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Abstract. Most eye tracking methods are light-based. As such they can
suffer from ambient light changes when used outdoors. It has been sug-
gested that ultrasound could provide a low power, fast, light-insensitive
alternative to camera based sensors for eye tracking. We designed a bench
top experimental setup to investigate the utility of ultrasound for eye
tracking, and collected time of flight and amplitude data for a range of
gaze angles of a model eye. We used this data as input for a machine
learning model and demonstrate that we can effectively estimate gaze
(gaze RMSE error of 1.021 ± 0.189 degrees with an adjusted R2 score of
89.92± 4.9).
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1 Introduction

Most current eye tracking methodologies use video to capture the position of
the iris and/or reflected lights sources – glints [7]. As such these methods can
be affected by ambient light [2], which will be the case with for eye tracking
applications in wearables such as augmented-reality (AR). Other light-based
methods such as scanning lasers, dual Purkinje and directional light sensors can
likewise be affected. Speed can also be limited to 100 Hz, especially in wearables,
where operating a camera at high speed would imply high power consumption.
At these speeds the camera-based sensors can capture fixations but not other eye
motions such as saccades, which have been implicated as markers of neurological
disorders [12]. Current devices capable of measuring saccades are designed for
laboratory use, and tend to lack portability. The possibility of using ultrasound
for eye tracking has been raised [10]. However there was no modeling and no
experimentation.

A recent paper explored the possibility of using non-contact ultrasound sen-
sors to track fast eye movements in the field [6]. The work focused on the devel-
opment of finite element simulation model to investigate the use for ultrasound
time of flight data to track fast eye motions . The simulation model is based
on a setup made of four transducers positioned perpendicular to the cornea.
Distances are measured with each transducer receiving the reflection of its own
signal. For this to be possible the device needs to be precisely positioned relative
to the eye. We are interested in applications for eye tracking in AR and virtual
reality (VR), where user-specific placement of the sensors is not possible. It is
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also to be noted that the modeling in [6] was done in the absence of occlusions.
Occlusions are known to be problematic for eye tracking systems in general. [4].
Furthermore, the authors [6] chose to model standard 40kHz transducers. While
these would be advantageous in terms of minimizing attenuation in air, such a
system may be subject to interference from range-finding applications (typically
in the 40-100kHz range). Common range finding systems lack the resolution and
short distance sensing capabilities required for eye tracking.

Another concern for our application of interest is size. Capacitative Microma-
chined Ultrasonic Transducers (CMUTs) operating at 500kHz-2MHz [8] provide
a range, resolution and size that is suitable for use in VR and AR devices. This
type of transducer has found numerous medical applications in both imaging and
therapy. These applications are for contact ultrasound. Here, we use the devices
as airborne transmitters and receivers. In this mode, the difference in impedance
between air and tissue means over 99 percent of the ultrasound signal will be
reflected by the eye surface.

While our long-term goal is integration in a VR or AR form factor device and
size was considered for the selection of transducers, related concerns (test bench
size, power consumption) did not drive our experimental design prototype. We
built a series of table top test benches to verify our ability to accurately measure
distances in the appropriate range, characterize the transducers, and generate
data to be used in a machine learning model to estimate gaze. As such we focus
on empirically testing the hypothesis that ultrasound sensors can be used for
gaze estimation in the presence of occlusions. We demonstrate that ultrasound
time of flight and amplitude signals can be leveraged to train a machine learning
model to track gaze in such conditions. Results show that the trained model
produces a regression R2 score of 89.92 % and a gaze RMSE error of 1.021 ±
0.189 degrees.

We note that while there exists a vast literature on eye tracking and ultra-
sound [11], none has focused on using ultrasound for eye tracking. To the best
of our knowledge, this paper presents the first experimental study to empirically
demonstrate the feasibility for gaze estimation using ultrasound sensors.

2 Materials and Methods

In this section, we describe the bench top experimental setup for data collection,
the signal processing steps to extract the ultrasound time of flight and amplitude,
and the machine learning framework adopted to train a gaze estimation model.

2.1 Bench-top setup

We designed a series of three test benches to evaluate distance measurements,
signal attenuation, transducer directionality, and our ability to estimate gaze.

In terms of electronics and data acquisition, all test benches are based on
a CMUT evaluation kit from Fraunhofer IPMS (Dresden, Germany). This test
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kit is comprised of CMUT transducers (1.74 MHz), an amplifier, bias-tee, and
associated software. These transducers fit our size and power requirements.

We first verified our ability to measure distances, as well as the signal decay
due to attenuation in air given that ultrasound signal attenuation is significant
at MHz frequencies [1]. We used a setup consisting of a pair of transducers aimed
at a flat target attached to a linear translation stage (Test bench 1, Figure 1A).

Next we tested the emission properties of the transducers. Our CMUTs are
comprised of an array of cells connected to a single electrode and a single counter
electrode. As such they act as a fixed phased array, which is expected to exhibit
directionality. We tested this using a fixed transducer and one on a rotating
stage (Test bench 2, Figure 1B). The Tx transducer was rotated in 1 degree
increments and the amplitude of the Rx signal was recorded.

Fig. 1. CAD schema for attenuation and directionality test benches. Tx refers to trans-
ducer in transmit mode, Rx receive mode.

Our third test bench is designed for gaze estimations (Figure 2A). The trans-
ducer side is on the right. We used a pair of transducers (one in transmit mode
and one receiver) mounted on rotating stages to allow us to mimic multiple lo-
cations around a ring (or glasses frame). We acquired data for all transmit and
receive locations covering 360 degrees in 10 degree increments (Figure 3C).

On the target side (left part of Figure 2A), a standard sphere on sphere model
eye (cornea radius 7.8mm, sclera radius 11.925mm, offset 5.6mm) was mounted
on a goniometer (Thor Labs). Gaze angles were set in one degree increments
between ±5 degrees in both up/down (φ) and left/right (θ) directions.

Occlusions (known to affect eye trackers) were added for realism. They con-
sisted of a partial scanned face printed in flexible material (A40 durometer Poly-
jet) with a cavity to accommodate the model eye (Figure 2B). This was mounted
in front of and against the model eye and allowed the eye to move freely.

Our test signal consisted of a train of seven oscillations at 1.74 MHz, repeated
at 2 kHz. The transmitter was moved to positions around a 180 degree arc
opposite the receiver (-90, -80, . . . , 80, 90), Figure 2C. Fifty runs were recorded
for each transducer position. The series was repeated for all goniometer positions.
The received signal was digitized at 80 MHz.
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Fig. 2. A: CAD schema for the experimental bench-top setup and B: occlusions C.
Transducer rotation. The receiver is fixed and the transmitter rotates around an arc.
30 degree steps are shown.

2.2 Data Analysis

Feature Engineering In Figure 3a, we show one raw trace, xri (t, θ, φ) (i ∈
[0, 49] and r ∈ [−90,−80, · · · 80, 90]), for the Ultrasound signal captured at the
receiver, in response to a single test signal emitted by the transmit CMUT
transducer. Figure 3b, shows the average of ten traces, defined as x̄rk(t, θ, φ) =

0.1
∑j+10

j xj(t, θ, φ) (k ∈ [0, 4]). The ultrasound time of flight, τ rk (θ, φ), and
amplitude, ark(θ, φ), signal is estimated for each x̄rk(t, θ, φ) as follows: the signal,
x̄rk(t, θ, φ) is band-pass filtered in the frequency range, [1.6 MHz, 1.9 MHz] using
a Butterworth filter of order 4 to generate the filtered version, f(x̄rk)(t, θ, φ). In
Figure 3c, we show the trace for f2(x̄rk)(t, θ, φ). The ultrasound time to peak
τ rk (θ, φ) and the amplitude, ark(θ, φ) is obtained by considering a time window
of 45 µs around the time instance of peak value for f2(x̄rk(t, θ, φ)) and finding
the first instance of the peak value for x̄rk(t, θ, φ) within the considered time
window. The detected peak value represents the amplitude signal ark(θ, φ) and
the time to peak recorded as the ultrasound time of flight signal, τ rk (θ, φ). In
summary, for each position Y = (θ, φ) of the model eye on the goniometer, we
obtain a set k=5 feature vectors X ∈ R36 = {ar, τ r}r=[−90,−80···80,90]. Our goal
for ultrasound based eye tracking is to learn a regression model, H : X → Y;
that is, given the ultrasound sensor time of flight and amplitude data, estimate
two-dimensional eye gaze coordinates.

Gradient Boosted Regression Trees From a machine learning perspective,
the task of learning a gaze estimation model H is categorized as a supervised
regression problem. Gradient Boosting Regression Trees (GBRT) are a powerful
class of boosting algorithms for classification and regression tasks, which combine
output from several weak learners into a powerful estimator. Specifically, GBRT
considers additive models of the form: Fm(x) = Fm−1(x) + hm(x), where hm
are the basis functions modeled as small regression trees of fixed size. For each
boosting iteration, a new boosting tree is added to the GBRT model, F . For our
problem, we train two separate GBRT models to independently estimate the
response: Y = (θ, φ) as function of the input features, X = (τ r, ar). Assuming
the GBRT model is comprised of M regression trees with Tm leaf nodes per
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Fig. 3. Example of recorded raw time trace of ultrasound sensor signal. The top row
shows an example of time trace recorded at the receive Ultrasound CMUT sensor
in response to a single burst of test signal. The middle row shows averaged signal
computed from the response to a set of 10 bursts of test signal. Finally the last row
shows the squared filtered response signal out of a Butterworth filter. The red line
indicates the time period of time-to-peak signal detection.

regression tree, the GBRT model for each of the gaze regressor is given as:
F y(X,wy) = wy

0 +
∑M

m=1

∑Tm

j=1 w
y
jmI(X ∈ Ry

jm), where y = {θ, φ} and Ry
jm

represents the jth disjoint partitioning of the input space for the mth regression
tree for the regressor variable, y. The GBRT model weights are estimated from
data as follows: w∗ = arg minw

1
N

∑N
i L(yi, F (Xi, w)) where, L is the squared

error loss function. For an exhaustive description of GBRT, see [5, 9].

3 Results

In this section we present findings from our experiments conducted using the
three bench-top setups described in Section 2.1.

We begin by presenting our findings on the CMUT sensor characterization.
Data collected using test bench setup 1, allowed us to investigate the decay
characteristics of the ultrasound signal in air, see Figure 4A. As expected, the
ultrasound signal decays exponentially as a function of distance. An extrapolated
fit shows it decays to zero. The distance axis shows the distance between the
pair of transducers and the target (Figure 1A). Actual travel distance is twice
this measurement. The range is similar to the distances for transducers mounted
on eye glasses frames, our use case scenario.

Data collected using test bench 2 (Figure 1B) allowed us investigate whether
the CMUT transducers exhibit directionality. Our findings are reported in Figure
4B. The CMUT transducers indeed exhibit directionality with an emission cone
of 10 degrees. This applies to the transducers in both transmit and receive mode.

Based on the above findings we conclude that the strength of ultrasound
signal at the receiver CMUT transducer will depend on two factors: distance
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Fig. 4. CMUT sensor characterization

and incident angle. As such we believe that the amplitude of the ultrasound
signal at the receiver contains relevant information to contribute to our ability
to estimate gaze and as shown below, our findings indeed support this claim.

We next report findings from training a GBRT model on data collected using
the third test bench setup (see Figure 2). For each model eye position on the
goniometer, θ, φ, for a fixed receiver transducer position (180 degrees) and for
a set of 19 transmit transducer positions, we fire the ultrasound test signal 50
times, at 2 kHz and record the raw receiver signal (see figure 3 top row). In
order to increase the strength of ultrasound response at the receiver we average
10 traces of the raw response signals at a time, to effectively generate 5 averaged
ultrasound response signals, in effect acquiring data at 200 Hz. The averaged
response signal is passed through a Butterworth bandpass filter and we extract
two ultrasound signal features: time of flight (τ) and the amplitude at peak (a),
as explained in Section 2.2. In total for each model eye position, we generate
a total of 45 samples for each model eye position on the goniometer over the
duration of the study. For the set of 36 model eye positions, we produce a total
of 1620 data samples.

We train a GBRT model on these data samples, performing a 5-fold cross-
validation study. The model performance is reported using an adjusted R2 score
[3] and the gaze RMSE error in degrees. Hyper-parameter search on the GBRT
model parameters that produced the best adjusted R2 score for 5-fold CV are as
follows: (a) Number of regression trees: 750 (b) Tree depth: 5 and (c) Learning
rate: 0.085. We obtain gaze RMSE error of 1.021 ± 0.189 and mean adjusted R2

score of 89.922 % with a standard deviation of 4.9965, suggesting that almost
90 % of the data fit the regression model. Residuals analysis confirmed that the
estimates obtained using the GBRT model are un-biased (data not shown). This
analysis offers an empirical evidence for our claim that ultrasound sensors can
be used for gaze estimation in the presence of occlusions.

In Figure 5A and 5B, we show feature importance for the GBRT tree models
trained to estimate the model eye gaze coordinates, θ (horizontal gaze) and φ
(vertical gaze). We can see that the top two features for both horizontal and
vertical gaze GBRT model are time of flight ultrasound signal followed by an
amplitude feature. It has been our observation that while the time of flight
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Fig. 5. Feature importance and mean-accuracy of GBRT models to estimate gaze

component of ultrasound signal contains dominant information signal to estimate
gaze (95 % contribution to the regression score), the amplitude signal is also an
important contributor for GBRT model to produce an adjusted-R2 score close
to 90 %. In order to test this observation, we trained GBRT model using just
the ultrasound time-of-flight feature and another GBRT model using just the
ultrasound amplitude feature. The findings are: GBRT model trained using time-
of-flight features, produces an adjusted R2 score of 85.38 ± 5.177, where as the
GBRT model trained using only the amplitude feature produces an adjusted R2

score of 78.64 ± 8.177. In Figure 5C, we show the mean-RMSE error (across all
CV-folds) for the GBRT model. The error is biased towards the lower half of
vertical gaze, primarily resulting from occlusions.

4 Discussion

This study is the first experimental demonstration of ultrasound eye tracking.
We show that ultrasonic transducers can effectively produce signals useful to
resolve eye gaze within the range tested, ±5 degrees in both up/down (θ) and
left/right (φ) directions. This range reflects the full deflection of our goniometer.
We plan on expanding the range in future studies.

Our GBRTs show that both amplitude and time of flight contribute to our
ability to estimate gaze. This is a new finding as previous modeling work dealt
with time of flight alone. Two factors contribute to amplitude: attenuation and
the incident angle of the incoming sound. One way to compensate for attenuation
is to use the time-gain correction built in our amplifier, increasing gain over time
to compensate for the signal attenuation with longer distances. When we did
this (data not shown) our model performed slightly worse. This indicates that
attenuation plays a role in our ability to estimate gaze, and would favor the use
of high frequency transducers.
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For this proof of concept we chose to average ten individual tests prior to fil-
tering the signal and extracting peak and amplitude. This reduces the eye track-
ing acquisition speed from a maximum of 2kHz to just 200Hz, which may not
be sufficient to track saccadic eye motion. While this study focused on primarily
testing the hypothesis that ultrasound signals can be leveraged to estimate gaze,
in future works we will explore avenues to investigate the use for ultrasound in
tracking fast eye motion. Specifically, we plan on using a fast-moving model eye
coupled with multiple receivers operating at 2kHz. The GBRT models will be
adapted so we can test the potential of ultrasound for fast eye tracking to resolve
saccades.

Our application is eye tracking for virtual and augmented reality. In addition
to sampling speed, power consumption is an important factor to consider. The
transducers are very low power, in the milliwatt range. Our current system
utilizes a high speed A/D converter. This can be replaced with a low power peak
detection circuit. On the compute side, GBRTs are considered low compute.

In summary, this study presents data driven proof-of-principle findings to
support the claim that ultrasound sensors operating in the MHz range could
provide an alternative to camera-based sensors for eye tracking.
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