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This supplementary further details recording settings,
annotations and experiments. Section 1 provides an
overview of annotator training, our recordings and custom
interface. Section 2 provides the distributions of our labels,
detailed train/validation/test statistics, and an extensive set
of comparisons to other related datasets. Section 3 presents
the architecture and implementation details of our baselines.
Finally, in Section 4, we present more results and compar-
isons on our baselines. Please refer to the supplementary
video for more information on our recordings.

1. Recording and Annotation
1.1. Recording Rig

We built a dedicated desk-based rig to capture the se-
quences in this dataset. Each sequence is recorded with
eight RGB cameras at 1920 × 1080 resolution and four
monochrome cameras at 640 × 480 resolution. Fig. 1 shows
individual camera views and sample frames.

1.2. Participants

We recruited 53 adult participants (28 male, 25 female)
to record approximately one-hour sessions over the course
of 18 consecutive days. Participants were recruited consid-
ering the guidelines and restrictions of COVID-19, includ-
ing wearing face masks. We obtained informed consent of
camera wearers for the digital capture of participants, which
means digitally capturing participants’ faces and bodies.
All video footage and collected annotations will be made
publicly available for the research community.

1.3. Annotations

1.3.1 Annotation Interface:

We developed a custom interface for annotators to tempo-
rally locate the start- and end-frames of fine-grained action
segments, see Fig. 2. Each action segment is tagged with
predefined verbs, tools and objects though annotators also
have the flexibility for free-form entry. To promote precise

annotations, we display three static camera views to ensure
that the actions are visible at least from one view without
self-occlusion from the working hand. Additionally, we
provide diagrams for the annotators with labelled objects
of all 101 toys to ensure correct naming and terminology.

1.3.2 Annotator Training:

To ensure high-quality labels, we trained annotators over
the course of four days. During this time, the annotators
were introduced to our interface and the labelling task un-
der the authors’ guidance. After training, annotators who
were slow or made many mistakes were not selected to con-
tinue. Aside from training, the labelling was completed by
21 annotators over 213 hours of work.

2. Dataset Statistics & Splits

2.1. Fine-Grained Actions

From our 15 toy categories, we define 84 unique ob-
jects. Additionally, we define 24 verbs. Six of the 24 verbs
are “attempted” verbs, i.e. the participants adjust or change
their minds during assembly. For example, the “pick up
chassis” action is composed of three stages of reaching for
the chassis, grasping it, and lifting it up. Our annotators
were provided with the stages of each verb. When users do
not complete all stages in a segment, e.g. approach and/or
grasp the chassis but do not lift it, we asked our annota-
tors to place “attempt to” in front of the action. The objects
and verbs combined form a total of 1456 fine-grained action
labels as not every possible combination is observed. We
present the distribution of our verbs and objects in Fig. 3.

To highlight the scale of our dataset, we compare the
Assembly101 to other video datasets for action recognition
in Table 1. Our dataset is the largest in number of segments
and is richest in terms of multi-view recordings both from
third-person and egocentric views.
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Figure 1. Our desk-based rig and sample frames from eight RGB and four monochrome cameras.

Balancing the Head: The objects, verbs, and fine-grained
action labels each naturally form a long-tailed distribu-
tion [34]. When reviewing Meccano and IKEA, we observe
that a handful of head-classes dominates the action distribu-
tion (60% of actions belong to 3 head classes in IKEA, and
30% in Meccano). To mitigate similar effects, we make two
labelling design choices concerning the wheels and screws
and tools as they are the most commonly occurring object
parts. The adjustments spreads the head-tail distribution
(the top 3 classes account for only 13% of action segments)
and adds semantic richness to the dataset:

• Enumerating the wheels:, i.e. ‘position first wheel’
vs. the generic ‘position wheel’ action. Enumeration
also extends the range of temporal dependencies in a

sequence, as algorithms must keep track of how many
wheels have been attached or removed.

• Fine-grained tool and screw verbs: Due to the nature
of the assembly task, tools and screws appear very fre-
quently. To spread head classes that result from treat-
ing tools and screws as simple objects or parts, we
introduced dedicated verbs, e.g. “screw [object] with
drill”, “position screw on [object]” and “remove screw
from [object]”. Coupling these verbs with other ob-
jects conveys more information than “screw chassis”
or “position screw”.



Figure 2. Our annotation tool interface. Right panel: input video composed of three static camera views and a diagram of the objects.
Middle panel: pre-defined lists of verbs, tools and objects for labelling segments. The annotators also have the flexibility for free-form
entry. Bottom bar: this annotation bar shows the temporal boundaries of the actions i.e., the start and end of each action. Left panel: list
of temporally annotated actions.

Table 1. Comparison to other video datasets for action recognition on fine-grained actions.

Dataset total
hours

#
videos

#
segments

#
actions recorded

multi-
view egocentric

#pose
annotation year

MPII [28] 8.3 44 5,609 64 3 7 7 3 2012
ActivityNet [3] 648.0 27,811 23,064 200 7 7 7 7 2015
Charades [33] 81.1 9,848 67,000 157 3 7 7 7 2016
THUMOS [14] 30.0 5,613 6,310 101 7 7 7 7 2017
Charades-EGO [32] 68.8 2,751 30,516 157 3 3 3 7 2018
EPIC-100 [6] 100.0 700 89,977 4053 3 7 3 7 2020
H2O [17] 5.5 186 934 11 3 3 3 3 2021
Meccano [27] 6.9 20 8,858 61 3 7 3 7 2021
IKEAASM [2] 35.0 371 17,577 33 3 3 7 3 2021
Ego4D [12] 116.0 - 77,002 - 3 7 3 7 2021

Assembly101 517.0 4,344 991,704 1456 3 3 3 3 2021

2.2. Coarse Actions

Each coarse action is defined by the assembly or dis-
assembly of a vehicle part. There are 193 coarse actions
composed of 11 verbs and 70 objects. Each video sequence
features an average of 24 coarse actions. There is an av-
erage of 10 fine-grained actions per coarse action segment.
We present the distribution of coarse actions in Fig. 4. The
average coarse actions in assembly sequences is 14, while
it is 10 in disassembly sequences. Table 2 compares As-
sembly101 to other video datasets with coarse labels. Our
dataset is the largest in hours and number of segments and

the only non-cooking recorded dataset.

2.3. 3D Hand Poses

Action recognition from 3D hand poses is much less ex-
plored compared to the full human body. The only existing
datasets [11, 17] that focus on hand-object action recogni-
tion with 3D hand pose annotations are small scale and/or
include a single hand [11]. We present our comparisons
in Table 3. Compared to FPHA [11] and H2O [17], our
dataset includes 82x more action segments and 200x more
frames. We also compare the scale of our dataset to NTU



Table 2. Coarse action label dataset comparisons.

Dataset hours #videos #segments #actions #recorded #multi-view #egocentric #cooking #year

GTEA [8] 0.4 28 500 71 3 7 3 3 2011
50Salads [37] 4.5 50 899 17 3 7 7 3 2013
Breakfast [16] 77 1,712 11,300 48 3 3 7 3 2014
YouTube Instructional [1] 7 150 1,260 47 7 7 7 7 2016
COIN [38] 476 11,800 46,000 778 7 7 7 7 2019
CrossTask [42] 374 4,700 34,000 107 7 7 7 3 2019
YouCookII [41] 176 2,000 15,400 - 7 7 7 3 2018

Assembly101 517 4,344 97,884 193 3 3 3 7 2021

Figure 3. We define 84 objects (upper) and specify 24 verbs (bottom), which combined with the objects form a total of 1456 fine-grained
action labels. The verb distribution also shows the number of actions containing that verb on top of each bar.

Table 3. Comparisons to other datasets with 3D hand pose.

Dataset Hours #frames #segments #actions

NTU RGB+D 60 [30] - 4M 56K 60
NTU RGB+D 120 [21] - 8M 114K 120
FPHA [11] 1h 0.1M 1K 45
H2O [17] 5.5h 0.5M 1K 36
Assembly101 517h 111M 82K 1456

RGB+D 60 [30] and NTU RGB+D 120 [21], which are the
largest full-body pose dataset. Our dataset contains 6-12x
more action classes and 27-13x more frames. Additionally,
NTU RGB+D 60 and NTU RGB+D 120 are composed of
short trimmed clips of actions while our segments are re-
lated to each other with sequence dynamics which allows
for studying the importance of temporal context for action
recognition.



Figure 4. The distribution of coarse actions. Each coarse action is defined by the assembly or disassembly of a vehicle part. There are 193
coarse actions composed from 11 verbs and 70 objects.

2.4. Training, Validation & Test Splits

We use a 60/15/25 split for dividing our dataset into
training, validation and test splits, with detailed statistics
presented in Table 4. We present the distribution of the mis-

take action in Table 5.

For evaluation purposes, we hold out the ground truth
annotations of the test split. These will be used for online
challenge leaderboards to track future progress on our target



Table 4. Statistics of Assembly101 and its Train/Validation/Test splits.

Split Hours #videos % #unseen
toys

#shared
toys

#fine
segments

#fine
verbs

#fine
objects

#fine
actions

#coarse
segments

#coarse
verbs

#coarse
objects

#coarse
actions

Train 289 2580 60% 42 23 577,908 24 78 1251 56,916 11 65 171
Validation 80 660 15% 14 18 152,340 24 70 916 15,048 11 55 132
Test 132 1104 25% 20 19 261,456 24 79 1096 25,824 11 64 156

Overall 517 4344 100% 76 25 991,704 24 84 1456 97,884 11 70 193

Figure 5. The distribution of skill level of the participants from
1 (worst) to 5 (best). Overall, 9% of the sequences are from the
participants with the worst skill level and 41% is from the best.
‘tr’, ‘v’ and ‘t’ stand for the training, validation and test splits.

Table 5. The distribution of {‘correct’, ‘mistake’, ‘correction’}
segments on the coarse action segments of the assembly se-
quences.

#correct #mistake #correction

Test 11412 2268 1992
Validation 6708 996 768

Train 25032 3768 3396

Overall 43152 7032 6156

tasks. Our dataset is designed to assess the generalizability
to new toys, vehicles, actions and the participants’ skills.
We thus structured our validation and test sets to examine
models under varying conditions.

Seen/Unseen vehicles/toys: Of the 101 toys, only 25
toys are shared across all the three splits. We design the
splits to ensure that there are also unseen vehicle categories
and instances in the training to facilitate zero-shot learning.
Specifically, the “SUV” category is not a part of the training
split, while there are 20 and 14 unseen toy instances in the
validation and test splits respectively.

Head vs. tail classes: The distribution of our objects
and verbs can be seen in Figure 3 that has a large num-

ber of common manipulation verbs such as “pick up” and
“put down” and naturally depicts a long tail distribution.
The object and action distribution follows the same gen-
eral trend. We define the tail classes as the set of actions
classes whose instances account for 30% of the training
data. This amounts to 1277 (84%) tail action classes. We
used Epic-Kitchens as a reference when forming our tail
classes, where 87% of the action classes are in the tail.

Skill level: Skill assessment is a critical task in many ar-
eas including sports [23], robot learning [36], surgery [39]
and assembly line [25]. Which participant has the highest
assembly skills? How are the participants progressing with
more assembly tasks? What are the common mistakes of
participants? Answering these questions involves determin-
ing how well the assembly was carried out. We, thus, also
annotated the skill levels of the participant in each video
from 1 (worst) to 5 (best). Overall, the distribution of skill
labels in our sequences is 9%, 9%, 14%, 27% and 41% from
worst to best, see Fig. 5.

3. Implementation Details
We define four action challenges: recognition, anticipa-

tion, temporal segmentation, and mistake recognition. We
will release the code and evaluation scripts for all these
challenges. For more robust evaluation, we will create
online submission leaderboards to track the community’s
progress on the test data for which the ground truth will be
withheld.

3.1. Action Recognition

3.1.1 Appearance-based Action Recognition

Top-performing video based action recognition mod-
els [4, 9] are typically extensions of state-of-the-art
image-based architectures [13]. Some works extend
convolution and pooling to the time dimension [4, 9];
others perform channel shifting [7, 19] to capture temporal
relationships while maintaining the complexity of a 2D
CNN. We adopted two SOTA models as baseline for this
task: TSM [19] and SlowFast [9].

Implementation Details We use two versions of the stan-
dard TSM architecture with a ResNet-50 [13] backbone -
one with a single classifier head for predicting the actions



Table 6. MS-TCN++ trained on different skill levels

F1@{10,25,50} Edit MoF
Trained on

Skills 4,5 all 23.4 20.1 14.3 24.6 27.9
Skills 1,2,3,4,5 all 26.3 23.0 16.3 25.5 30.8

and another with two classifier heads for predicting the ob-
jects and verbs separately. Both models are trained using
SGD with a momentum of 0.9, weight decay of 0.0005, and
dropout of 0.5 for 50 epochs with a batch size of 64.The
learning rate initialized as 0.001 is decayed by a factor of
10 at epochs 20 and 40. The best-performing model is se-
lected via early-stopping over the validation set.

For SlowFast, we tweak the publicly available PyTorch
model to have two classifier heads to predict objects and
verbs separately. We use SlowFast 8x8 with a ResNet-50
backbone. The model is trained using SGD with a momen-
tum of 0.9, weight decay of 0.0001, and dropout of 0.5 for
30 epochs with a batch size of 64.The learning rate initial-
ized as 0.01 is decayed by a factor of 10 at epochs 20 and 25.
The best-performing model is selected via early-stopping
over the validation set.

3.1.2 Pose-Based Action Recognition:

State-of-the-art methods for recognizing skeleton based
actions are based on deep architectures such as CNNs [20],
transformers [26] and graph convolutional networks
(GCN) [22, 40]. We use two SOTA GCN based methods
for pur experiment, 2s-AGCN [31] and MS-G3D [22].

Implementation Details We use the publicly available Py-
Torch [24] code for 2s-AGCN and MS-G3D. All hand pose
sequences are padded to T = 200 frames by replaying the
action segments. If there is one hand missing, we pad the
second hand with 0. No data augmentation is used.

We trained 2s-AGCN [31] using Stochastic gradient de-
scent (SGD) with Nesterov momentum (0.9) and a learning
rate of 0.1 with a batch size of 32 for 30 epochs. The weight
decay is set to 0.0001. For MS-G3D [22], we used SGD
with a momentum of 0.9 and a learning rate of 0.05. We set
the batch size to 16 and the weight decay to 0.0005. The
model is trained for 50 epochs.

3.2. Action Anticipation

In our experiments, the anticipation task is defined
as predicting the upcoming fine-level actions 1 second
before they start. We adopted TempAgg [29] as baseline
for this task. Similar to previous works [6, 10], we report
class-mean Top-5 recall as it accounts for uncertainty in
future predictions.

Implementation Details We use the TempAgg with three
classification heads that predicts objects, verbs and actions
separately. Since TempAgg operates on frame features, we
use the 2-D backbone of the TSM fine-tuned on our dataset
to extract the 2048-D frame features. The spanning past
snippet features are computed over a period of 6 seconds
before the start of the action and aggregated at 3 tempo-
ral scales K = {5, 3, 2}. The recent past snippet features
are computed over a period of {1.6, 1.2, 0.8, 0.4} before the
start of the action and aggregated over a single temporal
scale KR = 2. The model is trained using an Adam [15]
optimizer for 15 epochs with a batch size of 32. A dropout
factor of 0.3 is used. The learning rate initialised as 0.0001
is decayed by a factor of 10 after the 10th epoch.

3.3. Temporal Action Segmentation

For temporal action segmentation, we apply two compet-
ing state-of-the-art temporal convolutional networks: MS-
TCN++ [18], which maintains a fixed temporal resolu-
tion in its feed-forward structure with successively larger
kernel dilation, and C2F-TCN [35], a U-net-style shrink-
then-expand encoder-decoder architecture. For C2F-TCN
we use implicit ensembling of decoder layers and the fea-
ture augmentation strategy detailed in the paper. Perfor-
mance is evaluated by mean frame-wise accuracy (MoF).
Since longer actions dominate this score and it does not pe-
nalize over-segmentation errors explicitly, we also report
segment-wise edit distance (Edit) and F1 scores at over-
lapping thresholds of 10%, 25%, and 50%, denoted as by
F1@10, 25, 50.
Implementation Details Both for C2F-TCN [35] and MS-
TCN++ [18] we use an Adam [15] optimizer with a batch
size of 20 for a maximum of 200 epochs while using early-
stopping to select the model that best fits the validation
data. Loss functions used for both models are frame-wise
cross entropy loss weighted with 1 and mean-square error
loss [18] weighted with 0.17. For MS-TCN++, learning rate
used is 0.0005 and 0 weight-decay. For C2F-TCN, learning
rate of 0.001 and weight decay of 0.0001 is used. The base
window for feature augmentation sampling is set to be 20
and all layers of decoder are included in ensembling.

3.4. Mistake Detection

We introduce the new problem of mistake detection in
assembly videos. We adopted TempAgg [29] as the base-
line for this task, which captures long-range relationships
that span the order of several minutes successfully.

Implementation Details We modify the TempAgg model
to capture even longer-range relationships. More precisely,
the spanning past snippet features are computed over a pe-
riod of 60 seconds around the action segment i.e. [s−60, e+
60], aggregated at 3 temporal scales K = {5, 3, 2} where s



Table 7. Action recognition performance on fine-level actions. Presented are Top-1 accuracies.

Overall Head Tail Seen Toys Unseen Toys
Overall verb object act. verb object act. verb object act. verb object act. verb object act.
TSM actions 59.0 45.4 35.0 64.1 58.2 46.3 46.8 14.9 7.9 58.0 50.4 37.6 59.3 44.2 34.3

TSM object&verb 59.3 43.9 28.9 63.9 56.2 38.8 48.4 14.8 5.3 58.0 49.7 30.9 59.6 42.5 28.4
Slowfast object&verb 60.1 43.3 28.8 64.5 56.5 39.2 49.6 11.8 4.2 59.3 47.6 30.5 60.3 42.2 28.4

Table 8. Action recognition & anticipation performance on fine-level actions using TSM and TempAgg. ‘Fusion’ corresponds to average-
pooling the scores from multiple views.

Overall Head Tail Seen Toys Unseen Toys

verb object act. verb object act. verb object act. verb object act. verb object act.

Recognition Overall 59.0 45.4 35.0 64.1 58.2 46.3 46.8 14.9 7.9 58.0 50.4 37.6 59.3 44.2 34.3
Fusion 70.3 57.1 47.2 76.7 73.6 62.9 55.1 18.1 10.1 69.8 63.9 51.1 70.4 55.5 46.3

Anticipation Overall 38.4 28.2 6.3 44.7 54.3 25.7 34.6 26.9 3.6 37.9 47.5 13.5 38.7 20.8 5.0
Fusion 41.7 30.1 7.6 48.8 62.5 31.7 37.2 28.4 3.5 39.9 53.5 17.8 42.3 22.3 6.2

and e are the start and end timestamps of the action in sec-
onds. The recent past snippet features are computed over a
period of {3.0, 2.0, 1.0, 0.0} around the action segment and
aggregated over a single temporal scale KR = 5. The train-
ing scheme remains similar to anticipation i.e. it is trained
on 2048-D TSM features using an Adam [15] optimizer for
15 epochs with a batch size of 32 and a dropout of 0.3 on
a single GPU. The learning rate initialised as 0.0001 is de-
cayed by a factor of 10 after the 10th epoch.

4. Results
4.1. Action Recognition & Anticipation

In Table 7, we compare TSM trained with an action head
to a TSM trained with object and verb heads. Overall, the
TSM directly trained for predicting actions performs better.
Although training with separate heads is expected to im-
prove few-shot recognition [5], we observe a 2.6% decrease
compared to using the action head. We also compare the
performance of TSM to SlowFast.

We compare our ‘Overall’ performance to results ob-
tained by fusing scores from multiple views on recognition
and anticipation in Table 8. The fusion increases the perfor-
mance of recognition significantly, while the improvement
is smaller for anticipation.

4.2. Skill level

We train MS-TCN++ only on sequences with skill lev-
els ‘4 and 5’ and then test on ‘1, 2 and 3’ sequences (see
Table 6). This ablation targets at assessing whether a seg-
mentation model trained on perfect assembly instances can
generalize to sequences with mistakes. Compared to train-
ing on ‘all’ skill levels, this variant decreases MoF by 3%,
indicating moderate generalizability.

Figure 6. Action recognition accuracy and segmentation MoF over
toy categories.

We did not observe a significant difference across skill
levels for action recognition and anticipation tasks. We
think that this is because those tasks are trained on fine-level
labels while skill is more relevant for coarse actions.

4.3. Toy categories

Figure 6 shows the accuracy of action recognition and
temporal action segmentation models, over toy categories
individually. The toy with the highest score is ‘transporter’.
Although we have only 4 toys in ‘transporter’ category, we
have 22 participants recording these toys. We think its high
performance could be due to the large number of recordings.
“SUV” category only appears in the test set. However, the
performance on this toy is still competitive at 33.5%, indi-
cating the success of generalization from other categories
such as cars.



Figure 7. Action recognition object and verb recall.

4.4. Class-based evaluations

Fine-grained Actions We present the recall of the object
and verbs for action recognition in Fig. 7. The verbs with
the highest recall are ‘clap’, ‘pick up’ and ‘put down’, while
the tail verbs of ‘attempt to’ have the lowest recall. We
present the top 24 object classes as well. It can be seen that
enumerated wheels are among the top classes.

Coarse Actions Based on temporal action segmentation
results, we further investigated the performance of verbs
and objects. Out of 11 coarse verbs, the verbs with the high-
est recall are ‘demonstrate’, ‘attach’ and ‘detach’, and the
ones with the lowest recall are ‘position’, ‘remove’ and ‘at-
tempt to screw’, which are the tail verbs. The objects with
the highest recall are ‘chassis’ and ‘interior’ which are the
most common objects across toys.
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