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ABSTRACT

Neural network pruning compresses automatic speech recognition
(ASR) models effectively. However, in multilingual ASR, language-
agnostic pruning may lead to severe performance drops on some
languages because language-agnostic pruning masks may not fit all
languages and discard important language-specific parameters. In
this work, we present ASR pathways, a sparse multilingual ASR
model that activates language-specific sub-networks (“pathways”),
such that the parameters for each language are learned explicitly.
With the overlapping sub-networks, the shared parameters can also
enable knowledge transfer for lower-resource languages via joint
multilingual training. We propose a novel algorithm to learn ASR
pathways, and evaluate the proposed method on 4 languages with a
streaming RNN-T model. Our proposed ASR pathways outperform
both dense models and a language-agnostically pruned model, and
provide better performance on low-resource languages compared to
the monolingual sparse models.

Index Terms— Multilingual, speech recognition, sparse, prun-
ing.

1. INTRODUCTION

Automatic speech recognition (ASR) technologies play an important
role in customer smart devices such as smartphones, smart speakers,
smart watches, virtual reality glasses, and more. Due to the lim-
ited computation resources and storage, hosting a high-performance
yet dense ASR model on on-device hardware is challenging. In or-
der to reduce on-device model size and boost run-time efficiency,
recent works have attempted to compress the ASR models through
knowledge distillation [1, 2], model sparsification [3, 4, 5, 6], quan-
tization [7, 8, 9], etc. In this study, we compress ASR models via
neural network pruning (i.e. zeroing out a certain amount of dense
model weights by a learned pruning mask). We specifically target
at multilingual ASR scenario [10, 11, 12, 13, 14], with the aim that
sparsifying a multilingual ASR model does not significantly degrade
recognition performance on certain languages.

Pruning a multilingual ASR model poses unique challenges.
Given a dense multilingual model, simply doing language-agnostic
pruning leads to large performance drops on certain languages. This
is because language-agnostic pruning only learns a single language-
agnostic mask and shares parameters for all languages, which may
not fit for certain languages [15, 16]. As a result, some languages
will see significant word error rate (WER) degradation. Alterna-
tively, one can do language-specific pruning on monolingual data
[3, 4], which learns different model parameters and different pruning
masks across languages. However, the resulting models lose their
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Fig. 1. Demonstration of ASR pathways: each language activates its
own sparse sub-network.

multilingual ability: we end up with one sparse monolingual model
for each language, which complicates on-device deployment.

To tackle the challenges above, we propose that the sparse mul-
tilingual model should have language-specific masks while sharing
the same set of model parameters. In other words, as shown in Figure
1, we aim to obtain a multilingual model that is sparsely activated,
forming sparse “pathways” [17] (sub-networks) which can be dedi-
cated to different languages. For this purpose, we propose a novel
2-step training scheme, where the first step identifies the language-
specific masks via Iterative Magnitude Pruning (IMP) [18] or Lot-
tery Ticket Hypothesis (LTH) [19], and in the second step, we fix
the masks and update the model parameters via multilingual train-
ing, where each language governs the updates of the parameters un-
der the mask that corresponds to the input language. Through the
learning process, the model can learn the optimal pathway for each
language and also learn the shared parameters across languages -
such that when the language-specific masks applied, the model can
recognize each language independently.

We applied the proposed method to an efficient memory trans-
former (Emformer) based [20, 21] low-latency streaming RNN-T
architecture [22] with a 70.6% block-wise structured sparsity [23].
Our empirical results on a 4-language dataset show that the proposed
multilingual ASR pathways model outperforms both dense model
(-5.0% average WER) and language-agnostic pruning (-21.4% aver-
age WER), and has better performance on low-resource languages
compared to the monolingual sparse models. By analyzing the
language-specific masks, we reveal that with the help of a regular-
ization that is tailored to structured pruning, LTH masks are superior
to IMP masks, even with less total effective parameters.

2. RELATED WORKS

Multilingual ASR. Among recent works on multilingual ASR,
language-specific modeling is usually adopted to achieve univer-
sally decent performance on all languages. This includes language-
aware encoding [24], parameterizing language-specific attention
heads [25], adapter modules [13], decoders [11] and Mixture-of-
experts [16]. In [15], LTH was used to identify language-specific
sub-networks inside the pre-trained multilingual XLSR model [26].
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Fig. 2. Multilingual training with language-specific masks. men and
mnl denotes English (en) and Dutch (nl) mask, respectively. Blue
and green segments represent trainable weights for en and nl. Bold
yellow weights are shared between en and nl. Grey weights are set
to zero during training and inference.

These sub-networks were shown to be able to pre-train an enhanced
XLSR model that improves downstream multilingual ASR fine-
tuning. In contrast to [15], we directly identify the language-specific
sparse structures in a multilingual ASR model, which can potentially
learn masks that are more tailored to ASR tasks.
Model compression. Prior works on ASR model compression can
be grouped into 3 categories: (1) knowledge distillation [1, 2] which
transfers knowledge from a larger model to a smaller model; (2)
model sparsification [3, 4, 5, 6, 27] which prunes (zeros out) a sub-
set of model parameters to reduce the representational complexity
and improve run-time efficiency; (3) parameter quantization [7, 8, 9]
which represents the trained model parameters with fewer bits for
model size reduction. In this study, we adopt model pruning ap-
proaches (IMP and LTH) to find language-specific sub-networks. In
[5], LTH was shown to learn a better sparse monolingual ASR than
IMP. We study how the monolingual sub-networks could be used
for multilingual scenario. A similar scheme was also investigated in
[28] for multitask sequence-labeling.

3. PROPOSED METHOD

Firstly, we introduce 2 pruning methods: IMP and LTH, which we
use to learn language-specific masks (Section 3.1). We then show
how these identified masks are utilized to train our proposed ASR
pathways (Section 3.2). Finally, we describe an essential regulariza-
tion technique to improve the pruning performance (Section 3.3).

3.1. Learning language-specific pruning masks

3.1.1. Iterative Magnitude Pruning (IMP)

For a network f(x; θ) with input samples x and model weights θ,
we denote a sub-network as f(x;m ⊙ θ), where m ∈ {0, 1}|θ|
is a binary pruning mask, and ⊙ represents element-wise product.
In this work, we consider a structured 8 × 1 block-wise pruning
strategy [4] which means that weight matrices will be zeroed out
in 8 × 1 groups. We prune the encoder Emformer layers and the
predictor LSTM layer, with a uniform sparsity across all prunable

layers [4, 6]. Given the pre-trained dense weights θ0, we initialize
θ = θ0 and m = 1|θ0|, and proceed as follows:
Repeat

1. Train f(x;m⊙ θ) for T steps, leading to f(x;m⊙ θT ).

2. Prune p% of the remaining weights that have the smallest
magnitudes. Update m by setting the pruned positions to 0.

3. Set θ = θT (start from the updated weights in next iteration).

Until m reaches the target sparsity.
After n pruning iterations, (1 − p%)n weights survive. When the
target sparsity is reached, m will be fixed afterward and we con-
tinue training until convergence. Note that depending on the training
data, IMP can be language-agnostic (multilingual data) or language-
specific (monolingual data). If trained on monolingual data, we con-
sider the final mask m as the language-specific mask. We set p = 20,
i.e. 20% of the remaining weights will be pruned in each iteration.
Pruning interval T depends on training data size.

3.1.2. Lottery Ticket Hypothesis (LTH)

LTH aims to identify a sub-network from a random or pre-trained
initialization θ0, which can be trained or transferred in isolation and
obtain matching performance as the original dense network [19, 29].
The algorithm for identifying such a sub-network is identical to IMP,
except that there is a “rewinding” step replacing step 3 of the prun-
ing loop in Section 3.1.1. In LTH, the rewinding step always sets
θ = θ0, as opposed to θ = θT in IMP, in each iteration. After
rewinding, LTH may learn a set of model parameters that are differ-
ent from IMP after training on the same data for certain steps, which
decide different weights to be pruned. Hence, the final mask m iden-
tified by LTH may also be different from that identified by IMP. In
[5], the authors show that the sparse network identified by LTH can
outperform IMP on a monolingual ASR task. In this work, we also
compare the performance of the multilingual ASR pathways trained
using masks identified by IMP and LTH, respectively.

3.2. Multilingual ASR pathways training

With the language-specific masks separately learned on each lan-
guage, the ASR pathways are trained in a multilingual manner. Fig-
ure 2 demonstrates a 2-language case. Given the pre-trained dense
multilingual ASR model weights θ0, and the language-specific
masks men and mnl learned via IMP or LTH, we identify the
language-specific sub-networks f(x;men⊙θ0) and f(x;mnl⊙θ0).
During training, for each step, we sample a monolingual batch from
the multilingual dataset, identify a language-specific sub-network
using the mask corresponding to the input language, do a forward
and backward pass in the sub-network, and only update the param-
eters inside the sub-network. After training, we end up with a set of
universal weights θ∗, and f(x;men ⊙ θ∗) and f(x;mnl ⊙ θ∗) form
the ASR pathways for English and Dutch, respectively.

Compared to language-agnostic pruning which degrades perfor-
mance on certain languages due to a single sub-network, we expect
the sparse sub-networks that are tailored to specific languages can
mitigate the performance loss. In addition, since the masks can over-
lap with each other, the ASR pathways share some common parame-
ters between languages, which potentially benefit similar languages
(e.g. with shared vocabularies), especially for the low-resource ones.

3.3. Regularization: group lasso weight decay

We adopt structured 8× 1 block-wise pruning. However, the trained
dense weights may not follow this pattern. As a result, block-wise



Model Monolingual or
Multilingual? Sparsity (%) WER (%)

en fr it nl Avg.
Dense (100M) Multilingual 0 14.03 11.74 18.90 17.69 15.59
Dense (30M) Monolingual 0 16.13 14.64 24.66 21.64 19.27

LAP Multilingual 70.6 14.73 13.30 25.66 21.67 18.84
LSP - IMP Monolingual 70.6 11.34 11.88 18.85 18.34 15.10
LSP - LTH Monolingual 70.6 11.80 11.85 18.38 18.16 15.05

ASR Pathways - Random mask Multilingual 70.6 13.76 13.07 20.60 19.78 16.80
ASR Pathways - IMP mask Multilingual 70.6 12.94 11.98 19.91 17.65 15.62
ASR Pathways - LTH mask Multilingual 70.6 12.74 11.59 17.79 17.12 14.81

Table 1. Test set WERs on MLS. All sparse models have 70.6% sparsity. The last column shows the average WER on the 4 languages.

pruning may unexpectedly discard important weights, causing per-
formance drop. Hence, it is necessary to have specific algorithmic
designs for structured pruning [30]. Following [6], we use group
lasso regularization to mitigate the undesired pruning. Specifically,
we define a group as a 8 × 1 block, and the regularization term is
added to the loss function L:

min
W

L+

l∑
i=1

λi

∑
g∈G

∥∥∥W (i)
g

∥∥∥
2

(1)

where l denotes the number of prunable layers, W
(i)
g denotes a

weight group in the i-th layer, λi denotes regularization strength.
With group lasso, L2-norms of the 8× 1 blocks will be suppressed,
so the blocks become more pruning-friendly: pruning such blocks
leads to minimal performance drop. Following [6], we dynamically
set λi based on layer-wise averages of the group L2-norms. We
add group lasso regularization in the dense model training stage, as
well as in the pruning iterations. Once the model reaches the target
sparsity, the regularization is disabled. Since no pruning is involved
during or after the multilingual ASR pathways training (Section
3.2), we do not include the regularization term in this stage. We
discuss the effect of group lasso in Section 5.3.

4. EXPERIMENTAL SETUP

4.1. Dataset

We use 4 languages, English (en), French (fr), Italian (it) and Dutch
(nl) from MLS dataset [31] as our training data. We follow the
train/validation/test splits in [31]. The sizes of the training audio
for the 4 languages are 44.7k hrs, 1.1k hrs, 0.2k hrs, 1.6k hrs, re-
spectively. We use 80-dims log-Mel with 25 ms window size and
10 ms step size as the input features. For all multilingual training,
we use the sampling strategy in [32] with α = 0.5 to re-balance the
training data.

4.2. Implementation details

For our dense multilingual model, we use a streaming RNN-T model
with 30 Emformer layers with 512 input dims, 2048 feed-forward
dims, GeLU non-linearity, and no memory banks [20], resulting in
about 100M parameters. We use an input feature stride 6, Emformer
center segment length=4 (240 ms) and right context length=1 (60
ms), which results in 300 ms streaming latency. For the target vo-
cabulary, we generate 512 word pieces for each language, aggregate
the word pieces across 4 languages, and remove the duplicated to-
kens, leading to 1548 items in total. For simplicity, we use the same

output layer size for all the multilingual and monolingual training.
We use an Adam optimizer with a tri-stage learning rate schedule
[33] and a peak learning rate 1e-3. For monolingual pruning, we set
350K maximum updates and separately tune the pruning interval T
(Section 3.1.1) on the validation set of each language. We train the
multilingual ASR pathways for 200K steps. 16 GPUs are used for
monolingual training and 32 GPUs for multilingual training, with a
per-GPU batch size of 64 samples for both.

5. RESULTS

We denote the multilingual language-agnostic pruning as LAP, and
the monolingual language-specific pruning via IMP and LTH as LSP
- IMP and LSP - LTH, respectively. The proposed ASR pathways
trained with IMP masks or LTH masks are denoted as ASR Path-
ways - IMP mask and ASR Pathways - LTH mask, respectively. We
also include an ASR pathways model trained with randomly initial-
ized language-specific masks (denoted as ASR Pathways - Random
mask), which serves as a baseline to compare different language-
specific masks. All sparse models have 70.6% sparsity. We denote
the pre-trained dense model as Dense (100M). To understand the
difference between a sparse model and a small dense model that has
around the same number of parameters, we also include a monolin-
gual small dense model baseline by reducing the Emformer layers,
which is denoted as Dense (30M). We show the test WERs on the 4
languages in Table 1.1

5.1. Language-agnostic vs. language-specific pruning

First, comparing Dense (100M) with LAP, we see more significant
performance drops on it and nl than en and fr, indicating that a single
language-agnostic mask does not fit all languages. Since en has the
most training data, we hypothesize that the learned pruning mask
may be biased to en and results in performance degradation on other
languages.

Second, we find that both LSP - IMP and LSP - LTH can per-
form on par with or better than Dense (100M), even at the high
sparsity of over 70%, suggesting that finding language-specific
structures and parameters from an over-parameterized multilingual
model with minimal performance drop is possible. Besides, both
language-specific pruning methods significantly outperform Dense
(30M), which indicates that it is better to prune a pre-trained over-
parameterized model than to train a small dense model from scratch.

1Note that the results presented in this paper are all based on low-
latency streaming ASR models, so the WERs fall behind [31], while our in-
house non-streaming Transformer/Conformer models [34, 35] provide simi-
lar WERs compared to [31].
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Fig. 3. IOUs and union ratios of (a) IMP masks and (b) LTH masks.

Third, we compare the proposed ASR pathways trained with
different language-specific masks. Both ASR Pathways - IMP mask
and ASR Pathways - LTH mask outperform ASR Pathways - Random
mask, which suggests that IMP and LTH find better language-
specific masks. Note that even with random masks, ASR Pathways
outperforms LAP. This again confirms the importance of having
language-specific masks in multilingual ASR scenario. In addition,
ASR Pathways - LTH mask achieves comparable or better perfor-
mance compared to the monolingual LSP - LTH on most languages
(except for en), meaning that our proposed multilingual sparse ASR
pathways can match the performance of monolingual sparse models.
The improvements on fr, it and nl indicate the benefit of multi-
lingual joint training on low-resource languages. On the flip side,
the performance gap on en might be an outcome of the language
interference problem [15]: high-resource languages can often suffer
from negative transfer during multilingual joint training. The high
sparsity makes it an even more challenging learning task. Finally,
we observe that using LTH masks lead to better performance than
IMP masks, consistent with the finding in [5].

5.2. Analysis on the language-specific masks

We conduct analyses on the learned language-specific masks to un-
derstand their distributions across different languages. We compute
Intersection Over Union (IOU) between a mask pair (mi,mj):

IOU(mi,mj) =
|mi = 1 ∩mj = 1|
|mi = 1 ∪mj = 1| (2)

A higher IOU suggests more overlapping between the surviving pa-
rameters of two language-specific masks. In addition, we define
union ratio (UR) of the four masks (m1, ...,m4) as

UR(m1, ...,m4) =
|
⋃4

n=1 mn = 1|
|m1|

(3)

which measures how the union of the surviving parameters of the
sub-networks span the whole parameters space. A higher UR sug-
gests a higher total effective parameters usage.

We show the IOUs and union ratios in Figure 3. Comparing
LTH masks with IMP masks, we find significantly higher IOUs in
LTH masks. This indicates that LTH masks have more overlaps be-
tween language pairs, resulting in more shared parameters across
different languages. As a result, the union ratio is also lower than
IMP masks, meaning that LTH masks are using less total effective
model parameters. One possible reason is that, in each iteration LTH
starts from the same model parameters (θ0 in Section 3.1.1), while

Model WER (%)
en fr it nl

Dense (100M) 13.48 11.27 21.14 19.55
+ group lasso 14.03 11.74 18.90 17.69

LSP - IMP 13.01 13.28 20.94 20.93
+ group lasso 11.34 11.88 18.85 18.34

LSP - LTH 14.80 18.50 28.87 24.92
+ group lasso 11.80 11.85 18.38 18.16

ASR Pathways - IMP mask 14.05 13.20 20.15 18.87
+ group lasso 12.94 11.98 19.91 17.65

ASR Pathways - LTH mask 14.65 14.04 21.67 20.77
+ group lasso 12.74 11.59 17.79 17.12

Table 2. Test set WERs with and without group lasso (Section 3.3).

IMP starts from different parameters (θT in Section 3.1.1), making
LTH better at keeping the universal part of parameters in θ0 that are
useful for all languages. In contrast, IMP will gradually lose this in-
formation and learn more language-specific parameters, producing
less mask overlaps. Note that even with a lower union ratio (smaller
total parameters usage), LTH masks can outperform IMP masks.

With a union ratio at 0.4527, ASR Pathways - LTH mask is essen-
tially having more effective parameters for the 4 languages compared
to the 70.6%-sparse LAP. In order to have a fairer comparison to
LAP, we also train a LAP model with 56.5% sparsity and obtain test
WERs of 13.93 (en), 12.58 (fr), 26.57 (it), 26.09 (nl). Corroborating
with the results in Table 1, the overall trend still holds, confirming
the superiority of language-specific masks.

5.3. Effect of group lasso regularization

In this section, we discuss the effect of the group lasso regulariza-
tion (Section 3.3). We pre-train two dense models (i.e. θ0 in Section
3.1.1) with and without group lasso regularization. Then we com-
pare the performance of the sparse models using the two dense mod-
els as the pruning starting point, respectively.2 Table 2 shows test
set WERs, where the “+ group lasso” rows denote models based on
the regularization-enabled dense model (same as in Table 1). With
group lasso, LSP - IMP and LSP - LTH gain significant improve-
ments. Correspondingly, the ASR pathways also show significant
boosts. Interestingly, without group lasso, the performance of LTH
largely falls behind IMP, and group lasso appears to have a larger im-
provement for LTH than IMP. As we analyzed in Section 5.2, due to
the rewinding step, the initialization θ0 has a major impact on LTH.
Hence, it is essential to have structured-pruning-friendly pre-trained
dense weights.

6. CONCLUSION

We have presented multilingual ASR pathways - a design that comes
with language-specific activation. We show that such a sparse mul-
tilingual ASR model outperforms both dense model and language-
agnostic pruning, and has better performance on low-resource lan-
guages compared to the monolingual sparse models. Further, via
our analyses on the language-specific masks, we reveal that with the
help of the group lasso regularization, LTH masks are superior to
IMP masks, even with less total effective parameters. In the future,
we plan to extend ASR pathways to more languages and different
tasks.

2Note that for best pruning performance we enable the regularization for
both during pruning.
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