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ABSTRACT
Graph-based semi-supervised learning is a fundamental machine
learning problem, and has been well studied. Most studies focus on
homogeneous networks (e.g. citation network, friend network). In
the present paper, we propose the Heterogeneous Embedding Label
Propagation (HELP) algorithm, a graph-based semi-supervised deep
learning algorithm, for graphs that are characterized by heteroge-
neous node types. Empirically, we demonstrate the e�ectiveness
of this method in domain classi�cation tasks with Facebook user-
domain interaction graph, and compare the performance of the
proposed HELP algorithm with the state of the art algorithms. We
show that the HELP algorithm improves the predictive performance
across multiple tasks, together with semantically meaningful em-
bedding that are discriminative for downstream classi�cation or
regression tasks.
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1 INTRODUCTION
Graph-based semi-supervised learning is widely used in network
analysis, for prediction/clustering tasks over nodes and edges. A
class of commonly used approaches can be considered as a two-
stage procedure: the �rst �rst step is node embedding, where each
nodes are represented in a vector which contains the graph infor-
mation; the second step simply apply these vectors are further for
the conventional machine learning tasks. [23] proposed a spectral
clustering method, which uses the eigenvectors of the normalized
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Laplacian matrix as node embedding, and applies k-means algo-
rithm on the embedding vectors for unsupervised clustering. [22]
proposed another clustering method, using the eigenvectors of the
modularity matrix to �nd hidden community in networks . [1]
generated several handcra�ed local features (e.g. sum of neighbors)
as embedding, and applied supervised learning on them to predict
the probability that two node would be connected in the future,
which is more �exible compared to proximity based link-prediction
[17, 19]. [29, 31] further studied the embedding methods proposed
by [22, 23] for supervised learning tasks, to predict the community
label of the nodes in social network, which showed great success.
[30] proposed a edge-centric clustering scheme, which learns a
sparse social dimension for each node by clustering its edges. Re-
cently, several deep learning based representation learning methods
have shown great success in a wide range of tasks for network data.
DEEPWALK [26] learns latent representations of vertices in a net-
work based on truncated random walks and the SkipGram model.
Node2vec [10] further extends DEEPWALK by two additional bias
search parameters which controls the random walks, and thus con-
trol the representation on homophilic and structural pa�ern. Both
of [26] and [10] are assessed by feeding the generated embedding
into a supervised task on graph. Compared to previous embedding
methods, these two methods are more �exible and scalable: the
features could be learned by parallel training with stochastic gradi-
ent descent, and adding new nodes on the graph does not require
recomputing the features for all the observations. With extra com-
putational trick like negative sampling and hierarchical loss [21],
the computation could be further reduced. To learn sparse features,
[6] further proposed a deep learning based model for the latent
representation learning of mixed categories of vertex. Large-scale
information network embedding [28] computes the embedding
by optimizing the objective function to preserve “�rst-order” and
“second-order” graph proximity.

Another class of semi-supervised methods directly use the graph
information during supervised training, instead of the two-stage
embedding-learning procedure in the last paragraph. Label prop-
agation [34] is an simple but e�ective algorithm, where the label
information of labeled nodes are propagated on graph to unlabeled
data. [32] presented a semi-supervised learning framework that
learns graph embedding during the training of a supervised task.
[32] further proposed both transductive and inductive version of
their algorithm, and compared them with several widely used semi-
supervised methods. �e neural graph machine [5] extended idea
of label propagation of regularizing on the �nal prediction to reg-
ularizing the hidden output of neural networks. Another class
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of algorithms build additional nuisance task to predict the graph
context, in addition to the supervised label prediction.

Most work about semi-supervised learning on graph focused
on homogeneous networks, where there exists only singular type
of nodes and relationships. LSHM (Latent Space Heterogeneous
Model) is proposed by [11], which creates a loop-up table for the
embedding of each node in the graph. �e model are trained by both
the supervised loss, de�ned as classi�cation loss from a logistic re-
gression model on the top of the embedding, and an unsupervised
loss, de�ned as the distance between two connected nodes. [6]
further proposed the Heterogeneous Networks Embedding (HNE)
algorithm based on deep neural networks, which in contrast is a
purely unsupervised method. It uses each pair of node as input to
predict their similarity, and de�ne a hidden output as the embed-
ding. It applies di�erent network structure to process nodes with
di�erent type, while keeps the networks sharing the parameter
for same type of node. Inspired by DeepWalk and Node2vec, [8]
proposed a new meta-path-based random-walk strategy to build
the sequences of nodes, and then feed them into SkipGram model
to get a unsupervised embedding for each node.

In this work, we propose a new graph-based semi-supervised
algorithm, HELP (heterogeneous embedding label propagation). It
is an inductive algorithm that can utilize both the features and the
graph where predictions can be made on instances unobserved in
the graph seen at training time. It is also able to handle multiple
heterogeneous nodes in the graph, and generate embedding for
them. We call it “label propagation” as it also implicitly impose a
“smooth constraint” based on the graph [5], which is similar to the
label propagation algorithm [34]. We also demonstrated the e�ec-
tiveness of our proposed approach with several node-classi�cation
tasks on a subset of the Facebook graph consisting of users and
Web Domains, with focus in particular to identifying domains who
repeatedly show content that are sensational [2] and/or otherwise
low quality [18], or domains who repeatedly show content that are
authentic and high quality [16].

2 MOTIVATION
�ere are multiple factors that in�uence the ranking of a story on
a person’s News Feed. A comprehensive look of the many factors
involved can be found in [3]. For content that contains links to
outside Web domains, one of the most important factor is the quality
of the content from this domain. �ere are di�erent dimensions
under consideration for the overall quality of a domain (e.g. if
its URLs always contain exaggerated headlines). For many of the
important dimensions, we train classi�ers to predict the likelihood
a piece of content is of this dimension using content features. �ese
classi�er predictions are then used in conjunction with other signals
(e.g. timeliness, interaction history) to assess the content rank on a
person’s News Feed.

We have following demands and expectations for the semi-
supervised methods for our applications. First, as the data is large
and predictions can get stale quickly, we must pay special a�ention
to training time and warm-start issues. When an unseen domain ap-
pears, we need the score immediately, instead of retrain the model
on the whole data. Second, as the number of nodes is huge, if the
embedding is given by a look-up table for every nodes in the graph,

the computation would be a bo�leneck. �us we plan to avoid
embedding nodes based on IDs. �ird, as we has clear classi�cation
tasks, we are looking for an end-to-end approach to take the graph
information into supervised training simultaneously, instead of
two-stage embedding-supervision procedure.

2.1 Notations
We use the notation ui to denote the feature vector for an user.
We use dj to denote the feature vector for a domain. We use yj
to denote the label of domain dj . We use the index j = 1, · · · ,L
to denote the index of the labeled domains. We further de�ne a
function concat(·, ·), which concatenates two row vectors into one.
We use XT to denote the transpose of a matrix X . We use θ to
denote all the trainable model parameters for a neural network.

2.2 Related Works
In this section, we brie�y review several inductive contextual graph-
based semi-supervised deep learning methods, and show how they
can be applied into our domain classi�cation task. In general,
graph-based semi-supervised learning methods relies on the as-
sumption that connected nodes tend to have similar labels. By
this assumption, [32] summarized that the loss function for graph-
based semi-supervised learning can be decomposed into two part:
the supervised loss part (��ing constraint) and the graph-based
unsupervised regularization part (smoothness constraint). [32] sys-
tematically summarized most of the non-deep existed graph-based
semi-supervised learning method, including Learning with local
and global consistency [33] and Manifold regularization [4]. It then
presented a semi-supervised learning framework called Planetoid
(Predicting Labels And Neighbors with Embeddings Transductively
Or Inductively from Data) that learns graph embedding during the
training of a supervised task. Authors further proposed both the
transductive and inductive version of their algorithm, and compared
them with several widely used semi-supervised methods [32]. Fig-
ure 1 shows the inductive version of the Planetoid with an example
our domain label prediction task, where the features are passed into
a feed-forward neural network for both predict the domain label
and the graph context. �e transductive version is similar, except it
trains a look-up table for each domain as embedding, instead of the
intermediate output of a neural network (a parameterized function
of input feature vectors). In out context, the supervised loss is the
label prediction loss for each domain, and the unsupervised loss
is de�ned as the prediction loss for the existence of each domain
in its context, where the context is de�ned for the nodes share the
same label, or the nodes appear close to each other in the random
walk on the graph based on DEEPWALK [26].

To be more speci�c, the right-most network block in 1 used in
[32] is a single-layer network with sigmoid activation andwc is the
row for node c in the weight matrix, which makes the loss function
for Planetoid-I to be:

GPlanetoid−I (θ ) = Ls + Lu

Ls = −
1
L

L∑
i=1

logp(yi |di )

Lu = λ Ei,c,γ logσ (γwT
c h(di ))
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Figure 1: Network architecture for Planetoid-I.

where γ is a binary random indicator determines if node with index
c, i are similar or not; p(yi |di ) is the output of the le� three building
blocks, representing the predicted probability of true label from the
classi�cation neural network. h represents the building block at
the middle bo�om, which generates the embedding for the node
by applying a parametric function on the input feature. λ is the
hyper-parameter that controls the trade-o� for the ��ing constraint
and smoothing constraint.

�e neural graph machine [5] is a deep learning based extension
of label propagation, which imposes a non-linear smoothing con-
straint by regularizing the intermediate output of a hidden layer
of neural networks. In out example, the supervised loss is still the
predicting loss for the domain label, while the unsupervised smooth
constraint is the average distance between connected domains.

GNGM (θ ) = Ls + Lu

Ls = −
1
L

L∑
i=1

logp(yi |di )

Lu = λ1
∑

i, j ∈ELL

wdi ,djd(h(di ),h(dj )) +

λ2
∑

i, j ∈ELU

wdi ,djd(h(di ),h(dj ))

λ3
∑

i, j ∈EUU

wdi ,djd(h(di ),h(dj ))

where d(·, ·) is a distance function for a pair of vector, and [5]
suggests either l1 or l2. p(yi |di ) has same meaning as for Planetoid-
I, and h(di ) is the node embedding that de�ned as the intermediate
output of the second laster layer. ELL , ELU and EUU de�nes the
node pair that both labeled, only one labeled, and both unlabeled.
λ1, λ2, λ3 are hyper-parameters control the smoothing constraint
for di�erent label types.
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Figure 2: Network architecture for neural graphical ma-
chines

Figure 3: �e network structure for the HELP.

3 THE HELP
3.1 Neural Network Structure
Figure 3 shows the network structure of the HELP for user-domain
network. Inspired by the neural graphical machines [5], which
impose a smoothing constraint on the intermediate output of a
feed forward neural network, we propose a new network architec-
ture with four building blocks that can handle two di�erent type
nodes. �e two building blocks, hd ,hu , at the bo�om of �gure 3
represents two feed forward neural network block, with the input
as the contextual features of domain and user, and the output as
the embedding for domain and user. Two “embedding” building
blocks do not share any parameter, and there is no constraint on
the input/output shape.

A�er the “embedding” building blocks, we de�ne the other two
building blocks. �e �rst is the label prediction block for domain
label prediction, which we de�ned as f . It takes the embedding
ed = hd (di ) of the given domain as input, and output the probability
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f (ed ) that the given domain would be labeled 1 by human checker.
�e other is the “context” block д, which “predicts” the context of
the graph. To be more speci�c, it is a block of feed forward neural
network that computes the distance д(eu , eu ) of between the user
and the domain, given the embedding of both of them from the
embedding blocks.

During the training stage, the inputs are the pairs of the user-
domain. Inspired by [5], our proposed objective function function
can be also decomposed into a neural network cost (supervised)
and the label propagation cost (unsupervised) as follows:

GHELP (θ ) =
L∑
j=1

Ls (f (hd (dj ));θ ) +

λ
∑
i, j

Lu (wui ,dj ,hd (di ),hu (ui ))

�e �rst part, the supervised loss, is the cross-entropy for the
binary label of domains:

Ls (f (hd (dj )) = yj log(f (hd (dj )) + yj log(1 − f (hd (dj ))

�e second part, the graph regularization loss, is de�ned as:

Lu (wui ,dj ,hd (di ),hu (ui )) = wui ,dj · d
2
ui ,dj

+(1 −wui ,dj ) ·max(0,m − dui ,dj )
2

where dui ,dj =
√

1 − д(concat(hd (di ),hu (ui ))), andm is a tunable,
�xed margin parameter. Having a margin indicates that uncon-
nected pairs that have the distance beyond this margin will not
contribute to the loss. �is loss is used in Siamese network, to
distinguish a given pair of images [14]. Instead of using L2 distance
of the output of an embedding network/feature extractor, we use
a separate neural network block to generate “similarity score” for
each pair, and use one minus such score as the distance metric.

In out experiment, the input contextual features are numerical
vector, thus we only consider the fully-connected neural networks.
f is a 2-layer fully connected neural network with output shape
(16, 1); hd and hu are 3-layer fully connected neural networks with
output shape (96, 64, 32) (note they do not share parameters); д is a
2-layer fully connected neural network with output shape (16, 1).

During the training stage, in each epoch, all the labeled domain
are passed, and user-domain pairs are sub-sampled due to the huge
number of pairs. In each iterations in the epoch, the total loss is com-
puted, and the gradient based on the total loss is back-propagated
to the whole network, including f , д, hu , and hd , simultaneously.
During the domain classi�cation (predicting) stage, it requires no
extra re-training: only the domain feature is used.

Notice here the network structure is for illustration, and designed
for user-domain bipartite graph. It can be adapted to multiple type
of nodes, with multiple smoothing constraints for more than one
edge type.

4 EXPERIMENTS
4.1 Labels of Domains
�e labels used in the experiments are generated manually ac-
cording to some internal guideline. We consider three di�erent
“dimensions”: each dimension stands for a certain type of domain.
Table 1 shows the summary statistics of each label.

Table 1: Summary Statistics for Labeled Domains

Label Type Total Size # of Positive
dimension1 5498 1094
dimension2 6399 748
dimension3 1781 477

4.2 Metric
In the experiments, we considered a binary classi�cation problem,
thus following metrics are considered. �e �rst metric is the area
under Receiver Operating Characteristic curve (AUROC). �e curve
is plo�ed with the true positive rate (TPR) against the false positive
rate (FPR) at various threshold se�ings. �e AUROC is de�ned as
the area below the ROC curve. It can be explained as the expec-
tation that a uniformly drawn random positive is ranked before a
uniformly drawn random negative.

�e second metric is the area under the Precision-Recall curve
(AUPRC). �e curve is plo�ed with the precision (true positives
over the sum of true positives and false positives) against the recall
(true positives over the sum of true positives and false negatives)
at various threshold se�ings. Actually we are more in favor of
AUPRC in comparison to PRAUC due to the following reasons.
First, the classes for all the three label types are imbalanced. It
has been shown that in the imbalanced data set, PR curve is more
informative [27]. To be more speci�c, as there are much more
negative samples than positive ones, the true negative examples
will overwhelm the comparison in ROC, while will not in�uence
PRC. �e second reason is we mainly focus on �nding the positive
(the domains labeled as 1). �e PRC mainly re�ect the quality of
retrieval of the positives and its value is not invariant when we
change the baseline, while the AUC does not.

4.3 Features
For domains, we collected 29 features, which include multiple base
summary statistics (e.g. number of likes), and some score generated
from other model. For users, we collected 129 features, which
mainly are user activity statistics in the past .We do not disclose
the details of features as it does not in�uence understanding the
proposed algorithm and the following experiments.

We sub-sampled 2.4 million English-speaking users at Facebook
for this o�ine experiment, with the domains that have at least one
interaction with the sampled users in last 7 days. �e bipartite
graph contains 14.46 Million user-domain edges.

4.4 �e User-Domain Graph
Figure 4 visualize a user-domain graph. Each edge is considered as
undirected, containing two information: the interaction type, and
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Table 2: Sample size for user, domain, and their interactions
(edges).

type size
Domain 241, 205

User 2, 433, 581
Edge 14, 460, 336

Figure 4: An illustration of user-domain interaction graph.

the count of such interaction in last 7 days. In this study, we only
focus on the Resharing as the interaction type. �us the weight of
each edge represents the number of reshares for the given user for
the URLs from the given domain.

�e experimental data is generated on 10/27/2017, which means
the graph is based on the user-domain interaction statistics from
10/20/2017 to 10/27/2017.

5 BENCHMARKS
We consider following algorithms as benchmarks for HELP:

• Label Propagation algorithm (LP) by [34], which only use
the graph information. It is not surprising to see it has
much worse performance compared other methods use the
more informative contextual features. We report this only
to show demonstrate much information contains in the
graph.

• Multi-layer Perceptron (MLP), which is a fully connected
feed-forward neural network using only the feature infor-
mation.

• Planetoid-I (Predicting Labels And Neighbors with Embed-
dings Transductively Or Inductively from Data, Inductive
Version) by [32], with domain-domain graph compressed
from user-domain graph.

• Neural Graph Machine (NGM) by [5], with domain-domain
graph compressed from user-domain graph.

As we don’t have explicit domain-domain graph, we construct it
by compressing the user-domain graph. we construct the domain-
domain graph by:

(1) For domain di and domain dj , �nd the set of users U have
edges for both domains.

(2) For uk ∈ U , de�ne simdi ,dj
k = min(euk ,di , euk ,dj ).

(3) Finally de�ne the edge between di ,dj as

edi ,dj =
∑
uk ∈U

sim
di ,dj
k .

�ere are multiple way to compress the user-domain graph to
domain-domain graph. We have experimented multiple strategies,
but does not show signi�cant di�erence. As this is not the main
focus of this study, we only choose the most straightforward one.

5.1 Optimization
All the neural network models are trained by Adam optimizer [13],
with initial learning rate 0.001, and decayed with ratio 0.1 for every
20 epochs. We set the weight decay as 10−5. We train each model
60 epochs. We train each network 10 times and report the average
of each performance metric. as this can stabilize the results by
reducing the impact of randomness in initialization and training
[12].

We also experimented warm-start reported in [32]. However,
this does not improve the performance. So the supervised and
unsupervised part are trained simultaneously.

6 CLASSIFICATION PERFORMANCE
6.1 Experiment Results
�ough two metric are reported, we mainly focus on the PRAUC,
as we mainly want to improve the quality of retrieval for positive
samples. See detailed discuss ion section 4.2.

Table 3: �epredictive performance on testing set for dimen-
sion1 domain label. All the values are in 10−2 scale.

Model AUROC PRAUC
LP 85.7 71.0

MLP 95.1 83.3
PLANETOID-I 95.1 83.8

NGM L1 95.3 83.5
NGM L2 95.1 82.9

HELP 95.2 84.2

Table 3 shows the predictive performance when predicting if a
domain should be labeled as a dimension1 domain. �e AUCROC
does not have noticeable di�erence for all deep learning based algo-
rithms. For PRAUC, Planetoid-I and NGM with L1 regularization
slightly improved the performance, and HELP achieved the best
performance.

Table 3 shows the predictive performance when predicting if a
domain should be labeled as a dimension1 domain. Similar to previ-
ous experiment, the AUCROC does not have noticeable di�erence,
which may due to the severe imbalance of the positive/negative sam-
ples. For PRAUC, the HELP signi�cantly improved the benchmark
MLP by 1.3% absolute increment. �e Planetoid-I have small im-
provement compared to MLP, while other semi-supervised method
does not show any noticeable improvement.

Table 5 shows the predictive performance when predicting if
a domain should be labeled as a dimension3 domain. Di�erent
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Table 4: �epredictive performance on testing set for dimen-
sion2 domain label. All the values are in 10−2 scale.

Model AUROC PRAUC
LP 87.1 67.7

MLP 95.6 81.6
PLANETOID-I 95.6 81.9

NGM L1 95.6 80.9
NGM L2 95.7 81.5

HELP 96.3 82.9

Table 5: �epredictive performance on testing set for dimen-
sion3 domain label. All the values are in 10−2 scale.

Model AUROC PRAUC
LP 71.9 50.1

MLP 82.2 58.1
PLANETOID-I 82.2 60.2

NGM L1 82.6 63.3
NGM L2 82.2 62.9

HELP 82.6 64.9

from previous two labels, all the semi-supervised learning meth-
ods signi�cantly improve the PRAUC, with at least 2% absolute
improvement. One of the most convincing reason is the dimension3
data is much smaller than dimension1/dimension2 dataset, which is
usually considered as the case that in favor of the semi-supervised
method than purely supervised methods. �e HELP model achieved
best performance for both AUROC (0.4% absolute improvement)
and PRAUC (6.8% absolute improvement).

6.2 Comparison of Unsupervised Loss
�ere are many loss functions can be applied for “context prediction”
in the graph-based neural networks. In this section, we investigated
the performance for di�erent several variations of the HELP with
di�erent semi-supervised loss function.

6.2.1 Weighted Graph. �en we �rst consider commonly used
supervised loss functions for edge prediction as the graph regular-
ization.

A�er generates the embedding for an user eu and a domain ed ,
we concatenate two embedding into one:

econcat = concat(eu , ed )

and directly feed it into a feed-forward neural network д to predict
the edge for this user-domain pair:

ŵu,d = д(econcat)

In this se�ing, the label is the weight of the edge (i.e. number
of reshares in the past week). We considered the following loss
functions:

• L1 (least absolute deviations regression):

L( ®w, ®̂w) = | | ®w − ®̂w | |1

• L2 (least squares regression):

L( ®w, ®̂w) = | | ®w − ®̂w | |22

• SmoothL1: L1 loss is not strongly convex thus the solution
is less stable compared to L2 loss, while L2 loss is sensitive
for the outliers and vulnerable to exploding gradients[9,
15]. SmoothL1 loss, also known as the Huber loss, is a
combination of L1 and L2 loss which enjoys the advantages
from both of them [9]. It is implemented in PyTorch [24]:

L( ®w, ®̂w) =

{
0.5( ®w − ®̂w)2, | | ®w − ®̂w | |1 < 1
| | ®w − ®̂w | |1, | | ®w − ®̂w | |1 >= 1

6.2.2 Unweighted Graph. We also considered the unweighted
graph. �e only di�erence from 6.2.1 is, instead of predict the
weight of the edge, we dichotomized the weighted edge into a un-
weighted binary edge. For instance, we de�ned there is an edge
between user ui and domain dj , is the user reshare some link from
domain dj more than twice a week. For simplicity, we assume the
target wu,d is a binary variable, and the output from the neural
network is bounded in [0, 1], which can be interpreted as the prob-
ability of the existence of an edge within this user-domain pair. As
the target in this se�ing is binary, we considered the following loss
functions:

• CrossEntropy: this is one of the most common loss in
classi�cation:

L( ®w, ®̂w) = (®1 − ®W ) log(1 − ®̂w) + ®W log( ®̂w)

We also consider the embedding distance based loss functions.
�ese functions does not inputing the embedding into a new block
of neural network. Instead, it only relies on the distance between
the user and the domain embedding eu , ed , and binary indicator
of the existence of the edge wu,d .

• Contrastive: this is the loss decreases the energy of like
pairs and increase the energy of unlike pairs [7, 14]. Here
we de�ne the energy as one minus the output of the graph
regularization building block. Recall that the output of
the graph regularization building block represents the pre-
dicted existence of the edge between the given user-domain
pair. We simply set the marginm to be 0.2.

d =

√
1 − ®̂w

L(w, ®̂w) = wd2 + (1 −w)max(0,m − d)2

• CosineEmbed: we consider the cosine embedding loss im-
plemented in PyTorch [24]:

L(wui ,dj , eui , edj ) =

{
1 − cos(eui , edj ), wui ,dj = 1
cos(eui , edj ) wui ,dj = 0

• L1Embed: we also consider the L1 and L2 distance metric
used in neural graphical machines [5]:

L(wui ,dj , eui , edj ) = wi | |eui , edj | |1
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• L2Embed:

L(wui ,dj , eui , edj ) = wi | |eui , edj | |
2
2

For easier comparison, we cluster these loss function into 4
categories:

Table 6: �e predictive performance for HELP with di�er-
ent unsupervised loss on testing set for dimension2 domain
label. All the values are in 10−2 scale.

Loss AUROC PRAUC
Contrastive 96.3 82.9
CosineEmbed 95.6 82.1

L1Embed 95.2 81.6
L2Embed 95.3 81.4

L1 96.0 82.7
L2 95.8 82.1

SmoothL1 95.9 82.5
CrossEntropy 96.1 82.8

MLP 95.6 81.6
Table 7: �e performance for di�erent loss function when
considering dimension2 label.

Table 6 shows the performance of the HELP model with di�erent
unsupervised loss. Among all the loss choices, the HELP with
contrastive loss achieves both the best performance for AUROC
and PRAUC. �e other three embedding based loss, CosineEmbed,
L1Embed and L2Embed, achieves worse performance. �is may
be explained by the �exible distance evaluation. For contrastive
loss we used here, we generate the distance from a feed forward
neural network with the embedding from both user and domain as
input, instead of a �xed commonly used distance metric like cosine
distance. �is makes the distance selection more �exible.

In addition, we observe the L1Embed and L2Embed is noticeably
worse than CosineEmbed and Contrastive, and they does not show
any improvement compared to simple MLP. �is might due to
the L1/L2 losses only “pull” the connected pair closer, while both
CosineEmbed and Contrastive loss not only “pull” the connected
pair closer, but also “push” the unconnected pair farther away, and
therefore improves the learning of the embedding.

For the classi�cation based loss (L1, L2, SmoothL1, and CrossEn-
tropy), we observed all of them has improvement compared to
the benchmark MLP. �e L2 loss has slightly worse performance
compared th L1 and SmoothL1, a combination of L1 and L2 loss.
�is might due to some extreme weight in the edge, which make
too strong impact when training the network. Furthermore, when
edges are treated unweighted by thresholding weighted edge, the
performance is slightly improved. Similar to previous explanation,
we believe such discretization improve the performance by avoid
the outliers in the edge weights. A potential solution of it would be
truncate the loss for unweighted edge, and we leave it for future
work.

7 UNSUPERVISED LEARNING
As discussed above, we do not have explicit label for each users.
However, we de�ne some ad-hoc labels for each user to assess the
e�ectiveness of the user embedding, a side-produce in the HELP
model.

7.1 Visualization of Embedding
We visualize the embedding for users, which is the side-product of
the HELP model.

To avoid information leakage/over-�tting during the train-
ing, we generate the graphwith the interactions 1week a�er
the training data. In other word the graph is generated by
the interactions between user and domain from 10/27/2017
to 11/03/2017. In addition, the user features/domain labels
in our visualization are also collected one week a�er the col-
lecting date of the experiment data.

We investigate and visualize the users that might be “vulnerable”
to dimension2 domains, which we de�ned as the active users with
frequent interaction with some dimension2 domains. To be more
speci�c:

• For each type of interaction (e.g. clicking the link), we �rst
select the users that have more than 5 such interactions
during the whole evaluating week as active users.

• Among such users, if the user is more than 5 such interac-
tion with domains that labeled as dimension2 domain, we
de�ne this user as a vulnerable (positive) user.

• In visualization, we use the red (positive) nodes to represent
the vulnerable users, while using blue (negative) nodes for
the remaining active users.

• As there are much less positive samples, we down sam-
pled the negative samples to relative same size as positive
samples.

In this section, we studied the �ve di�erent interaction types,
including:

• Click: clicking of the link.
• Reshare: resharing the link.
• Wow: Clicking the Wow bu�on for the link.
• Angry: Clicking the Angry bu�on for the link.

We compared the user embedding generated from the HELP,
and the raw features. We use t-SNE to reduce the dimension to 2,
while maintaining the Euclidean distance between nodes for both
raw features [20] and the generated embedding from the HELP. We
simply used the t-SNE function with default parameter in sklearn
[25]. �en we plot each nodes on 2-D space, with color represents
if the node is a vulnerable use or not.

Figure 5: Click. �e le� �gure is for the embedding from the
HELP; the right �gure is for the raw features.
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Figure 6: Reshare. �e le� �gure is for the embedding from
the HELP; the right �gure is for the raw features.

Figure 5 and 6 shows the visualization comparison for Click and
Reshare. For both Click and Reshare, we can observe a passable
pa�ern for the separation of blue/red nodes even for the raw fea-
tures. �ough most of the blue nodes are on the one side, there are
still many regions that blue and red nodes are mixed. However, the
embedding from the HELP further pulled the users of di�erent type
further away. We can observe very clear separation boundary for
two type of users.

Figure 7: Wow. �e le� �gure is for the embedding from the
HELP; the right �gure is for the raw features.

Figure 8: Angry. �e le� �gure is for the embedding from
the HELP; the right �gure is for the raw features.

Figure 7 and 8 shows the visualization comparison for Wow and
Angry. For these interaction types, the raw features did a bad job
in separating two di�erent type of users. However, the embedding
from the HELP still achieves satisfactory performance in separating
two type of users.

In conclusion, the HELP generates embedding for users as a
side-product. Our visualization results suggest such user-level
embedding can help other tasks, like user-level clustering.

8 DISCUSSION
In this work, we propose HELP, a graph-based semi-supervised
deep learning method for graphs with heterogeneous type of node.

We demonstrated its performance with several domain classi�ca-
tion tasks at News Feed at Facebook. One potential future direction
is multi-tasks prediction to predict di�erent type of label simulta-
neously. �e most promising and important direction is, we can
extend the network architecture by stacking a multiple-output pre-
diction layer on the second last layer, which output a vector of
probability for multiple labels. �is can be done by extending the
supervised loss with multiple label type. It has following bene�ts:
�rst the model size can be compressed as we only need to train one
model for multi-labels. Second, the embedding generated in this
network contains information for di�erent label type, thus is more
informative and can be potentially used as a general “reputation
embedding” for a domain.

Another interesting direction is allowing di�erent type of edge
between nodes. In our experiments, we only consider the “resharing
interaction” edges. Di�erent type of edge can be included to further
improve the performance of the semi-supervised approach. In
addition, we may use weighted combination of multiple interaction
types as the weight in graph.

We directly concatenated two embedding and then feed it into
the network block to estimate the similarity for each pair. Instead
of concatenating, several di�erent approaches can be applied to
combine the embedding of the domain-user pair, which may fur-
ther improve the performance of the HELP. For example we may
consider the element-wise product/di�erence of two embedding
vectors.

�ere are also several minor changes may further improve the
performanceof the HELP. We set margin m = 0.2 in an ad-hoc
manner for the contrastive loss, which can be further investigated.
We can also extend the EmbedL1/EmbedL2 loss by imitating the
contrastive loss that including penalization for the unconnected
pair with close distance. Due to the limited space, we leave this as
our future work.
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