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Abstract
We present Theseus, an efficient application-agnostic open source library for differ-
entiable nonlinear least squares (DNLS) optimization built on PyTorch, providing
a common framework for end-to-end structured learning in robotics and vision.
Existing DNLS implementations are application specific and do not always incor-
porate many ingredients important for efficiency. Theseus is application-agnostic,
as we illustrate with several example applications that are built using the same
underlying differentiable components, such as second-order optimizers, standard
costs functions, and Lie groups. For efficiency, Theseus incorporates support for
sparse solvers, automatic vectorization, batching, GPU acceleration, and gradient
computation with implicit differentiation and direct loss minimization. We do
extensive performance evaluation in a set of applications, demonstrating signifi-
cant efficiency gains and better scalability when these features are incorporated.
Project page: https://sites.google.com/view/theseus-ai/

1 Introduction
Reconciling traditional approaches with deep learning to leverage their complementary strengths is a
common thread in a large body of recent work in robotics. In particular, an emerging trend is to differ-
entiate through nonlinear least squares (NLS) [1] which is a second-order optimization formulation
at the heart of many problems in robotics [2–7] and vision [8–13]. Optimization layers as inductive
priors in neural models have been explored in machine learning with convex optimization [14, 15]
and in meta learning with gradient descent [16, 17] based first-order optimization.

Differentiable nonlinear least squares (DNLS) provides a general scheme to encode inductive priors,
as the objective function can be partly parameterized by neural models and partly with engineered
domain-specific differentiable models. Here, as illustrated in Fig. 1, input tensors define a sum
of weighted squares objective function and output tensors are minima of that objective. Such
implicit layers [18] are in contrast to typical (explicit) layers that take input tensors through a linear
transformation and some element-wise nonlinear activation function.

Figure 1: Theseus enables building custom, efficient DNLS layers that support end-to-end structured learning.
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The ability to compute gradients end-to-end is retained by differentiating through the optimizer which
allows neural models to train on the final task loss, while also taking advantage of priors captured
by the optimizer. The flexibility of such a scheme has led to promising state-of-the-art results in a
wide range of applications such as structure from motion [19], motion planning [20], SLAM [21, 22],
bundle adjustment [23], state estimation [24, 25], image alignment [26] with other applications like
manipulation and tactile sensing [27, 28], control [29], human pose tracking [30, 31] to be explored.
However, existing implementations from above are application specific, common underlying tools
like optimizers get reimplemented, and features like sparse solvers, batching, and GPU support that
impact efficiency are not always included. This has led to a fragmented literature where it is difficult
to start work on new ideas or to build on the progress of prior work.

To address this gap, we present Theseus, an open source library for differentiable nonlinear least
squares optimization built on PyTorch. Theseus provides an efficient application-agnostic interface
that consolidates recent efforts and catalyzes future progress in the domain of structured end-to-end
learning for robotics and vision. Our contributions are summarized below.

Application agnostic interface. Our implementation provides an easy to use interface to build
custom optimization layers and plug them into any neural architecture. (i) The layer can be constructed
from a set of available second-order optimizers like Gauss-Newton and Levenberg–Marquardt and
a nonlinear least squares objective. (ii) The objective can be constructed with learnable or hand-
specified cost functions, either by applying one of many common costs already provided in the library,
or by building custom costs in-place with support for automatic differentiation through PyTorch [32].
(iii) We also provide differentiable Lie groups for representing 2D/3D positions and rotations [33],
and differentiable kinematics wrapping over an existing library [34] for representing robot models.
More details are described in Sec. 3.

Efficiency based design. Efficiency is a central design consideration and we make several advance-
ments in improving computation times and memory consumption. (i) As common in prior work, an
optimizer implementation using PyTorch’s native linear solver would use a dense representation for
solving the linear system within the nonlinear optimization. In practice, these optimization problems
often have a considerable amount of sparsity that can be exploited [35–38]. In Theseus, we imple-
ment sparse linear solvers that are differentiable end-to-end and make them efficient with custom
CPU and CUDA backends to support batching and GPU acceleration. (ii) Beyond sparse solvers, we
extend batching and GPU support to all features in the library and add automatic vectorization of cost
functions and other operations to significantly boost efficiency. (iii) Finally, we introduce implicit
differentiation [39] and direct loss minimization [40, 41], which have been previously applied to only
first order optimizers like gradient descent and convex optimization, to a new class of second-order
optimizers. This goes beyond prior work with nonlinear least squares that currently only support
differentiation with standard unrolling, which is known to have challenges with compute, memory,
and vanishing gradients. More details are described in Sec. 4.

Highlights of results. Together, the application-agnostic features let users easily set up a variety of
problems like pose graph optimization, tactile state estimation, bundle adjustment, motion planning,
and homography estimation, all of which are included as examples in the open source code and
described in Sec. 3.1. In evaluations, we find that on a standard GPU, Theseus with a sparse solver is
much faster and requires significantly less memory than a dense solver, and when solving a batch of
large problems the forward pass of Theseus is up to 20x faster than state-of-the-art C++ based solver
Ceres that has limited GPU support and does not support batching and end-to-end learning. We also
compare all backward modes to find that with increasing number of optimization iterations, compute
and memory increases linearly for unrolling and stays constant for implicit differentiation, while the
latter also provides better gradients. More details are described in Sec. 5.

2 Background and related work
Nonlinear least squares (NLS) is an optimization problem [1] that finds optimization variables θ

θ? = arg min
θ

S(θ), S(θ) =
1

2

∑
i

||ri(θi)||2 =
1

2

∑
i

||wici(θi)||2 (1)

where the objective S(θ) is a sum of squared vector-valued residual terms ri, each a function of
θi ⊂ θ that are (non-disjoint) subsets of the optimization variables θ = {θj}. Any variable θj is a
manifold object; for example, a Euclidean vector or a matrix Lie group. For flexibility, we represent
a residual ri(θi) = wici(θ

i) as a product of a matrix weight wi and vector cost ci. Robotics and
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vision have used this general optimization formulation to tackle many applications [3, 4]. For
example, costs capture sensor measurement errors and physical constraints to optimize camera,
robot, object, or human poses in estimation and tracking problems like simultaneous localization
and mapping (SLAM) [42], structure from motion [13], bundle adjustment [8], visual inertial
odometry [2], articulated tracking [12], contact odometry in legged locomotion [27], 3D pose and
shape reconstruction of humans [30, 31] or objects [10]. Similarly, costs can also capture constraints
and desired future goals to find robot states or actions in motion planning [5], dynamics [6], and
control [29] problems.
Solving NLS. Problems represented by Eq. (1) are solved by iteratively linearizing the nonlinear
objective around the current variables to get the linear system (

∑
i J
>
i Ji)δθ = (

∑
i J
>
i ri), then

solving the linear system to find the update δθ, and finally updating the variables θ ← θ − δθ, until
convergence. Note that in the update the minus operation is more generally a retraction mapping for
non-Euclidean variables. In the linear system, Ji = [∂ri/∂θ

i] are the Jacobians of residuals with
respect to the variables and the iterative method above, called Gauss-Newton (GN), is a nonlinear
optimizer that is (approximately) second-order, since H = (

∑
i J
>
i Ji) represents the approximate

Hessian. To improve robustness and convergence, variations like Levenberg–Marquardt (LM) damp
the linear system, while others use a trust region and adjust step size for the update with line search
(e.g., Dogleg). Please refer to [1, 43] for an in-depth exploration. In most applications discussed
above the objective structure gives rise to a sparse Hessian, since not all costs depend on all variables.
Several general purpose frameworks [35–38] have been built that leverage this sparsity property to
efficiently solve the sparse linear system in every iteration of the nonlinear optimization. While these
frameworks were not built for deep learning, they are highly efficient and performant on CPU.
NLS with learning. Data driven learning has been explored to address challenges in hand crafting
costs or features for costs, finding weights to balance different costs, or to find initializations that lead
to better convergence. Some examples include, learning object shape code [44] or environment depth
code [45] for SLAM [46], learning motion priors for planning to manipulate articulated objects [47],
learning relative pose from tactile images to estimate object state during pushing [28], and semantic
2D segmentation fused in 3D mesh for semantic SLAM [7]. These approaches only train features on
a surrogate or intermediate loss and then apply optimization at inference where the true downstream
task loss is available but not utilized. To take full advantage of end-to-end learning, latest approaches
thus are redesigning the optimization to be differentiable.
Differentiable NLS (DNLS) solves the optimization in Eq. (1) and also provides gradients of the
solution θ? with respect to any upstream neural model parameters φ that parameterize the objective
S(θ;φ) and in turn any costs ci(θi;φ), weights wi(φ), or initialization for variables θinit(φ). The
goal is to learn these parameters φ end-to-end with a downstream learning objective L defined as a
function of θ?. This results in a bilevel optimization setup as shown in Fig. 1

inner loop: θ?(φ) = arg min
θ

S(θ;φ), outer loop: φ? = arg min
φ

L(θ∗(φ)) (2)

where the inner loop is DNLS and the outer loop is gradient descent class of optimization that is
standard in deep learning. The outer loop performs update φ ← φ + δφ by computing δφ using
gradients ∂θ?/∂φ through inner loop DNLS. Note that more generally the learning objective i.e.
outer loss L can also depend on other quantities like neural model parameters downstream of θ∗, but
we omit them here for clarity.
Recent works with DNLS have outperformed optimization only or learning only methods by com-
bining the strengths of classical methods with deep learning. For example, learning features for
costs to represent depth in bundle adjustment [23] and monocular stereo [48] where an initialization
network also learns to predict depth and pose, learning cost weights like motion model weights
in video to depth estimation [19], obstacle avoidance weights in 2D motion planning from occu-
pancy images [20], learning robust loss weights in image alignment [26] and state-of-the-art dense
SLAM [22], and confidence weights for feature matching to optimize camera pose [49]. Other works,
backpropagate reconstruction error to sensor model in a SLAM system [21], solve large scale bundle
adjustment on a GPU [50], and learn sensor and dynamics models for 2D visual object tracking
and visual odometry [24]. These implementations however, are application specific which has led
to repeated work in building DNLS where features like learnable costs and weights, Lie groups,
and kinematics are not always present. Additionally, features that have a significant impact on
performance, like sparsity and vectorization of costs are only considered by some [24, 50, 51] or in
the case of implicit differentiation for NLS optimization, have not yet been explored.
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3 Application agnostic interface
Given the lack of a common and efficient framework for DNLS an important goal of Theseus is
to provide an application-agnostic interface. In this section, we describe how we enable this with
an easy-to-use core API, standard cost functions, and features like Lie groups and kinematics, and
illustrate several examples using this interface. We discuss design for efficiency in the next section.

1 x_true, y_true, v_true = read_data() # shapes (1, N), (1, N), (1, 1)
2

3 x = th.Variable(torch.randn_like(x_true), name="x")
4 y = th.Variable(y_true, name="y")
5 v = th.Vector(1, name="v") # a manifold subclass of Variable for optim_vars
6

7 def error_fn(optim_vars, aux_vars): # returns y - v * exp(x)
8 x, y = aux_vars
9 return y.tensor - optim_vars[0].tensor * torch.exp(x.tensor)

10

11 objective = th.Objective()
12 cost_function = th.AutoDiffCostFunction(
13 [v], error_fn, y_true.shape[1], aux_vars=[x, y],
14 cost_weight=th.ScaleCostWeight(1.0))
15 objective.add(cost_function)
16 layer = th.TheseusLayer(th.GaussNewton(objective, max_iterations=10))
17

18 phi = torch.nn.Parameter(x_true + 0.1 * torch.ones_like(x_true))
19 outer_optimizer = torch.optim.Adam([phi], lr=0.001)
20 for epoch in range(10):
21 solution, info = layer.forward(
22 input_tensors={"x": phi.clone(), "v": torch.ones(1, 1)},
23 optimizer_kwargs={"backward_mode": "implicit"})
24 outer_loss = torch.nn.functional.mse_loss(solution["v"], v_true)
25 outer_loss.backward()
26 outer_optimizer.step()

Listing 1: Simple DNLS example with Theseus, see App. A for details.

The core API lets users focus on describing the DNLS problem and their interaction with the outer
loss L and parameters φ within any broader PyTorch model, while the solution and differentiation
are seamlessly taken care of under-the-hood. The basic components of the core API are described
below with the help of a simple example in Listing 1 (see App. A for more details on the example):

• Variable: refers to either optimization variables, θ, or auxiliary variables (those constant with
respect to S, e.g., parameters φ or data tensors), which are named wrappers of torch batched
tensors stored in Variable.tensor (lines 3-5).

• CostFunction: defines costs ci (lines 12-14) and are also responsible for declaring which of its
variables are optimization and which are auxiliary (lines 8-9),

• CostWeight: defines weights wi associated with cost ci (line 14).

• Objective: defines S(θ;φ), and thus the structure of an optimization problem (lines 11, 15)
by holding all cost functions and weights, and their associated variables. These are implicitly
obtained when a CostFunction is added to the Objective, and Variable names are used to
infer which are shared by one or more CostFunction.

• Optimizer: is the inner loop optimization algorithm (e.g. Gauss-Newton) that finds the solution
θ? given objective S (line 16).

• TheseusLayer: encapsulates Optimizer and Objective, and serves as the interface between
the DNLS block and other torch modules upstream or downstream (line 16).

The interface between the inner loop optimization and the outer loop’s parameters and loss occurs via
TheseusLayer.forward (lines 21-23). This receives as input a dictionary mapping variable names
to torch tensors, which Theseus then uses to populate the corresponding Variable with the tensor
mapped to its name. With the input dictionary users can provide initial values for the optimization
variables, data tensors, or current values for parameters φ before running the inner loop optimization.
The output of forward is another dictionary that maps variable names to tensors with their optimal
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values found in the inner loop (lines 21, 24); auxiliary variables are not modified during the forward
pass. The output tensors can then be combined with other torch modules downstream to compute L,
while maintaining the full differentiable computation graph (lines 24-26).

We currently provide Gauss-Newton and Levenberg-Marquardt as Optimizer for the inner
loop, with the ability to easily add support for more optimizers in the future. Listing 1 uses
AutoDiffCostFunction to construct an in-place CostFunction (line 12) which allows automati-
cally calculating Jacobians Ji with PyTorch (see App. B). Beyond this, in the library we include
standard cost functions with analytical Jacobians broadly used in many applications, like Gaussian
measurements, reprojection error, relative pose measurement, motion models, and collision costs. We
also include a variety of robust loss functions, useful for example in handling outliers [52], which can
be easily integrated with CostFunction. Next we describe support for Lie groups and kinematics.

Differentiable Lie groups. Lie groups are widely used in robotics and vision to represent 2D/3D
positions and rotations [33]. Due to their non-Euclidean geometry, it is difficult to apply them to deep
learning, which primarily operates with Euclidean tensors, but recently there is growing interest in
making them compatible [24, 53–57]. LieTorch [54] generalizes automatic differentiation on the Lie
group tangent space through local parameterization around the identity, but the implementation is
complex since every operation requires a custom kernel. In contrast, Theseus computes common Lie
group operators, e.g., the exponential and logarithm map, inverse, composition, etc., in closed form,
and provides their corresponding analytical derivatives on the tangent space. Following [58], we also
implement a projection operator that allows us to project gradients computed by PyTorch’s autodiff to
the tangent space and use them to easily compute Jacobians and update Lie group variables correctly;
a similar strategy has also been implemented in [59]. Additionally, our Lie group implementation
includes a heuristic extension that allows using any of PyTorch’s first-order optimizers on non-
Euclidean manifolds with minimal code changes. All of these make it easy and straightforward to
run optimization and train neural networks with Lie groups variables. More details in App. C.

Differentiable kinematics. Many problems such as motion planning or state estimation on high
degree of freedom robots like arms or mobile manipulators, involve computation of robot kinematics
for collision avoidance or computing distance of end effector to goal. Theseus provides a differen-
tiable implementation of forward kinematics by wrapping over Differentiable Robot Model [34],
which builds a differentiable kinematics function from a standard robot model file. Gradients are
computed through autodiff, while we also provide a more efficient, analytical manipulator Jacobian.
This module can be used within any CostFunction in Theseus.

3.1 Example applications

To illustrate the versatility of Theseus, we include a number of example DNLS applications below
with more details in App. D. Crucially, to implement these with Theseus, most of the effort is only
in defining application-specific components such as data management, neural models, or custom
CostFunction. With these defined, putting the full DNLS block together is a few lines of code to
setup a TheseusLayer and an outer loop, similar to the simple example in Listing 1.

Pose graph optimization (PGO) estimates poses from their noisy relative measurements [60]. With
DNLS we learn the radius of a Welsh robust cost function for outlier rejection, using the difference
between estimated and ground truth poses as the outer loss on a synthetic dataset.

Tactile state estimation follows [28], which estimates 2D poses of an object pushed by a robot hand
with an image-based tactile sensor [61]. A neural network that predicts relative pose between hand
and object from tactile images is learned end-to-end through the TheseusLayer.

Bundle adjustment is the problem of optimizing a 3D reconstruction formed by a set of camera
images and a set of landmarks observed and matched across the images [62]. We learn the radius of a
soft-kernel that penalizes outlier observations, using the average frame pose error as outer loss.

Motion planning considers a differentiable version of the GPMP2 planning algorithm, inspired
by [20], where the outer loss tries to match expert demonstrations. Here we learn a model for
initializing optimization variables, and we include the inner loop objective as a term in the outer loss.

Homography estimation. Homography is a linear transformation between corresponding points in
two images and can be solved by minimising a dense photometric loss. Robustness to lighting and
viewpoint change can be improved with a feature-metric loss based on CNN features [63–68]. In our
outer loop, we train a CNN to produce robust features for image alignment.
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4 Efficiency based design
Theseus enables several different applications with a general interface. Compute and memory
efficiency are central to making its usage practical. Next, we explain design considerations to support
batching and vectorization, sparsity, and backward modes for differentiation, which we demonstrate
boost performance in the evaluations section.

4.1 Batching and vectorization
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Figure 2: Speedup with automatic vectorization on PGO.
Black dotted line is without vectorization.

Parallel processing is important to improve com-
putational efficiency in machine learning and op-
timization. In Theseus, we enable two levels of
parallelization. First, Theseus natively supports
solving a batch of DNLS in parallel, thus fitting
seamlessly in the PyTorch framework, where
training and inferences on batches is the stan-
dard. Second, inspired by DeepLM [50], and
noting that lots of the operations such as costs,
gradients/Jacobian computation, and variable
updates only differ from each other in terms of the input data, we make use of the single-instruction-
multiple-data (SIMD) protocol by automatically detecting and vectorizing operations of the same
type, significantly reducing computation overhead. Using the PGO example, Fig. 2 shows that
Theseus achieves significant speedup with automatic vectorization both for forward and backward
pass. Note that there is an application-dependent trade-off between memory and speed; here the
memory use increases by up to ∼ 82% for forward and ∼ 55% for backward.

4.2 Handling sparsity with linear solvers beyond PyTorch

Solving NLS requires solving a sequence of linear systems to obtain descent directions. As discussed
in Sec. 2, these systems are generally sparse and can be solved much more efficiently if not treated as
dense. Theseus includes differentiable sparse solvers that take advantage of the sparsity, comple-
menting PyTorch’s native dense solvers. Importantly, Theseus seamlessly takes care of assembling
the cost functions and variables in the objective into sparse data structures that our linear solvers
can consume, without any extra burden on the user. Currently, we provide three sparse solvers: (i)
a CPU-based solver that relies on CHOLMOD [69], (ii) cudaLU, which is based on the cuSolverRF
package that is part of Nvidia’s cuSolver library provided with CUDA, and (iii) BaSpaCho, our novel
batched sparse Cholesky solver with GPU support. As a bonus feature, we provide access to these
solvers as standalone PyTorch functions, so they can be used to solve sparse matrices arising outside
of NLS or DNLS optimization.

CHOLMOD-based solver. CHOLMOD [69] achieves state-of-the-art performance on computation of the
Cholesky decomposition of sparse matrices. It exploits parallelism by grouping sparse entries to
take advantage of high-performance multi-threaded dense matrix operations in BLAS/LAPACK libraries.
CHOLMOD has some limited support for GPU for some of its operations, but the algorithm is strongly
CPU-based, and the user is expected to provide matrix data on the CPU. One convenient feature is
computing the symbolic analysis of a sparse matrix pattern as a separate step and creating a symbolic
decomposition object that can be used for all subsequent factorizations. We also take advantage of
builtin functionality for sparse multiplication and only provide the Jacobian matrix J to solve for
the Hessian H = J>J . Two limitations of the library with respect to Theseus are, first, the lack of
proper GPU support, which forces us to provide matrix data on the CPU, and, second, the lack of
batching, which requires us to loop to solve every problem in the batch independently. On the other
hand, since it runs on CPU, it has less memory restrictions than GPU-based solvers (see Sec. 5.1).

cudaLU solver. cuSolverRF is designed to accelerate the solution of sets of linear systems by fast LU
refactorization when given new coefficients for the same sparsity pattern. To take advantage of this,
we implemented custom CUDA kernels for batched sparse matrix-matrix and matrix-vector products,
and for solving a batch of sparse linear systems using LU factorization from cuSolverRF. Although
this solver leads to a substantial performance boost over PyTorch’s dense solver (see Sec. 5.1), the
closed-source nature of cuSOLVER results in some challenges and limitations: (i) cuSolverRF does
not support separate symbolic decomposition and numeric contexts, so it’s not possible to use the
same symbolic decomposition to hold in memory separate factors. Since this is necessary in Theseus
for unrolling of the inner loop, we work around this limitation by creating a pool of contexts, and we
use the least recently used context for factorization. As a consequence, the number of contexts must
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be set according to the number of iterations that need to be unrolled; (ii) The batch size is fixed once a
context is created. Since recreating the contexts is an expensive operation, it means that the batch size
has to be constant over the course of outer loop optimization; (iii) It relies on LU factorization, which
for symmetric matrices (the case of Theseus) is less efficient than using Cholesky decomposition.

BaSpaCho solver. Batched Sparse Cholesky (BaSpaCho) is a novel open-source sparse Cholesky
solver designed for Theseus with support for batching (https://github.com/facebookresearch/
baspacho). BaSpaCho implements the supernodal Cholesky algorithm [70] to achieve state-of-the
art performance by exploiting dense operations via BLAS/cuBLAS. This is achieved by building an
elimination tree and then clustering column blocks with similar sparsity patterns. These blocks
form nodes of the elimination tree and allow dense operations. In BaSpaCho, the dense operations
are dispatched to BLAS (on CPU) or cuBLAS (on GPU), with additional support added on top for
batching matrix operations with the same sparsity patterns. In problems with very sparse matrices,
like bundle adjustment [8], the supernodal algorithm employed in state-of-the-art solvers [37] is
unable to eliminate columns of parameter blocks simultaneously. Thus, past work has resorted to
the Schur complement trick [71] to send a reduced problem to the sparse solver. However, this
logic adds extra complexity to the nonlinear optimization, while essentially duplicating the work
of the (mathematically equivalent) Cholesky decomposition. In BaSpaCho, we instead complement
the supernodal algorithm with sparse elimination that removes the need to externally handle Schur
complement as a workaround to the limitation of the supernodal algorithm. More details are described
in App. E.

Backward for custom linear solvers. Obtaining derivatives of the linear system solve with respect
to the parameters is a crucial operation for DNLS. In particular, we consider optimizing the parameters
A and b of a linear system y = A−1b to minimize a downstream function f(y). The derivatives of the
loss with respect to the parameters of the linear system can be obtained with implicit differentiation,
∂f
∂b = A−1 ∂f∂y and ∂f

∂A = −A−1 ∂f∂y y
>, as done in Barron and Poole [72]. In Theseus, we implement

this by connecting the Python interface of our sparse solvers with PyTorch’s autograd.Function
classes that implement the gradients above in their backward methods. This connects the computation
graph between the downstream function and any upstream parameters that modify the system via
auxiliary variables or values for optimization variables. Furthermore, since the gradients require
solving linear systems that use the same matrix as the forward pass, our backward pass can cache
factorizations, resulting in it being significantly faster than the forward pass (see Fig. 3).

4.3 Backward modes for DNLS
The parameters φ upstream of DNLS can be learned end-to-end through the solution θ?(φ) by using
the adjoint derivatives ∂θ?(φ)/∂φ. We include four methods for computing them in Theseus.

Unrolling is the standard way in which past work in DNLS has computed the adjoint derivatives.
This is often referred to as backpropagation through time or unrolled optimization and is explored in
[16, 20, 73–82]. In practice, often only a few steps of unrolling are performed due to challenges with
compute, memory, and vanishing gradients.

Truncated differentiation. Aside from unrolling a few steps, another way of approximating the
derivatives is to use truncated backpropagation through time (TBPTT) [83, 84]. Truncation unfortu-
nately results in biased derivatives and many works [85–89] seek to further theoretically understand
the properties of TBPTT, including the bias of the estimator and how to unbias it.

Implicit differentiation. If θ? can be computed exactly, then the implicit function theorem pro-
vides a way of computing the adjoint derivatives, as done in related work in convex optimization
and first-order gradient descent methods [14, 15, 90–95]. We apply the implicit function theorem
from Dontchev and Rockafellar [39, Theorem 1B.1] (see App. G) to Eq. (2) to perform implicit
differentiation on a new class of second-order NLS optimization. This first requires that we trans-
form Eq. (2) into an implicit function that finds the roots. We do this via the first-order optimality
condition, resulting in g(θ;φ) := ∇θS(θ;φ). Finding Θ?(φ) := {θ | g(θ;φ) = 0} corresponds to
solving Eq. (2). Under mild assumptions, the theorem above gives the adjoint derivative at φ̄

Dφθ
?(φ̄) = −D−1θ g(θ?(φ̄); φ̄)Dφg(θ?(φ̄); φ̄). (3)

As Theseus internally uses a (Gauss-)Newton solver, the following proposition provided in App. G
shows how we can compute Eq. (3) by differentiating a single Newton step at an optimal solution.
Proposition 1. Differentiating a single Newton iteration h at an optimal and unique θ? results in the
exact computation of the implicit derivative in Eq. (3).
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Figure 3: Forward/backward times of Theseus with sparse and dense solvers on different PGO problem scales.

Direct loss minimization. Suppose we have an outer loss as in Eq. (2). The direct loss minimization
(DLM) approach uses this loss to augment the inner-loop optimization problem in order to define
a finite difference scheme that approaches the true gradient ∇φL = limε→0 g

ε
DLM, where gεDLM ,

1
ε{

∂
∂φS(θ∗;φ)− ∂

∂φS(θdirect;φ)}. This was used in prior works that solve optimization problems on
structured discrete domains [40, 41, 96, 97], but has so far not seen much use in structured continuous
settings. We modify the original DLM formulation to better suit its implementation within Theseus

θ? = arg min
θ̂

S(θ̂;φ), θdirect = arg min
θ̂

S(θ̂;φ) +
∥∥εθ̂ − 1

2∇θL(θ∗)
∥∥2. (4)

This is different from the original formulation in two ways: (i) we only assume access to the
gradient vector∇θL(θ∗), which helps formulate DLM as an algorithm for computing vector-Jacobian
products, and (ii) we add a small regularization term to ensure the modified objective for θdirect is a
sum-of-squares without affecting the limit as ε→ 0. See App. G for more details.

5 Evaluation
We evaluate the performance of Theseus under different settings with PGO and tactile state estimation
applications from Sec. 3.1. PGO allows us to easily control the problem scales for performance
evaluation; in Sec. 5.1 we profile time and memory consumption of Theseus in an end-to-end setup
and in Sec. 5.2 we evaluate timings of Theseus as a stand-alone NLS optimizer and compare with
state-of-the-art Ceres [37]. The tactile state estimation application involves a more complex outer
loop model that is useful for comparing all different backward modes, which we present in Sec. 5.3.

5.1 Profiling forward and backward pass of Theseus for DNLS
We study the performance of Theseus for DNLS on the PGO problem [60] with the synthetic Cube
dataset, as described in App. D. We run 10 inner loop iterations and 20 outer loop epochs, and use
implicit differentiation to compute gradients of the inner NLS optimization. For these experiments
we used an Nvidia V100 GPU with 32GBs of memory for all Python computation, and Intel Xeon
2.2GHz CPU with 20 threads for the CPU-based CHOLMOD linear solver. We evaluate performance
using our sparse solvers in Theseus and using PyTorch’s Cholesky dense solver.

Fig. 3 shows the average time of a full forward and backward pass for a given batch size, taken
by Theseus with different solvers (cudaLU, CHOLMOD, BaSpaCho and dense), for different problem
scales (number of poses and batch size). The two left plots show time as a function of number of
poses for a batch size of 128, while the two right plots show time as a function of batch size for 2048
poses. We find that dense does not scale well with poses or batch size. For a batch size of 128, the
largest problem that it can solve before running out of GPU memory has 256 poses (left two plots).
With 2048 poses, dense is unable to solve the problem regardless of batch size (right two plots). On
the other hand with a batch size of 128, our solvers BaSpaCho scale to 2048 poses and cudaLU scale
to 4096 poses. CHOLMOD can solve problems even larger, since the linear system is solved on CPU and
we have successfully tested up to 8192 poses and batch size 256 (see App. F), for a total of 22GBs of
GPU usage for residuals and Jacobian blocks computation.

In addition to being more memory efficient, running times of our sparse solvers are also smaller for
large enough number of poses/batch size, especially for the backward pass. Even though dense’s total
time for forward+backward is comparable to cudaLU and faster than CHOLMOD for smaller problems:
e.g., 1.47s (dense) vs. 1.32s (cudaLU) and 2.82s (CHOLMOD) for batch size 128 and 64 poses, dense
is significantly slower or out of memory for larger problems. For the largest problem that dense can
solve (batch size 128 and 256 poses) its total time is already much slower than all others methods:
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20.81s (dense) vs. 10.96s (CHOLMOD), 2.86s (cudaLU), and 2.25s (BaSpaCho). Furthermore, BaSpaCho
outperforms dense for any problem scale and is up to one order of magnitude faster, including for
smaller batch sizes and number of poses (see App. F for more results and details). For the largest
problem that we consider (batch size 256 and 2048 poses), the total times for our sparse solvers are
170.28s for cudaLU, 239.07s for CHOLMOD, and 57.67s for BaSpaCho.

5.2 Profiling Theseus as stand-alone NLS optimizer
DNLS typically involves solving numerous optimization problems each epoch where a fast NLS
optimizer is essential. We compare Theseus as a stand-alone NLS optimizer with the state-of-the-art
Ceres [37] library for solving a batch of PGO problems without any learning involved. We compare
all solvers in terms of the total time required to perform 10 iterations on a set of 256 PGO problems.
CPU/GPU configurations are same as before. For CHOLMOD, we also include a configuration that runs
everything on CPU, including Jacobians and residual computation (labelled CHOLMOD-allcpu).

12
8

25
6

51
2

10
24

20
48

40
96

Num. poses

100

101

Sp
ee

du
p

batch size=256

1 2 4 8 16 32 64 12
8
25

6

Batch size

num. poses=2048

100

101

cudaLU CHOLMOD BaSpaCho CHOLMOD-allcpu

Figure 4: Speedup of Theseus (forward pass) over Ceres (black
dashed) on different PGO problem scales.

Fig. 4 shows speedup obtained by
Theseus with batching, vectorization
and sparse solvers, over Ceres as a func-
tion of increasing number of poses or
batch size. We vary the number of poses
for a fixed batch size of 256, and vary
the batch size for a fixed number of
poses of 2048. Although Ceres is faster
than all of our solvers when the number
of poses and batch size are small (for
instance, Ceres is 25x faster with 256
poses and 16 batch size, see App. F),
as these increase Theseus shows signif-
icant speedup by being able to solve larger batches of problems in parallel. For the largest setup that
all our solvers can scale to (2048 poses, 256 batch size), BaSpaCho is ∼23x faster than Ceres, and
our other solvers are ∼4x faster. CHOLMOD has a 6x speedup for its largest setting (4096 poses, 256
batch size).

Since typical use case of Theseus involves large batches and number of variables during end-to-end
learning with DNLS, the speedups in this setting against a performant NLS solver highlights the
significance of our efficiency-based design choices. See App. F for additional results of smaller fixed
batch size and number of poses.

5.3 Backward modes analysis
We explore the trade-offs between our different backward modes using the tactile state estimation
application in Sec. 3.1. The learnable components here include a neural network, and thus closely
follow the type of applications that motivate Theseus. We compare the following backward modes:
derivative unrolling (Unroll), implicit differentiation (Implicit), truncated differentiation (Trunc),
and direct loss minimization (DLM); for Trunc we include results when truncating 5 and 10 steps. We
compare all modes along 3 axis of performance: validation loss after 100 epochs (outer loop), run
time during training, and peak GPU memory consumption of TheseusLayer. For these experiments
we used Quadro GP100 GPUs with 16GB of memory. For time and memory we present separate
results for forward and backward pass, and all numbers are averaged over 700 (7 batches for 100
epochs). Below we discuss our main findings from this analysis, and more results and details can be
found in App. G.

Fig. 5 shows average run times for all backward modes as a function of the maximum number of
iterations in the inner loop optimization. We observe that the time used in the forward pass (Fig. 5,
far left) increases roughly linearly for all modes, all having similar times except for Unroll, which is
slower than other modes. On the other hand, we observe stark differences in the backward pass time
(Fig. 5, center left), where Unroll is the only method that has a linear dependence on the number
of inner loop iterations. All other methods have a constant footprint for computing derivatives,
independent of the number of inner loop iterations. As expected, increasing the number of iterations
through which we backprop (5 or 10 for Trunc, all iterations for Unroll) increases the time necessary
for a backward pass (Implicit = DLM < Trunc-5 < Trunc-10 << Unroll).

Figure 5 (center right) shows the average peak memory consumption of the backward modes. In
this case, the trends observed for the backward pass memory consumption is similar to the trends
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Figure 5: Time and memory consumption of different backward modes in tactile state estimation.

in time. In particular, Unroll’s memory footprint increases linearly with the number of inner loop
iterations, from ∼ 34MBs to ∼ 262MBs; for all other methods the memory consumption remains
constant. The best memory profiles in this example is obtained with Implicit and DLM backward
modes, with ∼ 28MBs and ∼ 29MBs, respectively. These trends also hold for the forward pass
memory consumption.

Figure 5 also shows the validation losses obtained with all backward modes (far right). The best
validation loss, after 100 epochs of training, is obtained using Implicit, followed by Trunc variants.
We notice that both variants of Trunc keep improving with increasing number of inner loop iterations,
and that Unroll and Implicit achieve the best results with 20 iterations. One exception is DLM, which
doesn’t improve much with the number of iterations, but is also the best method when only 2 inner
loop iterations are performed. As a point of caution, we stress that, unlike the timing and memory
results, the relative training performance between different backward modes is likely to be application
dependent, and is affected by hyperparameters such as the step size used for the inner loop optimizer
(0.05 in this example), and the outer optimizer’s learning rate. Our experiments suggest that implicit
differentiation is a good default to use for differentiable optimization, considering its low time/memory
footprint, and potential for better end-to-end performance with proper hyperparameter tuning.

6 Discussion

Summary. Theseus provides nonlinear least squares as a differentiable layer and enables easily
building and training end-to-end architectures for robotics and vision applications. We illustrate
several example applications using the same application-agnostic interface and demonstrate significant
improvements in performance with our efficiency-based design. Following how autodiff and GPU
acceleration (among others) have led to the evolution of PyTorch in contrast to NumPy [98], we can
similarly view sparsity and implicit differentiation on top of autodiff and GPU acceleration as the key
ingredients that power Theseus, in contrast to solvers like Ceres that typically only support sparsity.
When solving a batch of large problems the forward pass of Theseus is up to 20x faster than Ceres.

Limitations. Theseus currently has a few limitations. The nonlinear solvers we currently support
apply constraints in a soft manner (i.e., using weighted costs). Hard constraints can be handled with
methods like augmented Lagrangian or sequential quadratic programs [99, 100], and differentiating
through them are active research topics. The current implementation of LM does not support
damping to be learnable. Some limitations and trade-offs with the sparse linear solvers are discussed
in Sec. 4.2, and with backward modes are discussed in App. G. Online learning applications may
require frequently editing the objective and depending on the problem size there may be a nontrivial
overhead that is not currently optimized as we explored only non-incremental settings in this work.
Additional performance gains can be extracted by moving some of our Python implementation to C++
but we prioritized flexibility in evolving the API in the short-term. We do not yet support distributed
training beyond what PyTorch natively supports. We will explore these features and optimizations in
the future as the library continues to evolve.
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Appendix
A Simple example description
In this section, we describe the example in Listing 1 in more detail. The example considers fitting
the curve y = vex to a dataset of N observations (x, y) ∼ D. A standard way to solve this is to
minimize the least squares objective Eq. (1) with residuals ri(v̂) := y(i) − v̂ex(i)

, for i = 1, ..., N ,
and where θ := v̂. We can model this in Theseus with a single CostFunction that computes the
N -dimensional vector R(v̂) of all residuals as a function of a single optimization Variable v̂ and
two auxiliary variables, x and y.

The code implementing this problem starts by creating uniquely named Variable containers in
lines 3-5. We then create an objective with the cost function (lines 11-15). We use a CostFunction
of type AutoDiffCostFunction (line 12), which relies on torch.autograd and vectorization via
functorch [101] to automatically compute the residual Jacobians used by the inner optimizer (see
App. B). AutoDiffCostFunction requires providing an error function that receives optimization
variables and auxiliary variables (defined in lines 7-9), and returns torch tensors computing the
(unweighted) residual. Although not required by this problem, we also illustrate how to add a cost
weight to the residuals by including a ScaleCostWeight, which simply scales all residuals in this
cost function by a scalar (1.0 in this case). Finally, we encapsulate the objective and a Gauss-Newton
optimizer into a differentiable TheseusLayer in line 16.

To illustrate how to differentiate through this layer, we perturb the x values in the dataset so that it
becomes impossible to recover the correct value of v from NLS optimization alone, and then define
φ := x and L(θ∗(φ)) := (v̂∗(x)− v)2. Thus, the outer loop optimization corrects the x tensor so
that the solution of the inner loop matches the true value of v.

In the code, the outer parameter is defined in line 18, with initial value for φ set to a perturbed
function of the true x, while the outer loss is defined in line 24. In lines 21-23 we solve the NLS
problem, by calling forward() with the current value of φ as the value to set for auxiliary variable
named “x”, and an initial value v = 1 for the optimization variable named “v” (with a required batch
dimension in the input); we also set the backward mode to Implicit. The optimum found can be
recovered as a tensor by getting key “v” of the dictionary returned by forward, which we then use to
compute the outer loss in line 24. Finally, outer loop optimization is done via torch’s well-known
autograd engine, in lines 25-26, using the Adam optimizer [102] for φ, defined in line 19.

B AutodiffCostFunction autograd modes
In this section, we evaluate the effect of the three different autograd modes we provide for automati-
cally computing the jacobians for AutodiffCostFunction:

• dense uses torch.autograd.functional.jacobian, which computes a dense jacobian that
includes cross-batch derivatives; i.e., the derivative of j-th batch output with respect to variables
in the i-th batch input. Since we only need per-sample gradients, we slice the result of this
operation.

• loop_batch is also based on torch.autograd.functional.jacobian, but we manually loop
over the batch before each call so that we obtain only per-sample gradients.

• vmap mode uses functorch.vmap [101] to compute per-sample gradients in a vectorized manner.

For evaluation, we use the homography example described in App. D.5, which uses
AutodiffCostFunction and can have significant memory requirements when computing the ja-
cobians. Fig. 6 illustrates the advantages of using vmap over the other two modes, both in terms
of compute time and memory. The loop_batch mode has similar memory requirements to vmap,
but the compute time is significantly slower than the other two methods. Finally, dense mode has
substantially more memory requirements than the two other methods (up to an order of magnitude
higher), and runs out of memory for the largest batch size 256 used in this experiment. For a batch
size of 128, vmap results in a speedup of 22x over the next best method (∼ 15ms vs. ∼ 337ms for
dense), and almost 8x less memory (∼ 1.2GBs vs. ∼ 9.6GBs).

C Differentiable Lie group details
While differentiation on the Euclidean space is straightforward, it remains challenging to do so on the
non-Euclidean manifolds. In this section, we provide details about how to compute the derivatives
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Figure 6: AutodiffCostFunction time (left) and memory (right) consumption in the homography estimation
example for different autograd modes and batch sizes.

on the tangent space of Lie groups using the projection operator [58]. The implementation of the
projection operator is essential for automatic differentiation on the tangent space of Lie groups.

Suppose F (g) is a function of g ∈ G where G is a matrix Lie group and τ(ξ) a retraction map of G.
For notational simplicity, let∇gF (g) denote the Euclidean gradient of F (g) and TeG the Lie algebra
of G. Following [103], the gradient on the tangent space of Lie group is a linear operator DgF (g)
such that

DgF (g) · ξ =
∂

∂s

∣∣∣∣
s=0

F
(
gτ(s · ξ)

)
(5)

holds for any Lie algebra elements ξ ∈ TeG. As a result of the chain rule, the right-hand side of the
equation above is equivalent to

∂

∂s

∣∣∣∣
s=0

F
(
gτ(s · ξ)

)
= ∇gF (g) · ∂

∂s

∣∣∣∣
s=0

gτ(s · ξ) = ∇gF (g) · gξ (6)

where the last equality results from properties of the retraction map. Then, we conclude from Eqs. (5)
and (6) that

DgF (g) · ξ = ∇gF (g) · gξ. (7)
Therefore, there exists a projection operator projg(·) such that

DgF (g) = projg
(
∇gF (g)

)
(8)

for any gradients on the tangent space of Lie group and their corresponding Euclidean gradients [58].
Furthermore, note that the projection operator projg(·) is a linear operator depending on g ∈ G and
can be computed in closed form.

D Example application details
D.1 Pose graph optimization
Pose graph optimization (PGO) [60, 104, 105] is the problem of recovering unknown poses of SE(2)
and SE(3) from the noisy relative pose measurements. Pose graph optimization has extensive applica-
tions in robotics [35], computer vision [106], computational biology [107], sensor networks [108], etc.
In pose graph optimization, we represent unknown poses as vertices and relative pose measurements
as edges. Then, it is possible to compute the relative pose errors for each pair of neighboring vertices
such that a nonlinear least-squares optimization problem can be formulated for pose estimation. A
more detailed introduction to pose graph optimization can be found in [35, 60, 104, 105].

Theseus includes a differentiable and coordinate-independent version of the relative pose errors
with which it is straightforward to solve pose graph optimization. We evaluated Theseus on the
simulated Cube dataset and a number of benchmark datasets for pose graph optimization [35, 60].
The Cube dataset simulates the 3D odometry of a robot with varying numbers of poses, loop closure
probabilities, and loop closure outlier ratios, which is used to profile the time and space complexities
of the forward and backward passes in Theseus. Furthermore, the benchmark datasets indicate
that Theseus is capable of solving large-scale differentiable nonlinear optimization problems with
comparable accuracy and efficiency to existing state-of-the-art solver like Ceres [37].

Theseus and Ceres attain the same objective values for all the evaluated benchmark datasets [35, 60]
using the chordal initialization [109]. The inital/final objective values and qualitative results for some
benchmark datasets are shown in Table 1 and Fig. 7, respectively.
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Objective Value

Sphere Torus Cubicle Rim Grid Garage

Initial 8.437×102 1.234×104 1.622×106 1.924×107 4.365×104 7.108×10−1

Final 6.805×102 1.212×104 1.455×103 4.157×104 4.218×104 6.342×10−1

Table 1: Initial and final objective values of Theseus on 3D benchmark datasets with PGO example.

(a) Sphere (b) Cubicle (c) Rim (d) Garage

Figure 7: Qualitative results of Theseus on 3D benchmark datasets with PGO example.

D.2 Tactile state estimation
Recent work [28] explored the use of NLS optimization with learned tactile sensor observations
for tactile pose estimation. The goal is to incrementally estimate sequences of object poses that
are moved by a robotic hand equipped with a DIGIT tactile tensor [61]. The key insight of Sodhi
et al. [28] is to use learning to transform high dimensional tactile observations into relative poses
between measurement pairs. Once relative poses are available, the sensor data can be integrated
into an optimization problem that solves for object poses. The objective includes four types of cost
functions. One penalizes inconsistencies with the measurement coming from the learned observation
model. A second one encourages the predicted poses to be consistent with a quasi-static physics
model [110]. A third type adds geometric constraints by penalizing intersections between the end
effector and the object using a signed distance field. Finally, a fourth cost function incorporates pose
priors from a camera.

In Theseus, we implement an offline and differentiable version of the tactile state estimation problem
above, using a dataset of 63 trajectories of length 25 with known ground truth poses provided by the
authors of [28]; we used 56 of these as training set and the other 7 as a test set. Optimization variables
are object and end effector poses (modeled as SE(2) groups) for each point in the trajectory, and the
outer loss objective is the difference between the optimized object poses and the ground truth in the
dataset. The learnable component corresponds to the relative pose model, using a pre-trained encoder,
and finetuning the final layer via end-to-end learning through the inner loop optimization. This
approach is similar to how the tactile measurements model was trained in [111], with the two main
differences being that we do not use an energy-based formulation and instead directly differentiate
through the inner optimizer, and we also do not consider an incremental setting. Fig. 8 (left) shows
an example of estimated trajectories before and after learning.

D.3 Bundle adjustment
Bundle adjustment is the problem of optimizing a 3D reconstruction formed by a set of camera
images and a set of landmarks observed and matched across the images. In every camera image a
2D coordinate is identified for the position of all observed landmarks, and the problem is initialized
with an estimate of the positions of the landmarks and the camera poses. We call reprojection error
the image-offset between where the landmark was detected on the image, and the reprojection of
the landmark according to the current parameter estimation. The optimization problem consists of
simultaneously tweaking the cameras poses and landmark positions, while minimizing the square-
sum of all the reprojection errors; see [8, 62] for in depth exploration on bundle adjustment and its
state-of-the-art.

We provide a bundle adjustment application example in Theseus, adopting the same data format of
[62], with functions to generate synthetic dataset, as well as load/save open source datasets. To test
bundle adjustment in a differentiable optimization setting, we add soft-kernels to the reprojection
errors and setup as outer loop parameter the radius of the soft-kernel, which represents the confidence
radius for reprojection errors with respect to possible outlier observations. We use as outer loss the
average frame pose error from a ground truth value, such that the outer loop’s task is to set the radius
to a value that will make the bundle adjustment problem set the ideal soft loss radius value.
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Figure 8: Examples of differentiable tactile state estimation and differentiable motion planning with Theseus.
Left: Pose estimates before and after learning in the tactile state estimation example. Grey color indicates ground
truth, and orange the estimate. The plot shows the trajectory as a curve, and the rectangle indicates the last object
pose in the trajectory. Right: Trajectories generated by the planner before and after learning. The learned model
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Figure 9: Learning Robust Image Features for Homography Estimation with Theseus. An inner loop
optimization problem aligns two images via a feature-metric Levenberg-Marquardt optimization using features
computed from a CNN. The outer loop uses Adam to update the weights the of the CNN that best minimize the
final homography error.

D.4 Motion planning
NLS optimization can also be used for motion planning in robotics [5], where the objective variables
are robot poses and velocities on a set of discrete time steps. Cost functions include terms representing
smoothness constraints modeling forward kinematics, collision avoidance penalties, and boundary
conditions on start and goal states. An end-to-end differentiable version of this formulation was
proposed by Bhardwaj et al. [20], where a neural model predicts state-dependent cost weights for
each step in the path, and the outer loss encourages the inner loop optimization to produce paths
matching an expert in a dataset of trajectories. As part of Theseus, we include differentiable versions
of cost functions like smoothness and collision in [5], and an example of how to setup end-to-end
differentiation for optimization variable initialization. That is, the model proposes initial trajectories
for the optimizer, and the outer loss is set to a weighted sum of two terms, one computing closeness to
the expert trajectory, and another equal to the inner loop’s objective after only 2 iterations. This loss
encourages the model to produce high-quality “proposals” that converge to good quality solutions
quickly; an example of before/after training initial trajectories is illustrated in Fig. 8.

D.5 Homography estimation
A homography, also known as a projective transformation, is a linear mapping between a 2D point in
one image x to a point in another image x′, defined by a 3× 3 matrix H , written as x ∼ Hx′, where
∼ defines the equivalence up to scale. In addition to representing linear transformations across 2D
images, the homography is also a valid approximation of the motion of 2D points observed from
camera images in 3D scenes in certain scenarios such as (1) rotation-only motion between cameras
(2) when the scene is planar and (3) when the scene structure is far from the camera.

One approach to solving for the parameters of the homography is through iterative optimization
via dense alignment of RGB image pixels in the image through fast second order optimization
methods, as is done in Lucas-Kanade optical flow algorithm [112, 113]. This approach is also known
as photo-metric alignment. Though this technique performs well in many scenarios, photo-metric
alignment struggles when the lighting in the scene changes significantly, because it assumes that the
brightness of a pixel is constant across different views. Feature-metric optimization is an extension
to photo-metric optimization that works by first passing the image I through a feature extractor
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Figure 10: Forward/backward times of Theseus with sparse and dense solvers on different PGO problem scales.

function f(·), such as a convolutional neural network parameterized by weights w, F = f(I;w).
This function generates a feature map F ∈ RC×H×W , where C is a high dimensional channel
number like 32, and H and W represent the image height and width respectively. In feature-metric
alignment, the alignment is done at the feature map level, rather than the RGB image level.

One important question when designing a feature-metric optimization algorithm, is how to obtain
the weights w that define the feature extractor. One approach used in works such as [63] uses an
off-the-shelf CNN which has been trained for image classification. One benefit of using Theseus
for such as task is that the learning problem can be written without deriving analytical gradients,
making it much easier to rapidly prototype and explore various formulations. In our example, we
demonstrate a use-case of Theseus by performing end-to-end training of a two-layer CNN using
gradients obtained through the homography optimization. A high level diagram of this learning
problem is presented in Fig. 9. We optimize a dense feature-metric mean-squared error term in the
inner loop and a four-corner homography error in the outer loop. The four-corner error is a simple
measure that computes the L2 distance of four corners of the image after being transformed by the
estimated and ground truth homography, as is used in [114] as the output parameterization.

E BaSpaCho: Batched Sparse Cholesky
In this section, we provide more details for our open-source novel BaSpaCho solver (https:
//github.com/facebookresearch/baspacho). BaSpaCho implements the supernodal Cholesky al-
gorithm [70] to achieve state-of-the art performance by exploiting dense operations via BLAS/cuBLAS.
The heuristics for clustering in the supernodal algorithm evaluate the trade-offs of fragmentation in
sparse matrices against denser matrices with explicit zero-fill. These heuristics use a computation
model that takes into account the architecture (batched/CPU/GPU) that can impact preference towards
sparser or denser operations, and allows for further fine-tuning and customization. Apart from a
minimal memory allocation needed for the symbolic factorization, BaSpaCho does not own any
allocated memory allowing the user to fully manage memory arrays. This allow us to temporarily
offload GPU arrays representing factorized matrix data to the CPU when necessary. Unlike existing
solvers, BaSpaCho exposes lightweight random accessors that allows the user to read and write
matrix blocks in the numeric factor data. This facilitates easy bookkeeping needed by optimization
methods which often re-implement block-sparse matrix structures and convert between different
matrix formats in order to invoke sparse solvers like CHOLMOD.

F Benchmark details and additional results
In this section, we present more profiling results for forward and backward pass of Theseus, using
the same setup as Sec. 5.1. For evaluation, we used the cube datasets of PGO (see App. D.1) with
different numbers of poses, batch sizes, and levels of sparsity. In addition to the forward and backward
times as a function of the numbers of poses and batch sizes reported in Sec. 5.1, we further report
and analyze the memory usage of Theseus with different solvers (cudaLU, CHOLMOD, BaSpaCho and
dense) in various settings.

F.1 Forward and backward times with smaller batch size and number of poses
We profile PGO using different linear solvers (cudaLU, CHOLMOD, BaSpaCho and dense) for fixed
batch size of 16 and number of poses of 256. The setup is the same as that in Sec. 5.1 except that
fixed batch size and number of poses are smaller. Fig. 10 shows the average time of a full forward
and backward pass. Similar to Fig. 3 with larger fixed batch size and number of poses, the sparse
solvers are faster than dense. For the smallest problem considered (64 poses, 16 batch size), the total
sum of average forward and backward times are 1.32s (cudaLU), 0.94s (CHOLMOD), 0.54s (BaSpaCho),
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Figure 11: Forward and backward times of Theseus with sparse and dense solvers on PGO problems with 2048
poses and different levels of sparsity.
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Figure 12: Forward and backward times of Theseus with sparse and dense solvers on PGO problems with 256
poses and different levels of sparsity.

1.23s (dense) per batch. Increasing to 128 poses makes the sparse solvers noticeably faster than
dense: 1.98s (dense) vs 1.80s (cudaLU), 1.53s (CHOLMOD), and 0.80s (BaSpaCho). As the problem
scale increases, the gap between the sparse and dense solvers widens: for the largest problem solvable
with dense (512 poses, 16 batch size) the average total times are 5.68s (cudaLU), 5.67s (CHOLMOD),
2.34s (BaSpaCho), and 21.37s (dense). The speedup over dense is ∼3.7x for cudaLU and CHOLMOD,
and ∼9.1x for BaSpaCho.

F.2 Forward and backward times with respect to sparsity
We study the forward and backward pass times of Theseus with sparse and dense solvers for different
levels of sparsity using the synthetic Cube dataset. In PGO, loop closure probability represents how
likely a pose has a loop closure edge connected to the other poses, and thus, greater loop closure
probability yields a less sparse Hessian. We use loop closure probabilities from 0.05 to 0.40 in
increments of 0.05, to indicate the level of sparsity for Cube datasets from high (0.05) to low (0.40).

The average forward and backward times of Theseus on PGO problems with different levels of
sparsity for fixed numbers of poses are shown in Fig. 11 for 2048 poses and in Fig. 12 for 256 poses.
In both figures, the left two plots are with 16 batch size and the right two plots are with 128 batch size.
As expected, it takes more time in most cases for PGO problems with lower sparsity. Since dense
does not exploit the sparsity of optimization problems when solving the linear systems, forward pass
of dense takes almost the same amount of time regardless of the levels of sparsity. There is still
some overhead for dense as sparsity decreases, because more loop closure edges implies more cost
function terms in the objective, so putting together the approximate Hessian is computationally more
expensive.

F.3 Scalability of Theseus
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Figure 13: Largest PGO problems Theseus scales to for different
numbers of poses and batch sizes.

In addition to forward and backward
times in Sec. 5.1 and Apps. F.1 and F.2,
we analyze the scalability of Theseus
with different linear solvers (cudaLU,
CHOLMOD, BaSpaCho and dense) follow-
ing a similar setup to evaluation in
Figs. 3 and 10.

We profile PGO with various numbers
of poses from 64 to 8192 and batch sizes
from 8 to 1024 in increments of power
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of 2. Fig. 13 shows the maximum batch sizes solvable for given numbers of poses (left) and the
maximum numbers of poses solvable for given batch sizes (right). In Fig. 13, it can be seen that dense
only scales to small PGO problems due to the memory limitation and fails to solve any PGO problems
with 4096 poses or more, even with batch size of 1. In contrast, cudaLU, CHOLMOD and BaSpaCho
successfully solve PGO problems with 8192 poses for a batch size of 32 (cudaLU, BaSpaCho) and
256 (CHOLMOD). As discussed in Sec. 5.1, cudaLU and BaSpaCho require extra GPU memory to solve
linear systems, whereas CHOLMOD has all computation run on CPU, and thus can solve larger DNLS
problems than cudaLU and BaSpaCho.

F.4 Comparison with Ceres on smaller batch size and number of poses
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Figure 14: Speedup of Theseus (forward pass) over Ceres (black
dashed) on different PGO problem scales.

In addition to Sec. 5.2, we follow the
same setup to compare Theseus as a
stand-alone NLS optimizer with Ceres
for PGO problems with a smaller fixed
batch size of 16 and number of poses
of 256. Fig. 14 shows the speedup
of Theseus compared to Ceres (black
dotted line). Similar to Fig. 4, Ceres
is faster for PGO problems for small
batch sizes and numbers of poses, and
Theseus is faster as the problem scale
increases.

G Backward mode details, additional results, and derivations
G.1 Experimental details
In Sec. 5.3 we use the tactile state estimation example to evaluate the performance of different
backward modes. As mentioned in App. D.2, the dataset consists of 63 trajectories of length 25, 56 of
which we use for training and 7 for test. We use a batch size of 8 and train for 100 epochs, resulting
in 700 batches for averaging time and memory results. For the inner loop, we use Gauss-Newton with
a step size of 0.05; in the test set we run the inner loop for 50 iterations, regardless of the number
used during training. For the outer loop, we use the Adam optimizer with a learning rate of 10−4,
decayed exponentially by a factor of 0.98 after every epoch.

G.2 Additional results
Fig. 15 (left) shows the peak memory consumption during the forward pass. We observe the same
trend from the backward pass (Fig. 5, center right), where Unroll’s memory consumption increases
linearly with the number of inner loop iterations, while for the other methods it remains constant.
Implicit has the lowest peak memory requirement (∼22MBs), followed by DLM (∼29MBs).

Fig. 15 (center, right) also shows training curves for all methods. We observe that, despite higher
performance in the test set, Implicit is more unstable during training and oscillates between low
and high values; this suggests that careful use of early stopping and hyperparameter tuning might be
required when using Implicit. The other methods are more stable, with the two truncated methods
achieving the lowest training loss after Implicit. Fig. 15 (right) shows that Unroll’s performance
degradation, relative to other methods, with increasing number of inner loop iterations (also see Fig. 5,
right) is not just a generalization issue, but also happens during training. This suggest possible
numerical issues from unrolling gradients over a high number of optimization steps, as observed in
prior work.

G.3 Backward modes summary and limitations
Fig. 16 visualizes the backward modes and Table 2 contrasts their limitations. The table shows that
all four modes can be used when learning parameters for cost functions or cost weights. However,
unlike other approaches, Implicit cannot be used when learning initial values for the optimization
variables, θinit. Another limitation of Implicit is that the resulting gradients might be inaccurate
in problems where it is not feasible to find the optimal solution to the inner optimization problem;
other methods don’t experience this limitation, since they compute gradients around the approximate
solution found. On the other hand, both Unroll and Trunc could potentially experience vanishing
or exploding gradient issues when the number of iterations to backpropagate through is large, a
limitation that is not shared by Implicit and DLM. Finally, a limitation of DLM is that ε needs to
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Cannot be used for
learning ci or wi

Cannot be used
for learning θinit

Requires accurate
θ∗ solution

Possible vanishing or
exploding gradients

Requires
tuning

Compute and
memory usage

Unroll 3 high
Trunc 3 3 medium

Implicit 3 3 low
DLM 3 low

Table 2: Backward modes summary and limitations.

be tuned (see Eq. (16)), which can greatly affect performance. Likewise, the number of backward
iterations for Trunc may also require some tuning.

G.4 Derivations for backward modes
G.4.1 Implicit function theorem
For adjoint differentiation, we make use of the implicit function theorem, which is originally from
Dini [115], and presented in Dontchev and Rockafellar [39, Theorem 1B.1] as:
Theorem 1 (Dini’s implicit function theorem). Let the roots of g(θ;φ) define an implicit mapping
Θ?(φ) given by Θ?(φ) := {θ | g(θ;φ) = 0}, where θ ∈ Rm, φ ∈ Rn, and g : Rm × Rn → Rm.
Let g be continuously differentiable in a neighborhood of (θ̄, φ̄) such that g(θ̄; φ̄) = 0, and let the
Jacobian of g with respect to θ at (θ̄, φ̄), i.e. Dθg(θ̄; φ̄), be non-singular. Then Θ? has a single-valued
localization θ? around φ̄ for θ̄ which is continuously differentiable in a neighborhood Q of φ̄ with
Jacobian satisfying

Dφθ
?(φ̃) = −D−1θ g(θ?(φ̃); φ̃)Dφg(θ?(φ̃); φ̃) for every φ̃ ∈ Q. (9)

G.4.2 Proof of Prop. 1
Proof. Let φ̄ be a hyper-parameter resulting in a unique θ?(φ̄) and recall g(θ;φ) := ∇θS(θ, φ) with
g(θ?(φ̄), φ̄) = 0. Applying the product rule to differentiate the Newton iteration h at (θ?(φ̄), φ̄) gives:

Dφh(θ?(φ̄); φ̄) = Dφ

[
−
(
∇2
θS(θ?(φ̄); φ̄)

)−1∇θS(θ?(φ̄); φ̄)
]

= −
(
∇2
θS(θ?(φ̄); φ̄)

)−1
Dφ∇θS(θ?(φ̄); φ̄)

= −D−1θ g(θ?(φ̄); φ̄)Dφg(θ?(φ̄); φ̄)

(10)

G.4.3 Direct loss minimization for use in Theseus
Originally, DLM gradient for non-linear objective functions [41] can be expressed as

∇φL = lim
ε→0

gεDLM, where gεDLM ,
1

ε

[
∂

∂φ
S(θ∗;φ)− ∂

∂φ
S(θdirect;φ)

]
(11)

where
θ∗ = arg min

θ̂

S(θ̂;φ), and θdirect = arg min
θ̂

S(θ̂;φ)− εL(θ̂). (12)
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Figure 16: Illustration of the dependencies of the backward modes for computing ∇φL(θ?).

However, this dependence on the loss function fits poorly in a reverse-mode automatic differentiation
framework like PyTorch. Instead, we can construct an equivalent formulation by noting that in
continuous space, we can first linearize the loss function around the current solution θ∗,

L̂(θ) = L(θ∗) +∇θL(θ∗)(θ − θ∗) (13)

Let v = ∇θL(θ∗), then the perturbed solution becomes

θdirect = arg min
θ̂

S(θ̂;φ)− ε
(
L(θ∗) + vT (θ̂ − θ∗)

)
= arg min

θ̂

S(θ̂;φ)− εvT θ̂. (14)

Plugging this back into Eq. (11), we see that this is an algorithm which takes in a gradient vector v
and computes an approximation to the vector-Jacobian product∇φL(θ∗) = v ∂θ

∗

∂φ .

As Theseus is designed to solve optimization problems where S is expressed as sum of squares, it
cannot readily handle solving θdirect as this requires adding a linear term to the objective. Instead, let
us consider the following “completing the square” approach:

arg min
θ̂
‖εθ̂‖2 − εvT θ = arg min

θ̂
ε2θ̂T θ̂ − εvT θ̂ +

(
1
2v
)T ( 1

2v
)

= arg min
θ̂

∥∥∥εθ̂ − 1
2v
∥∥∥2 (15)

We can thus add this extra term and let

θdirect = arg min
θ̂

S(θ̂;φ) +
∥∥∥εθ̂ − 1

2v
∥∥∥2 (16)

This adds a small bias to the gradient due to the addition of ‖εθ̂‖2 but when ε is small it shouldn’t
be problematic. In practice, we solve for θdirect by starting from θ∗ and using just one iteration of
Gauss-Newton.
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