
Three things everyone should know
about Vision Transformers

Hugo Touvron1,2, Matthieu Cord2, Alaaeldin El-Nouby1,3, Jakob Verbeek1,
and Hervé Jégou1

1 Meta AI, Fundamental AI Research (FAIR), Paris, France
2 Sorbonne University, Paris, France

3 INRIA, France
htouvron@fb.com

Abstract. After their initial success in natural language processing,
transformer architectures have rapidly gained traction in computer vi-
sion, providing state-of-the-art results for tasks such as image classifica-
tion, detection, segmentation, and video analysis. We offer three insights
based on simple and easy to implement variants of vision transformers.
(1) The residual layers of vision transformers, which are usually processed
sequentially, can to some extent be processed efficiently in parallel with-
out noticeably affecting the accuracy. (2) Fine-tuning the weights of the
attention layers is sufficient to adapt vision transformers to a higher res-
olution and to other classification tasks. This saves compute, reduces
the peak memory consumption at fine-tuning time, and allows sharing
the majority of weights across tasks. (3) Adding MLP-based patch pre-
processing layers improves Bert-like self-supervised training based on
patch masking. We evaluate the impact of these design choices using the
ImageNet-1k dataset, and confirm our findings on the ImageNet-v2 test
set. Transfer performance is measured across six smaller datasets.

Keywords: image classification, transformers, self-supervised learning.

1 Introduction

Since its introduction the Transformer architecture [66] has become the dominant
architecture in natural language processing tasks, replacing previously popular
recurrent architectures. The vision transformer [16] (ViT) is a simple adaptation
of transformers to computer vision tasks like image classification: the input image
is divided into non-overlapping patches, which are fed to a vanilla transformer
architecture, after a linear patch projection layer. In contrast to networks built
from convolutional layers, transformers offer parallel processing and a complete
field-of-view in a single layer. Along with other attention-based architectures,
see e.g. [4, 7], transformers have recently substantially influenced the design
of computer vision architectures. Many modern architectures in computer vision
directly inherit parts of their design from this work, or are at least inspired by the
recent findings resulting from transformers [7, 16, 62]. This has led to significant

2 H. Touvron et al.

progress on different computer vision tasks, ranging from object detection and
segmentation [18] and video analysis [1, 19] to image generation [9, 31].

While vision transformers have led to considerable progress, the optimization
of their design and training procedures have only been explored to a limited
extent. In this paper, we offer three insights on training vision transformers.

1. Parallel vision transformers. Several works [20, 75] advocate the interest
shallower networks for reasons ranging from lower latency to easier optimization.
We propose a very simple way to achieve this with ViTs. Let us denote by
MHSA the multi-headed self-attention residual block, and by FFN the residual
feedforward network. Starting from a sequential architecture depicted as follows,

FFN-1 MHSA-2 FFN-2MHSA-1 ++ ++

we parallelize the architecture by reorganizing the same blocks by pairs,

MHSA-1

++

MHSA-2 FFN-2

FFN-1

which can be done for any different numbers of parallel blocks. This produces
an architecture with the same number of parameters and compute, while be-
ing wider and shallower. This design allows for more parallel processing, easing
optimization and reducing latency depending on the implementation.

In Section 3, we experimentally analyse the performance of this parallel con-
struction, and in particular how it affects the accuracy in comparison to the
sequential baseline. The parallel version becomes a compelling option if deep
enough. In some cases, we observe improvements in accuracy resulting from an
easier optimization. Regarding the latency on GPUs, we observe reductions in
the case of small batch sizes.4

2. Fine-tuning attention is all you need. It is common practice to pre-
train networks before fine-tuning them on a target task. This is the standard
approach underpinning transfer learning, where one leverages a large generic
dataset like ImageNet [56] when the number of images is limited for the target
task [50, 73]. Another context is the one of changing resolution. Typically one
would train at a lower resolution than the one employed at inference time. This
saves resources, but additionally it reduces the discrepancy of scale between train
and test images that results from data augmentation [65]. In Section 4 we show
that, in the case of ViT, it is mostly sufficient to fine-tune only the multi-head
attention layers and freeze the feedforward network (FFN) layers. This saves

4 We have not found any papers in the literature analyzing the effect of width versus
depth for ViT on common GPUs and CPUs.

Three things everyone should know about ViT 3

compute and reduces the memory peak during training. Importantly this allows
the same FFN weights, which dominate the number of parameters, to be used for
multiple tasks. The impact on accuracy is statistically not significant when fine-
tuning for different image resolutions. For large models, the impact on accuracy
is limited when considering transfer to other classification tasks.

3. Patch preprocessing with masked self-supervised learning. The first
layers of a transformer have a relatively local span [11], suggesting that they
mostly behave like convolutions. Some recent hybrid architectures [18, 21, 23]
preprocess their input images with a convolutional stem, to improve accuracy
and training stability [71]. However, preprocessing images with convolutions is a
priori not compatible with the recent and successful mask-based self-supervised
learning approaches, like BeiT [3] or MAE [24]. The convolutions propagate
information across patches, impeding the masked prediction task.

In Section 5, we propose a simple way to adapt mask-based self-supervised
training methods with patch pre-processing, by applying the masking after the
patch pre-processing. However, our analysis reveals that existing convolutional
stems are not effective when combined with BeiT. To address this issue, we in-
troduce a hierarchical MLP (hMLP) stem that interleaves MLP layers and patch
aggregation operations, and prohibits any communication between patches. Our
experiments show that this choice is effective and able to leverage the benefit of
both BeiT self-supervised pre-training and patch pre-processing. Moreover, our
hMLP-stem is also effective for ViT in the supervised case: it is on par with the
best convolutional stem of our comparison [21].

2 Background

In this section, we discuss related work in common with our different contribu-
tions. We also introduce the baseline ViT models considered in this study and
how they are trained. In subsequent sections, we discuss related work that is
more specific to each of our three specific contributions.

2.1 Related work

Attention-based models, and in particular transformers [66], have been rapidly
adopted in neural networks handling text [6, 12, 40, 52, 66], speech [33, 44], and
even for more complex tasks such as function integration or solving differential
equation [37]. In computer vision, DeTR [7] and Vision Transformers [16] (ViT)
have deeply influenced the design of architectures in a short period of time.
Most of the architectures introduced since ViT can be regarded as some form of
hybridisation of transformers with convolutional neural networks, as illustrated
by the hierarchical transformers [19, 21, 41, 67], or conversely by convolutional
neural networks with design elements inspired from ViT [42, 63], or even multi-
layer perceptrons adopting designs inspired by transformers [14, 39, 47, 60, 61].

In our case we build upon the basic ViT design of Dosovitskiy. Its de-
sign is governed by a small hyper-parameter space, and as such is less engi-

4 H. Touvron et al.

neered than some recent follow-up architectures. With a proper training proce-
dure [58, 62, 69], it achieves interesting performance/complexity trade-offs. It
is also versatile: it can be effectively combined with hierarchical detection or
segmentation frameworks [18]. Importantly, in spite of limited built-in priors, it
has demonstrated great potential when combined with self-supervised learning,
either with contrastive methods [8, 10] or for reconstruction-based techniques
like BeiT [3] or other forms of masked auto-encoders [15, 17, 24, 68, 72, 76].

2.2 Experimental setting

ViT models. We consider the vanilla ViT models initially introduced by Doso-
vitskiy et al. [16] as well as the smaller ones proposed by Touvron et al. [62].
Therefore we use the initial pooling method that is based on a so-called class to-
ken. We only consider transformers operating on 16×16 patches. Decreasing this
patch size improves the results but significantly increases the model complexity.

Training procedure. To prevent overfitting, we adopt an existing training
setting, namely the A2 procedure of Wightman et al. [69]. It uses a binary cross
entropy loss and fixes the setting of most of the hyper-parameters.Wightman et
al.’s A2 procedure was originally designed for training ResNet-50 models, and
requires a few modifications when adopting it for ViTs to get strong performance
and ensure sufficient stability:

– The learning rate should be reduced compared to ResNet-50. We set it to
lr = 4.10−3 for ViT-Ti and ViT-S and to lr = 3.10−3 for ViT-B and ViT-L.

– Stochastic depth drop-rate sd: we adjust it per model following Touvron et
al. [64]. It is not used for ViT-Ti. We fix sd = 0.05 for Vit-S, sd = 0.1 for
ViT-B and sd = 0.4 for Vit-L.

We observe that LayerScale [64] significantly improves the performance when
training large models, and that in that case a longer training is also beneficial.
Therefore in addition to our main baseline where we train during 300 epochs
without LayerScale, like in DeiT and in the A2 procedure of Wightman et al. [69],
we consider another one that is trained for 400 epochs with LayerScale (LS).

Evaluation. Unless specified otherwise, we train our models on the ImageNet-
1k dataset [56], and evaluate the top-1 accuracy on its validation set. All exper-
iments are carried with seed 0. Since we have adjusted a low number of hyper-
parameters, and since we share them across models except stochastic depth, we
do not expect much overfitting. Nevertheless we also evaluate our models with
the same metric on ImageNet-V2 [55] (matched frequency), which provides a
separate test set, to provide a complementary view on the results.

2.3 Baselines

We report the results of our baseline in Table 1. With the few adaptations that
we have done, our training procedure outperforms existing ones for supervised
training for the model sizes that we consider, see Appendix A (Table 8). Note

Three things everyone should know about ViT 5

Table 1. Baseline models and their performance on ImageNet1k-val top1 accuracy
at resolution 224×224. We adopt common models with their default parametrization:
Vit-B and Vit-L [16] and Vit-Ti and ViT-S [62], all with patch size of 16×16. Baseline
results trained with or without LayerScale [64], and for 300 or 400 epochs of training.

params Flops speed 300 epochs 400 ep.+LS
Model depth width heads (×106) (×109) (im/s) val v2 val v2

ViT-Ti/16 12 192 3 5.7 1.3 3796 72.7 60.3 73.5 61.4
ViT-S/16 12 384 6 22.1 4.6 1827 79.7 68.5 80.7 69.3
ViT-B/16 12 768 12 86.6 17.6 799 82.2 71.2 82.7 72.2
ViT-L/16 24 1024 16 304.4 61.6 277 83.0 72.4 84.0 73.7

that all our models use a patch size of 16×16 as in Dosovitskiy et al. [16]. Unless
specified, our experiments are carried out with images of size 224×224.

3 Depth vs Width: Parallel ViT

A recurrent debate in neural architecture design is on how to balance width
versus depth. The first successful neural networks on Imagenet [35, 57] were
not very deep, for instance the 22-layer GoogleNet [59] was regarded as deep in
2014’s standards. This has changed with ResNets [25, 26], for which going deeper
was hindering significantly less the optimization due to the residual connections.
After its introduction, some researchers have investigated alternative choices for
trading depth against width [13, 30, 75], like Wide Residual Networks [75].

Recently, there has been a renewed interest for wider architectures with atten-
tion [20, 38]. For instance the Non-deep Networks [20] proposes an architecture
with several parallel branches whose design is more complex. In our work, we
aim at proposing a much simpler and flexible alternative that builds upon a
regular ViT in a more straightforward manner.

3.1 Preliminary discussion on width versus depth for ViT

The ViT architecture of Dosovitskiy et al. [16] is parametrized by three quanti-
ties: the width (i.e., the working dimensionality d), the depth, and the number of
heads. We do not discuss the latter. Increasing depth or width increases the ca-
pacity of the model and usually its accuracy. For the most common ViT models
that we report in Table 1 [16, 62], width and height are scaled together. Below,
we discuss the different pros and cons for favoring width versus depth.

Parametrization & Optimization. The compositionality of the layers is bet-
ter with deeper networks. This was one of the decisive advantage of ResNet once
optimization issues were solved by residual connections. Yet too much depth
hinders optimization, even with residual connections. Some solutions have been
proposed to address this issue for ViTs [64], showing that transformers benefit
from depth when trained with improved optimization procedure.

6 H. Touvron et al.

Separability. In image classification, the spatial features are ultimately pro-
jected [35] or pooled [25] into a high-dimensional latent vector that is subse-
quently fed to a linear classifier. The dimensionality of this vector should be high
enough so that the classes are linearly separable. Hence it is typically larger for
tasks involving many classes. For instance in ResNet-50 it has dimension 512
when applied to CIFAR, but 2048 for ImageNet. In ViT, the width is identical
to the working dimensionality of each patch, and is typically smaller than with
ResNet, possibly limiting the separation capabilities. Besides, a larger dimension
of the latent vector tend to favor overfitting. In this regard the compromise be-
tween capacity and overfitting is subtle and depends size of the training set [58].

Complexity. In ViT, the different complexity measures are affected differently
by width and depth. Ignoring the patch pre-processing and final classification
layer, which contribute to complexity in a negligible manner, then we have:

– The number of parameters is proportional to depth and a quadratic function
of the width.

– The compute, as determined by FLOPS, is similarly proportional to the
depth and quadratic in width.

– The peak memory usage at inference time is constant when increasing the
depth for a fixed width, but it is quadratic as a function of width.

– The latency of wide architectures is in theory better as they are more parallel,
but actual speedups depend on implementation and hardware.

3.2 Parallelizing ViT

We propose and analyze flattening vision transformers by grouping layers fol-
lowing the scheme presented in the introduction. Let us consider a sequence
of transformer blocks defined by the functions mhsal(·), ffnl(·), mhsal+1(·) and
ffnl+1(·). Instead of sequentially processing the input xl in four steps as done in
the usual implementation:

x′
l+1 = xl +mhsal(xl), xl+1 = x′

l+1 + ffnl(x
′
l+1),

x′
l+2 = xl+1 +mhsal+1(xl+1), xl+2 = x′

l+2 + ffnl+1(x
′
l+2), (1)

we replace this composition by two parallel operations:

xl+1 = xl +mhsal,1(xl) + mhsal,2(xl),

xl+2 = xl+1 + ffnl,1(xl+1) + ffnl,2(xl+1). (2)

This reduces the depth by two for a given number of MHSA and FFN blocks.
Conversely, there is twice the amount of processing in parallel. The intuition
behind this parallelization is as follows: as networks get deeper, the contribution
of any residual block r(·), be it mhsa(·) or ffn(·), becomes increasingly smaller
with respect to the overall function. Therefore, the approximation ∀r, r′ r′(x+
r(x)) ≈ r′(x) becomes increasingly satisfactory, and it is easy to check that if
this approximation is true, eq. (1) and (2) are equivalent.

Three things everyone should know about ViT 7

Our strategy is different from taking transformers with a larger working
dimensionality, which leads to different trade-offs between accuracy, parameters,
memory and FLOPS, as discussed in our experiments. In contrast to increasing
the working dimension, which increases the complexity quadratically as discussed
above, our modification is neutral with respect to parameter and compute.

Depending on whether we effectively parallelize the processing, the peak
memory usage at inference time and the latency are modified. Note that rather
than just two, we can choose to process any number of blocks in parallel; falling
back to the sequential design if we process a single block in each layer.

3.3 Experiments

Notation. We adopt the standard naming convention of previous work [16, 62]
to use the postfixes Ti/S/B/L to identify the working dimensionality of the
models, i.e., the column “width” in Table 1. We append the depth N to indicate
variations on the number of pairs of layers (MHSA, FFN) [64]. For instance,
ViT-B24 has the same width as a ViT-B12 but with twice the depth, i.e., 24
pairs of MHSA and FFN layers instead of 12. For our parallel models, we specify
both the depth and the number of parallel branches: ViT-B12×2 has twice the
number of residual modules as a ViT-B12. It includes a total of 12×2=24 pairs
of MHSA and FFN layers. Therefore it has the same complexity as the ViT-B24
model (a.k.a. ViT-B24×1).

Comparison of sequential and parallel ViTs. In Figure 1, we compare the
performance of sequential and parallel models of a fixed complexity. We fix the
total number of blocks, i.e. pairs of MHSA and FFN layers, which determines
the number of parameters and FLOPS, and we consider different possible of
branches that leads to the same total number of blocks. For instance 36 can be
obtained as the sequential ViT 36×1, or the parallel ViTs 18×2, 12×3 or 9×4.

We observe that, amongst the parallel and sequential models, the best per-
formance is obtained with two parallel branches for all tested model capacities.
The performance is comparable between the S20×3 and S30×2 for ViT-S60,
but generally using more than two parallel branches is not favorable in terms
of accuracy and we do not discuss them further. Note that Figure 1 compares
ViT models with a relatively large number of blocks (36 and 60). This is the
case where sequential models are relatively difficult to optimize due to their
depth. The parallel models with two branches are easier to train, while being
deep enough to benefit from layer compositionality.

In Figure 2, we consider models with only 24 pairs (MHSA,FFN) and a
varying width. Here we observe that the smallest models ViT-Ti and ViT-S are
better in their sequential version. This is because are easy to optimize up to 24
layers. The B24×1 and B12×2 achieve comparable performance. In contrast, the
ViT-L12×2 is stronger than its sequential counterpart, which is more difficult
to optimize even though we used LS for this size; without LS its performance is
83% at 300 epochs.

In Figure 3, we compare the performance of sequential and parallel as a
function of the number of blocks for ViT-S and ViT-B. Our observations concur

8 H. Touvron et al.

1 2 3 4
Number of branches

82.0

82.5

83.0

Im
ag

eN
et

 t
o
p
-1

(%
)

B36
S60
S36

Fig. 1. Impact of the parallelism on per-
formance for a given model size (ViT-S36,
-S60 and -B36) and 1–4 parallel branches.

Table 2. Impact of the training on paral-
lel and sequential models.

Number of ImNet top1
Model Epochs LS -val -v2

300 ✗ 82.9 72.2
sequential: 300 ✓ 83.9 73.2
ViT-B36x1 400 ✗ 83.4 72.5

400 ✓ 84.1 73.9

300 ✗ 83.3 72.4
parallel: 300 ✓ 83.8 73.3
ViT-B18x2 400 ✗ 83.4 73.1

400 ✓ 84.1 73.5

T24 S24 B24 L24
Models

78

79

80

81

82

83

Im
ag

eN
et

 t
o
p
-1

(%
)

Sequential
Parallel (x2)

Fig. 2. Impact of model width (T:192,
S:384, B:768, L:1024). We train the two
L24 with LS to avoid optimization issues.

Table 3. Comparison of parallel mod-
els with more blocks with models with
a higher working dimensionality. L24×1,
B36×1 and B18×2 trained with LS.

#params Flops Mem. ImNet top1
Model (×106) (×109) (MB) -val -v2

B12x1 86.6 17.6 2077 82.2±0.06 71.0±0.26

S48x1 85.9 18.3 1361 82.3 72.0
S24x2 85.9 18.3 1433 82.6 72.3

L24x1 304.4 61.6 3788 83.4 73.3
B36x1 256.7 52.5 3071 83.9 73.2
B18x2 256.7 52.5 3217 83.8 73.3

12 24 36 48
Number of blocks

81

82

83

Im
ag

eN
et

 t
o
p
-1

(%
)

B sequential
B parallel (x2)
S sequential
S parallel (x2)

Fig. 3. Sequential vs. parallel ViT-S and
-B when varying the number of blocks.

Table 4. Throughput for ViT-S18×2 and
ViT-B18×2 (im/s). With parallel ViT,
the residual blocks can be processed ei-
ther sequentially (seq) or in parallel (par).

batch ViT-S18x2 ViT-B18x2

size seq par best gain seq par best gain

1 44 61 61 38% 42 61 61 45%
2 84 123 123 46% 80 117 117 47%
4 168 245 245 46% 155 187 187 21%
8 334 474 474 42% 230 211 230 0%
16 569 518 569 0% 266 231 266 0%
32 616 556 616 0% 276 245 276 0%
64 647 575 647 0% 286 248 286 0%

Three things everyone should know about ViT 9

with our previous findings: the parallel version is more helpful for the deeper and
higher capacity models that are more difficult to optimize; our parallelization
scheme alleviates this issue.

Impact of optimization. In Table 2, we provide results with LayerScale [64],
which helps the optimization of the biggest models. It improves the performance
of both sequential and parallel models, which end up approximately on par.
Hence, for models big enough and with proper optimization, sequential and
parallel ViTs are roughly equivalent.

Increasing the number of modules or the working dimensionality?
Table 3 provides a comparison between different ViT architectures: sequential,
parallel, and with larger working dimensionality. We approximately adjust the
complexity in terms of parameters and FLOPS, yet this means that ViT models
with larger working dimensionality have a higher peak memory usage with typ-
ical implementation. In both tested settings the sequential and parallel models
yield substantially higher accuracy than the models with larger working dimen-
sionality. The sequential and parallel models are comparable with 36 blocks. The
parallel model is better in the case of 48 blocks due to the increased depth of
the sequential model.

Latency. On a commodity V100 GPUs, we observe a significant speed-up in
the case of per-sample processing, with also some gains for small batch sizes
with relatively small models, see Table 4. This comparison is based on a simple
implementation of our parallel architecture, which is suboptimal due to the lack
of a specific CUDA kernel. Overall our measurements suggest specific hardware
or kernels are required to obtain compelling benefits in terms of throughput.

4 Fine-tuning attention is all you need

In this section we focus on fine-tuning ViT models, either to adapt the the
model to larger image resolutions or to address different downstream classifica-
tion tasks. In particular, we consider an approach where we only fine-tune the
weights corresponding to the MHSA layer, see Figure 4. We analyse the impact
in terms of prediction accuracy and savings in processing complexity, peak mem-
ory usage and parameter count. As we will see, our choice is significantly better
than alternative ones, such as fine-tuning the parameter-heavy FFN layers.

It is common to train networks at lower resolution and fine-tuning it at a
higher target resolution. This saves a significant amount of compute at training
time, and typically also improves the accuracy of the network at the target res-
olution [65]. This is because it reduces the discrepancy between the scale of the
images seen at train and at test time that is induced by common data augmen-
tation. Fine-tuning is also the paradigm associated with foundation models in
general and to the concept of transfer learning itself [22, 50, 73]. A recent line
of work explores adaptation of pre-trained models with various types of adapter
modules with a small amount of task-specific parameters [5, 29, 45, 46, 51, 54].
In our work, instead, we focus on fine-tuning vanilla ViTs.

10 H. Touvron et al.

Patch Projection

×"

FFN

MHSA

Layer Norm

Layer Norm

+

+

Patch Projection Patch Projection

×"

FFN

MHSA

Layer Norm

Layer Norm

+

+

Patch Projection

Pre-training Finetuning

0 20 40 60 80pa
ra

m
et

er
s (

M
)

full finetuning
attention finetuning

0.0 0.2 0.4 0.6 0.8 1.0la
te

nc
y

(m
s/

im
)

full finetuning
attention finetuning

0 5000 10000 15000 20000

m
em

or
y

(G
B) full finetuning

attention finetuning

Fig. 4. Fine-tuning the weights of the self-attention layer only (middle panel) leads
to savings during fine-tuning in peak memory usage and computational cost. It also
leads to important savings in the number of parameters when a model is fine-tuned for
multiple resolutions or multiple downstream classification tasks.

Fine-tuning at different resolutions. In Table 5, we report results with fine-
tuning ViT-S, ViT-B and ViT-L at 384×384 resolution for models pre-trained at
224×224. Solely fine-tuning the MHSA weights provides results that are within
standard deviation (±0.1) from a full fine-tuning both on ImageNet-val and
ImageNet-V2. This is not the case when fine-tuning the FFN layers, while these
contain twice the number of parameters of MHSA. Note, our pre-trained models
have been trained long enough (400 epochs) to ensure convergence.

There are only advantages to use this approach when fine-tuning at higher
resolution as opposed to doing a full fine-tuning, as we get substantial savings
in terms of parameters, latency, and peak memory usage for free, see Figure 4
(right panels). First, the fine-tuning stage requires 10% less memory on the
GPU, which is especially interesting in the context of high-resolution fine-tuning
where the higher images require more memory. The training is also 10% faster,
as less gradients are computed. Finally, the attention weights correspond to
approximately one third of the weights. Therefore, if one wants to use multiple
models fine-tuned for different input resolutions, we save 66% of the storage for
each additional model.

Fine-tuning on different datasets. We now evaluate our approach when
transferring ViTs pre-trained on ImageNet to different downstream classification
tasks by fine-tuning. We consider public benchmarks whose characteristics and
references are given in Appendix B.

In Table 6 we report the performance for different fine-tuning strategies. Here
we make different observations. First, for the smallest datasets, namely CARS
and Flowers, fine-tuning only the MHSA layers is an excellent strategy. In most
cases it is even better than full-tuning. Our interpretation is that restricting the

Three things everyone should know about ViT 11

Table 5. Comparison of full finetuning of all weight (full), finetuning of the MHSA layer
weights only (attn) and of the FFN layer only (ffn) when adapting models at resolution
384×384 on ImageNet-1k from model pre-trained at 224× 224. We compare finetuning
with SGD and AdamW [43] optimizers.

ImageNet1k-val top1 acc.

Model
AdamW↑384 SGD↑384
full attn ffn full attn ffn

ViT-S 82.7 82.5 82.2 82.6 82.3 82.0
ViT-B 84.3 84.3 84.1 84.3 84.2 84.0
ViT-L 85.5 85.5 85.2 85.4 85.3 85.1

ImageNet1k-V2 top1 acc.

Model
AdamW↑384 SGD↑384
full attn ffn full attn ffn

ViT-S 72.5 72.4 71.6 72.5 72.2 71.1
ViT-B 73.7 74.0 73.6 74.0 73.9 73.7
ViT-L 75.5 75.4 75.2 75.6 75.1 75.0

number of weights has a regularizing effect. The conclusion is more mixed with
the largest datasets, in particular iNaturalist, where we observe a significant
gap between the full fine-tuning and our solution for the ViT-S. This could be
expected: in this case there are more images to learn from and new classes that
were not seen before the fine-tuning stage. Restricting the fine-tuning to MHSA
layer allows modifying only a relatively small number of parameters. FFN layers
have twice more weights and leads to better results in that case. This limitation
tends to disappear with the larger ViT-L models, for which the the capacity
of the MHSA is much larger and therefore sufficient. Our strategy is typically
interesting for foundation models, which are very large models that are fine-
tuned on a variety of downstream tasks.

Table 6. Transfer learning experiments: we compare fine-tuning the full model, or
only the attention or ffn layers on six transfer learning dataset with three different ViT
models pre-trained on ImageNet-1k.

Model
Finetuning

INAT-18 INAT-19 CIFAR-10 CIFAR-100 CARS Flowers
full attn ffn

ViT-S
✓ ✗ ✗ 68.0 73.9 98.9 90.5 89.7 96.8
✗ ✓ ✗ 60.6 68.7 98.7 89.1 89.8 96.9
✗ ✗ ✓ 64.4 72.5 98.9 90.1 88.3 96.1

ViT-B
✓ ✗ ✗ 74.1 78.2 99.3 92.5 92.7 97.8
✗ ✓ ✗ 71.1 75.7 99.2 91.8 92.8 98.5
✗ ✗ ✓ 73.3 77.3 99.3 92.1 88.9 97.5

ViT-L
✓ ✗ ✗ 75.9 79.7 99.3 93.2 93.8 98.3
✗ ✓ ✗ 75.3 78.7 99.2 92.7 93.8 98.4
✗ ✗ ✓ 75.4 79.3 99.2 93.0 93.0 97.6

12 H. Touvron et al.

#×$

Linear

patchify

LayerN
orm

G
ELU

#
4 ×

$
4

#
8 ×

$
8

#
16×

$
16

Linear

patchify

LayerN
orm

G
ELU

Linear

patchify

LayerN
orm

Fig. 5. Design of our hMLP-stem: we start from subpatches and progressively merge
them with linear layers interleaved by GELU non-linearities. The design of our stem is
such that the patches are processed independently. Hence it commutes with masking.

5 Patch preprocessing for self-supervised learning

The original ViT paper [16] considered to include convolution instead of patch
projection in the network design. Several recent papers [21, 23, 67, 70, 71, 74] ad-
vocate this choice to include a small pre-processing network in the architecture,
instead of a simple patch projection. Most of the pre-processing subnetworks
that have been considered are based on convolutions, and are often referred to
as “convolutional stems”. Small transformers have also been considered [74].

While these patch pre-processing designs have been developed to improve
accuracy and/or stability, there are some remaining questions regarding their
design and flexibility. First, it is not clear which is the most effective when
combined with a vanilla transformer. Second, to our knowledge there is no work
addressing the problem of their compatibility with self-supervised methods based
on patch masking, and in particular on Bert-like auto-encoders such as BeiT [3].

In this section we try to answer these questions. We compare several exist-
ing pre-processing designs in terms of accuracy and compute and evaluate them
in combination with BeiT, using the codebase release by the authors of BeiT.
The only change we make is to train the tokenizer on ImageNet-1k, rather than
using the one from DALL-E [53] used in BeiT which is trained on a proprietary
dataset comprised of 250 million images. In this manner, pre-training is based on
ImageNet-1k only. This permits reproducible experimentation and fair compar-
ison, and gives equivalent results [49]. Since existing convolutional designs are
not satisfactory in combination with masking, we first introduce our own design.

Our hierarchical MLP (hMLP) stem is depicted in Figure 5. All patches are
processed independently with linear layers interleaved with non-linearities and
renormalization. Its design is guided by our motivation to remove any interaction
between the different 16×16 patches during the pre-processing stage. Even if we
mask a patch, it does not create any artifacts resulting from the convolution
overlapping with other patches, as it is the case with existing designs. Therefore,
with our hMLP solution, we can equivalently mask the patches before or after the

Three things everyone should know about ViT 13

Table 7. Patch pre-processing: Performance in top1 accuracy with for a ViT-B12.
All models are (1) trained 300 epochs in the supervised case; (2) pre-trained during
300 epochs and fine-tuned 100 epochs when used with BeiT. We report the result of a
ViT-B13 to provide the performance of a vanilla transformer with more FLOPS. We
measure the standard deviation for the two linear stem baselines and our hMLP stem
on 5 runs. The other measurements are made with the fixed seed 0.

ImNet1k supervised BeiT+FT
Stem type norm. NL GFLOPS acc. -val acc. -v2 ImNet-val

Linear: ViT-B12 [16]

– – 17.58 82.20±0.06 71.0 83.05±0.08

BN – 17.58 82.31 71.0 82.98
– GELU 17.58 81.55 70.5 83.09
BN GELU 17.58 82.38 70.7 82.99

Linear: ViT-B13 – – 19.04 82.35±0.12 71.3 83.26±0.06

Conv: LeViT [21]
BN GELU 19.07 82.57 71.0 83.04
LN GELU 19.07 82.50 70.9 83.06

Local transformer [23] 19.12 82.26 70.6 82.38

hMLP (ours) BN GELU 17.73 82.54±0.09 71.5 83.43±0.10

LN GELU 17.73 82.50±0.07 71.0 83.24±0.09

patch-processing stage. Note that, although patches are processed independently,
our hMLP-stem is equivalent to a convolutional stem in which the size of the
convolutional kernel and its stride are matched, and in practice we implement it
with convolutional layers, see our code in Appendix C.

In short, we start from small 2×2 patches, and gradually increase their size
until they reach 16×16. Each increase of the patch size is denoted by “patchify” in
Figure 5, in spirit of hierarchical transformer designs like Swin-Transformers [41].
The patches are projected with a linear projection and normalized before we
apply a GELU non-linearity [27]. For the normalization, we consider and evaluate
two choices: either we use batch-normalization (BN) [32] or layer-normalization
(LN) [2]. While the BN offers better trade-offs, LN is of interest when used with
small batch sizes: it works well even with a single image per batch, as often used
in object detection.

In contrast with existing stems from the literature, our hMLP design does
not significantly increase the compute requirement. For instance, ViT-B, requires
FLOPS is 17.73 GFLOPS with our design. This adds less than 1% of compute
compared to using the usual linear projection stem.

Stem comparison in supervised learning. In Table 7 we provide a com-
parison between different stem designs. We have selected several prototypical
designs from the literature for which the code is available online. In addition
to our hMLP stem, we have considered some variations over the standard lin-
ear projection to evaluate the influence of the non-linearities and normalization.
For the standard linear stem, we also consider a ViT-B13 including an extra
pair (MHSA, FFN) to allow more direct comparisons with other stems with
more FLOPS. In this comparison the most effective existing design is the one of

14 H. Touvron et al.

82.3 82.5
supervised top-1(%)

83.0

83.2

83.4

B
ei

T
+

FT
 t

o
p
-1

(%
)

Linear
Conv: Graham et al.
hMLP (ours)

Fig. 6. Performance of patch pre-processing
in the supervised and BeiT+FT settings. Our
hMLP stem performs well in both cases, im-
proving the accuracy compared to linear pro-
jection (shown for B12 and B13) without sig-
nificantly increasing the complexity (+0.8%
FLOPS compared to the ViT-B12 in the
bottom-left corner). In contrast, the convo-
lutional stem only improves the performance
in the supervised case, while significantly in-
creasing complexity (+7.5% FLOPS).

LeViT [21]. The improvements with respect to the linear baseline are significant
considering the standard deviation, even when taking into account the extra
layer of ViT-B13 to compare with an similar number of FLOPS. Our hMLP
stem obtains a comparable performance but with lower complexity, and without
any interaction between the 16×16 patches.

Results with BeiT training. We report the results with BeiT, fine-tuned on
ImageNet-val, in the right-most column of Table 7. We use the code of BeiT [3]
with their training procedure, which includes LayerScale and a relatively elabo-
rated fine-tuning procedure. As one can see, existing stems do not provide any
improvement compared to the linear baseline, while adding compute. In contrast,
our design is effective and provides an improvement of +0.3/+0.4 top1 accuracy
compared to the baseline, which is significant considering the measured standard
deviations in the results. The interest of hMLP in the context of masked self-
supervised learning is clear in Figure 6, where we plot the performance, averaged
over 5 seeds for our method, in the supervised case versus the one with BeiT.

6 Conclusion

In this paper, we looked at three different topics related to Vision Transform-
ers. First, we investigated a simple but effective way to parallelize them, show-
ing a viable alternative to increase capacity without significantly increasing the
working dimensionality. Whether this simple parallel design principle can be ap-
plied to other architectures is an exploration left for future work. Second, we
considered different fine-tuning strategies and showed that fine-tuning the self-
attention layer is sufficient in the context of resolution fine-tuning. This can
also be interesting when transferring to other downstream classification tasks,
especially when fine-tuning large models or/and transferring to a dataset with
few training images. Last, we introduced a simple patch pre-processing stem,
which processes patches independently across multiple linear layers interleaved
with non-linearities and patch aggregation. It is especially useful when combined
with mask-based self-supervised learning such as BeiT.

Acknowledgement. We thank Francisco Massa for valuable discussions and in-
sights about optimizing the implementation of block parallelization.

Bibliography

[1] Arnab, A., Dehghani, M., Heigold, G., Sun, C., Lučić, M., Schmid, C.:
ViVit: A video vision transformer. In: International Conference on Com-
puter Vision (2021)

[2] Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization. arXiv preprint
arXiv:1607.06450 (2016)

[3] Bao, H., Dong, L., Wei, F.: BEiT: BERT pre-training of image transformers.
arXiv preprint arXiv:2106.08254 (2021)

[4] Bello, I., Zoph, B., Vaswani, A., Shlens, J., Le, Q.V.: Attention augmented
convolutional networks. In: Conference on Computer Vision and Pattern
Recognition (2019)

[5] Berriel, R., Lathuilière, S., Nabi, M., Klein, T., Oliveira-Santos, T., Sebe,
N., Ricci, E.: Budget-aware adapters for multi-domain learning. In: Inter-
national Conference on Computer Vision (2019)

[6] Brown, T.B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P.,
Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models
are few-shot learners. arXiv preprint arXiv:2005.14165 (2020)

[7] Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko,
S.: End-to-end object detection with transformers. In: European Conference
on Computer Vision (2020)

[8] Caron, M., Touvron, H., Misra, I., Jégou, H., Mairal, J., Bojanowski, P.,
Joulin, A.: Emerging properties in self-supervised vision transformers. arXiv
preprint arXiv:2104.14294 (2021)

[9] Chang, H., Zhang, H., Jiang, L., Liu, C., Freeman, W.T.: MaskGIT: Masked
generative image transformer. arXiv preprint arXiv:2202.04200 (2022)

[10] Chen, X., Xie, S., He, K.: An empirical study of training self-supervised vi-
sion transformers. In: International Conference on Computer Vision (2021)

[11] d’Ascoli, S., Touvron, H., Leavitt, M.L., Morcos, A.S., Biroli, G., Sagun, L.:
ConViT: Improving vision transformers with soft convolutional inductive
biases. In: ICML (2021)

[12] Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: Pre-training of
deep bidirectional transformers for language understanding. In: NAACL
(2019)

[13] Ding, X., Zhang, X., Ma, N., Han, J., Ding, G., Sun, J.: Repvgg: Making
vgg-style convnets great again. Conference on Computer Vision and Pattern
Recognition (2021)

[14] Ding, X., Zhang, X., Han, J., Ding, G.: RepMLP: Re-parameterizing con-
volutions into fully-connected layers for image recognition. arXiv preprint
arXiv:2105.01883 (2021)

[15] Dong, X., Bao, J., Zhang, T., Chen, D., Zhang, W., Yuan, L., Chen, D.,
Wen, F., Yu, N.: Peco: Perceptual codebook for BERT pre-training of vision
transformers. arXiv preprint arXiv:2111.12710 (2021)

16 H. Touvron et al.

[16] Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Un-
terthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al.: An
image is worth 16x16 words: Transformers for image recognition at scale.
In: International Conference on Learning Representations (2021)

[17] El-Nouby, A., Izacard, G., Touvron, H., Laptev, I., Jegou, H., Grave, E.:
Are large-scale datasets necessary for self-supervised pre-training? arXiv
preprint arXiv:2112.10740 (2021)

[18] El-Nouby, A., Touvron, H., Caron, M., Bojanowski, P., Douze, M., Joulin,
A., Laptev, I., Neverova, N., Synnaeve, G., Verbeek, J., et al.: XCiT: Cross-
covariance image transformers. In: NeurIPS (2021)

[19] Fan, H., Xiong, B., Mangalam, K., Li, Y., Yan, Z., Malik, J., Feichtenhofer,
C.: Multiscale vision transformers. arXiv preprint arXiv:2104.11227
(2021)

[20] Goyal, A., Bochkovskiy, A., Deng, J., Koltun, V.: Non-deep networks. arXiv
preprint arXiv:2110.07641 (2021)

[21] Graham, B., El-Nouby, A., Touvron, H., Stock, P., Joulin, A., Jégou, H.,
Douze, M.: LeViT: a vision transformer in convnet’s clothing for faster
inference. arXiv preprint arXiv:2104.01136 (2021)

[22] Guo, Y., Shi, H., Kumar, A., Grauman, K., Simunic, T., Feris, R.S.: Spot-
tune: Transfer learning through adaptive fine-tuning. Conference on Com-
puter Vision and Pattern Recognition (2019)

[23] Han, K., Xiao, A., Wu, E., Guo, J., Xu, C., Wang, Y.: Transformer in
transformer. arXiv preprint arXiv:2103.00112 (2021)

[24] He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.: Masked au-
toencoders are scalable vision learners. arXiv preprint arXiv:2111.06377
(2021)

[25] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recog-
nition. In: Conference on Computer Vision and Pattern Recognition (2016)

[26] He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual
networks. arXiv preprint arXiv:1603.05027 (2016)

[27] Hendrycks, D., Gimpel, K.: Gaussian error linear units (GELUs). arXiv
preprint arXiv:1606.08415 (2016)

[28] Horn, G.V., Mac Aodha, O., Song, Y., Shepard, A., Adam, H., Perona,
P., Belongie, S.J.: The inaturalist challenge 2017 dataset. arXiv preprint
arXiv:1707.06642 (2017)

[29] Houlsby, N., Giurgiu, A., Jastrzebski, S., Morrone, B., de Laroussilhe, Q.,
Gesmundo, A., Attariyan, M., Gelly, S.: Parameter-efficient transfer learn-
ing for NLP. In: ICML (2019)

[30] Huang, G., Sun, Y., Liu, Z., Sedra, D., Weinberger, K.Q.: Deep networks
with stochastic depth. In: European Conference on Computer Vision (2016)

[31] Hudson, D.A., Zitnick, C.L.: Generative adversarial transformers. In: Inter-
national Conference on Machine Learning (2021)

[32] Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network train-
ing by reducing internal covariate shift. In: International Conference on
Machine Learning (2015)

Three things everyone should know about ViT 17

[33] Karita, S., Chen, N., Hayashi, T., et al.: A comparative study on transformer
vs RNN in speech applications. arXiv preprint arXiv:1909.06317 (2019)

[34] Krause, J., Stark, M., Deng, J., Fei-Fei, L.: 3d object representations for
fine-grained categorization. In: IEEE Workshop on 3D Representation and
Recognition (2013)

[35] Krizhevsky, A., Sutskever, I., Hinton, G.: ImageNet classification with deep
convolutional neural networks. In: NeurIPS (2012)

[36] Krizhevsky, A.: Learning multiple layers of features from tiny images. Tech.
rep., CIFAR (2009)

[37] Lample, G., Charton, F.: Deep learning for symbolic mathematics. arXiv
preprint arXiv:1912.01412 (2019)

[38] Li, X., Wang, W., Hu, X., Yang, J.: Selective kernel networks. Conference
on Computer Vision and Pattern Recognition (2019)

[39] Liu, H., Dai, Z., So, D.R., Le, Q.V.: Pay attention to MLPs. arXiv preprint
arXiv:2105.08050 (2021)

[40] Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis,
M., Zettlemoyer, L., Stoyanov, V.: Roberta: A robustly optimized bert pre-
training approach. arXiv preprint arXiv:1907.11692 (2019)

[41] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin
transformer: Hierarchical vision transformer using shifted windows. arXiv
preprint arXiv:2103.14030 (2021)

[42] Liu, Z., Mao, H., Wu, C.Y., Feichtenhofer, C., Darrell, T., Xie, S.: A convnet
for the 2020s. arXiv preprint arXiv:2201.03545 (2022)

[43] Loshchilov, I., Hutter, F.: Fixing weight decay regularization in adam. arXiv
preprint arXiv:1711.05101 (2017)

[44] Lüscher, C., Beck, E., Irie, K., et al.: RWTH ASR systems for LibriSpeech:
Hybrid vs attention. In: Interspeech (2019)

[45] Mahabadi, R.K., Ruder, S., Dehghani, M., Henderson, J.: Parameter-
efficient multi-task fine-tuning for transformers via shared hypernetworks.
In: ACL/IJCNLP (2021)

[46] Mancini, M., Ricci, E., Caputo, B., Bulò, S.R.: Adding new tasks to a sin-
gle network with weight transformations using binary masks. In: European
Conference on Computer Vision Workshops (2018)

[47] Melas-Kyriazi, L.: Do you even need attention? A stack of feed-forward lay-
ers does surprisingly well on ImageNet. arXiv preprint arXiv:2105.02723
(2021)

[48] Nilsback, M.E., Zisserman, A.: Automated flower classification over a large
number of classes. In: Proceedings of the Indian Conference on Computer
Vision, Graphics and Image Processing (2008)

[49] Nouby, A.E., Izacard, G., Touvron, H., Laptev, I., Jégou, H., Grave, E.:
Are large-scale datasets necessary for self-supervised pre-training? arXiv
preprint arXiv:2112.10740 (2021)

[50] Oquab, M., Bottou, L., Laptev, I., Sivic, J.: Learning and transferring mid-
level image representations using convolutional neural networks. In: Con-
ference on Computer Vision and Pattern Recognition (2014)

18 H. Touvron et al.

[51] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulic, I., Ruder, S., Cho,
K., Gurevych, I.: AdapterHub: A framework for adapting transformers. In:
EMNLP (2020)

[52] Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I.: Lan-
guage models are unsupervised multitask learners (2019)

[53] Ramesh, A., Pavlov, M., Goh, G., Gray, S., Voss, C., Radford, A.,
Chen, M., Sutskever, I.: Zero-shot text-to-image generation. arXiv preprint
arXiv:2102.12092 (2021)

[54] Rebuffi, S.A., Bilen, H., Vedaldi, A.: Efficient parametrization of multi-
domain deep neural networks. International Conference on Computer Vision
(2018)

[55] Recht, B., Roelofs, R., Schmidt, L., Shankar, V.: Do ImageNet classifiers
generalize to ImageNet? In: International Conference on Machine Learning
(2019)

[56] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang,
Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: Ima-
geNet large scale visual recognition challenge. International Journal of Com-
puter Vision 115(3), 211–252 (2015)

[57] Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-
scale image recognition. In: International Conference on Learning Repre-
sentations (2015)

[58] Steiner, A., Kolesnikov, A., Zhai, X., Wightman, R., Uszkoreit, J., Beyer,
L.: How to train your ViT? data, augmentation, and regularization in vision
transformers. arXiv preprint arXiv:2106.10270 (2021)

[59] Szegedy, C., Wei Liu, Yangqing Jia, Sermanet, P., Reed, S., Anguelov, D.,
Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions.
In: Conference on Computer Vision and Pattern Recognition (2015)

[60] Tolstikhin, I., Houlsby, N., Kolesnikov, A., Beyer, L., Zhai, X., Un-
terthiner, T., Yung, J., Keysers, D., Uszkoreit, J., Lucic, M., Dosovit-
skiy, A.: MLP-Mixer: An all-MLP architecture for vision. arXiv preprint
arXiv:2105.01601 (2021)

[61] Touvron, H., Bojanowski, P., Caron, M., Cord, M., El-Nouby, A., Grave,
E., Joulin, A., Synnaeve, G., Verbeek, J., Jégou, H.: ResMLP: feedforward
networks for image classification with data-efficient training. arXiv preprint
arXiv:2105.03404 (2021)

[62] Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jégou, H.:
Training data-efficient image transformers & distillation through attention.
In: International Conference on Machine Learning (2021)

[63] Touvron, H., Cord, M., El-Nouby, A., Bojanowski, P., Joulin, A., Synnaeve,
G., Jégou, H.: Augmenting convolutional networks with attention-based ag-
gregation. arXiv preprint arXiv:2112.13692 (2021)

[64] Touvron, H., Cord, M., Sablayrolles, A., Synnaeve, G., Jégou, H.: Going
deeper with image transformers. International Conference on Computer Vi-
sion (2021)

[65] Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test reso-
lution discrepancy. In: NeurIPS (2019)

Three things everyone should know about ViT 19

[66] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N.,
Kaiser, L., Polosukhin, I.: Attention is all you need. In: NeurIPS (2017)

[67] Wang, W., Xie, E., Li, X., Fan, D.P., Song, K., Liang, D., Lu, T., Luo,
P., Shao, L.: Pyramid vision transformer: A versatile backbone for dense
prediction without convolutions. arXiv preprint arXiv:2102.12122 (2021)

[68] Wei, C., Fan, H., Xie, S., Wu, C.Y., Yuille, A., Feichtenhofer, C.: Masked
feature prediction for self-supervised visual pre-training. arXiv preprint
arXiv:2112.09133 (2021)

[69] Wightman, R., Touvron, H., Jégou, H.: ResNet strikes back: An improved
training procedure in timm. arXiv preprint arXiv:2110.00476 (2021)

[70] Wu, H., Xiao, B., Codella, N.C.F., Liu, M., Dai, X., Yuan, L., Zhang,
L.: Cvt: Introducing convolutions to vision transformers. arXiv preprint
arXiv:2103.15808 (2021)

[71] Xiao, T., Singh, M., Mintun, E., Darrell, T., Dollár, P., Girshick,
R.B.: Early convolutions help transformers see better. arXiv preprint
arXiv:2106.14881 (2021)

[72] Xie, Z., Zhang, Z., Cao, Y., Lin, Y., Bao, J., Yao, Z., Dai, Q., Hu, H.:
Simmim: A simple framework for masked image modeling. arXiv preprint
arXiv:2111.09886 (2021)

[73] Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features
in deep neural networks? arXiv preprint arXiv:1411.1792 (2014)

[74] Yuan, L., Chen, Y., Wang, T., Yu, W., Shi, Y., Tay, F., Feng, J., Yan, S.:
Tokens-to-token vit: Training vision transformers from scratch on imagenet.
arXiv preprint arXiv:2101.11986 (2021)

[75] Zagoruyko, S., Komodakis, N.: Wide residual networks. arXiv preprint
arXiv:1605.07146 (2016)

[76] Zhou, J., Wei, C., Wang, H., Shen, W., Xie, C., Yuille, A., Kong, T.: ibot:
Image bert pre-training with online tokenizer. International Conference on
Learning Representations (2022)

20 H. Touvron et al.

Three things everyone should know about ViTs

– Supplemental material –

A Baselines

↓ Training procedure #epochs ViT-Ti ViT-S ViT-B ViT-L

DeiT [62] 300 72.2 79.8 81.8 –
Steiner et al. [58] 300 69.6 76.0 78.7 74.0

He et al. [24] 300 – – 82.1 81.5†

He et al. [24] with EMA 300 – – 82.3 82.6†

Our baseline 300 72.7 79.7 82.2±0.06 83.0
Our baseline with LayerScale [64] 400 73.5 80.7 82.7 84.0

Table 8. Comparison our baseline with previous training procedures. We only include
results that correspond to the vanilla ViT introduced by Dosovitskiy et al. [16] for
Vit-B, Vit-L and Touvron et al. [62] for Vit-Ti and ViT-S. All models are train oned
ImageNet-1k at resolution 224× 224 without distillation. †200 epochs.

B Transfer Learning Datasets

Table 9. Datasets used in transfer experiments and corresponding references.

Dataset Train size Test size #classes

ImageNet [56] 1,281,167 50,000 1000
iNaturalist 2018 [28] 437,513 24,426 8,142
iNaturalist 2019 [28] 265,240 3,003 1,010
Flowers-102 [48] 2,040 6,149 102
Stanford Cars [34] 8,144 8,041 196
CIFAR-100 [36] 50,000 10,000 100
CIFAR-10 [36] 50,000 10,000 10

Three things everyone should know about ViT 21

C Pytorch code of our hMLP Stem

Algorithm 1 Pseudocode of hMLP stem in a PyTorch-like style.

import torch
import torch.nn as nn
class hMLP_stem(nn.Module):

""" Image to Patch Embedding
"""
def __init__(self, img_size=(224,224), patch_size=(16,16), in_chans=3, embed_dim=768):

super().__init__()
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
self.img_size = img_size
self.patch_size = patch_size
self.num_patches = num_patches
self.proj = torch.nn.Sequential(

*[nn.Conv2d(in_chans, embed_dim//4, kernel_size=4, stride=4),
nn.SyncBatchNorm(embed_dim//4),
nn.GELU(),
nn.Conv2d(embed_dim//4, embed_dim//4, kernel_size=2, stride=2),
nn.SyncBatchNorm(embed_dim//4),
nn.GELU(),
nn.Conv2d(embed_dim//4, embed_dim, kernel_size=2, stride=2),
nn.SyncBatchNorm(embed_dim),
])

def forward(self, x):
B, C, H, W = x.shape
x = self.proj(x).flatten(2).transpose(1, 2)
return x

	Three things everyone should know about Vision Transformers

