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Abstract
The recent proliferation of high resolution cameras

presents an opportunity to achieve unprecedented levels of
precision in visual 3D reconstruction. Yet the camera cal-
ibration pipeline, developed decades ago using checker-
boards, has remained the de facto standard. In this paper,
we ask the question: are checkerboards the optimal pat-
tern for high precision calibration? We empirically demon-
strate that deltille grids (regular triangular tiling) produce
the highest precision calibration of the possible tilings of
Euclidean plane. We posit that they should be the new stan-
dard for high-precision calibration and present a complete
ecosystem for calibration using deltille grids including: (1)
a highly precise corner detection algorithm based on poly-
nomial surface fitting; (2) an indexing scheme based on po-
larities extracted from the fitted surfaces; and (3) a 2D cod-
ing system for deltille grids, which we refer to as DelTags,
in lieu of conventional matrix barcodes. We demonstrate
state-of-the-art performance and apply the full calibration
ecosystem through the use of 3D calibration objects for mul-
tiview camera calibration.

1. Introduction

Camera calibration is a foundational operation in 3D vi-
sion systems. Small errors incurred during the calibration of
perspective cameras are magnified by back-projection and
these errors often cascade through all successive modules
of the system. Precision is, therefore, of paramount im-
portance. Checkerboard patterns have become the default
choice for high precision camera calibration, as they pro-
vide a uniform calibration pattern with distinct corners for
precise fiducial localization [5, 6]. An entire ecosystem has
been built around checkerboard patterns that includes effi-
cient and precise corner detection algorithms [6, 18, 24],
robust indexing schemes when only a partial checkerboard
is visible [14, 30], and matrix barcodes for absolute local-
ization of corners on the checkerboard [13, 27]. Yet, the
advent of higher resolution cameras and the proliferation of
multi-camera rigs calls for revisiting the merit of checker-
board patterns as the basis of the calibration pipeline.
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(a) Checkerboard (b) Deltille Grid (c) Icosahedron

Figure 1: Regular tiling with uniform but alternating color-
ings. (a) Checkerboard pattern, (b) a Deltille pattern with
the same edge length as (a), (c) a 3D calibration object tex-
tured with a deltille grid.

In this paper, we advocate for the use of triangles rather
than quadrilaterals as primitives for calibration patterns, and
report significant advantages to their use. We present a com-
plete calibration ecosystem based on deltille patterns [8] in-
cluding an algorithm for high precision deltille corner de-
tection, an indexing algorithm for partially viewed deltille
grids, and a triangular barcode system, which we refer to
as DelTags, for absolute localization of calibration objects.
This ecosystem is applied to precise multi-view camera cal-
ibration using a 3D calibration object.

A deltille is a regular triangular tiling (so-called “delta
tiles”) with a Schläfli symbol of {3, 6} [9]. It is one of only
three regular tilings of the Euclidean plane and, besides the
familiar checkerboard tiling, it is the only tiling that can be
colored with alternating colors (specifically, with a uniform
coloring of 121212) [16]. We refer to a deltille pattern with
such a coloring as a deltille grid (see Fig. 1(b)).

There are three principal advantages to deltille grids
compared to checkerboards: (1) Deltille grids achieve a
higher density of elements, for a given edge distance, com-
pared to square or skew-rectangular tiling, as can be seen
in Fig. 1. This property allows for a greater number of
fiducials to be detected, improving localization precision
(as shown in our experiments). Furthermore, as it is an
isotropic tiling, deltille grids help reduce localization bias
when the pattern is observed under perspective transforma-
tion. (2) Each fiducial is characterized by the intersection
of three alternating edges, which offer a greater number of
constraints compared to the intersection of two edges for
checkerboards (see Fig. 2). This property results in a more
precise localization even in the fronto-parallel view, under
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(a) Saddle surface (b) Monkey saddle surface

Figure 2: Two types of checkerboard corners and corre-
sponding local surface shapes

blur, and intensity noise in the image. (3) As a texture prim-
itive for 3D calibration objects, a triangle is a more attrac-
tive primitive than a quadrilateral. It is known that triangle
meshes are always more accurate than quadrilateral meshes
in approximating convex structures [11], which are desir-
able for multiview calibration. Consider, for example, a
cube compared to icosahedron as a calibration object: the
greater the number of regular faces, the less the bias due
to viewpoint. Intuitively, triangles are simpler primitives to
handle compared to quads: a triangle is flat and convex by
construction and the quality of a triangle mesh is straight-
forward to characterize (in terms of the deviation from an
equilateral triangle) [4].

It is timely to explore new approaches to high precision
calibration, as high-resolution imagery is increasingly be-
ing captured from multiple views in environments, such
as sports arenas, television studios, and crowd captures of
events. The advantages of deltille grids allow us to access
higher levels of precision in calibration, that can then filter
down to the rest of the vision process such as special effects,
3D distance estimation, and 3D reconstruction.

Contributions. We present a calibration pipeline based
on deltille grids with the following specific contributions:

1. Deltille Corner Detection: We present an approach
for highly precise deltille corner detection based on
fitting a monkey saddle point surface directly to the
image intensity samples. The polynomial surface fit is
convex and we employ a result from differential geom-
etry to design a fiducial discriminant as a star-shaped
umbilical point.

2. Indexing for Partially-viewed Deltille Grids: An
auxiliary result of the polynomial fit is access to the
polarities of the fit. Using the polarities at each point,
we design a robust indexing method for partial deltille
grid detection.

3. DelTags: We present a 2D coding system designed to
maximize the visibility of the code within a triangular
tile (or delta), that preserves the main error correction
mechanisms of matrix barcodes (such as QR codes).

We apply this pipeline to multiview calibration using a 3D
calibration object with a deltille grid. The corner detection
and indexing scheme also apply to checkerboard patterns,
and we qualitatively compare both modules and demon-
strate state-of-the-art performance on standard datasets.

2. Prior Works
Checkerboard corner detection can be split into two

tasks: checkerboard pattern detection and corner refine-
ment. Typically, a combination of different methods for
each part is encouraged to simultaneously achieve the best
detection rate and corner accuracy.

Checkerboard Pattern Detection. The OpenCV
checkerboard detection algorithm [6] is a widely used
full-checkerboard detector. It detects corners by segment-
ing black quadrangles and finding intersections of their
edges.Wang et al. [31] proposed a method to fit two groups
of lines to find the pattern grid. The lines of the grid
can also be found using the Hough transform [12, 17].
However, this kind of line fitting based detection methods
is only feasible on images with small lens distortions. A
version of the algorithm robust to strong lens distortion
was proposed by Rufli et al. [29] and implemented in the
OCamCalib Toolbox [30]. Placht et al. [28] presented a full
checkerboard detector which looks for a graph structure
of the checkerboard in a skeletal binary edge image.
Fuersattel et al. [14] extend this method using a subgraph
matching scheme to achieve partial checkerboard detection.
However, it is sometimes difficult to obtain a binary edge
image preserving a clear checkerboard structure if the im-
age is blurry or unevenly lit. Geiger et al. [15] proposed a
method which iteratively expands checkerboard hypotheses
starting from seed points. Although many of these methods
provide automatic detection of checkerboard, they often fail
due to various factors such as image resolution, blur, noise,
uneven illumination or strong geometric distortion. For
this reason, some people prefer to use Bouguet’s camera
calibration toolbox for MATLAB [5], which allows the
user to manually extract the checkerboard, to avoid false
detections that can ruin the entire calibration result.

Corner Refinement. The Harris corner detector [18] is a
common choice for localizing corner points. Bouguet [5]
present a method which refines initial corners to better lo-
cations where the gradients in the vicinity are orthogonal
to the selfward vectors. This well-known method is also
adopted in OpenCV [6] and Geiger et al. [15]. Lucchese
and Mitra [24] refine the initial Harris points by computing
saddle points of polynomial surfaces fitted to the vicinity
of the corners. The image is smoothed with a Gaussian fil-
ter before fitting polynomials. Chen et al. [7] propose a
comparable saddle point extraction directly using a Hessian
matrix, instead of fitting polynomials, for computational ef-
ficiency. Recently, Placht et al. [28] show that accuracy can
be improved by using a cone-shaped filter instead of a Gaus-
sian. Their saddle point method shows more robust charac-
teristics against blur and intensity noise than other methods
with the same amount of information i.e. small patch, which
allows the use of a target with a higher density of features.



Other Primitives. Circular features or dots were also
used as primitives for calibration targets [19, 20, 21]. It was
shown in [25] that a compensated conic fitting can be used
to remove localization bias of their centroid under projec-
tive transformation but the bias from nonlinear transforma-
tion like lens distortion still affects the precise localization.
Methods based on concentric circles [22] and confocal con-
ics [23] are also prone to nonlinear lens distortions. On the
contrary, polynomial fitting based corner detection [24] –
similar to our method – was proven to be invariant to both
types of bias [25].

3. Method: Deltille Grid Detection
In the following sections we present the corner detection

on a deltille pattern, a generalization of the precise local-
ization of corners on rectangular grids [28, 2]. To highlight
the analogies, we detail the rectangular case1 and will re-
fer to it throughout this section. In Sec. 3.2, we detail a
robust method for indexing i.e. establishing 2D to 3D cor-
respondences on partial targets and multifaceted calibration
objects.

3.1. Corner Detection by Monkey Saddle Fitting

Let us represent an image of a deltille grid as a smooth
two dimensional function of pixel coordinates with values
in each point representing an intensity of a pixel. The inter-
section of the edges on a deltille grid forms a specific type
of saddle point of the image function, see Fig. 2(b), usually
called a monkey saddle [1]. Geometrically, there are three
valleys and three ridges of the image intensity function that
form a perfect saddle for the two legs and a tail of a mon-
key. The minimum degree of the polynomial that forms a
monkey saddle surface is three, and the deltille grid corner
is a critical point of this surface.

Let f(x) be a smooth image intensity patch in the vicin-
ity sought deltille grid corner x∗, where alternating black
and white regions meet at the intersection point of three tri-
angles. Given an initial guess of the critical point location
x0, we construct a sequence xt by approximating the local
surface by a series of third order polynomials centered at
xt, whose critical points converge to x∗. Instead of using
Taylor series expansion that would involve up to third order
derivatives in xt, we directly fit a third order polynomial

f̃(x; c) = c1x
3 + c2x

2y + c3xy
2 + c4y

3+

c5x
2 + c6xy + c7y

2 + c8x+ c9y + c10, (1)

to the intensity surface function f around point xt. The
polynomial surface fitting can be formulated as

argmin
c

∑
∆i∈N

‖f(xt + ∆i)− f̃(∆i; c)‖2 (2)

1Please refer to the extended version of the paper.

where c = [c1, c2, . . . , c10]
> is the vector of polynomial co-

efficients andN is a set of n sampling points ∆i = (ui, vi)
that are chosen on a grid within the distance r from xt.

In practice, this least squares fitting problem can be ef-
ficiently solved for m corner points at once. The vector of
coefficients c satisfies a linear system Ac− b = 0, where
A =u

3
1 u21v1 u1v

2
1 v31 u21 u1v1 v21 u1 v1 1

...
...

...
u3n u2nvn unv

2
n v3n u2n unvn v2n un vn 1


b =

[
f(xt + ∆1), · · · , f(xt + ∆n)

]>
.

The sampling of subpixel intensities of f is done using bi-
linear interpolation.

By selecting the same grid of ∆i for each corner, the
matrix A can be fixed and reused in fitting of all points at
each iteration. Thus, we solve all surface fitting problems
at each iteration by a single equation AC = B, where the
n-by-m matrix B can be filled by concatenating the cor-
responding vectors of samples for all m corner points. To
solve this over-determined problem (for n ≥ 10), we com-
pute M =

(
A>A

)−1

A>, to estimate 10-by-m matrix C
of all polynomial surface coefficients by C = MB. Note
that M needs to be computed only once in the beginning
and utilized over the entire process.

The localization of the critical point of the fitted surface
based on the conventional Newton’s method turns out to be
tricky, as the first derivatives of the surface are second-order
polynomials:

∇xf̃(x) = 3c1x
2 + 2c2xy + c3y

2 + 2c5x+ c6y + c8,

∇y f̃(x) = c2x
2 + 2c3xy + 3c4y

2 + c6x+ 2c7y + c9.

Thus, unlike in the rectangular corner case, there might ex-
ist multiple stationary points (intersections of two ellipses)
around the deltille corner point. Newton method is less
likely to reach the true monkey saddle point and converges
to some of these local stationary points.

To overcome this problem, we use another clue found in
differential geometry. The critical point of a monkey saddle
surface is regarded as an umbilical point, at which the Gaus-
sian curvature becomes zero [3]. Consequently, the monkey
saddle point is a degenerate critical point where all of its
second derivatives are zero. This allows us to discriminate
it by keeping only points x∗ where∇2f̃(x∗) = 0.

In each iteration, we compute the location of the degen-
erate critical point xd from the local surface fitted in xt,
satisfying:

∇2f̃(xd)


∇2

xxf̃(xd) = 6c1xd + 2c2yd + 2c5 = 0,

∇2
xy f̃(xd) = 2c2xd + 2c3yd + c6 = 0,

∇2
yy f̃(xd) = 2c3xd + 6c4yd + 2c7 = 0.

(3)



Figure 3: An iteration of the procedure for: deltille (left)
and rectangular corner (right). From an initial grid of points
x0, the red arrow is shown to x1 if point satisfies Eq. 5, and
its displacement xd < r. Blue points are filtered by J ≥ 0,
green points are filtered out when xd≥r.

Since Eq 3 is an over-determined linear system, xd is com-
puted by solving the corresponding least squares problem.
The monkey saddle point location xt+1 is updated as:

xt+1 = xt + xd (4)

Any point in the vicinity of a monkey saddle should have
both positive and negative principal curvatures [3], there-
fore to detect all corner points on a deltille grid, the iter-
ation is initialized densely from every point that satisfies
det∇2f(x) < 0. To filter out non-monkey-saddle points
that share the same critical point property (Eq. 3), we ex-
plore previous studies on the umbilical classification which
was first proposed by Darboux [10]. Berry and Hannay [3]
named the three typical forms of umbilical points: star,
monstar, and lemon, based on the pattern of the principal di-
rection vector field around the umbilic. Specifically, in our
case, the star shape of umbilical point represents the mon-
key saddle point. The discriminant for star shaped umbilics
distinguishing them from others is given by:

J(c1, c2, c3, c4) = 3(c1c3 + c2c4)− (c22 + c23) < 0, (5)

and we consider any local surface satisfying J < 0, is
potentially a monkey saddle point. The convergence flow
around a sample deltille and rectangular corner is depicted
in Fig. 3.

Since the discriminant is only based on the highest order
coefficients, it is invariant to x-y domain shift of surface
fitting. In other words, the discriminant can be checked for
all points from the first iteration of our process regardless
of how precisely the points are localized. This is important
to significantly reduce outliers and allows us to efficiently
process only monkey saddle like points.

3.2. Robust Indexing for Deltille Grids

The appearance of the calibration pattern in images
changes significantly due to image acquisition effects such
as vignetting, lens aberrations and rasterization on the sen-
sor as well as geometric effects such as strong radial and

perspective distortion. Calibration with multifaceted cali-
bration objects e.g. Fig. 1(c) or partially visible patterns re-
quires robust indexing – process of establishing correspon-
dences between the image corners and pattern points. In the
following, we detail individual steps of the indexing proce-
dure as shown in Fig. 4.

3.2.1 Polarities
Let us assume that each converged point x∗ from a previous
iterative procedure is a precisely localized monkey saddle
point. The polynomial surface f̃(x∗) can be approximated
as a multiplication of three hyperplanes (intensity ramps)
intersecting at the origin:

f̃(x) ≈ k (x sin θ1 − y cos θ1) (x sin θ2 − y cos θ2)
(x sin θ3 − y cos θ3) + l. (6)

The angles θi of these hyperplanes, which we denote as
polarities, describe the orientation and shape of the sur-
face (see Fig. 4(a)) that can be further utilized in grid index-
ing. In particular, by relating Eq. 6 with Eq. 1, we obtain

c1 = k sin θ1 sin θ2 sin θ3,

c2 = −k sin θ1 sin θ2 cos θ3 − k sin θ1 cos θ2 sin θ3−
k cos θ1 sin θ2 sin θ3,

c3 = k sin θ1 cos θ2 cos θ3 + k cos θ1 sin θ2 cos θ3+

k cos θ1 cos θ2 sin θ3,

c4 = −k cos θ1 cos θ2 cos θ3.

Three angles θ1, θ2, and θ3 are obtained as the three solu-
tions of the following third order equation:

c4 tan
3 θ + c3 tan

2 θ + c2 tan θ + c1 = 0. (7)

Two of its three roots may be complex numbers. We embed
roots into a unit sphere using real part as azimuth and imag-
inary part as elevation, and then use the cosine distance to
find similar neighboring corners on the deltille grid.

3.2.2 Initial Quad Selection
The initial quad consists of two triangle elements of the
deltille grid (Fig. 4(b)). The first point of a quad is ran-
domly selected, then out of all nearest neighbors, a diago-
nal neighbor with the same polarity is selected. Each near-
est neighbor shadows an angular span of γ degrees and as
a result, only a couple of closest neighbors in the vicinity
of the point survive. Out of them, the third and fourth point
in the quad that has the same polarities are selected and in-
terior of the triangles inspected for homogeneity. Polarities
are deemed the same if they are within δ degrees. An ini-
tial quad is formed for the next stage if after this procedure
exactly two off-diagonal points remain out of the neighbors.



(a) Corners with polarities (b) Initial quad detection

①

②

(c) Circle fitting (d) Grid growing

Figure 4: Illustration of deltille grid detection indexing: (a) detected corner points (blue dot) with polarities (black and gray
arrows), (b) initial quad with initial point (red dot) and selected neighboring points (orange dots), (c) edge growing by fitting
circular arcs (blue, green, yellow) into considered neighboring points (orange dots) and checking homogeneity along the arc,
dark regions. (d) grid growing after the first iteration.

3.2.3 Edge Growing by Circle Fitting
In the last stage, the deltille grid is grown from each initial
quad. From each edge already in the grid, candidates ex-
tending the edge are sought. First, the same procedure as
in the previous step is used to reduce the number of near-
est neighbors by shadowing. Then, a candidate neighbor
with a correct polarity is selected and a circular arc is fit-
ted into the triplet of two edge points and the candidate
(see Fig. 4(c)). Homogeneity along both sides of the consid-
ered edge, marked by (1) and (2), is inspected by comparing
corresponding intensity values on both sides. If consecutive
samples on each side of the edge are homogeneous, and the
intensity gradient between samples on opposite sides does
not change sign, the candidate is inserted into the grid to-
gether with the extending edge (Fig. 4(d)). The procedure
continues in this breadth-first search until there are no can-
didates that can be added.

3.3. DelTags

In the previous sections, we detailed a robust approach to
establish neighborhood structure of partial rectangular and
deltille grids. However, more than a local neighborhood
structure of the grid needs to be inferred in order to define
unique correspondences between 2D observations and 3D
locations of points on the calibration object with multiple
faces, or when only a part of the grid is visible.

Inspired by the recent success of various families of
QR tags for localization [27] in robotics and AR applica-
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Figure 5: Example of DelTags family d25h7. (a) Indexes of
bits embedded in a DelTag, (b) embedding of tag with value
4945677, black triangle encodes bit with value 0, white tri-
angle with value 1, (c) deltille board with DelTags from
family d25h7.

tions [13], we introduce a novel class of QR codes DelT-
ags that can be easily embedded in deltille grids. DelTags
from a family dbhh (see Fig. 5) are triangular embeddings
of binary codes uniquely encoding position and orientation
similarly to AprilTags [27] with the following properties:

1. Distinguishable, to keep low false positive rates, each
DelTag of length b is guaranteed to be in Hamming dis-
tance of at least h from any other DelTag in the family.

2. Robust to rotations, each rotation of a DelTag is in at
least in Hamming distance h from all other codes and
their rotations.

3. Robust to bit-flips, having all other DelTags of the
same family in at least h Hamming distance provides
error correction of up to b(h − 1)/2c bit errors and
detection of bh/2c errors.

4. Experimental Results
We have evaluated several aspects of our method in the

experimental validation, and in camera calibration using the
standard pinhole camera model [32]. First, we have fo-
cused on the precision of our deltille and rectangular cor-
ner extraction algorithms based on realistic simulation in
Sec. 4.1. For benchmarking our deltille grid indexing algo-
rithm against state-of-the-art methods, we applied it both to
conventional checkerboard and deltille grid detection and
compared their performance in Sec. 4.2. The precision in
real world calibration scenarios was compared in Sec. 4.3.
Finally, we demonstrate that the use of deltille grids allows
simpler calibration of a multi-view camera rig in Sec. 4.4.

4.1. Simulation

This experiment was focused on the validation of the pre-
cision and convergence of our polynomial fitting based cor-
ner methods. As a reference method, we used the OpenCV’s
subpixel localization implementation [6].

Image Rendering Pipeline. An image rendering pipeline
was designed, to closely resemble the appearance of the
rectangular and monkey saddle points in real world images.
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Figure 6: Analysis of the influence of blur, noise and perspective distortion on the localization precision and convergence of
our method. For details, please refer to Sec. 4.1.

First, a point on the view sphere centered on a corner is gen-
erated as an in-plane rotation α and zenith2 φ angles. Then,
a sharp image of a perspective camera at (α, φ) looking at
rectangular/triangular corner is generated. To simulate de-
focus blur, the image is filtered with an isotropic Gaussian
kernel with zero mean and standard deviation σ pixels. Fi-
nally, a Gaussian intensity noise with zero mean and stan-
dard deviation of σn intensities is then added to each pixel.

Evaluation Protocol. The influence of individual aspects
– blur (σ), noise (σn) and viewpoint (φ) – of image ren-
dering pipeline on the localization precision and conver-
gence of our method was evaluated in three tests: 1) blur
test σ ∈ (0, 5〉 px was with fixed σn = 1.0% and random
φ ∈ (0, 60〉°, 2) noise test σn ∈ (0, 5〉% was with fixed
σ = 1.0 px, random φ ∈ (0, 60〉°, and 3) perspective dis-
tortion test φ ∈ (0, 75〉° was with fixed σ = 1.0 px and
σn = 1.0%.

For each data point, a set of 1000 of 200 × 200 images
was generated with the in-plane rotation α randomly sam-
pled from (0, 2π〉. The ground-truth location of x∗g was ran-
domly generated within a 1-pixel square of the center pixel,
to avoid bias due to rendering artifacts such as aliasing. Ex-

2Angle from normal of the plane with corner point.

amples of generated images are shown in Fig. 6. All tested
methods were initialized from four corners of the pixel x∗g
and a fixed 11× 11 window size was used for all meth-
ods. The localization error |x∗ − x∗g| of OpenCV method
was measured after the convergence, and that of ours after
first, second and fifth iteration for a meaningful convergence
analysis. Finally, localization errors from all 1000 images
(× 4 corners) were averaged.

Gaussian Blur Test. The results of the image blur test are
shown in Fig. 6(a). The reference OpenCV method diverges
from the correct location for σ > 2 on both rectangular and
deltille corner points. After only two iterations, both our
regular and monkey saddle methods outperform the refer-
ence method over the full range of blurs. The monkey sad-
dle point extraction slightly and consistently outperformed
the rectangular saddle method.

Image Noise Test. Image noise influences the correctness
of assumptions of the polynomial fitting model. The perfor-
mance in the image noise test is summarized in Fig. 6(b).
The reference and our methods are clearly influenced by
the selected range of image noise. It increases the mean lo-
calization error about five times at the strongest 5% noise
level. Both our methods outperform the reference method,
reducing the mean localization error by two to three times.



Table 1: Average detection rates of different checkerboard pattern detection methods (Sec. 4.2). The average computation
time per frame is also shown. Note that we used the same algorithm (except the initial quad selection), as for deltille grids.

Type Method
Dataset (# image)

Mesa uEye GoPro Full Partial Fisheye
(206) (206) (100) (162) (162) (256)

Pa
rt

ia
l

Our method 100.00%
13 ms

100.00%
249 ms

100.00%
740 ms

100.00%
184 ms

99.18%
199 ms

99.26%
298 ms

OCamCalib [30]
99.99%
120 ms

100.00%
597 ms

100.00%
637 ms

99.95%
384 ms

92.25%
441 ms

96.05%
706 ms

OCPAD [14]
98.00%
1111 ms

99.92%
2737 ms

100.00%
2329 ms

97.83%
2529 ms

40.94%
3631 ms

26.37%
9325 ms

Fu
ll

Geiger et al. [15]
100.00%
2144 ms

100.00%
4484 ms

100.00%
10740 ms

99.94%
4129 ms

94.85%
3467 ms

88.33%
6192 ms

MATLAB Computer Vision
Toolbox [26]

100.00%
19 ms

99.84%
203 ms

92.00%
726 ms

99.94%
136 ms

93.30%
129 ms

14.99%
255 ms

ROCHADE [28]
96.60%
1034 ms

100.00%
2809 ms

100.00%
7195 ms

97.53%
3092 ms

36.42%
2574 ms

1.95%
8574 ms

OpenCV [6]
94.66%
94 ms

100.00%
94 ms

100.00%
645 ms

98.77%
54 ms

38.27%
59 ms

11.72%
409 ms

Perspective Deformation Test. The out-of-plane rotation
significantly influences appearance by changing the aspect
ratio of the corner image. Fig. 6(c) shows that all three
methods perform well for φ < 65. Then, the quantization
and image rasterization effects start to influence all methods
due to the finite resolution of the generated images. The ef-
fect seems to be more pronounced for monkey saddle point
that is a higher frequency structure, however, it still shows
better performance than other methods in the same condi-
tions. In practice, the deltille pattern allows tessellating
regular objects into more facets, which helps to reduce the
average view angles to object facets in multi-camera setups.

4.2. Deltille Grid Indexing Performance

In this experiment, we applied our deltille grid index-
ing method to a conventional checkerboard detection3 to al-
low comparison with other state-of-the-art methods [26, 6,
14, 15, 28, 30]. All methods were run on the full and par-
tial checkerboard datasets provided by [14, 28]. Addition-
ally, we compared the results on our new challenging image
dataset captured using a fisheye camera with 220° FOV that
exhibits high lens distortion.

In the evaluation, we first manually labeled all visible
checkerboard corners and correct grid topology on all im-
ages. Then, we counted corners as detected, when they
were located within a radius of 3 pixels from any visible
corner, considering each visible corner at most once. The
performance was measured by the average detection rate
1
N

∑N
i=1

#detected cornersi
#visible cornersi

, where N is the number of im-
ages in the dataset. To emphasize the indexing correct-
ness, the number of detected corners was counted as zero,
when the topology of the detected grid was incorrect. For

3with modifications for the rectangular pattern, see extended version of
the paper

Figure 7: Corresponding deltille and checkerboard pattern
images captured using the same trajectory of a robot arm.
Both grids detected by our method are drawn in red.

a fair comparison, parameters of each method were opti-
mized to result in the overall best performance and kept
fixed throughout the evaluation.

The results summarized in Table 1 show that our method
outperformed other methods on all datasets, even though
they vary widely in resolution and lens distortion, from nar-
row FOV lenses with 176× 144 images in (Mesa), 1280×
1024 images in (uEye), 4000 × 3000 images with strong
lens distortion (GoPro), 1280 × 720 images in (OCPAD-
full/partial) up to 1600 × 1200 images with extreme dis-
tortion from 220° FOV lenses in (Fisheye) dataset. In par-
ticular, our method provides superior performance on the
Fisheye dataset which is composed of challenging partial
checkerboard pattern images. Covering full field of view
helps with calibration of strong distortion.

4.3. Evaluation using a Robot Mounted Camera

In this experiment, we compare the performance of other
methods with our deltille and checkerboard grid detection
method in a real-world camera calibration scenario. A robot
mounted camera setup was used to capture two calibration
patterns separately. They were mounted at the same loca-
tion, images were captured with the same trajectory and il-



Table 2: Results of camera calibration and pose estimation
on the robot hand sequence, RMSE - Root Mean Squared
Error of the reprojection.

Pattern Method # Used
Corner

Calibration
RMSE[px]

Pose Est.
RMSE[px]

Deltille
grid

10× 11

Proposed 11,988 0.1006 0.1161
Proposed with

less points
9,592

(random) 0.0995 0.1173

Checker-
board
8× 11

Proposed 9,592 0.1096 0.1283
Geiger et al. 9,592 0.1140 0.1348

OpenCV 8,976 0.1152 0.1365
Rochade 9,592 0.1192 0.1372
OCPAD 9,591 0.1202 0.1382

MATLAB 9,592 0.1267 0.1634
OCamCalib 9,592 0.3118 0.3204

lumination conditions in a controlled indoor environment.
We manufactured an 8×11 rectangular checkerboard with

2cm squares and a 10×11 deltille grid of 2cm equilateral
triangles covering similar areas of a high flatness board.
A wide FOV camera (Basler Dart) with 1600 × 1200 res-
olution was mounted on the robot’s end-effector and 109
views were captured covering a half sphere space in front
of the board with 5° inclination and 30° azimuth intervals
(see Fig. 7 with the setup and example images). We split
each image sequence into two parts:
Calibration. All camera parameters were estimated by per-
forming a calibration with the first half of the sequence in
which the camera moved on a half sphere centered at the
pattern center within mild perspective angles from 0◦ to 25◦

with respect to the normal direction of the pattern plane.
Pose Estimation. Fixing the obtained intrinsic camera pa-
rameters, only the extrinsic camera parameters were esti-
mated on the other half of the sequence, where the camera
covered stronger perspective angles from 25◦ to 45◦.

The reprojection errors (RMSE) for each sequence and
each phase are summarized in Table 2. Presented rectan-
gular and deltille grid methods outperformed the state-of-
the-art methods. The lower RMSE in pose estimation using
the deltille grid is achieved not only by more precise cor-
ner detection but also by more accurate camera parameters.
Moreover, in the same conditions, our deltille grid detection
resulted in even smaller calibration errors while observing
25% more corners than the checkerboard, which is a desir-
able property for accurate camera calibration.

4.4. Multi-view Camera Calibration

In the last experiment, we applied our method to cal-
ibrate a multi-camera rig with 4 high-resolution (12Mpx)
cameras with narrow 20° field of view, approximately 0.8
meters from the target. We precisely manufactured planar
triangular panels with high flatness and glued deltille pat-
terns with DelTags on a non-reflective paper, and mounted
them on a 3D printed skeleton of an icosahedron, see Fig. 8.
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Figure 8: Top row - detections (drawn in rainbow colors)
of a deltille icosahedron and checkerboard cube calibration
targets from different views. Bottom row - mean reprojec-
tion errors over four cameras for each of 150 images.

Similarly, we built a comparable cube target with checker-
board patterns and AprilTags [27]. Both targets were pre-
calibrated by finding relative poses of all planes.

A dataset with 150 images for each of the targets and
each of the four cameras was taken in controlled conditions:
synchronized shutter, same illumination and a similar dis-
tance from the cameras. Deltille grid and regular checker-
board detector were used to get 2D to 3D point correspon-
dences from respective targets. Note that at least three faces
of the icosahedron target were detected in any viewpoint in
contrast to one face for the cube target.

The mean reprojection errors (RMSE) for each of the
frames are shown in Fig. 8. Each frame represents the mean
of images from all cameras. These results, as well as sta-
tistical analysis of the camera parameters on the sequence,
show that the icosahedron provides stable, and more precise
calibration with significantly lower reprojection errors.

5. Conclusions

We present a new calibration ecosystem based on a novel
method for precise localization of monkey saddle points on
deltille grids. The polarities, orientations of the intersect-
ing edges derived from the fitted polynomial surface, were
used together with DelTags to establish robust indexing on
multifaceted objects and partially visible grids. A thorough
experimental evaluation showed that deltille grid detection
is superior to both the rectangular case, and state-of-the-art
corner detection methods leading to more precise calibra-
tions. The extended version of the paper, datasets and code
are available at https://github.com/deltille.
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[28] S. Placht, P. Fürsattel, E. A. Mengue, H. Hofmann,
C. Schaller, M. Balda, and E. Angelopoulou. Rochade: Ro-
bust checkerboard advanced detection for camera calibra-
tion. In European Conference on Computer Vision (ECCV),
pages 766–779, 2014. 2, 3, 7

[29] M. Rufli, D. Scaramuzza, and R. Siegwart. Automatic de-
tection of checkerboards on blurred and distorted images.
In IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 3121–3126, 2008. 2

[30] D. Scaramuzza, A. Martinelli, and R. Siegwart. A toolbox
for easily calibrating omnidirectional cameras. In IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS), pages 5695–5701, 2006. 1, 2, 7

[31] Z. Wang, W. Wu, X. Xu, and D. Xue. Recognition and lo-
cation of the internal corners of planar checkerboard calibra-
tion pattern image. Applied Mathematics and Computation,
185(2):894–906, 2007. 2

[32] Z. Zhang. A flexible new technique for camera calibration.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 22(11):1330–1334, 2000. 5


