Figure 11, we propose
an optimized table-aware NMP packet scheduling strategy
to exploit the intrinsic temporal locality within a batch of
requests by ordering packets from the same embedding table
in one batch first, allowing the embedding vectors to be
fetched together, thereby retaining the temporal locality. SLS
operators access separate embedding tables as running in
parallel threads, the mechanics of our implementation comes
from the thread-level memory scheduler [61].

Next, we propose another optimization technique – hot
entry profiling, built on top of the observation that a small
subset of embedding entries exhibit relatively higher reuse
characteristics. We profile the vector of indices used for
embedding table lookup in an NMP kernel and mark the
entries with high locality by explicitly annotating NMP-Insts
with a LocalityBit. NMP-Inst with LocalityBit set will be
cached in the RankCache; otherwise, the request will bypass

End-to-end model speedup

B
as

el
in

e
C

PU
w

or
kl

oa
d

N
M

P-
en

ab
le

d
C

PU
 w

or
kl

oa
d

DLRM Benchmark

RMC1, RMC2

BottomFC SLS

TopFC

Caffe2
Simplified

OS Page Mapping

Module

Real-system
Evaluation

Cycle-level
Memory Simulation

S
L
S

 c
o
n
fi
g
,

In
d
ic

e
s
,
L
e
n
g
th

s Paddr

trace,

Lengths

Cacti

Packet Scheduling &

Hot Entry Profiling

System Pipeline Stage

Rank0.Ramulator

……

Rank7.Ramulator

BottomFC SLS

TopFC

Caffe2

Baseline DDR4

Ramulator

NMP Packet Gen

Paddr

trace NMP-Inst
Cache miss

Indices, Lengths

Packets

Cacti-3DD, -IO

RankCache

(LRU)

Datapath

circuit

Design

Compiler

NMP-Inst

Compute

latency

Cache

latency
DRAM

latency

Baseline

DRAM

latency

RecNMP latencyNon-SLS speedup
Baseline perf

Optimization

config

Area/Power consumption

SLS speedup

Packet size

Fig. 13. RecNMP experimental methodology.

the RankCache. This hot entry profiling step can be performed
before model inference and issuing SLS requests and only
costs <2% of total end-to-end execution time. We profile the
indices of each incoming batch of embedding lookups and
set LocalityBit if the vectors are accessed > t times within
the batch. Infrequent (< t times) vectors will bypass the
RankCache and are read directly from the DRAM devices.
We sweep the threshold t and pick the value with the highest
cache hit rate to use in our simulation. This hot entry profiling
optimization reduces cache contention and evictions caused by
the less-frequent entries in the RankCache.

Figure 12 depicts the hit rate improvement when the dif-
ferent optimizations are applied. Comb-8 indicates the overall
hit rate at model level of 8 embedding tables (T1-T8). To gain
more insights, we investigate the hit rate of embedding tables
(T1 to T8) in Comb-8. The ideal bar indicates the theoretical
hit rate with an infinitely sized cache. With the proposed co-
optimization, the measured hit rate closely approaches the
ideal case across the individual embedding tables, even for
the trace with limited locality (T8), illustrating the proposed
technique can effectively retain embedding vectors with high
likelihood of reuse in RankCache.

IV. EXPERIMENTAL METHODOLOGY

Our experimental setup combines real-system evaluations
with cycle-level memory simulations, as presented in Figure
13. For real-system evaluations, we run production-scale rec-
ommendation models on server-class CPUs found in the data
center. This allows us to measure the impact of accelerating
embedding operations as well as the side-effect of improved
memory performance of FC operations on end-to-end models.
Cycle-level memory simulations allow us to evaluate the de-
sign tradeoffs when DRAM systems are augmented with Rec-
NMP. Table I summarizes the parameters and configurations
used in the experiments. We run experiments on an 18-core
Intel Skylake with DDR4 memory. The DRAM simulation
used standard DDR4 timing from a Micron datasheet [51].

Real-system evaluation. We configure the DRLM bench-
mark with the same model parameters and traces in Figure 2(b)
and Section II. The workload characterization (Section II) and
real-system experiments (Section V) are performed on single
socket Intel Skylake servers, specifications in Table I.

Cycle-level memory simulation. We build the Rec-
NMP cycle-level simulation framework with four main compo-

8

TABLE I
SYSTEM PARAMETERS AND CONFIGURATIONS

Real-system Configurations
Processor 18 cores, 1.6 GHz L1I/D 32 KB
L2 cache 1 MB LLC 24.75 MB

DRAM

DDR4-2400MHz 8Gb ×8, 64 GB,
4 Channels × 1 DIMM × 2 Ranks, FR-FCFS

32-entry RD/WR queue, Open policy,
Intel Skylake address mapping [66]

DRAM Timing Parameters
tRC=55, tRCD=16, tCL=16, tRP=16, tBL=4

tCCD S=4, tCCD L=6, tRRD S=4, tRRD L=6, tFAW=26
Latency/Energy Parameters

DDR Activate = 2.1nJ, DDR RD/WR = 14pJ/b, Off-chip IO = 22pJ/b
RankCache RD/WR = 1 cycle, 50pJ/access,

FP32 adder = 3 cycles, 7.89pJ/Op, FP32 mult = 4 cycles, 25.2pJ/Op

nents: (1) physical addresses mapping module; (2) packet gen-
erator; (3) locality-aware optimizer; and (4) a cycle-accurate
model of a RecNMP PU consisting of DRAM devices,
RankCache, arithmetic and control logic. We use Ramulator
[80] to conduct cycle-level evaluations of DDR4 devices.
On top of Ramulator, we build a cycle-accurate LRU cache
simulator for RankCache and model of the 4-stage pipeline
in the rank-NMP module. Cacti [58] is used to estimate the
access latency and area/energy of RankCache. The hardware
implementation used to estimate the latency, area and power of
the arithmetic logic is built from Synopsys Design Compiler
with a commercial 40nm technology library. To estimate the
DIMM energy, we use Cacti-3DD [41] for DRAM devices and
Cacti-IO [59] for off-chip I/O at the DIMM level.

During simulation we emulate the scheduling packet gener-
ation steps taken by the software stack and the memory con-
troller. First, we apply a standard page mapping method [50]
to generate the physical addresses from a trace of embedding
lookups by assuming the OS randomly selects free physical
pages for each logical page frame. This physical address trace
is fed to Ramulator to estimate baseline memory latency. For
RecNMP workloads, the packet generator divides the physical
address trace into packets of NMP-Insts that are sent to
the cycle-accurate model. Next, the when evaluating systems
with HW/SW co-optimizations, the locality-aware optimizer
performs table-aware packet scheduling and hot entry profiling
and decides the sequence of NMP-Insts. RecNMP activate
all memory ranks in parallel and traditional DRAM bank-
interleaving is also used. For each NMP packet, performance
is determined by the slowest rank that receives the heaviest
memory request load. Rank-NMP and DIMM-NMP logic units
are pipelined to hide the latency of memory read operations.
The total latency of RecNMP includes extra DRAM cycles
during initialization to configure the accumulation counter
and the vector size register and a cycle in the final stage to
transfer the sum to the host. The latency, in DRAM cycles, of
the major components including RankCache, rank-NMP logic
performing weighted-partial sum and final sum are in Table I.

V. EVALUATION RESULTS

This section presents a quantitative evaluation of Rec-
NMP and shows it accelerates end-to-end personalized rec-

1.61x – 1.96x

2.40x – 3.83x
3.37x – 7.35x

2-Rank (1x2) 4-Rank (1x4, 2x2) 8-Rank (2x4, 4x2)

Perfectly balanced load (50%)

Perfectly balanced load (25%)
Perfectly balanced load (12.5%)

Poolings in
NMP Packet

(b)

(a)

Fig. 14. (a) Normalized latency of RecNMP-base to the baseline DRAM with
different memory configuration (DIMM x Rank) and NMP packet size; (b)
Distribution of rank-level load imbalance for 2-, 4-, and 8-rank systems.

ommendation inference by up to 4.2×. We first present the
latency improvement of the offloaded SLS operators on a base-
line system before analyzing different optimizations including
placement with page coloring, memory-side caching, table-
aware packet scheduling and hot-entry profiling. We compare
RecNMP with state-of-the-art NMP systems TensorDIMM
and Chameleon [22], [81]. We also analyze the effect of
RecNMP on co-located FC operators. Finally, an end-to-end
evaluation of throughput improvement and energy savings at
the model level and the area/power overhead is presented.

A. SLS Operator Speedup

In theory, because RecNMP exploits rank-level parallelism,
speedup will scale linearly with the number of ranks and
number of DIMMs in a system. Therefore, we choose four
memory channel configurations (# of DIMMs × # of ranks
per DIMM) that correspond to 1 × 2, 1 × 4 and 2 × 2, and
4× 2 to demonstrate a range of system implementations.

Basic RecNMP design without RankCache. We start by
evaluating RecNMP without a RankCache (RecNMP-base). In
addition to varying the DIMM/rank configuration, we sweep
the number of poolings in one NMP packet, where one
pooling, in DLRM, is the sum of 80 embedding vectors. In
Figure 14(a), we find 1) SLS latency indeed scales linearly
as we increase the number of active ranks in a channel; 2)
latency also decreases when there are more pooling operations
in an NMP packet. The variation we observe, as well as the
performance gap observed between the actual speedup and
the theoretical speedup (2× for 2-rank, 4× for 4-rank, and
8× for 8-rank systems) is caused by the uneven distribution
of embedding lookups across the ranks. As the ranks operate
in parallel, the latency of the SLS operation is determined by
the slowest rank, the rank that runs more embedding lookups.
Figure 14(b) shows the statistical distribution of fraction of the
work run on the slowest rank. When the NMP packet has fewer
NMP-Insts, the workload distributes more unevenly, resulting
in a longer tail that degrades average speedup.

To address the load imbalance, we experiment with software
methods to allocate an entire embedding table to the same
rank. One software approach to perform such data layout op-

9

(a) (b)

6.1x 7.2x 8.8x 9.8x

1 − Compulsory miss rate

Fig. 15. (a) Normalized latency of RecNMP-cache and RecNMP-opt with
schedule and hot-entry profile optimization to the baseline DRAM system;
(b) Cache size sweep effects in RecNMP-opt.

timization is page coloring [78]. As indicated in Figure 14(a),
page coloring could achieve 1.96×, 3.83× and 7.35× speedup
in 2-rank, 4-rank and 8-rank system compared with the DRAM
baseline. The specific page coloring mechanism can be imple-
mented in the operating system by assigning a fixed color
to the page frames used by an individual embedding table.
The virtual memory system would need to be aware of the
DRAM configuration to allocate pages of the same color to
physical addresses that map to the same rank. This data layout
optimization can lead to near-ideal speedup, but it requires
maintaining high model- and task-level parallelism such that
multiple NMP packets from different SLS operators can be
issued simultaneously to all the available ranks.

RecNMP with RankCache and co-optimization. Memory-
side caching at the rank-level with table-aware packet schedul-
ing and hot entry profiling is one of the notable features of
RecNMP; these optimizations are described in Section III-D.
Figure 15(a) depicts the performance benefits (i.e. latency
reduction) enabled by applying different optimization tech-
niques: 1) adding a RankCache, 2) scheduling accesses to
the same table together, 3) adding a cachability hint bit from
software. Using a configuration with 8-ranks 8 poolings per
packet, we observe 14.2% latency improvement by adding a
128KB RankCache and an additional 15.4% improvement by
prioritizing the scheduling of NMP packets from the same
table and batch. In the final combined optimization, schedule
+ profile, we pass cacheability hint after profiling the indices
in the batch which reduces cache contention and allows
low-locality requests not marked for caching to bypass the
RankCache, delivering another 7.4% improvement. The total
memory latency speedup achieved by offloading SLS to an
optimized design (RecNMP-opt) is 9.8×.

In Figure 15(b), we sweep RankCache capacity from 8KB
to 1MB and display how cache size affects the normalized
latency and cache hit rate. When RankCache is small (e.g.
8KB), the low cache hit rate (e.g. 24.9%) leads to high
DRAM access latency. The performance reaches the optimal
design point at 128KB. Further increase of cache size has
marginal improvement on hit rate, since it already reaches the
compulsory limit in the trace. Yet it incurs longer cache access
latency and degrades overall performance.

Performance comparison. We compare RecNMP with
state-of-the-art NMP designs such as Chameleon [22] and Ten-
sorDIMM [81]. Both are DIMM-based near-memory process-
ing solutions. TensorDIMM scales the embedding operation

1.9x 1.4x 2.7x3.7x

4.8x
6.4x

2.4x
3.3x

Fig. 16. Comparison between Host baseline, RecNMP-opt, TensorDIMM [81]
and Chameleon [22] with both random and production traces

performance linearly with the number of parallel DIMMs.
Since non-SLS operators are accelerated by GPUs in Ten-
sorDIMM, which is orthogonal to near-memory acceleration
techniques, we only compare its memory latency speedup with
RecNMP. Chameleon does not directly support embedding
operations. We estimate its performance of Chameleon by
simulating the temporal and spatial multiplexed C/A and
DQ timing of Chameleon’s NDA accelerators. In Figure 16,
as RecNMP exploits rank-level parallelism, its performance
scales when either the number of DIMMs and ranks increase,
whereas Chameleon and TensorDIMM only scale by increas-
ing the number of DIMMs. This is evident as we sweep the
memory channel configuration. When we increase the number
of ranks per-DIMM, RecNMP can deliver 3.3-6.4× and 2.4-
4.8× better performance than Chameleon and TensorDIMM.

It is also worth noting that RecNMP has performance advan-
tages (1.9× and 1.4×) even in configurations with one rank per
DIMM, thanks to the memory-side caching, table-aware packet
scheduling, and hot-entry profiling optimization techniques.
Neither Chameleon nor TensorDIMM includes a memory-side
cache to explicitly take advantage of the available locality in
the memory access patterns, hence their performance, with
respect to memory latency, is agnostic to traces with different
amounts of data reuse. In contrast, RecNMP design can extract
40% more performance (shown as shaded) from production
traces when compared to fully random traces.

B. FC Operator Speedup

Although RecNMP is designed to accelerate the execution
of SLS operators, it can also improve FC performance by
alleviating cache contention caused by model co-location. As
the degree of data-level parallelism increases, the FC weights
brought into the cache hierarchy have higher reuse, normally
resulting in fewer cache misses. However, when co-located
with other models, reusable FC data are often evicted early
from the cache by SLS data, causing performance degradation.

Figure 17 shows the degree of performance degradation
on the co-located FC operations. The amount of performance
degradation experienced by the FC layers varies by the FC
sizes, the degree of co-location, and the pooling values.
When examining the FC performance in baseline systems, we
observe worsening FC performance with larger FC weights at
higher co-location degrees and higher pooling values. Rec-
NMP effectively reduces the pressure from the cache con-
tention, we show the base RecNMP design but RecNMP-opt
impacts FC performance equally as it offloads the same SLS
computation. This beneficial effect ranging from 12% to 30%
is more pronounced for larger FCs whose weight parameters
exceed the capacity of the L2 cache and reside mainly inside

10

30
.8
%

20
.4
%

(b)(a)
6.
5% 12
.1
%

Fig. 17. Effect of model co-location on latency of (a) TopFC in RMC2-small
model; (b) TopFC in RMC2-large model.

RMC1-large (Prod)
locality in host
1.14-1.21x

(c)

In
cr
ea
si
ng
co
-lo
ca
tin
g

RecNMP-opt
RMC2-small (Prod)
locality in host
1.10-1.19x

RMC1-large: 2.8-3.5x

RMC2-small: 3.2-4.0x

1x 1.6x 2.1x2.4x 1x 1.7x 2.4x2.8x 1x 1.9x 2.6x3.2x 1x 2.1x 3.2x4.2x

RMC1-small RMC1-large RMC2-small RMC2-large
(a)

RMC1-small RMC1-large RMC2-small RMC2-large(b)

Fig. 18. (a) Single end-to-end speedup of recommendation inference with
2-rank, 4-rank and 8-rank RecNMP systems; (b) Single model speedup with
different batch size; (c) Host and RecNMP-opt co-located model latency-
throughput tradeoff.

the LLC cache. For smaller FCs whose working set fits inside
the L2 cache (e.g. all BottomFC and RMC1’s TopFC), the
relative improvement is comparatively lower (∼ 4%).

C. End-to-end Model Speedup

Throughput improvement. To estimate the improvement
of end-to-end recommendation inference latency, we calculate
the total speedup by weighting the speedup of both SLS
and non-SLS operators. We measure model-level speedup
across all four representative model configurations, shown in
Figure 18(a). Not surprisingly, the model that spends the most
time running SLS operators (RMC2-large) receives the high-
est speedup. In Figure 18(b), the performance improvement
obtained by RecNMP varies with batch size. In general, the
model-level speedup increases with a larger batch size, as the
proportion of time spent in accelerated SLS operators grows.

Figure 18(c) looks at the overall effect of increasing co-
location in the presence of random or production traces for
both the CPU baseline and our proposed RecNMP solution.
Co-location generally increases the system throughput at the
cost of degrading latency. Compared to random traces, the
locality present in production traces improves performance.
However, this locality performance “bonus” wears off as the
level of model co-location increases due to the cache interfer-
ence from the growing number of embedding tables in multiple
models. Applying RecNMP in a 8-rank system results in 2.8-
3.5× and 3.2-4.0× end-to-end speedup of RMC1-large and
RMC2-small as the number of co-located models increases,

TABLE II
SUMMARY OF RecNMP DESIGN OVERHEAD

RecNMP PU Chameleon [22]
(8 CGRA

accelerators)
RecNMP-base

w/o RankCache
RecNMP-opt

with RankCache
Area (mm2) 0.34 0.54 8.34
Power (mW) 151.3 184.2 3138.6-3251.8

because the fraction of SLS latency rises.The improvement of
both latency and throughput enabled by RecNMP is clearly
observed compared to the baseline system.

Memory energy savings. Comparing with the baseline
DRAM system, RecNMP provide 45.8% memory energy
saving. RecNMP saves the energy from the reduced data
movement between the processor and the memory by perform-
ing local accumulation near DRAM devices and the leakage
saving from reduced latency. In addition, by incorporating
memory-side caching and applying co-optimization techniques
to improve RankCache hit rate, RecNMP achieves extra energy
savings by reducing the number of DRAM accesses.

Area/power overhead. We estimate RecNMP design over-
head assuming 250MHz clock frequency and 40nm CMOS
technology. The area and power numbers are derived from
Synopsys Design Compiler (DC) for the arithmetic and control
logic and Cacti [58] for SRAM memory (i.e. RankCache).
Table II summarizes the overhead of each RecNMP processing
unit for both the basic configuration without cache and the
optimized configuration with cache optimization.

Compared with Chameleon, which embeds 8 CGRA cores
per DIMM, our RecNMP PU consumes a fraction of the area
(4.1%, 6.5% for RecNMP-base and RecNMP-opt) and power
(4.6-5.9%). When scaling RecNMP PUs to multiple ranks in
the DIMM, the total area and power will grow linearly, but
it also translates to linearly-scaled embedding speedup. Given
that a single DIMM consumes 13W [81] and a typical buffer
chip takes up 100mm2 [62], RecNMP incurs small area/power
overhead that can easily be accommodated without requiring
any changes to the DRAM devices.

VI. RELATED WORK

Performance characterization of recommendation mod-
els. Recent publications have discussed the importance and
scale of personalized recommendation models in data cen-
ter [1], [14], [49], [64], [65], [75], [77]. Compared to CNNs,
RNNs, and FCs [12], [69], [72], [82], the analysis demon-
strates how recommendation models have unique storage,
memory bandwidth, and compute requirements. For instance,
[75] illustrates how Facebook’s personalized recommendation
models are dominated by embedding table operations. To the
best of our knowledge, RecNMP is the first to perform lo-
cality study using production-scale models with representative
embedding traces.

DRAM-based near-memory and near-data acceleration.
Many prior works explore near-memory processing using
3D/2.5D-stacked DRAM technology (e.g. HMC/HBM) [5],
[13], [17], [39], [42], [43], [45], [46], [48], [56], [67].
Due to their limited memory capacity (16-32GB) and high

11

cost of ownership, these schemes are not suitable for large-
scale deployment of recommendation models (10s to 100s of
GBs) in production environment. Chameleon [22] introduces
a practical approach to performing near-memory processing
by integrating CGRA-type accelerators inside the data buffer
devices in a commodity LRDIMM [22]. Unlike Chameleon’s
DIMM-level acceleration, RecNMP exploits rank-level paral-
lelism with higher speedup potential. RecNMP also employs a
lightweight NMP design tailored to sparse embedding opera-
tors with much lower area and power overheads than CGRAs.

Supporting error correction (e.g. ECC) is important for
reliable operation. Since RecNMP keeps the rank as the
minimal logical device, all DRAM chips in a rank being
addressed simultaneously, this preserves design simplicity for
ECC operations (8 data chips and 1 parity chip). Alternatively,
error detection/correction logic could be placed on the buffer
chip before the compute logic, incurring very low hardware
overhead, such as [9], [16], [26]–[28]. General ECC designs
tailored for near memory processing remain an open question.

System optimization for memory-constrained learning
models. Sparse embedding representations have been com-
monly employed to augment deep neural network (DNN)
models with external memory to memorize previous history.
Eisenman et al. explore the use of NVMs for large embed-
ding storage [10]. Although the proposed techniques result
in 2 − 3× improvement of effective NVM read bandwidth
(2.3GB/s), it remains far below typical DRAM bandwidth
(76.8GB/s) and cannot fundamentally address the memory
bandwidth bottleneck in recommendation models. MnnFast
targets optimization for memory-augmented neural network
and proposes a dedicated embedding cache to eliminate the
cache contention between embedding and inference opera-
tions [23]. However, these techniques do not directly apply to
personalized recommendation consisting order-of-magnitude
larger embedding tables. TensorDIMM [81] proposes a custom
DIMM module enhanced with near-memory processing cores
for embedding and tensor operations in deep learning. The
address mapping scheme in TensorDIMM interleaves consec-
utive 64B within each embedding vector across the DIMM
modules. Its performance thus scales at the DIMM level and
relies on the inherent high spatial locality of large embedding
vectors, it is unable to apply to this approach to small
vectors (e.g. 64B). Given the same memory configuration,
our design can outperform TensorDIMM in memory latency
speedup by extracting additional performance gains from rank-
level parallelism and memory-side caching optimizations. The
introduction of a customized compressed NMP instruction in
RecNMP also fundamentally addresses the C/A bandwidth
constraints, without the restrictions on small embedding vec-
tors as imposed by TensorDIMM.

VII. CONCLUSION

We propose RecNMP—a practical and scalable near-
memory solution for personalized recommendation. We per-
form a systematic characterization of production-relevant rec-
ommendation models and reveal its performance bottleneck.

A light-weight, commodity DRAM compliant design, Rec-
NMP maximally exploits rank-level parallelism and temporal
locality of production embedding traces to achieve up to 9.8×
performance improvement of sparse embedding operation (car-
ried out by the SLS-family operators). Offloading SLS also
offers alleviated cache contention for the non-SLS operators
that remain in the CPU, resulting in up to 30% latency
reduction for co-located FC operators. Overall, our system-
level evaluation demonstrates that RecNMP offers up to 4.2×
throughput improvement and 45.8% memory energy saving
with representative production-relevant model configurations.

REFERENCES

[1] “Breakthroughs in Matching and Recommenda-
tion Algorithms by Alibaba.” [Online]. Avail-
able: https://www.alibabacloud.com/blog/breakthroughs-in-matching-
and-recommendation-algorithms-by-alibaba 593976

[2] “Caffe2.” [Online]. Available: https://caffe2.ai///
[3] Ali Shafiee, Anirban Nag, Naveen Muralimanohar, Rajeev Balasubra-

monian, John Paul Strachan, Miao Hu, R. Stanley Williams, Vivek
Srikumar, “ISAAC: A Convolutional Neural Network Accelerator with
In-Situ Analog Arithmetic in Crossbars,” in ISCA, 2016, pp. 14–26.

[4] Amazon Personalize, https://aws.amazon.com/personalize/.
[5] Amin Farmahini-Farahani, Jung Ho Ahn, Katherine Morrow, and Nam

Sung Kim, “NDA: Near-DRAM Acceleration Architecture Leveraging
Commodity DRAM Devices and Standard Memory Modules,” in HPCA,
2015.

[6] Amir Yazdanbakhsh, Kambiz Samadi, Hadi Esmaeilzadeh, Nam Sung
Kim, “GANAX: A Unified SIMD-MIMD Acceleration for Generative
Adversarial Network,” in ISCA, 2018.

[7] Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Antonio Puglielli,
Rangharajan Venkatesan, Brucek Khailany, Joel Emer, Stephen W.
Keckler, William J. Dally, “SCNN: An accelerator for compressed-
sparse convolutional neural networks,” in ISCA, 2017.

[8] Animesh Jain, Amar Phanishayee, Jason Mars, Lingjia Tang, Gennady
Pekhimenko, “Gist: Efficient Data Encoding for Deep Neural Network
Training,” in ISCA, 2018.

[9] Aniruddha N. Udipi, Naveen Muralimanohar, Rajeev Balasubramonian,
Al Davis, Norman P. Jouppi, “LOT-ECC: LOcalized and Tiered Relia-
bility Mechanisms for Commodity Memory Systems,” in ISCA, 2012.

[10] Assaf Eisenman, Maxim Naumov, Darryl Gardner, Misha Smelyanskiy,
Sergey Pupyrev, Kim Hazelwood, Asaf Cidon, Sachin Katti, “Bandana:
Using non-volatile memory for storing deep learning models,” in SysML,
2019.

[11] Ben Feinberg, Shibo Wang and Engin Ipek, “Making Memristive Neural
Network Accelerators Reliable,” in HPCA, 2018.

[12] Brandon Reagen, Paul Whatmough, Robert Adolf, Saketh Rama,
Hyunkwang Lee, Sae Kyu Lee, José Miguel Hernández-Lobato, Gu-
Yeon Wei, David Brooks, “Minerva: Enabling low-power, highly-
accurate deep neural network accelerators,” in ISCA. IEEE, 2016, pp.
267–278.

[13] Byungchul Hong, Gwangsun Kim, Jung Ho Ahn, Yongkee Kwon,
Hongsik Kim, John Kim, “Accelerating linked-list traversal through
near-data processing,” in PACT, 2016, pp. 113–124.

[14] Carole-Jean Wu, Robin Burke, Ed H. Chi, Joseph Konstan, Julian
McAuley, Yves Raimond, Hao Zhang, “Developing a Recommendation
Benchmark for MLPerf Training and Inference,” in arXiv preprint
arXiv:2003.07336, 2020.

[15] Christopher De Sa, Matthew Feldman, Christopher Ré, Kunle Olukotun,
“Understanding and Optimizing Asynchronous Low-Precision Stochas-
tic Gradient Descent,” in ISCA, 2017.

[16] Doe Hyun Yoon, Mattan Erez, “Virtualized and Flexible ECC for Main
Memory,” in ASPLOS, 2010.

[17] Duckhwan Kim, Jaeha Kung, Sek Chai, Sudhakar Yalamanchili, Saibal
Mukhopadhyay, “Neurocube: A Programmable Digital Neuromorphic
Architecture with High-Density 3D Memory,” in ISCA, 2016.

[18] Eunhyeok Park, Dongyoung Kim, Sungjoo Yoo, “Energy-Efficient Neu-
ral Network Accelerator Based on Outlier-Aware Low-Precision Com-
putation,” in ISCA, 2018.

12

[19] Fortune, https://fortune.com/2019/04/30/artificial-intelligence-walmart-
stores/.

[20] Google Cloud Platform, https://cloud.google.com/solutions/
recommendations-using-machine-learning-on-compute-engine.

[21] Guorui Zhou, Xiaoqiang Zhu, Chengru Song, Ying Fan, Han Zhu, Xiao
Ma, Yanghui Yan, Junqi Jin, Han Li, Kun Gai, “Deep Interest Network
for Click-Through Rate Prediction,” in KDD, 2018, pp. 1059–1068.

[22] Hadi Asghari-Moghaddam, Young Hoon Son, Jung Ho Ahn, Nam Sung
Kim, “Chameleon: Versatile and Practical Near-DRAM Acceleration
Architecture for Large Memory Systems,” in MICRO, 2016.

[23] Hanhwi Jang, Joonsung Kim, Jae-Eon Jo, Jaewon Lee, Jangwoo
Kim, “MnnFast: a fast and scalable system architecture for memory-
augmented neural networks,” in ISCA, 2019.

[24] Hardik Sharma, Jongse Park, Naveen Suda, Liangzhen Lai, Benson
Chau, Vikas Chandra, Hadi Esmaeilzadeh, “Bit Fusion: Bit-Level
Dynamically Composable Architecture for Accelerating Deep Neural
Network,” in ISCA, 2018.

[25] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar
Chandra, Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai,
Mustafa Ispir, Rohan Anil, Zakaria Haque, Lichan Hong, Vihan Jain,
Xiaobing Liu, Hemal Shah, “Wide & Deep Learning for Recommender
Systems,” in RecSys, 2016, pp. 7–10.

[26] Hsing-Min Chen, Akhil Arunkumar, Carole-Jean Wu, Trevor Mudge,
Chaitali Chakrabarti, “E-ecc: Low power erasure and error correction
schemes for increasing reliability of commodity dram systems,” in
MEMSYS, 2015.

[27] Hsing-Min Chen, Carole-Jean Wu, Trevor Mudge, Chaitali Chakrabarti,
“RATT-ECC: Rate adaptive two-tiered error correction codes for reliable
3D die-stacked memory,” in ACM Transactions on Architecture and
Code Optimization, vol. 13, no. 3, 2016.

[28] Hsing-Min Chen, Supreet Jeloka, Akhil Arunkumar, David Blaauw,
Carole-Jean Wu and Trevor Mudge and Chaitali Chakrabarti, “Using
low cost erasure and error correction schemes to improve reliability of
commodity dram systems,” vol. 65, no. 12, 2016.

[29] Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, Xiuqiang He,
Zhenhua Dong, “DeepFM: An End-to-End Wide & Deep Learning
Framework for CTR Prediction,” in IJCAI, 2017.

[30] Intel Memory Latency Checker (MLC), https://software.intel.com/en-
us/articles/intelr-memory-latency-checker.

[31] Jaekyu Lee, Hyesoon Kim, and Richard Vuduc, “When Prefetching
Works, When It Doesn’t, and Why,” in ACM TACO, vol. 9, no. 1, 2012.

[32] Jiawen Liu, Hengyu Zhao, Matheus Almeida Ogleari, Dong Li, Jishen
Zhao, “Processing-in-Memory for Energy-efficient Neural Network
Training: A Heterogeneous Approach,” in MICRO, 2018, pp. 655–668.

[33] Jiecao Yu, Andrew Lukefahr, David J. Palframan, Ganesh S. Dasika,
Reetuparna Das, Scott A. Mahlke, “Scalpel: Customizing DNN Pruning
to the Underlying Hardware Parallelism,” in ISCA, 2017.

[34] Jiquan Ngiam, Zhenghao Chen, Daniel Chia, Pang W. Koh, Quoc V. Le,
Andrew Y. Ng, “Tiled convolutional neural networks,” in NIPS, 2010,
pp. 1279–1287.

[35] John E. Stone, David Gohara, Guochun Shi, “OpenCL: A Parallel
Programming Standard for Heterogeneous Computing Systems,” in
IEEE Computing in Science and Engineering, vol. 12, no. 3, 2010.

[36] Jorge Albericio, Patrick Judd, Tayler Hetherington, Tor Aamodt, Natalie
Enright Jerger, Andreas Moshovos, “Cnvlutin: Ineffectual-neuron-free
Deep Neural Network Computing,” in ISCA, 2016.

[37] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amir-
saman Memaripour, Yun Joon Soh, Zixuan Wang, Yi Xu, Subramanya
R. Dulloor, Jishen Zhao, Steven Swanson, “Basic Performance Mea-
surements of the Intel Optane DC Persistent Memory Module,” in arXiv
preprint arXiv:1903.05714, 2018.

[38] Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, Kiyoung Choi, “PIM-Enabled
Instructions: A Low-Overhead, Locality-Aware Processing-in-Memory
Architecture,” in ISCA, 2015, pp. 336–348.

[39] Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, Kiyoung
Choi, “A scalable processing-in-memory accelerator for parallel graph
processing,” pp. 105–117, 2015.

[40] Kartik Hegde, Jiyong Yu, Rohit Agrawal, Mengjia Yan, Michael
Pellauer, Christopher W. Fletcher, “UCNN: Exploiting Computational
Reuse in Deep Neural Networks via Weight Repetition,” in ISCA, 2018.

[41] Ke Chen, Sheng Li, Naveen Muralimanohar, Jung Ho Ahn, Jay B.
Brockman, Norman P. Jouppi, “Cacti-3dd: Architecture-level modeling
for 3d die-stacked dram main memory,” in DATE, 2012.

[42] Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee,
Mike O’Connor, Nandita Vijaykumar, Onur Mutlu, Stephen W. Keckler,
“Transparent Offloading and Mapping (TOM): Enabling Programmer-
Transparent Near-Data Processing in GPU Systems,” in ISCA, 2016, pp.
204–216.

[43] Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang,
Amirali Boroumand, Saugata Ghose, Onur Mutlu, “Accelerating pointer
chasing in 3d-stacked memory: Challenges, mechanisms, evaluation,” in
ICCD, 2016, pp. 25–32.

[44] Kim Hazelwood, Sarah Bird, David Brooks, Soumith Chintala, Utku
Diril, Dmytro Dzhulgakov, Mohamed Fawzy, Bill Jia, Yangqing Jia,
Aditya Kalro, James Law, Kevin Lee, Jason Lu, Pieter Noordhuis, Misha
Smelyanskiy, Liang Xiong, Xiaodong Wang, “Applied machine learning
at Facebook: a datacenter infrastructure perspective,” in HPCA, 2018,
pp. 620–629.

[45] Lifeng Nai, Ramyad Hadidi, Jaewoong Sim, Hyojong Kim, Pranith
Kumar, Hyesoon Kim, “GraphPIM: Enabling Instruction-Level PIM
Offloading in Graph Computing Frameworks,” in HPCA, 2017.

[46] M. Gao, J. Pu, X. Yang, M. Horowitz ,and C. Kozyrakis, “Tetris:
Scalable and efficient neural network acceleration with 3d memory,”
in ASPLOS, 2017, pp. 751–764.

[47] Marc Riera, Jose Maria Arnau, Antonio Gonzalez, “Computation Reuse
in DNNs by Exploiting Input Similarity,” in ISCA, 2018.

[48] Mario Drumond, Alexandros Daglis, Nooshin Sadat Mirzadeh, Dmitrii
Ustiugov, Javier Picorel, Babak Falsafi, Boris Grot, Dionisios N Pnev-
matikatos, “The mondrian data engine,” in ISCA, 2017, pp. 639–651.

[49] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu
Huang, Narayanan Sundaraman, Jongsoo Park, Xiaodong Wang, Udit
Gupta, Carole-Jean Wu, Alisson G. Azzolini, Dmytro Dzhulgakov,
Andrey Mallevich, Ilia Cherniavskii, Yinghai Lu, Raghuraman
Krishnamoorthi, Ansha Yu, Volodymyr Kondratenko, Stephanie Pereira,
Xianjie Chen, Wenlin Chen, Vijay Rao, Bill Jia, Liang Xiong,
Misha Smelyanskiy, “Deep Learning Recommendation Model for
Personalization and Recommendation Systems,” in arXiv preprint
arXiv:1906.00091, 2019. [Online]. Available: https://arxiv.org/abs/1906.
00091

[50] Mel Gorman, “Understanding the Linux virtual memory manager,” 2004.
[51] Micron, “MT40A2G4, MT40A1G8, MT40A512M16, 8Gb: x4, x8, x16

DDR4 SDRAM Features.”
[52] Miguel Campo, Cheng-Kang Hsieh, Matt Nickens, J.J. Espinoza,

Abhinav Taliyan, Julie Rieger, Jean Ho, and Bettina Sherick,
“Competitive Analysis System for Theatrical Movie Releases Based on
Movie Trailer Deep Video Representation,” in Arxiv, 2018. [Online].
Available: https://arxiv.org/abs/1807.04465

[53] Mingcong Song, Jiaqi Zhang, Huixiang Chen, Tao Li, “Towards Efficient
Microarchitectural Design for Accelerating Unsupervised GAN-Based
Deep Learning,” in HPCA, 2018.

[54] Mingcong Song, Jiechen Zhao, Yang Hu, Jiaqi Zhang, Tao Li, “Predic-
tion based Execution on Deep Neural Networks,” in ISCA, 2018.

[55] Mingcong Song, Kan Zhong, Jiaqi Zhang, Yang Hu, Duo Liu, Weigong
Zhang, Jing Wang, Tao Li, “In-Situ AI: Towards Autonomous and
Incremental Deep Learning for IoT Systems,” in HPCA, 2018.

[56] Mingyu Gao, Grant Ayers, Christos Kozyrakis, “Practical Near-Data
Processing for In-Memory Analytics Frameworks,” in PACT, 2015, pp.
113–124.

[57] Minsoo Rhu, Mike O’Connor, Niladrish Chatterjee, Jeff Pool, Youngeun
Kwon, Stephen W. Keckler, “Compressing DMA Engine: Leveraging
Activation Sparsity for Training Deep Neural Networks,” in HPCA,
2018.

[58] Naveen Muralimanohar, Rajeev Balasubramonian, and Norman P.
Jouppi, “Cacti 6.0: A tool to model large caches,” in HP laboratories,
2009, pp. 22–31.

[59] Norman P. Jouppi, Andrew B. Kahng, Naveen Muralimanohar, Vaishnav
Srinivas, “Cacti-io: Cacti with off-chip power-area-timing models,” in
VLSI, 2015, pp. 1254–1267.

[60] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav
Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al
Borchers, Rick Boyle, Pierre-luc Cantin, Clifford Chao, Chris Clark,
Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean, Ben Gelb, Tara
Vazir Ghaemmaghami, Rajendra Gottipati, William Gulland, Robert
Hagmann, C. Richard Ho, Doug Hogberg, John Hu, Robert Hundt,
Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexander Kaplan,
Harshit Khaitan, Andy Koch, Naveen Kumar, Steve Lacy, James Laudon,
James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle Lucke, Alan

13

Lundin, Gordon MacKean, Adriana Maggiore, Maire Mahony, Kieran
Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix,
Thomas Norrie, Mark Omernick, Narayana Penukonda, Andy Phelps,
Jonathan Ross, Matt Ross, Amir Salek, Emad Samadiani, Chris Severn,
Gregory Sizikov, Matthew Snelham, Jed Souter, Dan Steinberg, Andy
Swing, Mercedes Tan, Gregory Thorson, Bo Tian, Horia Toma, Erick
Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang, Eric Wilcox, Doe
Hyun Yoon, “In-datacenter performance analysis of a tensor processing
unit,” in ISCA, 2017, pp. 1–12.

[61] Onur Mutlu, Thomas Moscibroda, “Stall-Time Fair Memory Access
Scheduling for Chip Multiprocessors,” in MICRO, 2007, pp. 146–160.

[62] Patrick J. Meaney, Lawrence D. Curley, Glenn D. Gilda, Mark R.
Hodges, Daniel J. Buerkle, Robert D. Siegl, Roger K. Dong, “The IBM
z13 Memory Subsystem for Big Data,” in IBM Journal of Research and
Development, 2015.

[63] Paul Covington, Jay Adams, Emre Sargin, “Deep Neural Networks for
YouTube Recommendations,” in RecSys, 2016, pp. 191–198.

[64] Peter Mattson, Christine Cheng, Cody Coleman, Greg Diamos, Paulius
Micikevicius, David Patterson, Hanlin Tang, Gu-Yeon Wei, Peter Bailis,
Victor Bittorf, David Brooks, Dehao Chen, Debojyoti Dutta, Udit Gupta,
Kim Hazelwood, Andrew Hock, Xinyuan Huang, Atsushi Ike, Bill
Jia, Daniel Kang, David Kanter, Naveen Kumar, Jeffery Liao, Guokai
Ma, Deepak Narayanan, Tayo Oguntebi, Gennady Pekhimenko, Lillian
Pentecost, Vijay Janapa Reddi, Taylor Robie, Tom St. John, Tsug-
uchika Tabaru, Carole-Jean Wu, Lingjie Xu, Masafumi Yamazaki, Cliff
Young, Matei Zaharia, “MLPerf Training Benchmark,” arXiv preprint
arXiv:1910.01500, 2019.

[65] Peter Mattson, Paulius Micikevicius, Vijay Janapa Reddi, David Patter-
son, Christine Cheng, Guenther Schmuelling, Cody Coleman, Hanlin
Tang, Greg Diamos, Gu-Yeon Wei, David Kanter, Carole-Jean Wu,
“MLPerf: An Industry Standard Benchmark Suite for Machine Learning
Performance,” IEEE Micro, vol. 40, no. 2, pp. 8–16, 2020.

[66] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, Stefan
Mangard, “Drama: Exploiting dram addressing for cross-cpu attack,” in
USENIX Security Symposium, vol. pp.565-581, 2016.

[67] Qi Guo, N. Alachiotis, Berkin Akin, F. Sadi, G. Xu, Tze-Meng
Low, Lawrence Pileggi, James C. Hoe, Franz Franchetti , “3d-stacked
memory-side acceleration: Accelerator and system design,” in WoNDP,
2014.

[68] Reza Yazdani, Marc Riera, Jose-Maria Arnau, Antonio Gonzalez, “The
Dark Side of DNN Pruning,” in ISCA, 2018.

[69] Robert Adolf, Saketh Rama, Brandon Reagen, Gu-Yeon Wei, David
Brooks, “Fathom: Reference workloads for modern deep learning meth-
ods,” in IISWC, 2016, pp. 1–10.

[70] Samuel Williams, Andrew Waterman, and David Patterson, “Roofline:
An Insightful Visual Performance Model for Floating-Point Programs
and Multicore Architectures,” in Communications of the ACM, 2009.

[71] Shijin Zhang, Zidong Du, Lei Zhang, Huiying Lan, Shaoli Liu, Ling Li,
Qi Guo, Tianshi Chen, Yunji Chen, “Cambricon-x: An accelerator for
sparse neural networks,” in MICRO, 2016.

[72] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark
A Horowitz, William J Dally, “EIE: efficient inference engine on
compressed deep neural network,” in ISCA, 2016, pp. 243–254.

[73] Swagath Venkataramani, Ashish Ranjan, Subarno Banerjee, Dipankar
Das, Sasikanth Avancha, Ashok Jagannathan, Ajaya Durg, Dheemanth
Nagaraj, Bharat Kaul, Pradeep Dubey, Anand Raghunathan, “ScaleDeep:
A Scalable Compute Architecture for Learning and Evaluating Deep
Networks,” in ISCA, 2017.

[74] Udit Gupta, Brandon Reagen, Lillian Pentecost, Marco Donato, Thierry
Tambe, Alexander M Rush, Gu-Yeon Wei, David Brooks, “MASR: A
Modular Accelerator for Sparse RNNs,” in PACT, 2019, pp. 1–14.

[75] Udit Gupta, Carole-Jean Wu, Xiaodong Wang, Maxim Naumov, Brandon
Reagen, David Brooks, Bradford Cottel, Kim Hazelwood, Bill Jia,
Hsien-Hsin S. Lee, Andrey Malevich, Dheevatsa Mudigere, Mikhail
Smelyanskiy, Liang Xiong, Xuan Zhang, “The Architectural Impli-
cations of Facebook’s DNN-based Personalized Recommendation,” in
HPCA, 2020.

[76] Vahide Aklaghi, Amir Yazdanbakhsh, Kambiz Samadi, Hadi Es-
maeilzadeh, Rajesh K. Gupta, “SnaPEA: Predictive Early Activation
for Reducing Computation in Deep Convolutional Neural Networks,”
in ISCA, 2018.

[77] Vijay Janapa Reddi, Christine Cheng, David Kanter, Peter Mattson,
Guenther Schmuelling, Carole-Jean Wu, Brian Anderson, Maximilien
Breughe, Mark Charlebois, William Chou, Ramesh Chukka, Cody

Coleman, Sam Davis, Pan Deng, Greg Diamos, Jared Duke, Dave Fick,
J. Scott Gardner, Itay Hubara, Sachin Idgunji, Thomas B. Jablin, Jeff
Jiao, Tom St. John, Pankaj Kanwar, David Lee, Jeffery Liao, Anton
Lokhmotov, Francisco Massa, Peng Meng, Paulius Micikevicius, Colin
Osborne, Gennady Pekhimenko, Arun Tejusve Raghunath Rajan, Dilip
Sequeira, Ashish Sirasao, Fei Sun, Hanlin Tang, Michael Thomson,
Frank Wei, Ephrem Wu, Lingjie Xu, Koichi Yamada, Bing Yu, George
Yuan, Aaron Zhong, Peizhao Zhang, Yuchen Zhou, “Mlperf inference
benchmark,” in arXiv preprint arXiv:1911.02549, 2019.

[78] Xiao Zhang, Sandhya Dwarkadas, Kai Shen, “Towards practical page
coloring-based multicore cache management,” in EuroSys, 2009, pp. 89–
102.

[79] Yongming Shen, Michael Ferdman, Peter Milder, “Maximizing CNN
Accelerator Efficiency Through Resource Partitioning,” in ISCA, 2017.

[80] Yoongu Kim, Weikun Yang and Onur Mutlu, “Ramulator: A fast and
extensible DRAM simulator,” in IEEE Computer architecture letters,
vol. 15, no. 1. IEEE, 2015, pp. 45–49.

[81] Youngeun Kwon, Yunjae Lee, Minsoo Rhu, “TensorDIMM: A Practi-
cal Near-Memory Processing Architecture for Embeddings and Tensor
Operations in Deep Learning,” in MICRO, 2019, pp. 740–753.

[82] Yu-Hsin Chen, Tushar Krishna, Joel S. Emer and Vivienne Sze, “Eyeriss:
An energy-efficient reconfigurable accelerator for deep convolutional
neural networks,” in IEEE Journal of Solid-State Circuits, vol. 52, no. 1,
2017, pp. 127–138.

[83] Zhe Zhao, Lichan Hong, Li Wei, Jilin Chen, Aniruddh Nath, Shawn
Andrews, Aditee Kumthekar, Maheswaran Sathiamoorthy, Xinyang Yi,
Ed Chi, “Recommending What Video to Watch Next: A Multitask
Ranking System,” in RecSys, 2019, pp. 43–51.

14

